

US 20160145304A1

(19) **United States**

(12) **Patent Application Publication**

Baumann et al.

(10) **Pub. No.: US 2016/0145304 A1**

(43) **Pub. Date: May 26, 2016**

(54) **CYSTOBACTAMIDES**

(71) Applicants: **HELMHOLTZ-ZENTRUM FÜR INFektionsforschung GMBH**, Braunschweig (DE); **GOTTFRIED WILHELM LEIBNIZ UNIVERSITÄT HANNOVER**, Hannover (DE)

(72) Inventors: **Sascha Baumann**, Saarbrücken (DE); **Jennifer Herrmann**, Saarbrücken (DE); **Kathrin Mohr**, Braunschweig (DE); **Heinrich Steinmetz**, Hildesheim (DE); **Klaus Gerth**, Braunschweig (DE); **Ritesh Raju**, Saarbrücken (DE); **Rolf Müller**, Blieskastel (DE); **Rolf Hartmann**, Saarbrücken (DE); **Mostafa Hamed**, Saarbrücken (DE); **Walid A.M. Elgaher**, Saarbrücken (DE); **Maria Moreno**, Hannover (DE); **Franziska Gille**, Langenhagen (DE); **Liang Liang Wang**, Hannover (DE); **Andreas Kirschning**, Clausthal-Zellerfeld (DE)

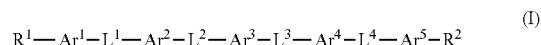
(21) Appl. No.: **14/904,654**

(22) PCT Filed: **Jul. 14, 2014**

(86) PCT No.: **PCT/EP2014/001925**

§ 371 (c)(1),
(2) Date: **Jan. 12, 2016**

(30) **Foreign Application Priority Data**


Jul. 12, 2013 (EP) 13003539.7

Publication Classification

(51) **Int. Cl.**
C07K 7/06 (2006.01)
C07K 5/065 (2006.01)
(52) **U.S. Cl.**
CPC *C07K 7/06* (2013.01); *C07K 5/06078* (2013.01); *A61K 38/00* (2013.01)

ABSTRACT

The present invention provides cystobactamides of formula (I) and the use thereof for the treatment or prophylaxis of bacterial infections:

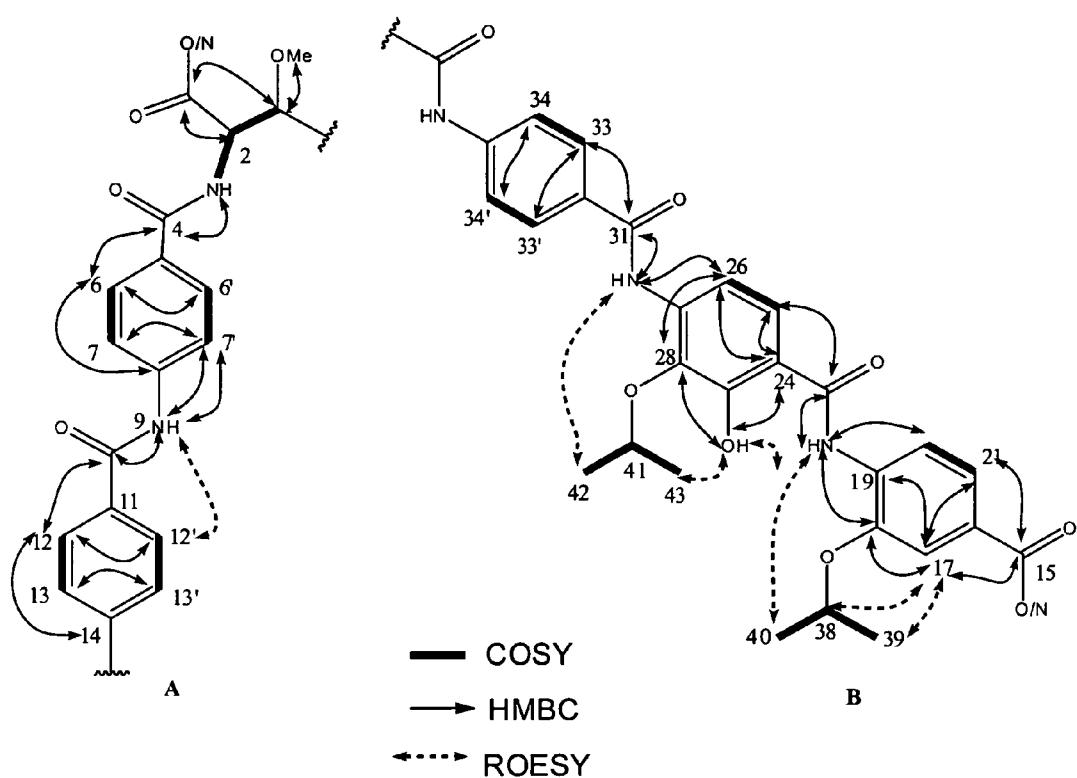


Figure 1

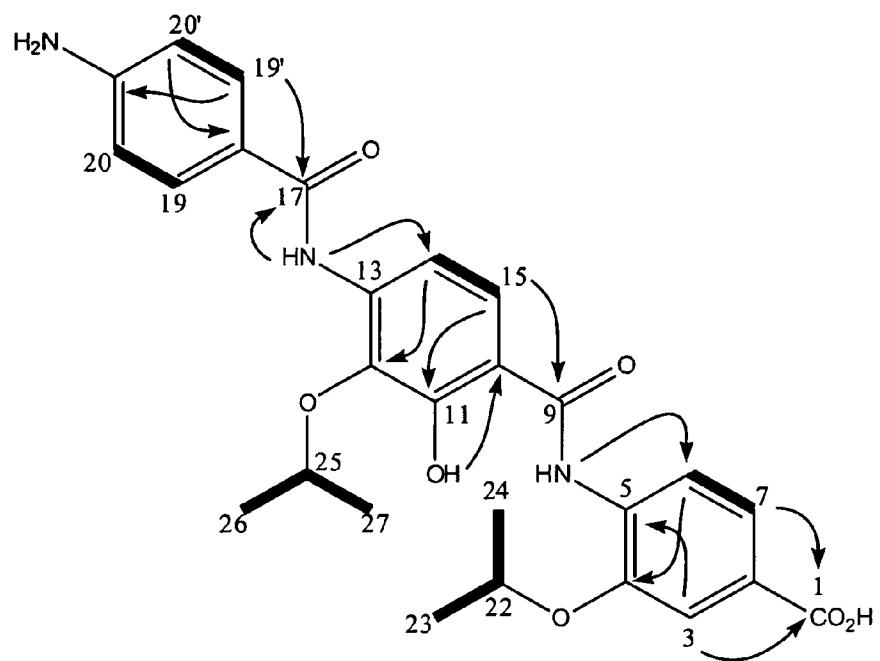


Figure 2

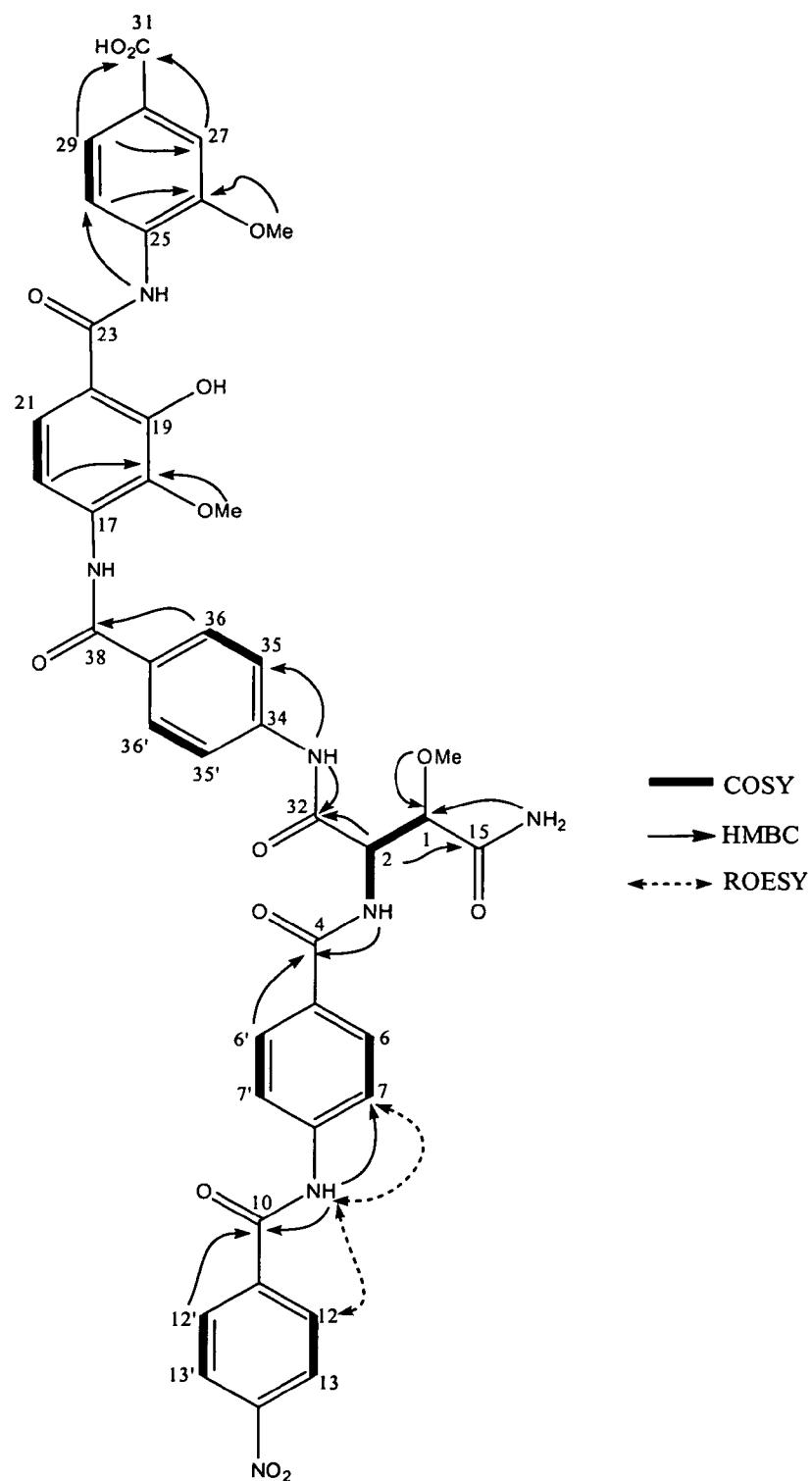


Figure 3

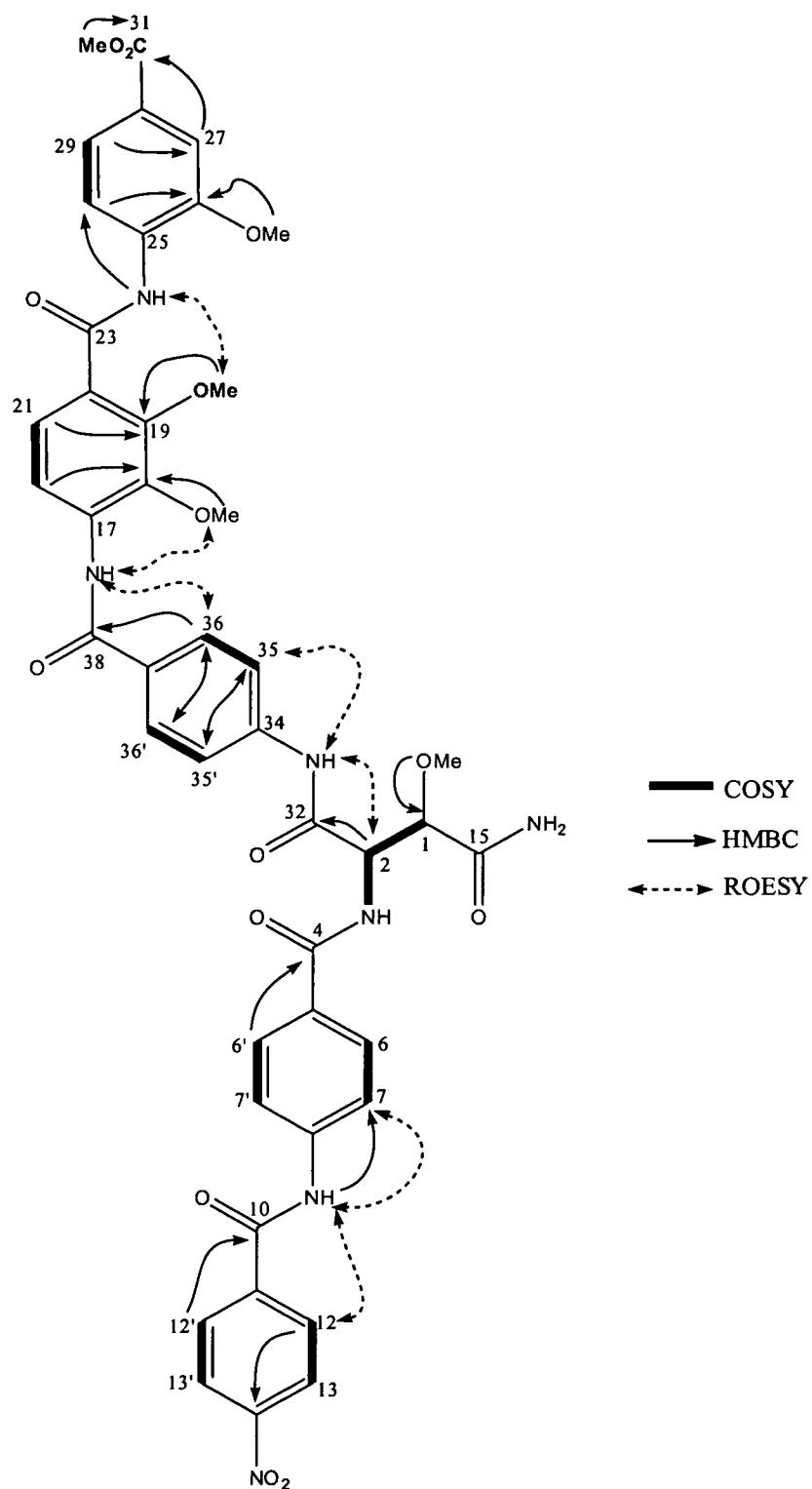


Figure 4

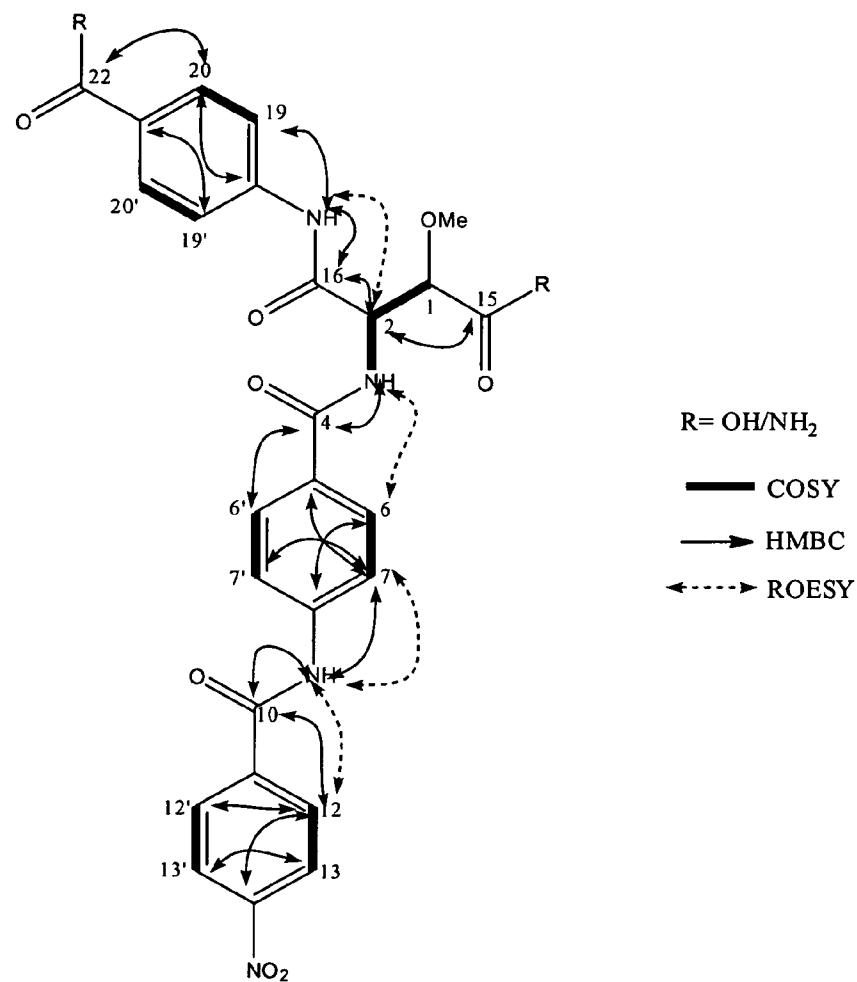


Figure 5

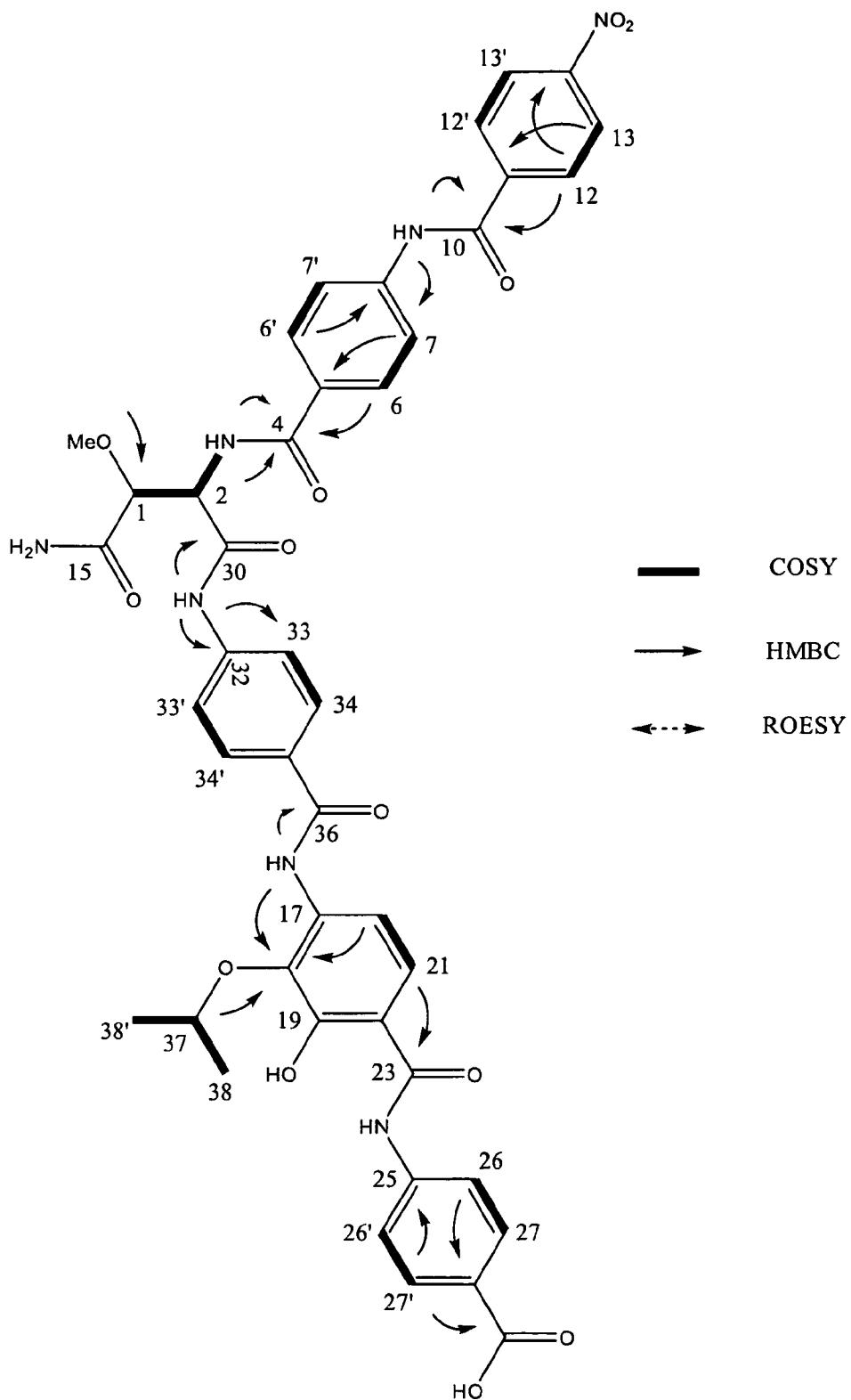


Figure 6

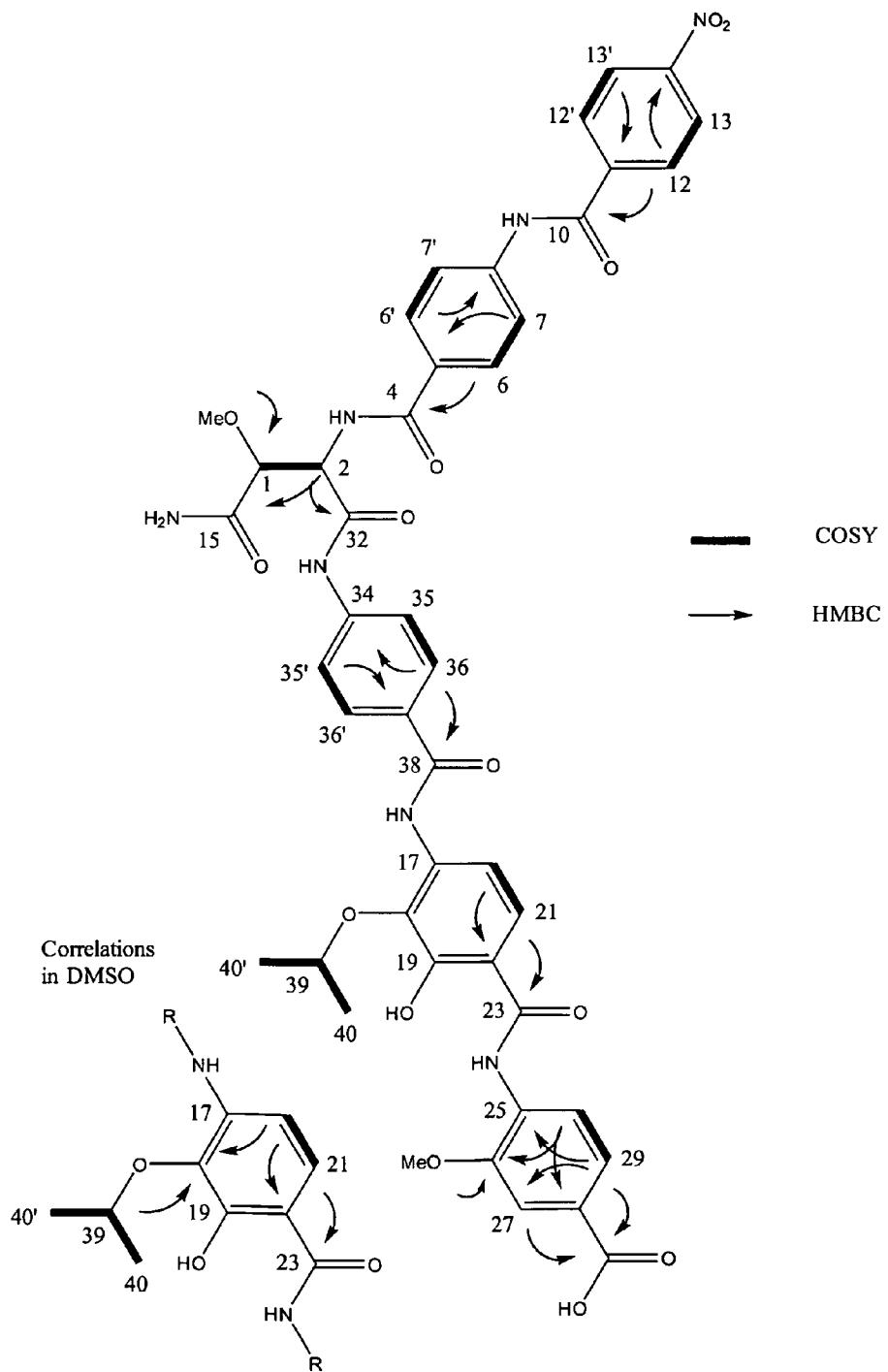


Figure 7

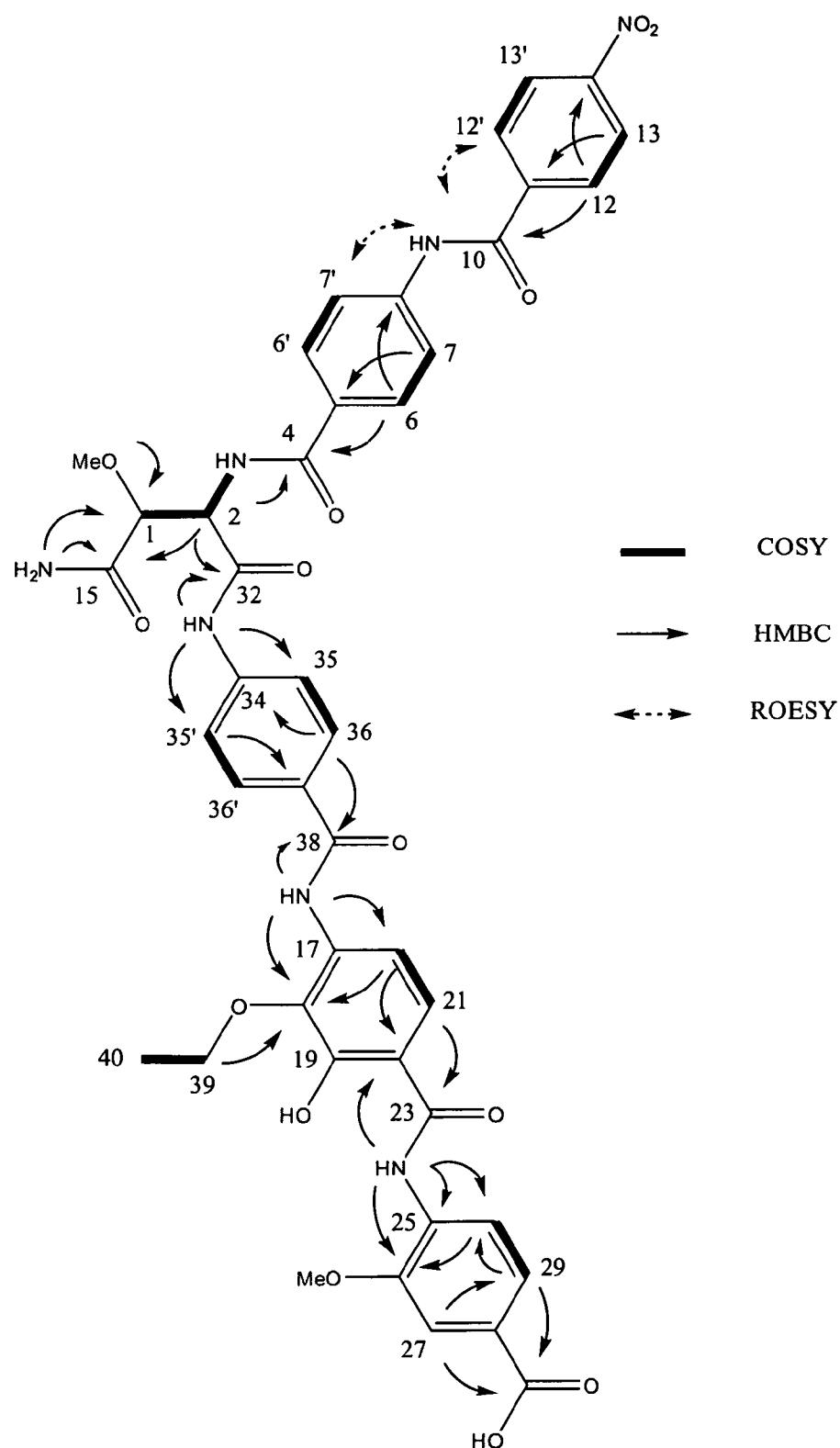


Figure 8

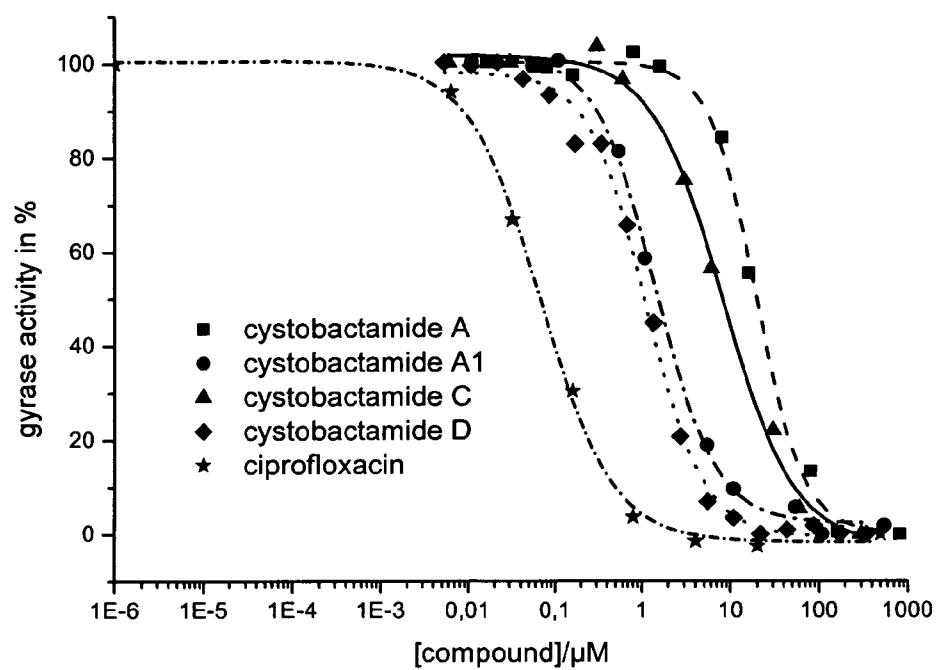


Figure 9a

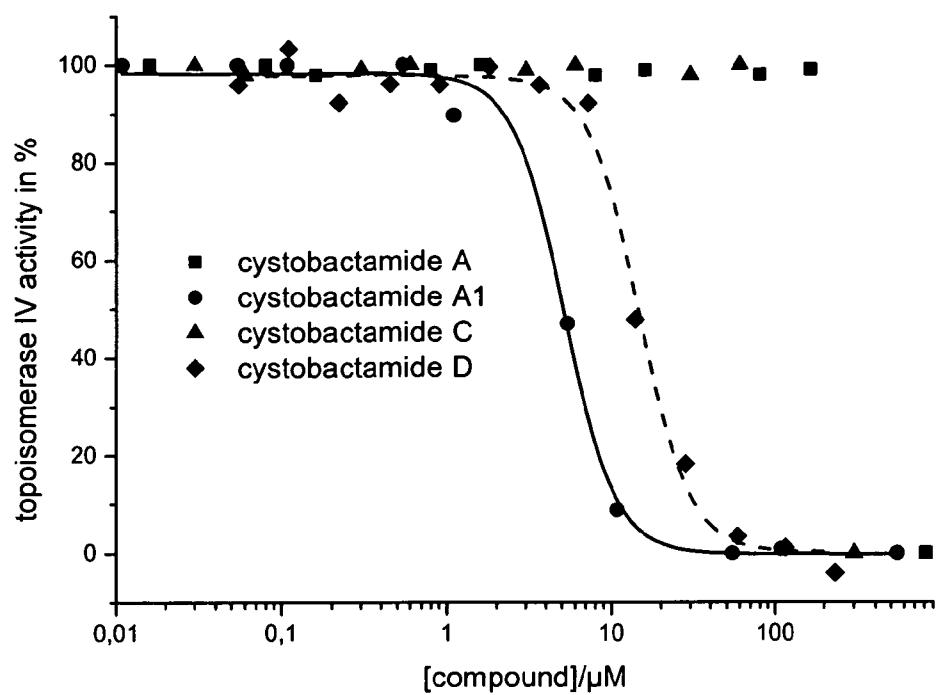


Figure 9b

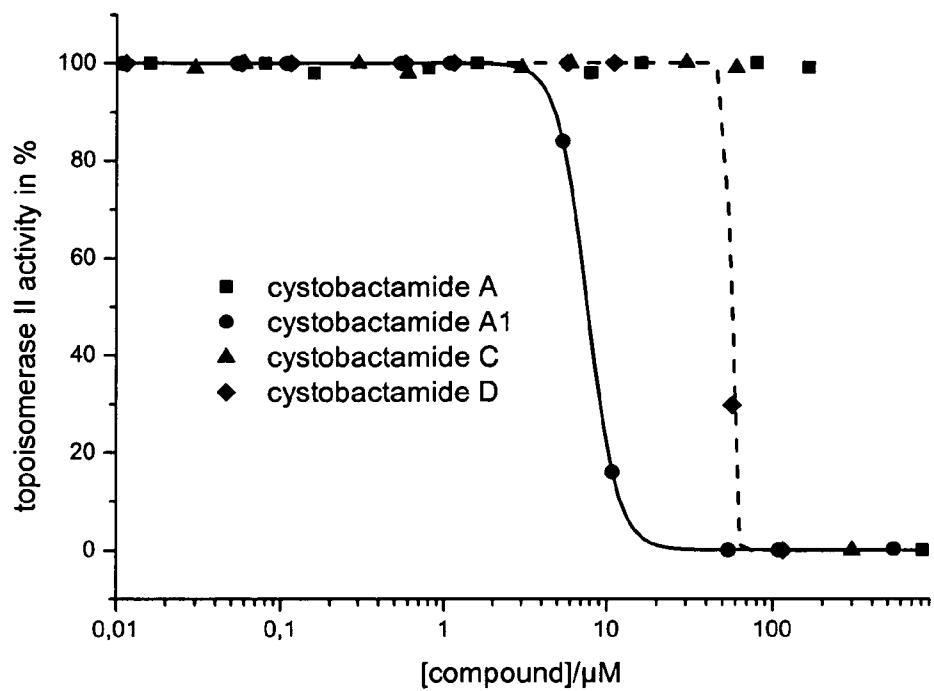


Figure 9c

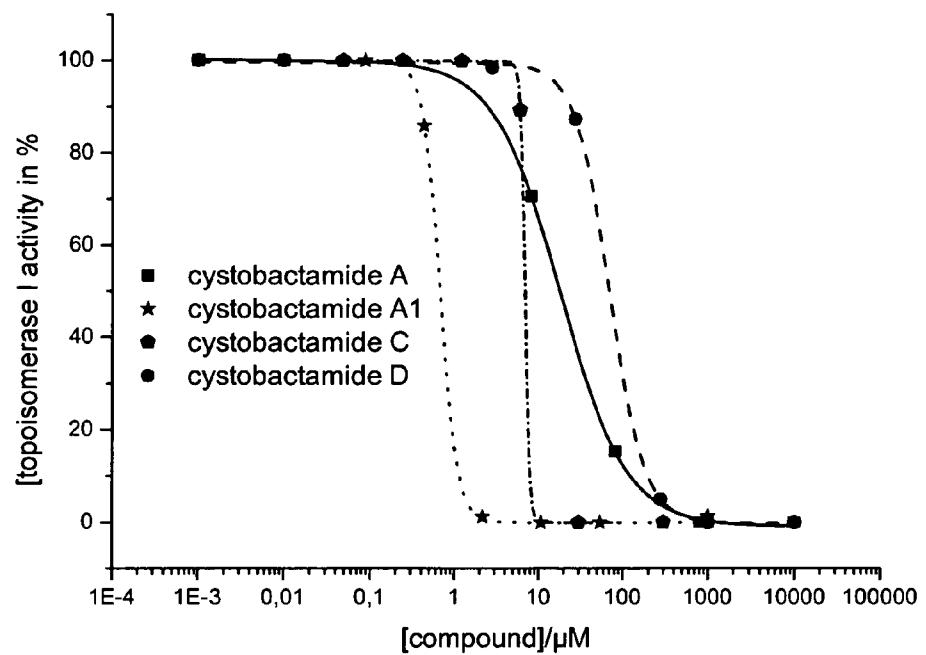


Figure 9d

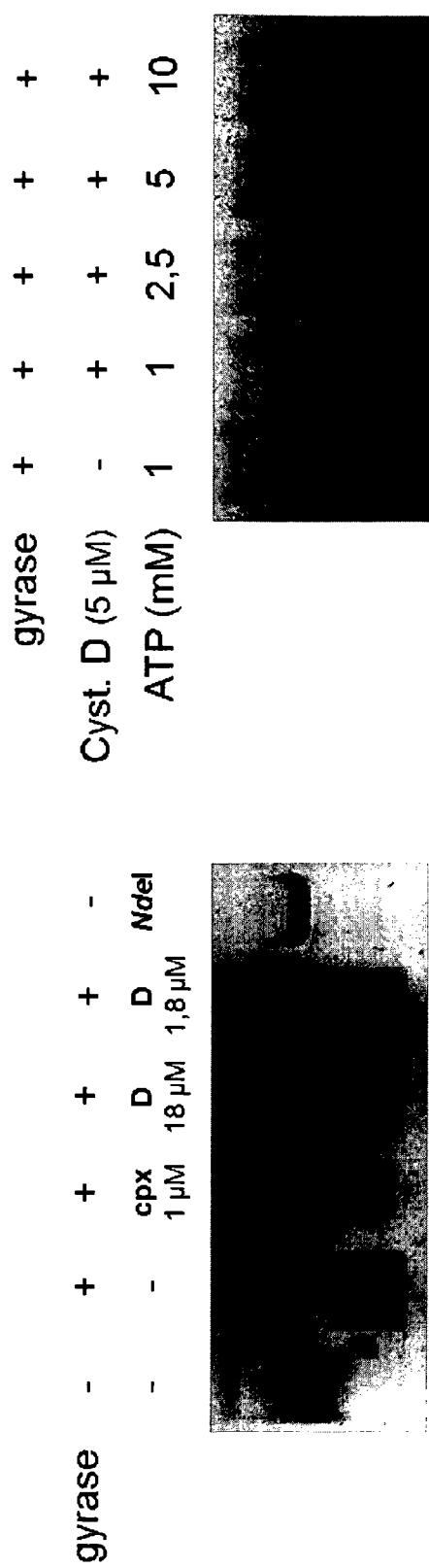


Figure 10 a and b

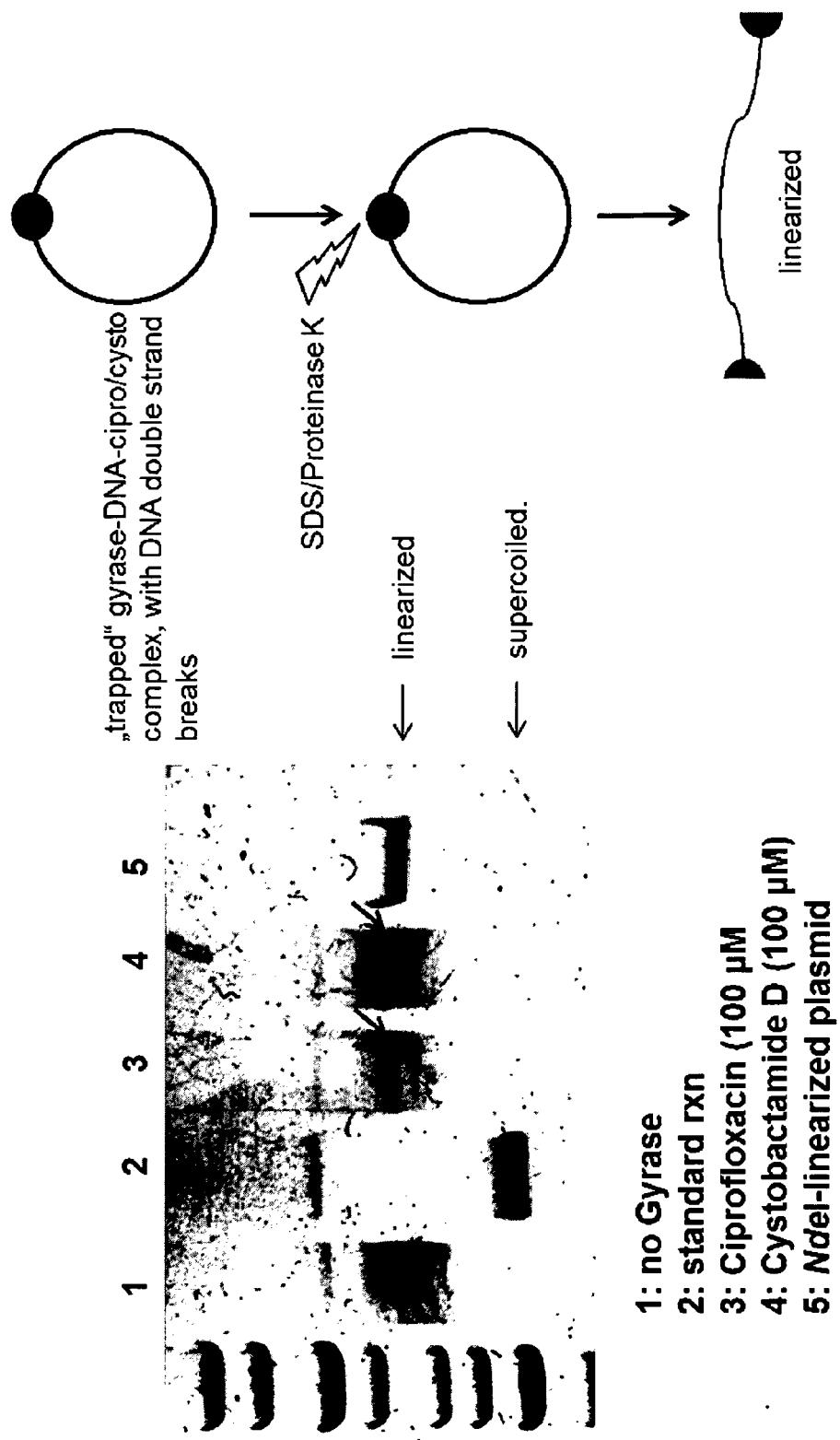


Figure 11

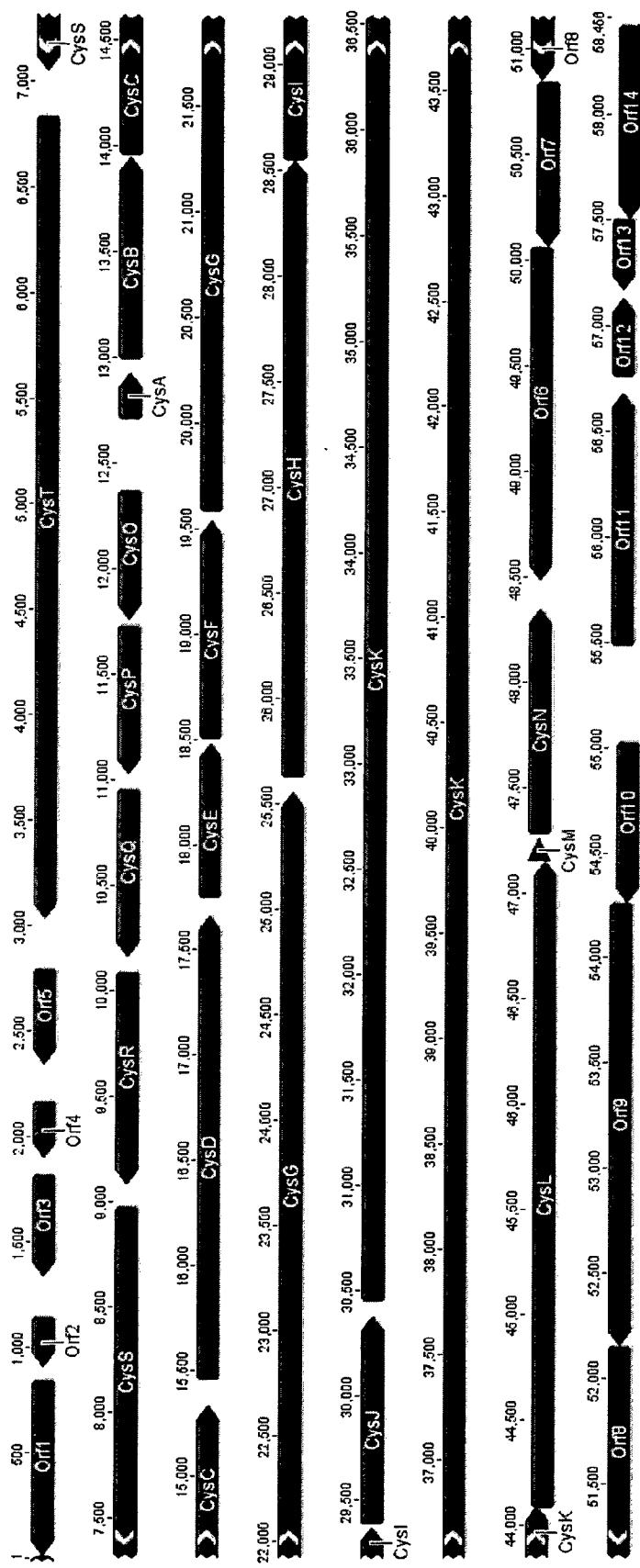
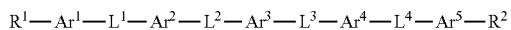



Figure 12

CYSTOBACTAMIDES

[0001] Cystobactamides are novel natural products that have been isolated from myxobacterium *Cystobacter velatus* (MCy8071; internal name: *Cystobacter ferrugineus*). Cystobactamides exhibit a good antibiotic activity, especially against selected Gram-negative bacteria, such as *E. coli*, *P. aeruginosa*, and *A. baumannii*, as well as a broad spectrum activity against Gram-positive bacteria.

[0002] The present invention provides compounds of formula (I)

wherein

[0003] Ar^1 is an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0004] Ar^2 is an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0005] Ar^3 is an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0006] Ar^4 is absent or an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0007] Ar^5 is absent or an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0008] L^1 is a bond, an oxygen atom, a sulphur atom or a group of formula NH, CONH, NHCO, COO, OCO, CONR³, NR³CO, OCONH, NHCOO, NHCONH, OCONR³, NR³COO, NR³CONR⁴, NR³—CNR³—, —CO—, —SO—, —SO₂—, —SO₂NH—, —NHSO₂—, —SO₂NR³—, —NR³SO₂—, —COCH₂—, —CH₂CO—, —COCR³R⁴—, —CR³R⁴CO—, —NHCSNH—, —NR³CSNR⁴—, —CH=CH—, —CR³=CR⁴—, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group;

[0009] L^2 is a bond, an oxygen atom, a sulphur atom or a group of formula NH, CONH, NHCO, COO, OCO, CONR³, NR³CO, OCONH, NHCOO, NHCONH, OCONR³, NR³COO, NR³CONR⁴, NR³—CNR³—, —CO—, —SO—, —SO₂—, —SO₂NH—, —NHSO₂—, —SO₂NR³—, —NR³SO₂—, —COCH₂—, —CH₂CO—, —COCR³R⁴—, —CR³R⁴CO—, —NHCSNH—, —NR³CSNR⁴—, —CH=CH—, —CR³=CR⁴—, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group;

[0010] L^3 is absent or a bond, an oxygen atom, a sulphur atom or a group of formula NH, CONH, NHCO, COO, OCO, CONR³, NR³CO, OCONH, NHCOO, NHCONH, OCONR³, NR³COO, NR³CONR⁴, NR³—CNR³—, —CO—, —SO—, —SO₂—, —SO₂NH—, —NHSO₂—, —SO₂NR³—,

—NR³SO₂—, —COCH₂—, —CH₂CO—, —COCR³R⁴—, —CR³R⁴CO—, —NHCSNH—, —NR³CSNR⁴—, —CH=CH—, —CR³=CR⁴—, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group;

[0011] L^4 is absent or a bond, an oxygen atom, a sulphur atom or a group of formula NH, CONH, NHCO, COO, OCO, CONR³, NR³CO, OCONH, NHCOO, NHCONH, OCONR³, NR³COO, NR³CONR⁴, NR³—CNR³—, —CO—, —SO—, —SO₂—, —SO₂NH—, —NHSO₂—, —SO₂NR³—, —NR³SO₂—, —COCH₂—, —CH₂CO—, —COCR³R⁴—, —CR³R⁴CO—, —NHCSNH—, —NR³CSNR⁴—, —CH=CH—, —CR³=CR⁴—, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group;

[0012] R^1 is a hydrogen atom, a halogen atom, a hydroxy group, an amino group, a thiol group, a nitro group, a group of formula —COOH, —SO₂NH₂, —CONH₂, —NO₂ or —CN, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group;

[0013] R^2 is a hydrogen atom, a halogen atom, a hydroxy group, an amino group, a thiol group, a nitro group, a group of formula —COOH, —SO₂NH₂, —CONH₂, —NO₂ or —CN, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group;

[0014] the groups R^3 are independently from each other a hydrogen atom or a C₁₋₆alkyl group; and

[0015] the groups R^4 are independently from each other a hydrogen atom or a C₁₋₆ alkyl group;

[0016] or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

[0017] The expression alkyl refers to a saturated, straight-chain or branched hydrocarbon group that contains from 1 to 20 carbon atoms, preferably from 1 to 15 carbon atoms, especially from 1 to 10 (e.g. 1, 2, 3 or 4) carbon atoms, for example a methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, n-hexyl, 2,2-dimethylbutyl or n-octyl group.

[0018] The expressions alkenyl and alkynyl refer to at least partially unsaturated, straight-chain or branched hydrocarbon groups that contain from 2 to 20 carbon atoms, preferably from 2 to 15 carbon atoms, especially from 2 to 10 (e.g. 2, 3 or 4) carbon atoms, for example an ethenyl (vinyl), propenyl (allyl), iso-propenyl, butenyl, ethinyl, propinyl, butinyl, acetylenyl, propargyl, isoprenyl or hex-2-enyl group. Preferably, alkenyl groups have one or two (especially preferably one) double bond(s), and alkynyl groups have one or two (especially preferably one) triple bond(s).

[0019] Furthermore, the terms alkyl, alkenyl and alkynyl refer to groups in which one or more hydrogen atoms have been replaced by a halogen atom (preferably F or Cl) such as, for example, a 2,2,2-trichloroethyl or a trifluoromethyl group.

[0020] The expression heteroalkyl refers to an alkyl, alkenyl or alkynyl group in which one or more (preferably 1 to 8; especially preferably 1, 2, 3 or 4) carbon atoms have been replaced by an oxygen, nitrogen, phosphorus, boron, selenium, silicon or sulfur atom (preferably by an oxygen, sulfur

or nitrogen atom) or by a SO or a SO₂ group. The expression heteroalkyl furthermore refers to a carboxylic acid or to a group derived from a carboxylic acid, such as, for example, acyl, acylalkyl, alkoxy carbonyl, acyloxy, acyloxyalkyl, carboxyalkyl amide or alkoxy carbonyloxy.

[0021] Preferably, a heteroalkyl group contains from 1 to 12 carbon atoms and from 1 to 8 heteroatoms selected from oxygen, nitrogen and sulphur (especially oxygen and nitrogen). Especially preferably, a heteroalkyl group contains from 1 to 6 (e.g. 1, 2, 3 or 4) carbon atoms and 1, 2, 3 or 4 (especially 1, 2 or 3) heteroatoms selected from oxygen, nitrogen and sulphur (especially oxygen and nitrogen). The term C₁-C₆ heteroalkyl refers to a heteroalkyl group containing from 1 to 6 carbon atoms and 1, 2 or 3 heteroatoms selected from O, S and/or N (especially 0 and/or N). The term C₁-C₄ heteroalkyl refers to a heteroalkyl group containing from 1 to 4 carbon atoms and 1, 2 or 3 heteroatoms selected from O, S and/or N (especially 0 and/or N). Furthermore, the term heteroalkyl refers to groups in which one or more hydrogen atoms have been replaced by a halogen atom (preferably F or Cl).

[0022] Especially preferably, the expression heteroalkyl refers to an alkyl group as defined above (straight-chain or branched) in which one or more (preferably 1 to 6; especially preferably 1, 2, 3 or 4) carbon atoms have been replaced by an oxygen, sulfur or nitrogen atom; this group preferably contains from 1 to 6 (e.g. 1, 2, 3 or 4) carbon atoms and 1, 2, 3 or 4 (especially 1, 2 or 3) heteroatoms selected from oxygen, nitrogen and sulphur (especially oxygen and nitrogen); this group may preferably be substituted by one or more (preferably 1 to 6; especially preferably 1, 2, 3 or 4) fluorine, chlorine, bromine or iodine atoms or OH, =O, SH, =S, NH₂, =NH, N₃, CN or NO₂ groups.

[0023] The expression heteroalkylene group refers to a divalent heteroalkyl group.

[0024] Examples of heteroalkyl groups are groups of formulae: R^a—O—Y^a—, R^a—S—Y^a—, R^a—SO—Y^a—, R^a—SO₂—Y^a—, R^a—N(R^b)—Y^a—, R^a—CO—Y^a—, R^a—O—CO—Y^a—, R^a—CO—O—Y^a—, R^a—CO—N(R^b)—Y^a—, R^a—N(R^b)—CO—Y^a—, R^a—O—CO—N(R^b)—Y^a—, R^a—N(R^b)—CO—O—Y^a—, R^a—N(R^b)—CO—N(R^c)—Y^a—, R^a—O—CO—O—Y^a—, R^a—N(R^b)—C(=NR^d)—N(R^c)—Y^a—, R^a—CS—Y^a—, R^a—O—CS—Y^a—, R^a—CS—O—Y^a—, R^a—CS—N(R^b)—Y^a—, R^a—N(R^b)—CS—Y^a—, R^a—O—CS—N(R^b)—Y^a—, R^a—N(R^b)—CS—O—Y^a—, R^a—N(R^b)—CS—N(R^c)—Y^a—, R^a—O—CS—O—Y^a—, R^a—S—CO—Y^a—, R^a—CO—S—Y^a—, R^a—S—CO—N(R^b)—Y^a—, R^a—N(R^b)—CO—S—Y^a—, R^a—S—CO—O—Y^a—, R^a—O—CO—S—Y^a—, R^a—S—CO—S—Y^a—, R^a—S—CS—Y^a—, R^a—CS—S—Y^a—, R^a—S—CS—N(R^b)—Y^a—, R^a—N(R^b)—CS—S—Y^a—, R^a—S—CS—O—Y^a—, R^a—O—CS—S—Y^a—, wherein R^a being a hydrogen atom, a C₁-C₆ alkyl, a C₂-C₆ alkenyl or a C₂-C₆ alkynyl group; R^b being a hydrogen atom, a C₁-C₆ alkyl, a C₂-C₆ alkenyl or a C₂-C₆ alkynyl group and Y^a being a bond, a C₁-C₆ alkylene, a C₂-C₆ alkenylene or a C₂-C₆ alkynylene group, wherein each heteroalkyl group contains at least one carbon atom and one or more hydrogen atoms may be replaced by fluorine or chlorine atoms.

[0025] Specific examples of heteroalkyl groups are methoxy, trifluoromethoxy, ethoxy, n-propoxy, isopropoxy, butoxy, tert-butyloxy, methoxymethyl, ethoxymethyl, —CH₂CH₂OH, —CH₂OH, —SO₂Me, methoxyethyl, 1-methoxyethyl, 1-ethoxyethyl, 2-methoxyethyl or 2-ethoxyethyl, methylamino, ethylamino, propylamino, isopropylamino, dimethylamino, diethylamino, isopropylethylamino, methylamino methyl, ethylamino methyl, diisopropylamino ethyl, methylthio, ethylthio, isopropylthio, enol ether, dimethylamino methyl, dimethylamino ethyl, acetyl, propionyl, butyryloxy, acetoxy, methoxycarbonyl, ethoxycarbonyl, propionyloxy, acetylamino or propionylamino, carboxymethyl, carboxyethyl or carboxypropyl, N-ethyl-N-methylcarbamoyl or N-methylcarbamoyl. Further examples of heteroalkyl groups are nitrile, isonitrile, cyanate, thiocyanate, isocyanate, isothiocyanate and alkynitrile groups.

[0026] The expression cycloalkyl refers to a saturated or partially unsaturated (for example, a cycloalkenyl group) cyclic group that contains one or more rings (preferably 1 or 2), and contains from 3 to 14 ring carbon atoms, preferably from 3 to 10 (especially 3, 4, 5, 6 or 7) ring carbon atoms. The expression cycloalkyl refers furthermore to groups in which one or more hydrogen atoms have been replaced by fluorine, chlorine, bromine or iodine atoms or by OH, =O, SH, =S, NH₂, =NH, N₃ or NO₂ groups, thus, for example, cyclic ketones such as, for example, cyclohexanone, 2-cyclohexenone or cyclopentanone. Further specific examples of cycloalkyl groups are a cyclopropyl, cyclobutyl, cyclopentyl, spiro[4,5]decanyl, norbornyl, cyclohexyl, cyclopentenyl, cyclohexadienyl, decalinyl, bicyclo[4.3.0]nonyl, tetraline, cyclopentylcyclohexyl, fluorocyclohexyl or cyclohex-2-enyl group.

[0027] The expression heterocycloalkyl refers to a cycloalkyl group as defined above in which one or more (preferably 1, 2 or 3) ring carbon atoms have been replaced by an oxygen, nitrogen, silicon, selenium, phosphorus or sulfur atom (preferably by an oxygen, sulfur or nitrogen atom) or a SO group or a SO₂ group. A heterocycloalkyl group has preferably 1 or 2 ring(s) containing from 3 to 10 (especially 3, 4, 5, 6 or 7) ring atoms (preferably selected from C, O, N and S). The expression heterocycloalkyl refers furthermore to groups that are substituted by fluorine, chlorine, bromine or iodine atoms or by OH, =O, SH, =S, NH₂, =NH, N₃ or NO₂ groups. Examples are a piperidyl, prolinyl, imidazolidinyl, piperazinyl, morpholinyl, urotropinyl, pyrrolidinyl, tetrahydrothiophenyl, tetrahydropyranyl, tetrahydrofuryl or 2-pyrazolinyl group and also lactames, lactones, cyclic imides and cyclic anhydrides.

[0028] The expression alkylcycloalkyl refers to groups that contain both cycloalkyl and also alkyl, alkenyl or alkynyl groups in accordance with the above definitions, for example alkylcycloalkyl, cycloalkylalkyl, alkylcycloalkenyl, alkenylcycloalkyl and alkynylcycloalkyl groups. An alkylcycloalkyl group preferably contains a cycloalkyl group that contains one or two rings having from 3 to 10 (especially 3, 4, 5, 6 or 7) ring carbon atoms, and one or two alkyl, alkenyl or alkynyl groups (especially alkyl groups) having 1 or 2 to 6 carbon atoms.

[0029] The expression heteroalkylcycloalkyl refers to alkylcycloalkyl groups as defined above in which one or more (preferably 1, 2 or 3) carbon atoms have been replaced by an oxygen, nitrogen, silicon, selenium, phosphorus or sulfur atom (preferably by an oxygen, sulfur or nitrogen atom) or a SO group or a SO₂ group. A heteroalkylcycloalkyl group

preferably contains 1 or 2 rings having from 3 to 10 (especially 3, 4, 5, 6 or 7) ring atoms, and one or two alkyl, alkenyl, alkynyl or heteroalkyl groups (especially alkyl or heteroalkyl groups) having from 1 or 2 to 6 carbon atoms. Examples of such groups are alkylheterocycloalkyl, alkylheterocycloalkenyl, alkenyl-heterocycloalkyl, alkynylheterocycloalkyl, heteroalkylcycloalkyl, heteroalkylhetero-cycloalkyl and heteroalkylheterocycloalkenyl, the cyclic groups being saturated or mono-, di- or tri-unsaturated.

[0030] The expression aryl refers to an aromatic group that contains one or more rings containing from 6 to 14 ring carbon atoms, preferably from 6 to 10 (especially 6) ring carbon atoms. The expression aryl refers furthermore to groups that are substituted by fluorine, chlorine, bromine or iodine atoms or by OH, SH, NH₂, N₃ or NO₂ groups. Examples are the phenyl, naphthyl, biphenyl, 2-fluorophenyl, anilinyl, 3-nitrophenyl or 4-hydroxyphenyl group.

[0031] The expression heteroaryl refers to an aromatic group that contains one or more rings containing from 5 to 14 ring atoms, preferably from 5 to 10 (especially 5 or 6 or 9 or 10) ring atoms, and contains one or more (preferably 1, 2, 3 or 4) oxygen, nitrogen, phosphorus or sulfur ring atoms (preferably 0, S or N). The expression heteroaryl refers furthermore to groups that are substituted by fluorine, chlorine, bromine or iodine atoms or by OH, SH, N₃, NH₂ or NO₂ groups. Examples are pyridyl (e.g. 4-pyridyl), imidazolyl (e.g. 2-imidazolyl), phenylpyrrolyl (e.g. 3-phenylpyrrolyl), thiazolyl, isothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxadiazolyl, thiadiazolyl, indolyl, indazolyl, tetrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, isoxazolyl, indazolyl, indolyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl, benzthiazolyl, pyridazinyl, quinolinyl, isoquinolinyl, pyrrolyl, purinyl, carbazolyl, acridinyl, pyrimidyl, 2,3'-bifuryl, pyrazolyl (e.g. 3-pyrazolyl) and isoquinolinyl groups.

[0032] The expression aralkyl refers to groups containing both aryl and also alkyl, alkenyl, alkynyl and/or cycloalkyl groups in accordance with the above definitions, such as, for example, arylalkyl, arylalkenyl, arylalkynyl, arylcycloalkyl, arylcycloalkenyl, alkylarylcycloalkyl and alkylarylcycloalkenyl groups. Specific examples of aralkyls are toluene, xylene, mesitylene, styrene, benzyl chloride, o-fluorotoluene, 1H-indene, tetraline, dihydronaphthalene, indanone, phenylcyclopentyl, cumene, cyclohexylphenyl, fluorene and indane. An aralkyl group preferably contains one or two aromatic ring systems (especially 1 or 2 rings), each containing from 6 to 10 carbon atoms and one or two alkyl, alkenyl and/or alkynyl groups containing from 1 or 2 to 6 carbon atoms and/or a cycloalkyl group containing 5 or 6 ring carbon atoms.

[0033] The expression heteroaralkyl refers to groups containing both aryl or heteroaryl, respectively, and also alkyl, alkenyl, alkynyl and/or heteroalkyl and/or cycloalkyl and/or heterocycloalkyl groups in accordance with the above definitions. A heteroaralkyl group preferably contains one or two aromatic ring systems (especially 1 or 2 rings), each containing from 5 or 6 to 9 or 10 ring carbon atoms and one or two alkyl, alkenyl and/or alkynyl groups containing 1 or 2 to 6 carbon atoms and/or one or two heteroalkyl groups containing 1 to 6 carbon atoms and 1, 2 or 3 heteroatoms selected from O, S and N and/or one or two cycloalkyl groups each containing 5 or 6 ring carbon atoms and/or one or two heterocycloalkyl groups, each containing 5 or 6 ring atoms comprising 1, 2, 3 or 4 oxygen, sulfur or nitrogen atoms.

[0034] Examples are arylheteroalkyl, arylheterocloalkyl, arylheterocycloalkenyl, arylalkyl-heterocycloalkyl, arylalkenylheterocycloalkyl, arylalkynylheterocycloalkyl, arylalkyl-heterocycloalkenyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heteroaryl-heteroalkyl, heteroaryl-cycloalkyl, heteroarylalkylcycloalkenyl, heteroarylalkyl, heteroarylalkylcycloalkyl, heteroarylalkylheterocycloalkenyl, heteroarylalkylheterocycloalkyl, heteroarylalkylheterocycloalkenyl and heteroarylalkylheterocycloalkyl groups, the cyclic groups being saturated or mono-, di- or tri-unsaturated. Specific examples are a tetrahydroisoquinolinyl, benzoyl, 2- or 3-ethylindolyl, 4-methylpyridino, 2-, 3- or 4-methoxyphenyl, 4-ethoxy-phenyl, 2-, 3- or 4-carboxyphenylalkyl group.

[0035] As already stated above, the expressions cycloalkyl, heterocycloalkyl, alkylcycloalkyl, heteroalkylcycloalkyl, aryl, heteroaryl, aralkyl and heteroaralkyl also refer to groups that are substituted by fluorine, chlorine, bromine or iodine atoms or by OH, =O, SH, =S, NH₂, =NH, N₃ or NO₂ groups.

[0036] The expression “optionally substituted” especially refers to groups that are optionally substituted by fluorine, chlorine, bromine or iodine atoms or by OH, =O, SH, =S, NH₂, =NH, N₃ or NO₂ groups. This expression refers furthermore to groups that may be substituted by one, two, three or more unsubstituted C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₂-C₁₀ alkynyl, C₁-C₁₀ heteroalkyl, C₃-C₁₈ cycloalkyl, C₂-C₁₇ heterocycloalkyl, C₄-C₂₀ alkylcycloalkyl, C₂-C₁₉ heteroalkylcycloalkyl, C₆-C₁₈ aryl, C₁-C₁₇ heteroaryl, C₇-C₂₀ aralkyl or C₂-C₁₉ heteroaralkyl groups. This expression refers furthermore especially to groups that may be substituted by one, two, three or more unsubstituted C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ heteroalkyl, C₃-C₁₀ cycloalkyl, C₂-C₉ heterocycloalkyl, C₇-C₁₂ alkylcycloalkyl, C₂-C₁₁ heteroalkylcycloalkyl, C₆-C₁₀ aryl, C₁-C₉ heteroaryl, C₇-C₁₂ aralkyl or C₅-C₁₁ heteroaralkyl groups.

[0037] Especially preferably at group Ar¹, Ar², Ar³, Ar⁴ and Ar⁵, the expression “optionally substituted” refers to groups that are optionally substituted by one, two or three groups independently selected from halogen atoms, hydroxy groups, groups of formula —O-alkyl (e.g. —O—C₁₋₆ alkyl such as —OMe, —OEt, —O-nPr, —O-iPr, —O-nBu, —O-iBu or —O-tBu), —NH₂, —NR^{5a}R^{6a} (wherein R^{5a} and R^{6a} independently from each other are a hydrogen atom or an alkyl group such as a C₁₋₆ alkyl group), —SO₂NH₂, —CONH₂, —CN, —alkyl (e.g. —C₁₋₆ alkyl, —CF₃), —SH, —S-alkyl (e.g. —S—C₁₋₆ alkyl).

[0038] Most preferably at group Ar¹, Ar², Ar³, Ar⁴ and Ar⁵, the expression “optionally substituted” refers to groups that are optionally substituted by one, two or three groups independently selected from F, Cl, hydroxy groups, groups of formula —O—C₁₋₆ alkyl (especially —O—C₁₋₄ alkyl such as —OMe, —OEt, —O-nPr, —O-iPr, —O-nBu, —O-iBu or —O-tBu), and —C₁₋₆alkyl (e.g. —C₁₋₄alkyl such as —CH₃ or —CF₃).

[0039] Especially preferably at group Ar⁶, the expression "optionally substituted" refers to groups that are optionally substituted by one, two or three groups independently selected from halogen atoms, hydroxy groups, groups of formula —O-alkyl (e.g. —O—C₁₋₆ alkyl such as —OMe, —OEt, —O-nPr, —O-iPr, —O-nBu, —O-iBu or —O-tBu), —NH₂, —NR^{5a}R^{6a} (wherein R^{5a} and R^{6a} independently from each other are a hydrogen atom or an alkyl group such as

a C_{1-6} alkyl group), $—SO_2NH_2$, $—CONH_2$, $—CN$, -alkyl (e.g. $—C_{1-6}$ alkyl, $—CF_3$), $—SH$, $—S$ -alkyl (e.g. $—S—C_{1-6}$ alkyl) and NO_2 .

[0040] Most preferably at group Ar^6 , the expression “optionally substituted” refers to groups that are optionally substituted by one, two or three groups independently selected from F, Cl, hydroxy groups, $—NH_2$, $—NO_2$, groups of formula $—O—C_{1-6}$ alkyl (especially $—O—C_{1-4}$ alkyl such as $—OMe$, $—OEt$, $—O-nPr$, $—O-iPr$, $—O-nBu$, $—O-iBu$ or $—O-tBu$), and $—C_{1-6}$ alkyl (e.g. $—C_{1-4}$ alkyl such as $—CH_3$ or $—CF_3$).

[0041] The term halogen refers to F, Cl, Br or I.

[0042] According to a preferred embodiment, all alkyl, alkenyl, alkynyl, heteroalkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, alkylcycloalkyl, heteroalkylcycloalkyl, aralkyl and heteroaralkyl groups described herein may independently of each other optionally be substituted.

[0043] When an aryl, heteroaryl, cycloalkyl, alkylcycloalkyl, heteroalkylcycloalkyl, heterocycloalkyl, aralkyl or heteroaralkyl group contains more than one ring, these rings may be bonded to each other via a single or double bond or these rings may be annulated.

[0044] Owing to their substitution, compounds of formula (I) may contain one or more centers of chirality. The present invention therefore includes both all pure enantiomers and all pure diastereoisomers and also mixtures thereof in any mixing ratio. The present invention moreover also includes all cis/trans-isomers of the compounds of the general formula (I) and also mixtures thereof. The present invention moreover includes all tautomeric forms of the compounds of formula (I).

[0045] Preferably, when Ar^4 is absent, also L^3 is absent.

[0046] Further preferably, when Ar^5 is absent, also L^4 is absent.

[0047] Preferably, Ar^1 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen.

[0048] Further preferably, Ar^1 is an optionally substituted 1,4-phenylene group.

[0049] Preferably, Ar^2 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen.

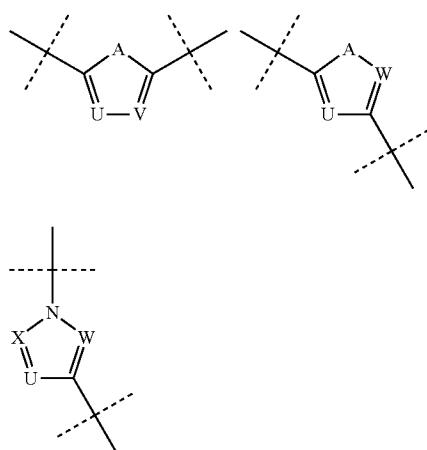
[0050] Further preferably, Ar^2 is an optionally substituted 1,4-phenylene group.

[0051] Preferably, Ar^3 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen.

[0052] Further preferably, Ar^3 is an optionally substituted 1,4-phenylene group.

[0053] Preferably, Ar^4 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen.

[0054] Further preferably, Ar^4 is an optionally substituted 1,4-phenylene group.


[0055] Preferably, Ar^5 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen.

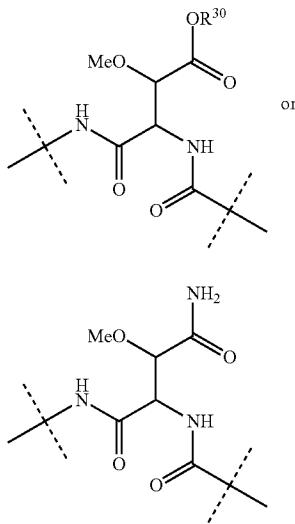
[0056] Further preferably, Ar^5 is an optionally substituted 1,4-phenylene group.

[0057] Further preferably, Ar^4 is absent.

[0058] Further preferably, Ar^5 is absent.

[0059] The term 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen especially preferably refers to one of the following groups:

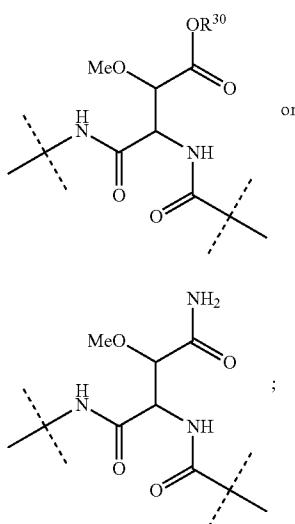
wherein A is 0, S or NH; U is N or CH; V is N or CH; W is N or CH; and X is N or CH.


[0060] Further preferably, L^1 is a group of formula $—CONH—$, $—NHCO—$, $—SO_2NH—$, $—NHSO_2—$, $—CH=CH—$, $—CR^3=CR^4—$ or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R^3 and R^4 are independently from each other a C_{1-6} alkyl group.

[0061] Further preferably, L^2 is a group of formula $—CONH—$, $—NHCO—$, $—SO_2NH—$, $—NHSO_2—$, $—CH=CH—$, $—CR^3=CR^4—$ or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R^3 and R^4 are independently from each other a C_{1-6} alkyl group.

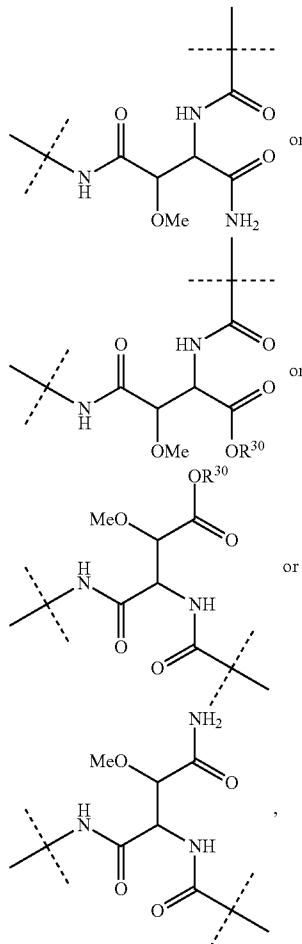
[0062] Further preferably, L^3 is absent or a group of formula $—CONH—$, $—NHCO—$, $—SO_2NH—$, $—NHSO_2—$, $—CH=CH—$, $—CR^3=CR^4—$ or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R^3 and R^4 are independently from each other a C_{1-6} alkyl group.

[0063] Further preferably, L^4 is absent or a group of formula $—CONH—$, $—NHCO—$, $—SO_2NH—$, $—NHSO_2—$, $—CH=CH—$, $—CR^3=CR^4—$ or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R^3 and R^4 are independently from each other a C_{1-6} alkyl group.


[0064] Further preferably, L¹ is NHCO (wherein the nitrogen atom is bound to Ar¹) or a group of the following formula:

(wherein the NH group is bound to Ar¹), wherein R³⁰ is a hydrogen atom or a C₁₋₃ alkyl group.

[0065] Especially preferably, L¹ is NHCO (wherein the nitrogen atom is bound to Ar¹).

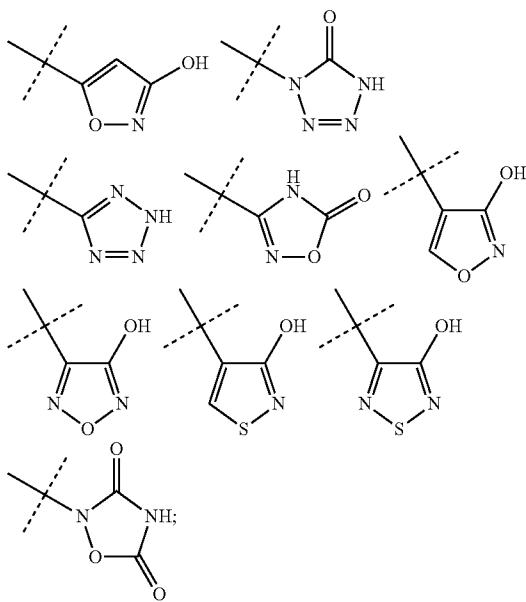

[0066] Moreover preferably, L² is NHCO (wherein the nitrogen atom is bound to Ar²) or a group of the following formula:

(wherein the NH group is bound to Ar²), wherein R³⁰ is a hydrogen atom or a C₁₋₃ alkyl group.

[0067] Especially preferably, L² is NHCO (wherein the nitrogen atom is bound to Ar¹).

[0068] Further preferably, L³ is absent or a group of the following formula:

(wherein the NH group is bound to Ar³), wherein R³⁰ is a hydrogen atom or a C₁₋₃ alkyl group.


[0069] Further preferably, L⁴ is absent or NHCO (wherein the nitrogen atom is bound to Ar⁴).

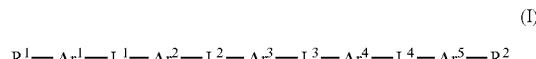
[0070] Moreover preferably, R³⁰ is a hydrogen atom.

[0071] Further preferably, R¹ is a hydrogen atom, a halogen atom or a group of formula —OH, —NH₂, —COOH, —SO₂NH₂, —CONH₂, —NO₂, —CN, -alkyl (e.g. —CF₃), —O-alkyl, —O—CO-alkyl, —NH-alkyl, —NH—CO-alkyl, or an optionally substituted heteroaryl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen, or an optionally substituted heterocycloalkyl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen.

[0072] Moreover preferably, R² is a hydrogen atom, a halogen atom or a group of formula —OH, —NH₂, —COOH, —SO₂NH₂, —CONH₂, —NO₂, —CN, -alkyl (e.g. —CF₃), —O-alkyl, —O—CO-alkyl, —NH-alkyl, —NH—CO-alkyl, or an optionally substituted heteroaryl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen, or an optionally substituted heterocycloalkyl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen.

[0073] Preferred examples of optionally substituted heteroaryl groups having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen and of optionally substituted heterocycloalkyl groups having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen as groups R¹ and R² are isosteres of carboxylic acid such as groups of the following formulas:

all these groups may optionally be further substituted.


[0074] Especially preferably, R¹ is a group of formula —NH₂, —NO₂, COOR¹¹, or —CONR¹²R¹³, wherein R¹¹, R¹² and R¹³ are independently a hydrogen atom or a C₁₋₆ alkyl group; moreover preferably, R¹ is a group of formula —COOH.

[0075] Further especially preferably, R² is a group of formula —NH₂, —NO₂, COOR^{11a}, or —CONR^{12a}R^{13a}; wherein R^{11a}, R^{12a} and R^{13a} are independently a hydrogen atom or a C₁₋₆ alkyl group; moreover preferably, R² is a group of formula —NH₂ or —NO₂.

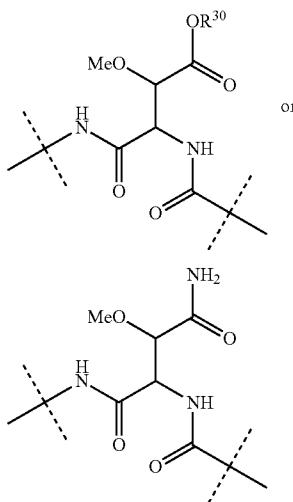
[0076] Further especially preferably, R¹ is a heteroaryl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen, and which is substituted by a hydroxy group.

[0077] Further especially preferably, R² is a heteroaryl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen, and which is substituted by a hydroxy group.

[0078] Especially preferred are compounds of formula (I)

wherein

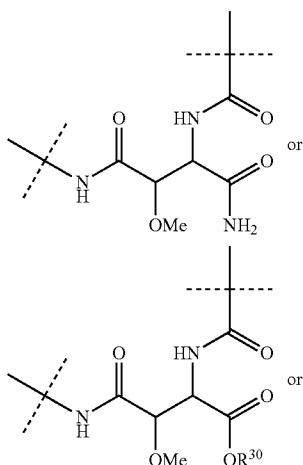
[0079] Ar¹ is an optionally substituted 1,4-phenylene group;

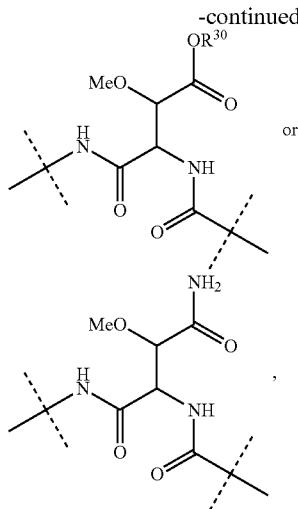

[0080] Ar² is an optionally substituted 1,4-phenylene group;

[0081] Ar³ is an optionally substituted 1,4-phenylene group;

[0082] Ar⁴ is absent or an optionally substituted 1,4-phenylene group;

[0083] Ar⁵ is absent or an optionally substituted 1,4-phenylene group;


[0084] L¹ is a group of formula —CONH—, —NHCO—, —SO₂NH— or —NHSO₂— or a group of the following formula:



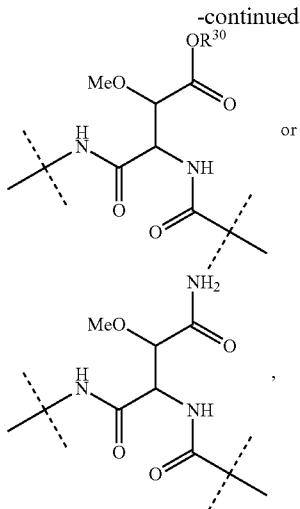
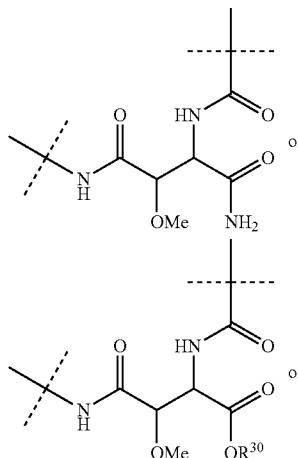
(wherein the NH group is bound to Ar¹);

[0085] L² is a group of formula —CONH—, —NHCO—, —SO₂NH— or —NHSO₂—;

[0086] L³ is absent or a group of formula —CONH—, —NHCO—, —SO₂NH— or —NHSO₂— or a group of the following formula:

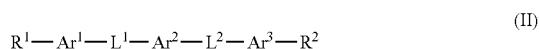
(wherein the NH group is bound to Ar³);

[0087] L⁴ is absent or a group of formula —CONH—, —NHCO—, —SO₂NH— or —NHSO₂—;

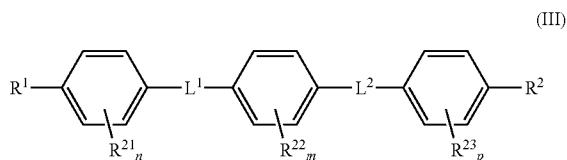


[0088] R³⁰ is a hydrogen atom or a C₁₋₃ alkyl group (especially preferably, a hydrogen atom);

[0089] R¹ is a group of formula —NH₂, —NO₂, COOR¹¹, or —CONR¹²R¹¹; wherein R¹¹, R¹² and R¹³ are independently a hydrogen atom or a C₁₋₆ alkyl group (especially preferably, R¹ is a group of formula —COOH); and

[0090] R² is a group of formula —NH₂, —NO₂, COOR^{11a}, or —CONR^{12a}R^{13a}; wherein R^{11a}, R^{12a} and R^{13a} are independently a hydrogen atom or a C₁₋₆ alkyl group (especially preferably, R² is a group of formula —NH₂ or —NO₂);


[0091] or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

[0092] Therein, preferably, L¹ is a group of formula —CONH—, —NHCO—, —SO₂NH— or —NHSO₂—, and L³ is absent or a group of the following formula:


(wherein the NH group is bound to Ar³).

[0093] Further preferred are compounds of formula (II)

wherein Ar¹, Ar², Ar³, L¹, L², R¹ and R² are as defined above.

[0094] Moreover preferred are compounds of formula (III)

wherein

[0095] n is 0, 1, 2, 3 or 4;

[0096] m is 0, 1, 2, 3 or 4;

[0097] p is 0, 1, 2, 3 or 4;

group(s) R²¹ are independently selected from halogen atoms, hydroxy groups, groups of formula —O-alkyl (e.g. —O—C₁₋₆alkyl such as —OMe, —OEt, —O-nPr, —O-iPr, —O-nBu, —O-iBu or —O-tBu), —NH₂, —NR^{5a}R^{6a} (wherein R^{5a} and R^{6a} independently from each other are a hydrogen atom or an alkyl group such as a C₁₋₆ alkyl group), —SO₂NH₂, —CONH₂, —CN, -alkyl (e.g. —C₁₋₆alkyl, —CF₃), —SH, —S-alkyl (e.g. —S—C₁₋₆alkyl); group(s) R²² are independently selected from halogen atoms, hydroxy groups, groups of formula —O-alkyl (e.g. —O—C₁₋₆alkyl such as —OMe, —OEt, —O-nPr, —O-iPr, —O-nBu, —O-iBu or —O-tBu), —NH₂, —NR^{5a}R^{6a} (wherein R^{5a} and R^{6a} independently from each other are a hydrogen atom or an alkyl group such as a C₁₋₆ alkyl group), —SO₂NH₂, —CONH₂, —CN, -alkyl (e.g. —C₁₋₆alkyl, —CF₃), —SH, —S-alkyl (e.g. —S—C₁₋₆alkyl); group(s) R²³ are independently selected from halogen atoms, hydroxy groups, groups of formula —O-alkyl (e.g. —O—C₁₋₆alkyl such as —OMe, —OEt, —O-nPr, —O-iPr, —O-nBu, —O-iBu or —O-tBu), —NH₂, —NR^{5a}R^{6a} (wherein R^{5a} and R^{6a} independently from each other are a hydrogen atom or an alkyl group such as a C₁₋₆ alkyl group), —SO₂NH₂, —CONH₂, —CN, -alkyl (e.g. —C₁₋₆alkyl, —CF₃), —SH, —S-alkyl (e.g. —S—C₁₋₆alkyl).

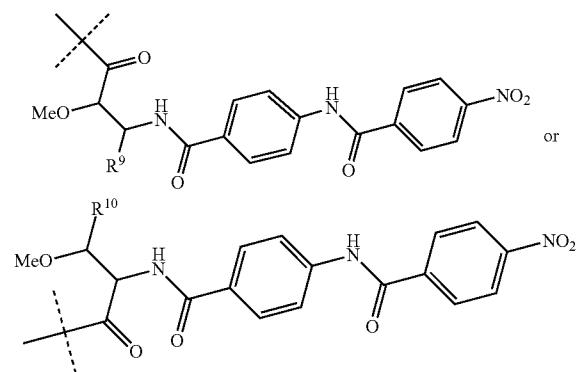
—SO₂NH₂, —CONH₂, —CN, -alkyl (e.g. —C₁₋₆alkyl, —CF₃), —SH, —S-alkyl (e.g. —S—C₁₋₆alkyl); and

[0098] R¹, R², L¹ and L² are as defined above.

[0099] Further preferred are compounds of formula (IV)

(IV)

wherein

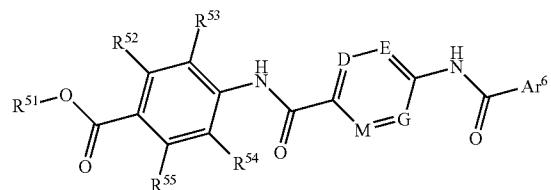

[0100] R⁵ is a group of formula —O—C₁₋₆alkyl;

[0101] R⁶ is a hydroxy group;

[0102] R⁷ is a group of formula —O—C₁₋₆alkyl; and

[0103] R⁸ is a hydrogen atom, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group.

[0104] Preferably, R⁸ is a hydrogen atom or a group of the following formula:



wherein R⁹ is COOH or CONH₂ and R¹⁰ is COOH or CONH₂.

[0105] Moreover preferably, R⁵ is a group of formula —O—C₁₋₄alkyl and R⁷ is a group of formula —O—C₁₋₄alkyl.

[0106] Further preferred are compounds of formula (V)

(V)

wherein

[0107] R⁵¹ is a hydrogen atom, or a C₁₋₆alkyl group;

[0108] R⁵² is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₆alkyl group or a group of formula —O—C₁₋₆alkyl;

[0109] R⁵³ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₆alkyl group or a group of formula —O—C₁₋₆alkyl;

[0110] R⁵⁴ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₆alkyl group or a group of formula —O—C₁₋₆alkyl;

[0111] R⁵⁵ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₆alkyl group or a group of formula —O—C₁₋₆alkyl;

[0112] D is N or CR⁵⁶;

[0113] E is N or CR⁵⁷;

[0114] G is N or CR⁵⁸;

[0115] M is N or CR⁵⁹;

[0116] R⁵⁶ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₆alkyl group or a group of formula —O—C₁₋₆alkyl;

[0117] R⁵⁷ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₆alkyl group or a group of formula —O—C₁₋₆alkyl;

[0118] R⁵⁸ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₆alkyl group or a group of formula —O—C₁₋₆alkyl;

[0119] R⁵⁹ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₆alkyl group or a group of formula —O—C₁₋₆alkyl; and

[0120] Ar⁶ is an optionally substituted (by one, two or more substituents such as e.g. R², R⁸ or NHR⁸) phenyl group or an optionally substituted (by one, two or more substituents such as e.g. R², R⁸ or NHR⁸) heteroaryl group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

[0121] or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

[0122] Especially preferred are compounds of Formula (V) wherein:

[0123] R⁵¹ is a hydrogen atom, or a C₁₋₄alkyl group;

[0124] R⁵² is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₄alkyl group or a group of formula —O—C₁₋₄alkyl;

[0125] R⁵³ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₄alkyl group or a group of formula —O—C₁₋₄alkyl;

[0126] R⁵⁴ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₄alkyl group or a group of formula —O—C₁₋₄alkyl;

[0127] R⁵⁵ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₄alkyl group or a group of formula —O—C₁₋₄alkyl;

[0128] D is N or CR⁵⁶;

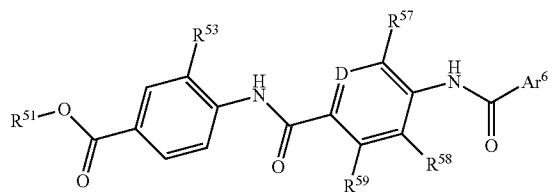
[0129] E is N or CR⁵⁷;

[0130] G is N or CR⁵⁸;

[0131] M is N or CR⁵⁶;

[0132] R⁵⁶ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₄alkyl group or a group of formula —O—C₁₋₄alkyl;

[0133] R⁵⁷ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₄alkyl group or a group of formula —O—C₁₋₄alkyl;


[0134] R⁵⁸ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₄alkyl group or a group of formula —O—C₁₋₄alkyl; and

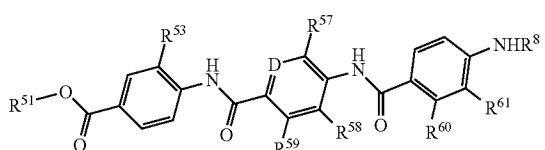
[0135] R⁵⁹ is a hydrogen atom, F, Cl, a hydroxy group, a C₁₋₆alkyl group or a group of formula —O—C₁₋₄alkyl.

[0136] Especially preferably, only one or two (especially only one) of D, E, G and M is/are N.

[0137] Further preferred are compounds of formula (VI)

(VI)

wherein

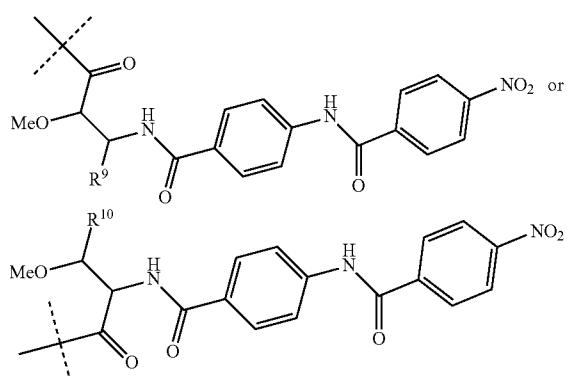

- [0138] R^{51} is a hydrogen atom, or a C_{1-6} alkyl group;
- [0139] R^{53} is F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl (especially preferably a group of formula $—O—C_{1-6}$ alkyl);
- [0140] D is N or CR^{56} ;
- [0141] R^{56} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
- [0142] R^{57} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
- [0143] R^{58} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
- [0144] R^{59} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl; and
- [0145] Ar^6 is an optionally substituted (by one, two or more substituents such as e.g. R^2 , R^8 or NHR^8) phenyl group or an optionally substituted (by one, two or more substituents such as e.g. R^2 , R^8 or NHR^8) heteroaryl group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;
- [0146] or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

[0147] Especially preferred are compounds of Formula (VI) wherein:

- [0148] R^{51} is a hydrogen atom, or a C_{1-4} alkyl group;
- [0149] R^{53} is F, Cl, a hydroxy group, a C_{1-4} alkyl group or a group of formula $—O—C_{1-4}$ alkyl (especially preferably a group of formula $—O—C_{1-4}$ alkyl);
- [0150] D is N or CR^{58} ;
- [0151] R^{56} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-4} alkyl group or a group of formula $—O—C_{1-4}$ alkyl;
- [0152] R^{57} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-4} alkyl group or a group of formula $—O—C_{1-4}$ alkyl;
- [0153] R^{58} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-4} alkyl group or a group of formula $—O—C_{1-4}$ alkyl; and
- [0154] R^{59} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-4} alkyl group or a group of formula $—O—C_{1-4}$ alkyl.

[0155] Further preferred are compounds of formula (VII)

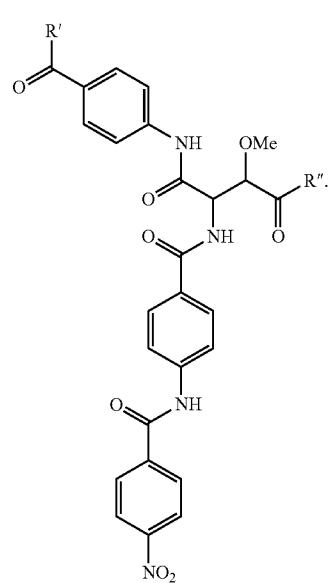
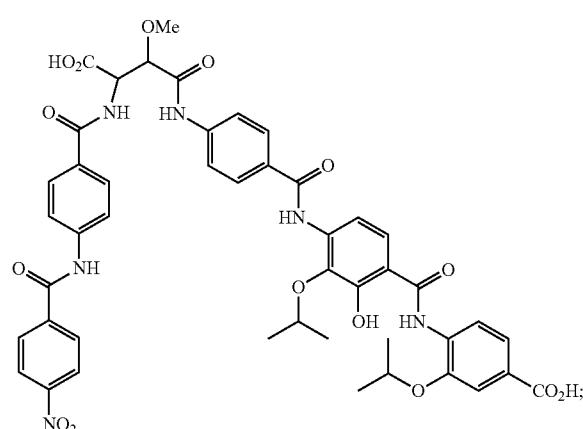
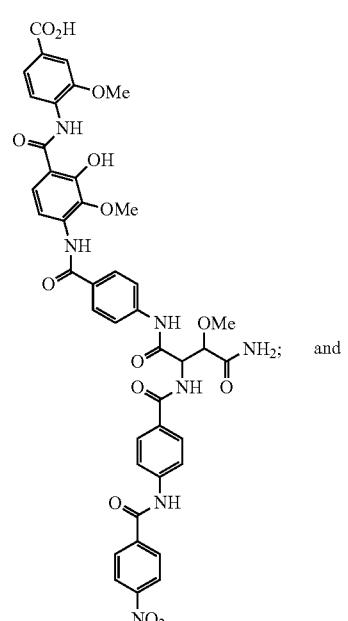
(VII)



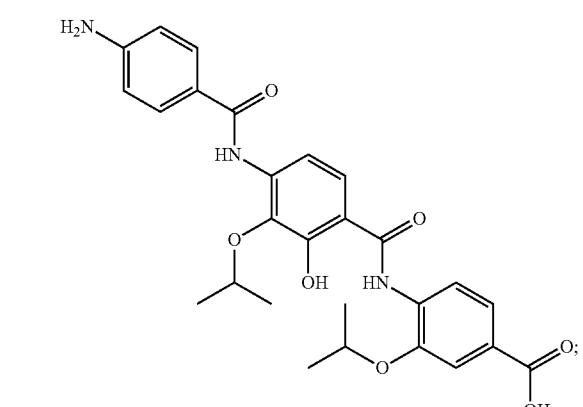
wherein

- [0156] R^{51} is a hydrogen atom, or a C_{1-6} alkyl group;
- [0157] R^{53} is F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl (especially preferably a group of formula $—O—C_{1-6}$ alkyl);
- [0158] D is N or CR^{56} ;
- [0159] R^{56} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
- [0160] R^{57} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
- [0161] R^{58} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
- [0162] R^{59} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
- [0163] R^{60} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
- [0164] R^{61} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl; and
- [0165] R^8 is a hydrogen atom, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group.
- [0166] or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

[0167] Especially preferred are compounds of Formula (VII) wherein:

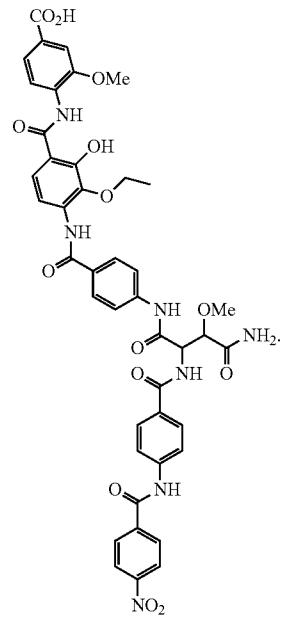




- [0168] R^{51} is a hydrogen atom, or a C_{1-4} alkyl group;
- [0169] R^{53} is F, Cl, a hydroxy group, a C_{1-4} alkyl group or a group of formula $—O—C_{1-4}$ alkyl (especially preferably a group of formula $—O—C_{1-4}$ alkyl);
- [0170] D is N or CR^{66} ;
- [0171] R^{56} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-4} alkyl group or a group of formula $—O—C_{1-4}$ alkyl;
- [0172] R^{57} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-4} alkyl group or a group of formula $—O—C_{1-4}$ alkyl;
- [0173] R^{58} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-4} alkyl group or a group of formula $—O—C_{1-4}$ alkyl;
- [0174] R^{59} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-4} alkyl group or a group of formula $—O—C_{1-4}$ alkyl;
- [0175] R^{60} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-4} alkyl group or a group of formula $—O—C_{1-4}$ alkyl; and
- [0176] R^{61} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-4} alkyl group or a group of formula $—O—C_{1-4}$ alkyl.
- [0177] Preferably, R^8 is a hydrogen atom or a group of the following formula:

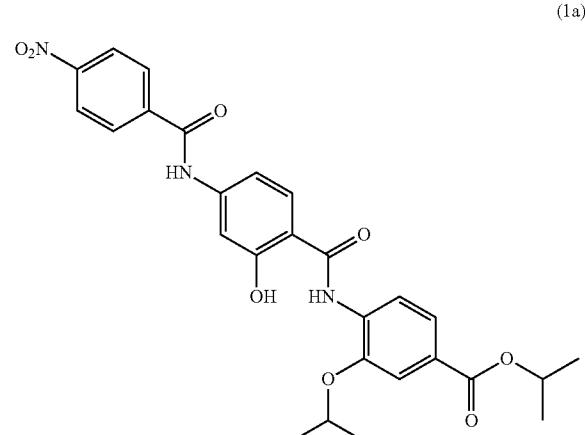
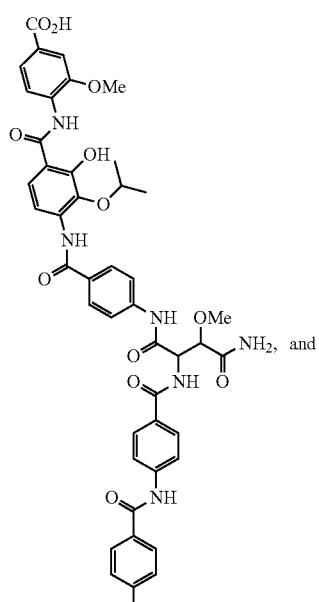

wherein R^9 is $COOH$ or $CONH_2$ and R^{10} is $COOH$ or $CONH_2$.

[0178] Especially preferred are the following compounds:

-continued

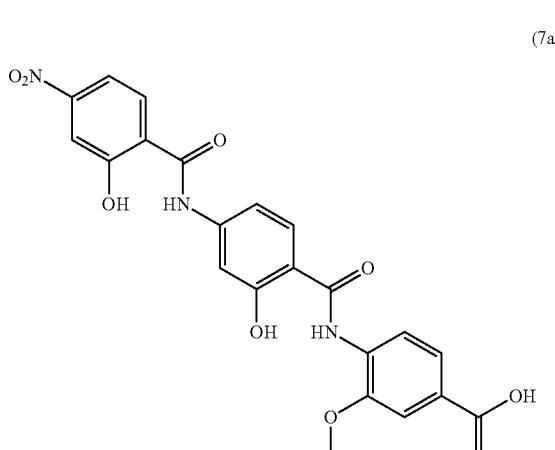
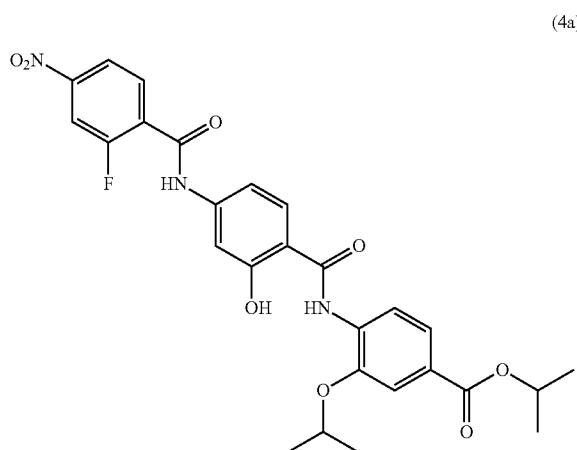
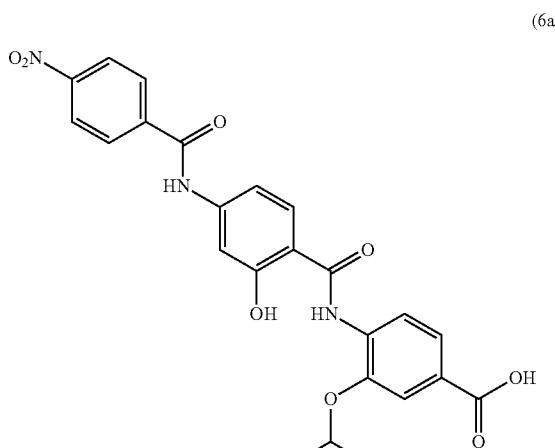
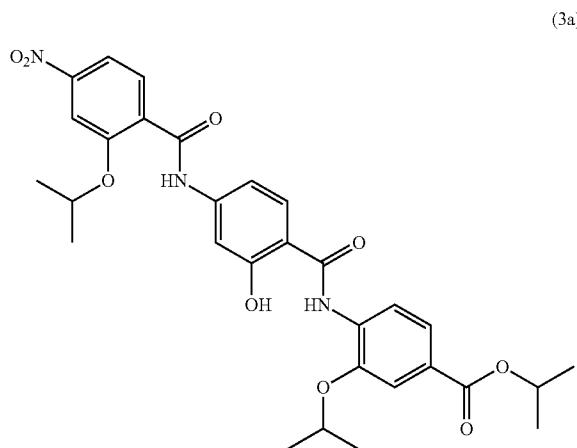
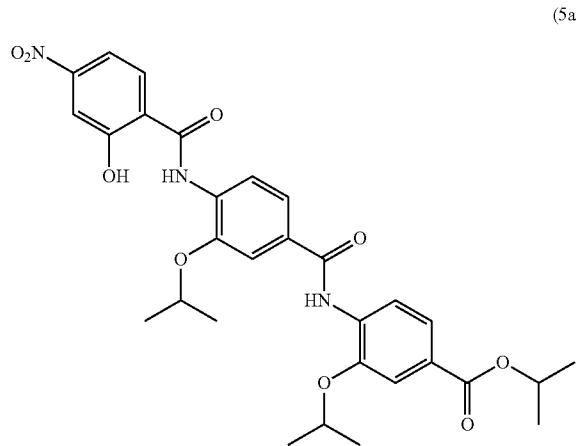
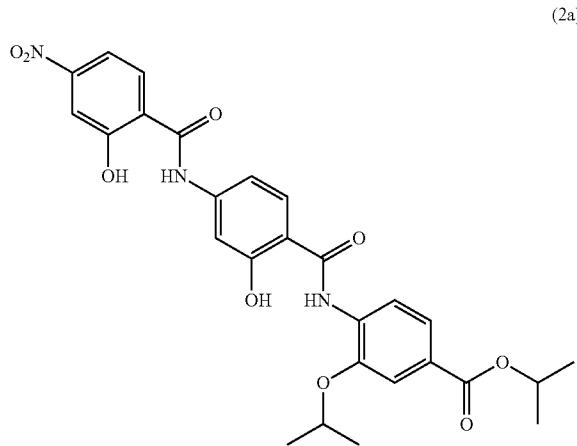


(R' is NH₂ or OH and R'' is NH₂ or OH)

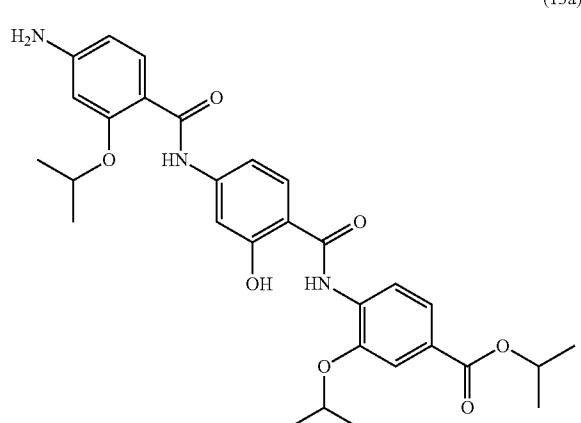
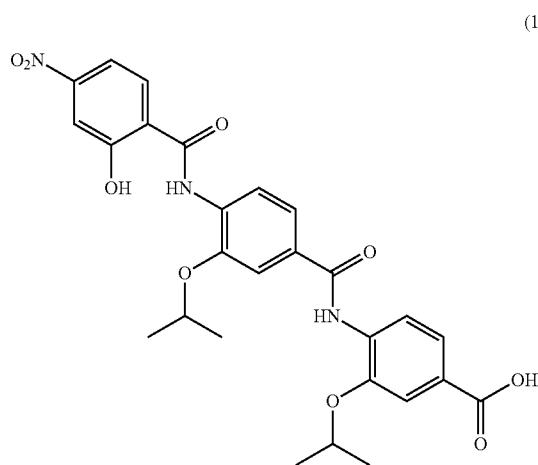
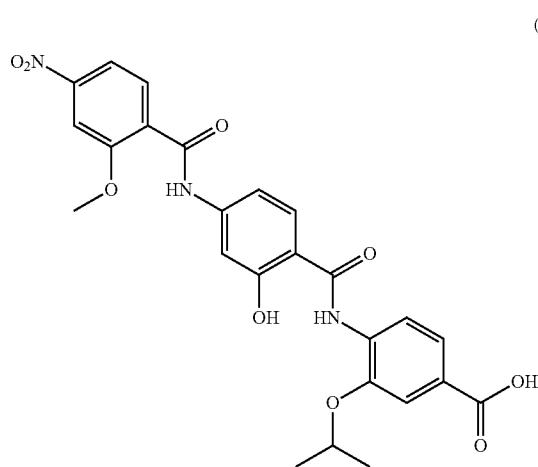
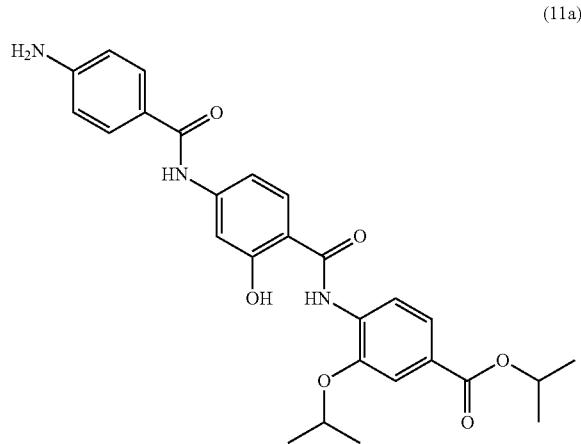
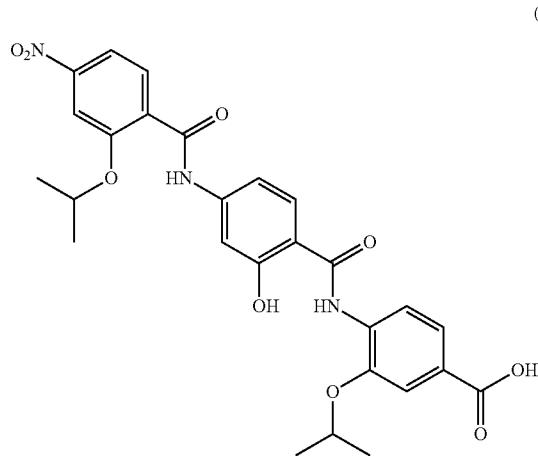



[0179] Moreover especially preferred are the following compounds:

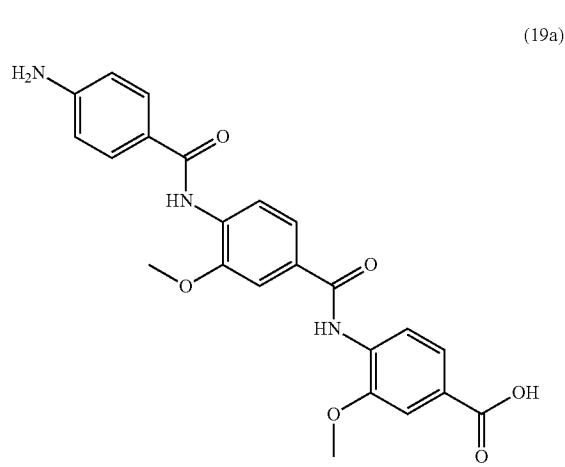
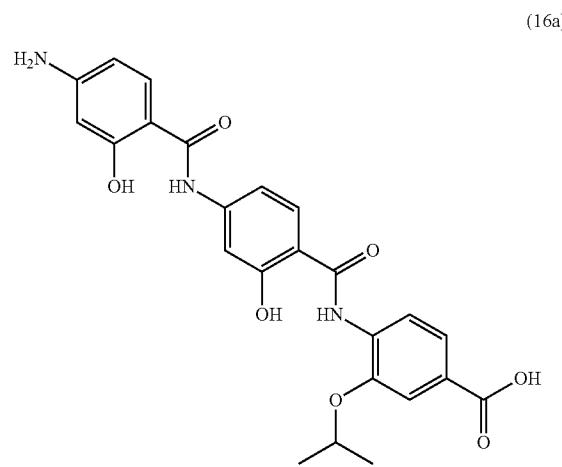
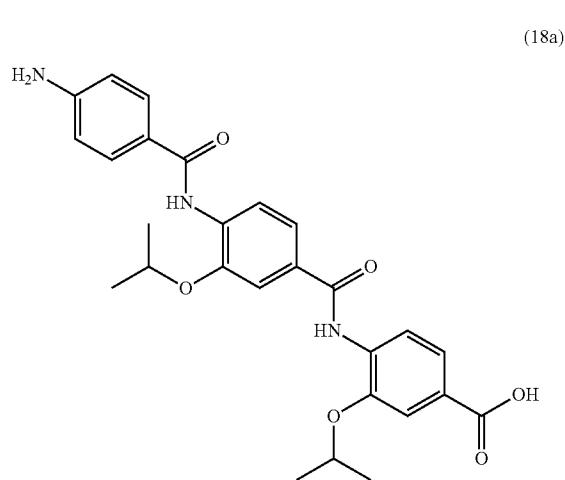
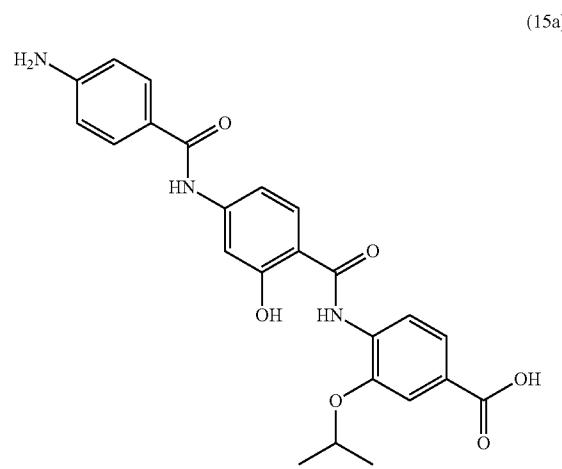
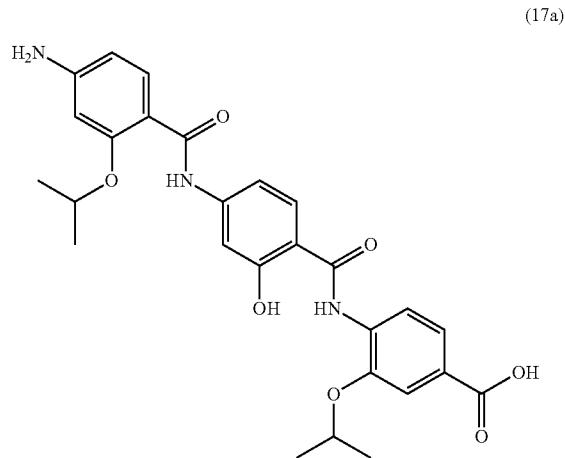
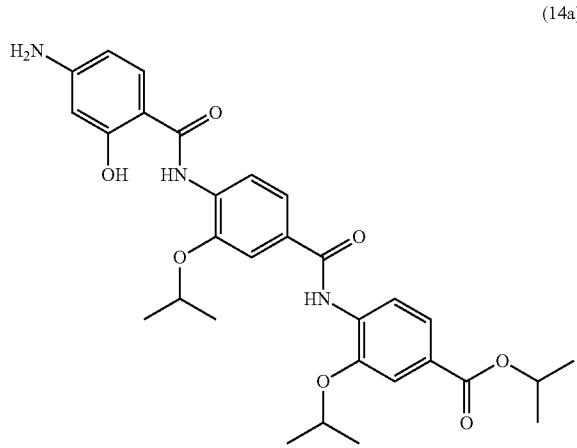
-continued

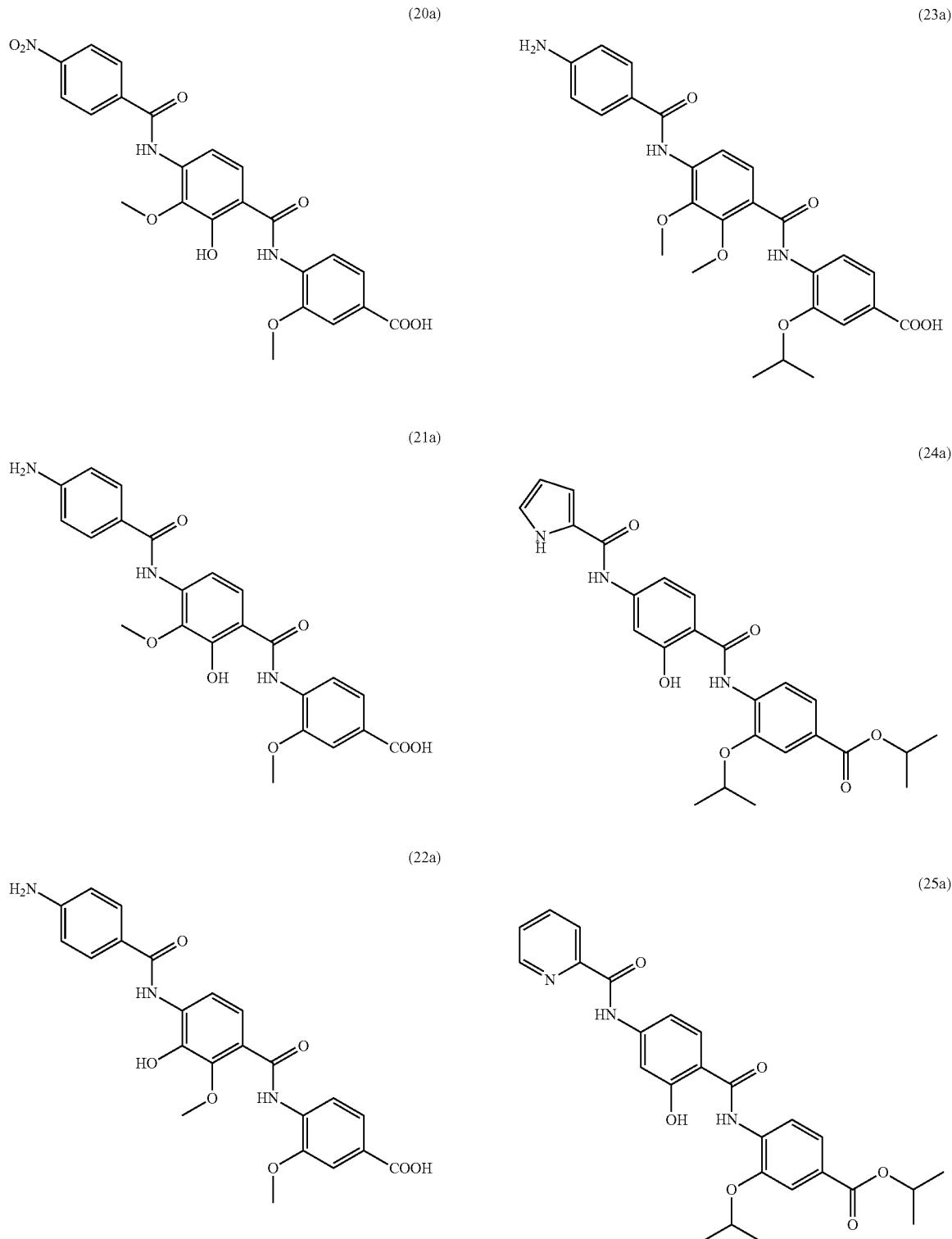
[0180] Moreover preferred are the following compounds:






-continued

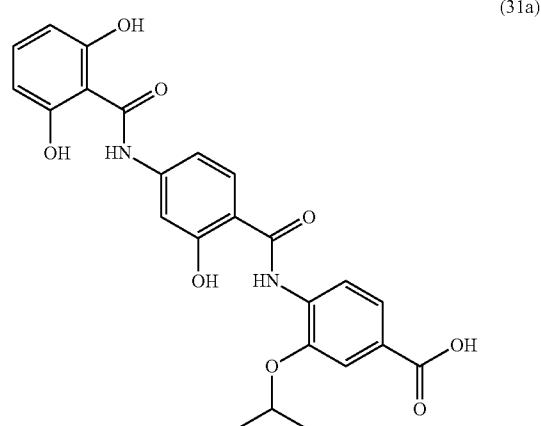
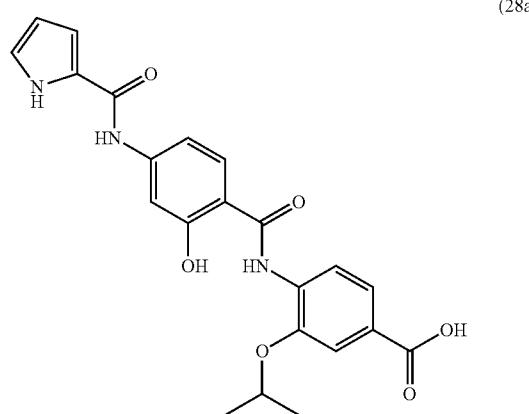
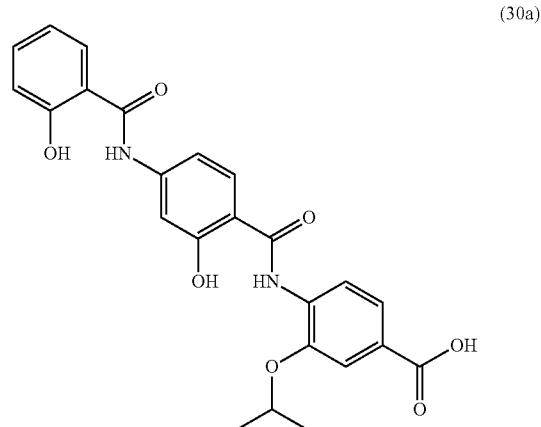
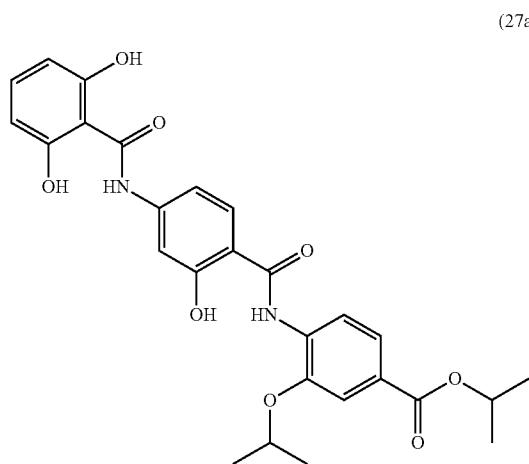
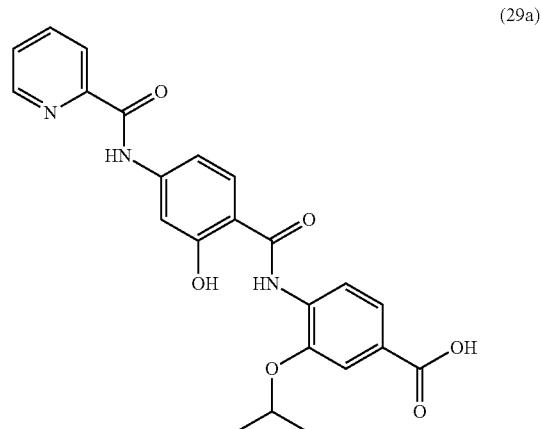
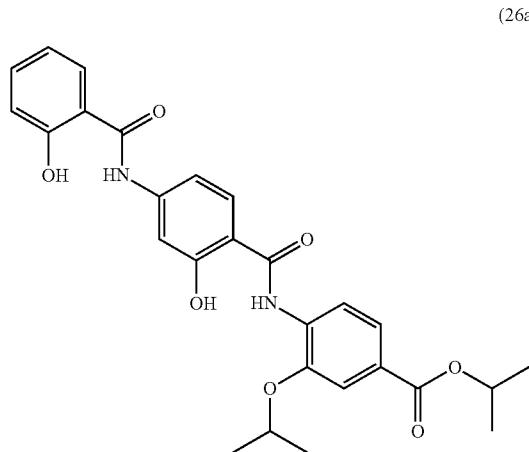
-continued







-continued

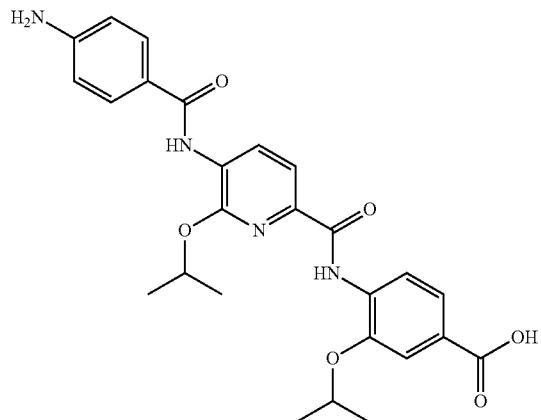
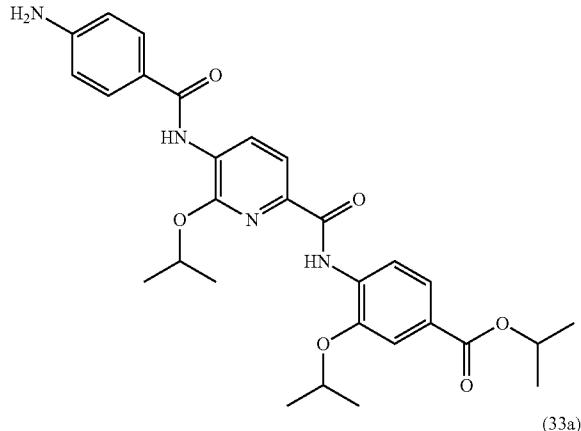
-continued


-continued

-continued







-continued

-continued



-continued

-continued

-continued

(32a)

[0181] The present invention further provides pharmaceutical compositions comprising one or more compounds described herein or a pharmaceutically acceptable salt, solvate or hydrate thereof, optionally in combination with one or more carrier substances and/or one or more adjuvants.

[0182] The present invention furthermore provides compounds or pharmaceutical compositions as described herein for use in the treatment and/or prophylaxis of bacterial infections, especially caused by *E. coli*, *P. aeruginosa*, *A. baumannii*, other Gram-negative bacteria, and Gram-positive bacteria.

[0183] Moreover preferably, the present invention provides compounds for use in the treatment and/or prophylaxis of bacterial infections, especially caused by *Pseudomonas aeruginosa* and other Gram-negative bacteria.

[0184] It is a further object of the present invention to provide a compound as described herein or a pharmaceutical composition as defined herein for the preparation of a medicament for the treatment and/or prophylaxis of bacterial infections, especially caused by selected Gram-negative bacteria and Gram-positive bacteria.

[0185] Examples of pharmacologically acceptable salts of sufficiently basic compounds are salts of physiologically acceptable mineral acids like hydrochloric, hydrobromic, sulfuric and phosphoric acid; or salts of organic acids like methanesulfonic, p-toluenesulfonic, lactic, acetic, trifluoroacetic, citric, succinic, fumaric, maleic and salicylic acid. Further, a sufficiently acidic compound may form alkali or earth alkali

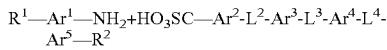
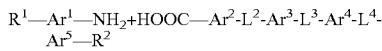
metal salts, for example sodium, potassium, lithium, calcium or magnesium salts; ammonium salts; or organic base salts, for example methylamine, dimethylamine, trimethylamine, triethylamine, ethylenediamine, ethanolamine, choline hydroxide, meglumin, piperidine, morpholine, tris-(2-hydroxyethyl)amine, lysine or arginine salts; all of which are also further examples of salts of the compounds described herein. The compounds described herein may be solvated, especially hydrated. The hydratization/hydration may occur during the process of production or as a consequence of the hygroscopic nature of the initially water free compounds. The solvates and/or hydrates may e.g. be present in solid or liquid form.

[0186] The therapeutic use of the compounds described herein, their pharmaceutically acceptable salts, solvates and hydrates, respectively, as well as formulations and pharmaceutical compositions also lie within the scope of the present invention.

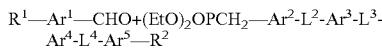
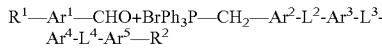
[0187] The pharmaceutical compositions according to the present invention comprise at least one compound described herein and, optionally, one or more carrier substances and/or adjuvants.

[0188] As mentioned above, therapeutically useful agents that contain compounds described herein, their solvates, salts or formulations are also comprised in the scope of the present invention. In general, the compounds described herein will be administered by using the known and acceptable modes known in the art, either alone or in combination with any other therapeutic agent.

[0189] For oral administration such therapeutically useful agents can be administered by one of the following routes: oral, e.g. as tablets, dragees, coated tablets, pills, semisolids, soft or hard capsules, for example soft and hard gelatine capsules, aqueous or oily solutions, emulsions, suspensions or syrups, parenteral including intravenous, intramuscular and subcutaneous injection, e.g. as an injectable solution or suspension, rectal as suppositories, by inhalation or insufflation, e.g. as a powder formulation, as microcrystals or as a spray (e.g. liquid aerosol), transdermal, for example via an transdermal delivery system (TDS) such as a plaster containing the active ingredient or intranasal. For the production of such tablets, pills, semisolids, coated tablets, dragees and hard, e.g. gelatine, capsules the therapeutically useful product may be mixed with pharmaceutically inert, inorganic or organic excipients as are e.g. lactose, sucrose, glucose, gelatine, malt, silica gel, starch or derivatives thereof, talc, stearic acid or their salts, dried skim milk, and the like. For the production of soft capsules one may use excipients as are e.g. vegetable, petroleum, animal or synthetic oils, wax, fat, and polyols. For the production of liquid solutions, emulsions or suspensions or syrups one may use as excipients e.g. water, alcohols, aqueous saline, aqueous dextrose, polyols, glycerin, lipids, phospholipids, cyclodextrins, vegetable, petroleum, animal or synthetic oils. Especially preferred are lipids and more preferred are phospholipids (preferred of natural origin; especially preferred with a particle size between 300 to 350 nm) preferred in phosphate buffered saline (pH=7 to 8, preferred 7.4). For suppositories one may use excipients as are e.g. vegetable, petroleum, animal or synthetic oils, wax, fat and polyols. For aerosol formulations one may use compressed gases suitable for this purpose, as are e.g. oxygen, nitrogen and carbon dioxide. The pharmaceutically useful agents may also contain additives for conservation, stabiliza-



tion, e.g. UV stabilizers, emulsifiers, sweetener, aromatizers, salts to change the osmotic pressure, buffers, coating additives and antioxidants.

[0190] In general, in the case of oral or parenteral administration to adult humans weighing approximately 80 kg, a daily dosage of about 1 mg to about 10,000 mg, preferably from about 5 mg to about 1,000 mg, should be appropriate, although the upper limit may be exceeded when indicated. The daily dosage can be administered as a single dose or in divided doses, or for parenteral administration, it may be given as continuous infusion or subcutaneous injection.



[0191] The compounds of the present invention can be prepared by fermentation (e.g. by fermentation of strain MCy8071 DSM27004) or by chemical synthesis applying procedures known to a person skilled in the art.

[0192] For example the compounds of the present invention can be prepared according to the following procedures:

[0193] Starting from the respective optionally substituted building blocks (e.g. Ar¹, Ar², Ar³, Ar⁴ and Ar⁵), these building blocks can be linked to each other using acid chlorides or coupling reagents which are known to a person skilled in the art, e.g. according to the following reaction scheme:

[0194] If L¹, L², L³ and/or L⁴ is a group of formula —CH=CH— (or another olefine group), the respective optionally substituted building blocks (e.g. Ar¹, Ar², Ar³, Ar⁴ and Ar⁵) can be linked to each other using a Wittig or a Homer reaction, e.g. according to the following reaction scheme:

[0195] If L¹, L², L³ and/or L⁴ is a heterocycloalkyl or a heteroaryl group, the respective optionally substituted building blocks (e.g. Ar¹, Ar², Ar³, Ar⁴ and Ar⁵) can be linked to each other applying similar reaction conditions.

[0196] Identification of the cystobactamide biosynthesis gene cluster:

[0197] The genome of the cystobactamid producer has been sequenced by shotgun-sequencing. As the main building block of the cystobactamides is the non-proteinogenic amino acid p-aminobenzoic acid (PABA), p-aminobenzoic acid synthase (query, NP_415614) was used as query for the identification of a putative cystobactamide biosynthetic cluster in the genome of Cbv34. Importantly, a p-aminobenzoic acid synthase homologue could be identified (CysD, FIG. 12 and table A), which is forming an operon with non-ribosomal peptide synthases (CysG, H and K) in the context of an in silico predicted ~48 kb large NRPS cluster (FIG. 12, assignment: table A). The genes in this NRPS cluster have been analysed by pfam, NCBI BLAST and phyre2. Aside the p-aminobenzoic acid synthase homologue, two further PABA biosynthetic enzymes can be found in the cluster: an aminodeoxychorismate lyase (CysL) and a 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthase (CysN). DAHP synthase (CysN) is a key enzyme for the production of shikimate and chorismate. In the main trunk of the shikimate pathway, D-erythrose 4-phosphate and phosphoenolpyruvate (DAHP synthase) are converted via shikimate to chorismate.

CysL and CysD allow the direct biosynthesis of PABA from chorismate. Furthermore, the cluster contains a p-aminobenzoic acid N-oxygenase homologue (CysR).

[0198] FIG. 12 shows the cystobactamide biosynthetic cluster of the invention.

[0199] A recombinant biosynthesis cluster capable of synthesizing a cystobactamide selected from the group consisting of cystobactamide A, B, C, D, E, F, G and H, wherein the cluster comprises all of the polypeptides, or a functional variant thereof, according to SEQ ID NOS. 40 to 73.

[0200] The term “functional variant” as used herein denotes a polypeptide having a sequence that is at least 85%, 90%, 95% or 99% identical to a polypeptide sequence described herein. A “functional variant” of a polypeptide may retain amino acids residues recognized as conserved for the polypeptide in nature, and/or may have non-conserved amino acid residues. Amino acids can be, relative to the native polypeptide, substituted (different), inserted, or deleted, but the variant has generally similar (enzymatic) activity or function as compared to a polypeptide described herein. A “functional variant” may be found in nature or be an engineered mutant (recombinant) thereof.

[0201] The term “identity” refers to a property of sequences that measures their similarity or relationship. Identity is measured by dividing the number of identical residues by the total number of residues and multiplying the product by 100.

[0202] The terms “protein”, “polypeptide”, “peptide” as used herein define an organic compound made of two or more amino acid residues arranged in a linear chain, wherein the individual amino acids in the organic compound are linked by peptide bonds, i.e. an amide bond formed between adjacent amino acid residues. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end.

[0203] As used herein, “comprising”, “including”, “containing”, “characterized by”, and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional, unrecited elements or method steps. “Comprising”, etc. is to be interpreted as including the more restrictive term “consisting of”.

[0204] As used herein, “consisting of” excludes any element, step, or ingredient not specified in the claim.

[0205] When trade names are used herein, it is intended to independently include the trade name product formulation, the generic drug, and the active pharmaceutical ingredient(s) of the trade name product.

[0206] In general, unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs, and are consistent with general textbooks and dictionaries.

[0207] Preferably, the NRPS enzyme of the invention is a not naturally occurring NRPS. The NRPS of the invention may also be a hybrid NRPS comprising modules, domains, and/or portions thereof, or functional variants thereof, from two or more NRPSs or from one or more polyketide synthase (s) (PKSs).

[0208] The cystobactamide biosynthesis cluster of the invention preferably includes the elements of Table A.

TABLE A

TABLE A-continued

Cystobactamide gene cluster of the invention. Gene and NRPS domain annotation with the gene cluster sequence corresponding to SEQ ID NO. 1.												
						NRPS						
						location within the gene cluster sequence (bp)	location within the gene cluster sequence (bp)	location within the protein sequence (aa)				
Name	Min.	Max.	Direction	Length	aa	Domains	length	Min.	Max.	length	Min.	Max.
Orf9	52161	54266	reverse	2106	701							
Orf10	54266	55027	reverse	762	253							
Orf11	55486	56679	forward	1194	397							
Orf12	56760	57134	forward	375	124							
Orf13	57166	57504	reverse	339	112							
Orf14	57504	58418	reverse	915	304							

[0209] The present invention also provides isolated, synthetic or recombinant nucleic acids that encode NRPSs of the invention. Said nucleic acids include nucleic acids that include a portion or all of a NRPS of the invention, nucleic acids that further include regulatory sequences, such as promoter and translation initiation and termination sequences, and can further include sequences that facilitate stable maintenance in a host cell, i.e., sequences that provide the function of an origin of replication or facilitate integration into host cell chromosomal or other DNA by homologous recombination. These NRPSs may be used as research tools or as modules in recombinant NRPS or PKS clusters.

[0210] Preferably, the invention relates to an isolated, synthetic or recombinant nucleic acid comprising:

- [0211] (i) a sequence encoding a cystobactamide biosynthesis cluster, wherein the sequence has a sequence identity to the full-length sequence of SEQ ID NO. 1 from at least 85%, 90%, 95%, 96%, 97%, 98%, 98.5%, 99%, or 99.5% to 100%;
- [0212] (ii) a sequence encoding a NRPS, wherein the sequence has a sequence identity to the full-length sequence of any of SEQ ID NOS. 8, 9, 12 or 13 from at least 85%, 90%, 95%, 96%, 97%, 98%, 98.5%, 99%, or 99.5% to 100%;
- [0213] (iii) a sequence completely complementary to the full length sequence of any nucleic acid sequence of (i) or (ii); or
- [0214] (iv) a sequence encoding a polypeptide according to any of SEQ ID NOS. 46, 47, 50 or 51.

[0215] The phrases "nucleic acid" or "nucleic acid sequence" as used herein refer to an oligonucleotide, nucleotide, polynucleotide, or to a fragment of any of these, to DNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent a sense or antisense strand, natural or synthetic in origin. "Oligonucleotide" includes either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands that may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide can ligate to a fragment that has not been dephosphorylated. A "coding sequence" of or a "nucleotide sequence encoding" a particular polypeptide or protein, is a nucleic acid sequence which is transcribed and translated into a polypeptide or protein when placed under the control of appropriate regula-

tory sequences. The nucleic acids used to practice this invention may be isolated from a variety of sources, genetically engineered, amplified, and/or expressed/generated recombinantly. Techniques for the manipulation of nucleic acids, such as, e.g., subcloning, labeling probes (e.g., random-primer labeling using Klenow polymerase, nick translation, amplification), sequencing, hybridization and the like are well described in the scientific and patent literature, see, e.g., Sambrook, ed., MOLECULAR CLONING: A LABORATORY MANUAL (2ND ED.), Vols. 1-3, Cold Spring Harbor Laboratory, (1989); CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, Ausubel, ed. John Wiley & Sons, Inc., New York (1997); LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY: HYBRIDIZATION WITH NUCLEIC ACID PROBES, Part I. Theory and Nucleic Acid Preparation, Tijssen, ed. Elsevier, N.Y. (1993). A nucleic acid encoding a polypeptide of the invention is assembled in appropriate phase with a leader sequence capable of directing secretion of the translated polypeptide or fragment thereof.

[0216] The term "isolated" as used herein means that the material, e.g., a nucleic acid, a polypeptide, a vector, a cell, is removed from its original environment, e.g., the natural environment if it is naturally occurring. For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition and still be isolated in that such vector or composition is not part of its natural environment.

[0217] The term "synthetic" as used herein means that the material, e.g. a nucleic acid, has been synthesized in vitro by well-known chemical synthesis techniques, as described in, e.g., Adams (1983) J. Am. Chem. Soc. 105:661; Belousov (1997) Nucleic Acids Res. 25:3440-3444; Frenkel (1995) Free Radic. Biol. Med. 19:373-380; Blommers (1994) Biochemistry 33:7886-7896; Narang (1979) Meth. Enzymol. 68:90; Brown (1979) Meth. Enzymol. 68:109; Beaucage (1981) Tetra. Lett. 22: 1859.

[0218] The term "recombinant" means that the nucleic acid is adjacent to a "backbone" nucleic acid to which it is not adjacent in its natural environment. Backbone molecules according to the invention include nucleic acids such as cloning and expression vectors, self-replicating nucleic acids,

viruses, integrating nucleic acids and other vectors or nucleic acids used to maintain or manipulate a nucleic acid insert of interest. Recombinant polypeptides of the invention, generated from these nucleic acids can be individually isolated or cloned and tested for a desired activity. Any recombinant expression system can be used, including bacterial, mammalian, yeast, insect or plant cell expression systems.

[0219] Also provided is a vector comprising at least one nucleic acid according to the invention. The vector may be a cloning vector, an expression vector or an artificial chromosome.

[0220] As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Vectors, including cloning and expression vectors, comprise a nucleic acid of the invention or a functional equivalent thereof. Nucleic acids of the invention can be incorporated into a recombinant replicable vector, for example a cloning or expression vector. The vector may be used to replicate the nucleic acid in a compatible host cell. Thus, the invention also provides a method of making polynucleotides of the invention by introducing a polynucleotide of the invention into a replicable vector, introducing the vector into a compatible host cell, and growing the host cell under conditions which bring about replication of the vector. The vector may be recovered from the host cell. Suitable host cells are described below. The vector into which the expression cassette or nucleic acid of the invention is inserted may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of the vector will often depend on the host cell into which it is to be introduced. A variety of cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al, Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, N. Y., (1989).

[0221] A vector according to the invention may be an autonomously replicating vector, i.e. a vector which exists as an extra-chromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.

[0222] One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication, and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. The terms "plasmid" and "vector" can be used interchangeably herein as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as cosmid, viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses) and phage vectors which serve equivalent functions.

[0223] Vectors according to the invention may be used in vitro, for example for the production of RNA or used to transfect or transform a host cell.

[0224] A vector of the invention may comprise two or more, for example three, four or five, nucleic acids of the invention, for example for overexpression.

[0225] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vector includes one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operationally linked to the nucleic acid sequence to be expressed.

[0226] Within a vector, such as an expression vector, "operationally linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell), i.e. the term "operationally linked" refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner. A regulatory sequence such as a promoter, enhancer or other expression regulation signal "operationally linked" to a coding sequence is positioned in such a way that expression of the coding sequence is achieved under condition compatible with the control sequences or the sequences are arranged so that they function in concert for their intended purpose, for example transcription initiates at a promoter and proceeds through the DNA sequence encoding the polypeptide.

[0227] The term "regulatory sequence" or "control sequence" is intended to include promoters, operators, enhancers, attenuators and other expression control elements (e.g., polyadenylation signal). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990).

[0228] The term regulatory or control sequences includes those sequences which direct constitutive expression of a nucleotide sequence in many types of host cells and those which direct expression of the nucleotide sequence only in a certain host cell (e.g. tissue-specific regulatory sequences).

[0229] A vector or expression construct for a given host cell may thus comprise the following elements operationally linked to each other in a consecutive order from the 5'-end to 3'-end relative to the coding strand of the sequence encoding the polypeptide of the invention: (i) a promoter sequence capable of directing transcription of the nucleotide sequence encoding the polypeptide in the given host cell; (ii) optionally, a signal sequence capable of directing secretion of the polypeptide from the given host cell into a culture medium; (iii) optionally, a sequence encoding for a C-terminal, N-terminal or internal epitope tag sequence or a combination of the aforementioned allowing purification, detection or labeling of the polypeptide; (iv) a nucleic acid sequence of the invention encoding a polypeptide of the invention; and preferably also (v) a transcription termination region (terminator) capable of terminating transcription downstream of the nucleotide sequence encoding the polypeptide. Particular named bacterial promoters include lac, lacZ, T3, T7, SP6, K1F, tac, tet, gpt, lambda P_R, P_L and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus and mouse metallothionein-I. Selection of the appropriate vector and promoter

is well within the level of ordinary skill in the art. Downstream of the nucleotide sequence according to the invention there may be a 3' untranslated region containing one or more transcription termination sites (e.g. a terminator). The origin of the terminator is less critical. The terminator can, for example, be native to the DNA sequence encoding the polypeptide. Preferably, the terminator is endogenous to the host cell (in which the nucleotide sequence encoding the polypeptide is to be expressed). In the transcribed region, a ribosome binding site for translation may be present. The coding portion of the mature transcripts expressed by the constructs will include a translation initiating AUG (or TUG or GUG in prokaryotes) at the beginning and a termination codon appropriately positioned at the end of the polypeptide to be translated.

[0230] Enhanced expression of a polynucleotide of the invention may also be achieved by the selection of heterologous regulatory regions, e.g. promoter, secretion leader and/or terminator regions, which may serve to increase expression and, if desired, secretion levels of the protein of interest from the expression host and/or to provide for the inducible control of the expression of a polypeptide of the invention. It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The vectors, such as expression vectors, of the invention can be introduced into host cells to thereby produce proteins or peptides, encoded by nucleic acids as described herein.

[0231] The vectors, such as recombinant expression vectors, of the invention can be designed for expression of a portion or all of a NRPS of the invention in prokaryotic or eukaryotic cells. For example, a portion or all of a NRPS of the invention can be expressed in bacterial cells such as *E. coli*, *Bacillus* strains, insect cells (using baculovirus expression vectors), filamentous fungi, yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Representative examples of appropriate hosts are described hereafter. Appropriate culture media and conditions for the above-described host cells are known in the art.

[0232] As set out above, the term "control sequences" or "regulatory sequences" is defined herein to include at least any component which may be necessary and/or advantageous for the expression of a polypeptide. Any control sequence may be native or foreign to the nucleic acid sequence of the invention encoding a polypeptide. Such control sequences may include, but are not limited to, a promoter, a leader, optimal translation initiation sequences (as described in Kozak, 1991, *J. Biol. Chem.* 266:19867-19870), a secretion signal sequence, a pro-peptide sequence, a polyadenylation sequence, a transcription terminator. At a minimum, the control sequences typically include a promoter, and transcriptional and translational stop signals. A stably transformed microorganism is one that has had one or more DNA fragments introduced such that the introduced molecules are maintained, replicated and segregated in a growing culture. Stable transformation may be due to multiple or single chromosomal integration(s) or by (an) extrachromosomal element(s) such as (a) plasmid vector(s). A plasmid vector is capable of directing the expression of polypeptides encoded by particular DNA fragments. Expression may be constitutive or regulated by inducible (or repressible) promoters that enable

high levels of transcription of functionally associated DNA fragments encoding specific polypeptides.

[0233] Expression vectors of the invention may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed, e.g., genes which render the bacteria resistant to drugs such as chloramphenicol, erythromycin, kanamycin, neomycin, tetracycline, as well as ampicillin and other penicillin derivatives like carbenicillin. Selectable markers can also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways.

[0234] The appropriate polynucleotide sequence may be inserted into the vector by a variety of procedures. In general, the polynucleotide sequence is ligated to the desired position in the vector following digestion of the insert and the vector with appropriate restriction endonucleases. Alternatively, blunt ends in both the insert and the vector may be ligated. A variety of cloning techniques are disclosed in Ausubel et al. Current Protocols in Molecular Biology, John Wiley 503 Sons, Inc. 1997 and Sambrook et al, Molecular Cloning: A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press (1989). The polynucleotide sequence may also be cloned using homologous recombination techniques including in vitro as well as in vivo recombination. Such procedures and others are deemed to be within the scope of those skilled in the art. The vector may be, for example, in the form of a plasmid, a viral particle, or a phage. Other vectors include chromosomal, nonchromosomal and synthetic polynucleotide sequences, derivatives of SV40; bacterial plasmids, phage DNA, baculovirus, yeast plasmids, vectors derived from combinations of plasmids and bacteriophage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus and pseudorabies.

[0235] The invention also provides an engineered or recombinant host cell, i.e. a transformed cell comprising a nucleic acid sequence of the invention as a heterologous or non-native polynucleotide, e.g. a sequence encoding the cysteobactamide biosynthesis cluster or a NRPS of the invention, or a vector of the invention. The host cell may be any of the host cells familiar to those skilled in the art, including prokaryotic cells, eukaryotic cells, such as bacterial cells, fungal cells, yeast cells, mammalian cells, insect cells, or plant cells.

[0236] Preferred mammalian cells include e.g. Chinese hamster ovary (CHO) cells, COS cells, 293 cells, PerC6 cells, hybridomas, Bowes melanoma or any mouse or any human cell line. Exemplary insect cells include any species of *Spodoptera* or *Drosophila*, including *Drosophila* S2 and *Spodoptera* Sf-9. Exemplary fungal cells include any species of *Aspergillus*. Preferred yeast cell include, e.g. a cell from a *Candida*, *Hansenula*, *Kluyveromyces*, *Pichia*, *Saccharomyces*, *Schizosaccharomyces*, or *Yarrowia* strain. More preferably from *Kluyveromyces lactis*, *S. cerevisiae*, *Hansenula polymorpha*, *Yarrowia lipolytica*, or *Pichia pastoris*. According to the invention, the host cell may be a prokaryotic cell. Preferably, the prokaryotic host cell is a bacterial cell. The term "bacterial cell" includes both Gram-negative and Gram-positive as well as archaeal microorganisms. Suitable bacteria may be selected from e.g. *Escherichia*, *Anabaena*, *Caulobacter*, *Gluconobacter*, *Rhodobacter*, *Pseudomonas*, *Paracoccus*, *Bacillus*, *Brevibacterium*, *Corynebacterium*, *Rhizobium* (*Sinorhizobium*), *Flavobacterium*, *Klebsiella*, *Enterobacter*, *Lactobacillus*, *Lactococcus*, *Methylobacterium*, *Staphylococcus* or *Streptomyces*. Preferably, the bacte-

rial cell is selected from the group consisting of *B. subtilis*, *B. amyloliquefaciens*, *B. licheniformis*, *B. puntis*, *B. megaterium*, *B. halodurans*, *B. pumilus*, *G. oxydans*, *Caulobacter crescentus* CB 15, *Methylobacterium extorquens*, *Rhodobacter sphaeroides*, *Pseudomonas putida*, *Paracoccus zeaxanthinifaciens*, *Paracoccus denitrificans*, *E. coli*, *C. glutamicum*, *Staphylococcus carnosus*, *Streptomyces lividans*, *Sinorhizobium melioti* and *Rhizobium radiobacter*. The selection of an appropriate host is within the abilities of those skilled in the art.

[0237] The vector can be introduced into the host cells using any of a variety of techniques, including transformation, transfection, transduction, viral infection, gene guns, or Ti-mediated gene transfer. Particular methods include calcium phosphate transfection, DEAE-Dextran mediated transfection, lipofection, or electroporation (Davis, L., Dibner, M., Battey, J., Basic Methods in Molecular Biology, (1986)). The nucleic acids or vectors of the invention may be introduced into the cells for screening, thus, the nucleic acids enter the cells in a manner suitable for subsequent expression of the nucleic acid. The method of introduction is largely dictated by the targeted cell type.

[0238] Exemplary methods include CaPO₄ precipitation, liposome fusion, lipofection (e.g., LIPOFECTIN™), electroporation, viral infection, etc. The candidate nucleic acids may stably integrate into the genome of the host cell (for example, with retroviral introduction) or may exist either transiently or stably in the cytoplasm (i.e. through the use of traditional plasmids, utilizing standard regulatory sequences, selection markers, etc.). As many pharmaceutically important screens require human or model mammalian cell targets, retroviral vectors capable of transfecting such targets can be used.

[0239] Where appropriate, the engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the nucleic acids of the invention. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter may be induced by appropriate means (e.g., temperature shift or chemical induction) and the cells may be cultured for an additional period to allow them to produce the desired polypeptide or fragment thereof. Cells can be harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract is retained for further purification. Microbial cells employed for expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Such methods are well known to those skilled in the art. The expressed polypeptide or fragment thereof can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the polypeptide. If desired, high performance liquid chromatography (HPLC) can be employed for final purification steps. The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Depending upon the host employed in a recombinant production procedure, the polypeptides produced by host cells containing the vector

may be glycosylated or may be non-glycosylated. Polypeptides of the invention may or may not also include an initial methionine amino acid residue. Cell-free translation systems can also be employed to produce a polypeptide of the invention. Cell-free translation systems can use mRNAs transcribed from a DNA construct comprising a promoter operationally linked to a nucleic acid encoding the polypeptide or fragment thereof. In some aspects, the DNA construct may be linearized prior to conducting an in vitro transcription reaction. The transcribed mRNA is then incubated with an appropriate cell-free translation extract, such as a rabbit reticulocyte extract, to produce the desired polypeptide or fragment thereof.

[0240] Host cells containing the polynucleotides of interest, e.g., nucleic acids of the invention, can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying genes. The culture conditions such as temperature, pH and the like, are those previously used with the host cell selected for expression and will be apparent to the ordinarily skilled artisan. The clones which are identified as having the specified enzyme activity may then be sequenced to identify the polynucleotide sequence encoding a portion or all of a NRPS of the invention.

[0241] Recombinant DNA can be introduced into the host cell by any means, including, but not limited to, plasmids, cosmids, phages, yeast artificial chromosomes or other vectors that mediate transfer of genetic elements into a host cell. These vectors can include an origin of replication, along with cis-acting control elements that control replication of the vector and the genetic elements carried by the vector. Selectable markers can be present on the vector to aid in the identification of host cells into which genetic elements have been introduced. Means for introducing genetic elements into a host cell (e.g. cloning) are well known to the skilled artisan. Other cloning methods include, but are not limited to, direct integration of the genetic material into the chromosome. This can occur by a variety of means, including cloning the genetic elements described herein on non-replicating plasmids flanked by homologous DNA sequences of the host chromosome; upon transforming said recombinant plasmid into a host the genetic elements can be introduced into the chromosome by DNA recombination. Such recombinant strains can be recovered if the integrating DNA fragments contain a selectable marker, such as antibiotic resistance. Alternatively, the genetic elements can be directly introduced into the chromosome of a host cell without use of a non-replicating plasmid. This can be done by synthetically producing DNA fragments of the genetic elements in accordance to the present invention that also contain homologous DNA sequences of the host chromosome. Again if these synthetic DNA fragments also contain a selectable marker, the genetic elements can be inserted into the host chromosome.

[0242] The cystobactamide biosynthesis cluster or a NRPS of the invention may be favorably expressed in any of the above host cells. Thus, the present invention provides a wide variety of host cells comprising one or more of the isolated, synthetic or recombinant nucleic acids and/or NRPSs of the present invention. The host cell, when cultured under suitable conditions, is capable of producing a cystobactamide selected from the group consisting of cystobactamide A, B, C, D, E, F, G and H that it otherwise does not produce, or produces at a lower level, in the absence of a nucleic acid of the invention.

[0243] The invention also relates to an isolated, synthetic or recombinant polypeptide having an amino acid sequence according to any of SEQ ID NOs. 40 to 73, or an amino acid sequence encoded by a nucleic acid of the invention.

[0244] The present invention further provides a method for the preparation of a cystobactamide selected from the group consisting of cystobactamide A, B, C, D, E, F, G and H, said method generally comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium under suitable conditions such that at least one cystobactamide selected from the group consisting of cystobactamide A, B, C, D, E, F, G and H is produced. The method may further comprise a step of isolating a cystobactamide selected from the group consisting of cystobactamide A, B, C, D, E, F, G and H, i.e. separating and retaining the compound from the culture broth. The isolation step may be carried out using affinity chromatography, anion exchange chromatography, or reversed phase chromatography.

EXAMPLES

Conditions of Production

Strain for Production

[0245] The strain *Cystobacter velatus* MCy8071 belongs to the order Myxococcales (Myxobacteria), suborder Cystobacterineae, family Cystobacteraceae, genus *Cystobacter*. The comparison of the partial 16S rRNA gene sequences with sequences of a public database (BLAST, Basic Local Alignment Search Tool provided by NCBI, National Center for Biotechnology Information) revealed 100% similarity to *Cystobacter velatus* strain DSM 14718.

[0246] MCy8071 was isolated at the Helmholtz Centre for Infection Research (HZI, formerly GBF) from a Chinese soil sample collected in 1982. The strain was deposited at the German Collection of Microorganisms in Braunschweig (DSM) in March 2013 under the designation DSM 27004.

Cultivation

[0247] The strain MCy8071 grows well on yeast-agar (VY/2: 0.5% *Saccharomyces cerevisiae*, 0.14% $\text{CaCl}_2 \times 2 \text{H}_2\text{O}$, 0.5 μg vitamine B_{12}/l , 1.5% agar, pH 7.4), CY-agar (casitone 0.3%, yeast extract 0.1%, $\text{CaCl}_2 \times 2 \text{H}_2\text{O}$ 0.1%, agar 1.5%, pH 7.2) and P-agar (peptone Marcor 0.2%, starch 0.8%, single cell protein probione 0.4%, yeast extract 0.2%, $\text{CaCl}_2 \times 2 \text{H}_2\text{O}$ 0.1%, MgSO_4 0.1%, Fe-EDTA 8 mg/l, 1.5% agar, pH 7.5). The working culture was nurtured in liquid medium CY/H (50% CY-medium+50 mM Hepes, 50% H-medium: soy flour 0.2%, glucose 0.8%, starch 0.2%, yeast extract 0.2%, $\text{CaCl}_2 \times 2 \text{H}_2\text{O}$ 0.1%, MgSO_4 0.1%, Fe-EDTA 8 mg/l, Hepes 50 mM pH 7.4). Liquid cultures were shaken at 180 rpm at 30° C. For conservation aliquots a 2 ml of a three days old culture were stored at -80° C. Reactivation, even after several years, is no problem on the above mentioned agar plates or in 20 ml CY/H-medium (in 100 ml Erlenmeyer flasks with plugs and aluminium-cap). After one-two days the 20 ml cultures can be upscaled to 100 ml.

Morphological Description

[0248] After two days in liquid medium CY/H the rod-shaped cells of strain MCy8071 have a length of 9.0-14.5 μm and width of 0.8-1.0 μm . On the above mentioned agar-plates swarming is circular. On VY/2-agar the swarm is thin and

transparent. Yeast degradation is visible on VY/2-agar. On CY-agar the culture looks transparent-orange. On P-agar cell mass production is distinctive and swarming behaviour is reduced. The colony colour is orange-brown. Starch in P-agar is degraded.

[0249] MCy8071 is resistant against the following antibiotics: ampicillin, gentamycin, hygromycin, polymycin, bacitracin, spectinomycin, neomycin, and fusidinic acid. Weak growth is possible with cephalosporin and kasugamycin and no growth is possible with thiostrepton, trimethoprim, kanamycin, and oxytetracycline (final concentration of all antibiotics was adjusted to 50 $\mu\text{g ml}^{-1}$).

Production of Cystobactamides A, B, C, D, E, F, G and H

[0250] The strain produces in complex media. He prefers nitrogen containing nutrients like single cell protein (Pro-bion) and products of protein decomposition like peptone, tryptone, yeast extract, soy flour and meat extract. Here the production is better with several of the mentioned protein-mixtures compared to a single one.

[0251] Cystobactamides are produced within the logarithmic to the stationary phase of growth. After two days in 100 liter fermentation (medium E) the amount of products did not increase anymore.

[0252] Cystobactamides are delivered to the medium and bind to XAD-adsorber resin. XAD is sieved by a metal sieve and eluted in acetone. Different production temperatures were tested (21° C., 30° C., 37° C. and 42° C.) whereby at 42° C. no production was possible. The optimal temperature was at 30° C. with maximal aeration.

[0253] Fermentation of MCy8071 was conducted in a 150 liter fermenter with 100 liter medium E (skimmed milk 0.4%, soy flour 0.4%, yeast extract 0.2%, starch 1.0%, MgSO_4 0.1%, Fe-EDTA 8 mg/l, glycerine 0.5%; pH 7.4) and in a 100 liter fermenter with 70 liter medium M (soy-peptone 1.0%, maltose 1.0%, $\text{CaCl}_2 \times 2 \text{H}_2\text{O}$ 0.1%, MgSO_4 0.1%, Fe-EDTA 8 mg/l; pH 7.2) for four days at 30° C. The pH was regulated with potassium hydroxide (2.5%) and sulfuric acid between 7.2 and 7.4. The stirrer speed was 100-400 rpm, aerated with 0.05 vvm compressed air. The dissolved oxygen content within the fermentation broth was regulated by the stirrer speed to pO_2 40%. To bind cystobactamides 1% adsorber resin was added to the fermentation broth. The fermenter was inoculated with 5 liter of a three days old pre-culture (E or M-medium, respectively). The production during the fermentation process was checked by HPLC-MS-analyses and serial dilution test of the methanol extract against *Escherichia coli*. The strain produces Cystobactamides A, B, C, D, E, F, G and H.

Knock-Out Experiments

[0254] To confirm that the cystobactamide biosynthesis gene cluster is responsible for the production of the cystobactamides, a knock-out (KO) experiment was carried out, where CysK (NRPS) and CysL (benzoyl-CoA ligase) was knocked out, respectively. Specifically, PCR products of 1000 bp fragments of CysK and CysL genes were produced from MCy8071 genomic DNA using Taq polymerase. The primers were designed to add 3 stop codons on the extremities of the PCR products.

CysL KO For
TGATTGATTGATCGGGCGCGATTGGCTCTGG

CysL KO Rev
TCAATCAATCATCGGGTCGGTCTCAGGCTC

CysK KO For
TGATTGATTGAAAAACAGTCGGAGGAGTTCTTGCC

CysK KO Rev
TCAATCAATCAACTCCAGTGCCTCAGCCTC

[0255] The PCR products were gel purified using the Nucleospin® Gel and PCR Clean-up kit from Macherey-Nagel and cloned into a pCR2.1-TOPO vector. The construct was integrated via heat shock into chemically competent *E. coli* HS996 and the selection was done on kanamycin-supplemented LB agar plates. Single colonies were screened for correct constructs via alkaline lysis plasmid preparation and restriction digest by EcoRI. The constructs were then sequenced to ensure the sequence homology.

[0256] A correct construct for each KO was transformed into non-methylating chemically competent *E. coli* SCS110. Plasmids were prepared using the GeneJET Plasmid Mini-prep kit from Thermo scientific and integrated into MCy8071 via electroporation. Selection of transformed clones was done on kanamycin-supplemented CTT agar plates. KO mutants and wild type cultures were grown in parallel in the presence of an adsorber resin (XAD-16) and samples of crude extracts of the cultures were analysed.

[0257] The results showed that in the KO mutants there was a complete absence of cystobactamide production indicating that CysK and CysL are essential for the production of the cystobactamides. Furthermore, the result indicates the essential nature of the cystobactamide biosynthesis gene cluster for the production of the cystobactamides.

Structural Analysis:

[0258] HRESI(+)MS analysis of cystobactamide A (1) returned a pseudomolecular formula ion ($M+H$)⁺ consistent with the molecular formula $C_{46}H_{45}N_7O_{14}$, requiring twenty eight double bond equivalents (DBE). The ¹³C NMR (DMSO-d₆) data revealed seven ester/amide carbonyls (δ_C 163.7 to 169.6) and a further 30 sp² resonances (δ_C 114.2 to 150.8), accounting for 22 DBE. Consideration of the 1D and 2D NMR data (Table 1) revealed a set of five aromatic spin systems, three of which were attributed to para-substituted, 1,3,4-trisubstituted and 1,2,3,4-tetrasubstituted benzene rings. A set of HMBC correlations from the aromatic signals H-6,6' (δ_H 7.96) and the NH (δ_H 8.92) to the amide carbonyl C-4 (δ_C 166.5); NH (δ_H 10.82) to C-7/7' (δ_C 119.8) and to the second amide carbonyl C-10 (δ_C 164.6); H-12/12' (δ_H 8.20) to C-10 established the connectivity of two of the para-substituted aromatic ring systems (FIG. 1). Further examination of the ¹H and COSY NMR data established the connectivity of the amide NH (δ_H 8.92) across to the methines H-2 (δ_H 4.96) and H-1 (δ_H 4.70). The downfield characteristic of H-1 (δ_C 79.4) suggested substitution by an oxygen, which was confirmed from a HMBC correlation from H-1 to 1-OMe (δ_H 3.53, δ_C 59.6). Also observed were HMBC correlations from H-1 and H-2 to an ester/amide carbonyl (δ_C 169.6) leading to the construction of subunit A (FIG. 1).

[0259] For the 1,3,4 trisubstituted benzene ring HMBC correlations were observed from H-17 (δ_H 7.58) to an ester/amide carbonyl C-15 (δ_C 167.3), an oxy quaternary carbon

C-18 (δ_C 146.8), C-19 (δ_C 133.6) and C-21 (δ_C 122.9). The isolated spin system for the 1,2,3,4 tetrasubstituted benzene ring showed HMBC correlations from i) H-25 (δ_H 7.82, d, 8.7) to an ester/amide carbonyl C-23 (δ_C 163.7), C-27 (δ_C 136.2) and a quaternary oxy carbon C-29 (δ_C 150.8); ii) H-26 (δ_H 7.42) to C-24 (δ_C 117.3) and C-28 (δ_C 139.5) along with the phenolic hydroxyl (δ_H 11.25) showing correlations to C-24 and C-28. The tri and tetra-substituted benzene rings were attached para to each other by HMBC correlations from the amide NH (δ_H 10.98) to C-20 (δ_C 119.8) C-18 (δ_C 146.7) and C-23 (δ_C 163.7) (FIG. 1). The last of the para-substituted aromatic spin system H-33/33' (δ_H 8.11, d, 8.3) and H-34/34' (δ_H 7.44, d, 8.3) showed attachment to the 1,2,3-trisubstituted benzene ring by HMBC correlations of the amide NH (δ_H 9.88) and H-33/33' to the amide carbonyl C-31 (δ_C 164.3). Additional interpretation of the COSY data revealed two sets of isopropoxy residues (H₃-39 (δ_H 1.38)-H-38 (δ_H 4.76)-H-40 (δ_H 1.38)) and (H₃-42 (δ_H 1.25)-H-41 (δ_H 4.30)-H₃-43 (δ_H 1.25)). The two isopropoxy residues were confirmed to be attached to the oxy quaternary carbons C-18 (δ_C 146.7) and C-28 (δ_C 139.5) based on ROESY correlations from H-38/H-39 to H-17/NH and H-42/43 to NH/29-OH/H-33/33' (FIG. 1). A link between subunit A and B was not established, however based on structural similarity to cystobactamide B, the point of attachment of subunits A and B were inferred. Having accounted for majority of the resonances, $N_2O_3H_2$ and 1DBE were left to account for. The UV spectrum of the compound showed a γ_{max} of 301 and 320 nm which suggested a conjugated system which was only possible to have been generated by the attachment of a nitro functionality para- to the aromatic system on subunit A. The remaining MF was adjusted to generate a carboxylic acid residue (C-15) on the 1,2,3-substituted aromatic ring in subunit B generating the 4-amino-3-isopropoxybenzoic acid moiety leading to the construction of the planar structure of cystobactamide A.

[0260] HRESI(+)MS analysis of cystobactamide B (2) returned a pseudomolecular formula ion ($M+H$)⁺ consistent with the molecular formula $C_{46}H_{44}N_6O_{15}$, requiring twenty eight double bond equivalents (DBE). The NMR data (Table 2) of 2 was highly similar to (1) with now the NH (δ_H 10.19) and the oxymethine H-1 (δ_H 4.32) seeing the carbonyl C-37 (δ_C 168.6) confirming the point of attachment of subunits A and B. In addition to this the only change was that the carbonyl amide was now adjusted to a carboxylic acid which was later proven by generation of cystobactamide B dimethyl ester.

[0261] HRESI(+)MS analysis of cystobactamide C (3) returned a pseudomolecular formula ion ($M+H$)⁺ consistent with the molecular formula $C_{27}H_{29}N_3O_7$, requiring 15 (DBE). The ¹H NMR data for cystobactamide C showed aromatic signals which were reminiscent of cystobactamide A and B, however it lacked aromatic resonances for two sets of para-substituted aromatic units. The COSY data revealed the existing two sets of isopropoxy residues along with one set of para-substituted aromatic ring system. Interpretation of the 1D and 2D NMR data (Table 3, FIG. 2) identified cystobactamide C (3) bearing resemblance to the eastern part of cystobactamide A and B, consisting of 3-isopropoxybenzoic acid, 2-hydroxy-3-isopropoxybenzamide and a para-aminobenzamide unit.

TABLE 1

NMR (700 MHz, DMSO-d ₆) data for cystobactamide A (1)					
pos	δ_H , mult (J in Hz)	δ_C *	COSY	HMBC	ROESY
1	4.70, d (6.9)	79.4	2	2, 1-OMe, CO ₂ NH ₂	1-OMe, 3
2	4.96, dd (8.2, 6.9)	55.6	1, 3	1, CO ₂ NH ₂ , 4	1-OMe, 3, 34
3	8.92, d (8.2)		2	4	1, 2, 6'
4		166.5			
5		128.6			
6, 6'	7.96, d (8.6)	128.9	7, 7'	4, 6, 6', 8	3
7, 7'	7.91, d (8.6)	119.8	6, 6'	5, 7, 7'	9
8		142.2			
9	10.82, s			7, 7', 10	7', 12'
10		164.6			
11		140.4			
12, 12'	8.20, d (8.6)	129.5	13, 13'	12, 12', 10, 14	9
13, 13'	8.39, d (8.6)	123.8	12, 12'	11, 13, 13', 14	
14		149.6			
15		167.3			
16		126.2			
17	7.58, s	114.2		15, 18, 19, 21,	38, 40
18		146.7			
19		133.6			
20	8.50, d (8.2)	119.8	21	16, 18	21
21	7.60, d (8.2)	122.9	20	15, 17	20
22	10.98, s			18, 20, 23	25, 39
23		163.7			
24		117.3			
25	7.82, d (8.7)	125.2	26	23, 24, 29	22
26	7.42 ^a	116.3	25	27, 28	30
27		136.2			
28		139.5			
29		150.8			
30	9.88, s			26, 27, 31	33, 41, 42, 43
31		164.3			
32		134.0			
33, 33'	8.11, d (8.3)	129.5	34, 34'	31, 33, 33', 35	30, 41, 42, 43
34, 34'	7.44 ^a	125.6	33, 33'	34, 34', 32	1-OMe, 2
35		137.3			
36	11.53, s				
37		NO			
1-OMe	3.53, s	59.6		1	1, 2
38	4.76, spt (6.0)	72.1	39, 40		17
39	1.38, d (6.0)	22.1	38	38, 40	22
40	1.38, d (6.0)	22.1	38	38, 39	17
41	4.30, spt (6.0)	76.0	42, 43		30, 42, 43
42	1.25, d (6.0)	22.4	41	41, 43	30, 33'
43	1.25, d (6.0)	22.4	41	41, 42	30, 33'
CO ₂ NH ₂		169.6			
29-OH	11.25, s			27, 28	

^aOverlapping signals,^{*}Assignments supported by HSQC and HMBC experiments.

TABLE 2

NMR (700 MHz, DMSO-d ₆) data for cystobactamide B (2)					
pos	δ_H , mult (J in Hz)	δ_C	COSY	HMBC	ROESY
1	4.31, m ^a	82.0	2	2, 37, CO ₂ H, 1-OMe,	2, 3, 36, 1-OMe
2	5.07, dd (8.1, 5.6)	54.4	1, 3	CO ₂ H	1, 1-OMe, 3, 36
3	8.50 ^b		2	4	1, 2, 6'
4		166.0			
5		129.3			
6, 6'	7.90, m ^c	128.6	7, 7'	6, 6', 8	
7, 7'	7.90, m ^c	119.8	6, 6'	7, 7'	9
8		141.7			
9	10.79, s			7, 7', 10	7', 12'

TABLE 2-continued

NMR (700 MHz, DMSO-d ₆) data for cystobactamide B (2)					
pos	δ_H , mult (J in Hz)	δ_C	COSY	HMBC	ROESY
10		164.5			
11		140.5			
12, 12'	8.20, d (8.3)	129.6	13, 13'	12, 12', 14, 10	9
13, 13'	8.38, d (8.3)	123.8	12, 12'	11, 14, 13, 13'	
14		149.6			
15		167.2			
16		125.9			
17	7.58, s	114.2		15, 18, 19, 21,	38, 40
18		146.6			
19		133.5			
20	8.50 ^b , d (8.4)	119.9	21	16, 18	21
21	7.59, d (8.4)	123.0	20	15, 17	
22	10.98, s			20	25, 39
23		163.9			
24		116.8			
25	7.81, d (8.7)	125.2	26	23, 29	22
26	7.52, d (8.7)	115.6	25	27, 28	30
27		138.8			
28		NO			
29		150.7			
30	9.62, s			31	33, 33', 26, 41, 43
31		164.5			
32		129.3			
33, 33'	7.97, d (8.4)	128.6	34, 34'	31, 33, 33'	30, 41, 42, 43
34, 34'	7.90, m ^c	119.8	33, 33'	34, 34', 32	1-OMe
35		141.7			
36	10.20, s			34, 37	1, 2, 1-OMe
37		168.6			
1-OMe	3.49, s	59.3		1	1, 2, 34, 36
38	4.75, spt (6.0)	72.1	39, 40		17
39	1.38, d (6.0)	22.1	38	38, 40	22
40	1.38, d (6.0)	22.1	38	38, 39	17
41	4.30, m ^a	76.1	42, 43		30, 42, 43
42	1.25, d (6.0)	22.4	41	41, 43	OH
43	1.25, d (6.0)	22.4	41	41, 42	OH, 30, 33'
CO ₂ H		170.7			
OH	11.22, s			28, 29	

TABLE 3

NMR (500 MHz, DMSO-d ₆) data for cystobactamide C (3)					
pos	δ_H , mult (J in Hz)	δ_C *	COSY	HMBC	
1		167.3			
2		126.1			
3	7.57, s	114.1		1, 5	
4		146.8			
5		133.6			
6	8.49, d (8.4)	120.0	7	2, 4	
7	7.58, d (8.4)	123.0	6	1, 3, 5	
8	10.95, s			6	
9		164.0			
10		116.0			
11		150.5			
12		137.5			
13		NO			
14	7.65, d (8.7)	114.5	15	10, 12	
15	7.78, d (8.7)	125.3	14	9, 11	
16	9.12, s			14, 17	
17		164.7			
18		120.4			
19/19'	7.69, d (8.8)	129.4	20/20'	19/19', 21, 17	
20/20'	6.62, d (8.8)	113.2	19/19'	18, 20/20'	
21		152.8			
22	4.75, m	72.0	23/24		
23/24	1.37, d (6.0)	22.1	22		23/24

TABLE 3-continued

NMR (500 MHz, DMSO-d ₆) data for cystobactamide C (3)				
pos	δ_H , mult (J in Hz)	δ_C *	COSY	HMBC
25	4.33, m	75.8	26/27	
26/27	1.28, d (6.1)	22.5	25	26/27
OH	11.23, s		25	10

NO—Not Observed.

*Assignments supported by HSQC and HMBC experiments.

[0262] HRESI(+)MS analysis of cystobactamide D (4) revealed a pseudomolecular ion ($[M+H]^+$) indicative of a molecular formula ($C_{42}H_{37}O_{14}N_7$) requiring twenty eight double bond equivalents. Interpretation of the NMR (DMSO-d₆) data (Table 4) revealed magnetically equivalent aromatic protons H-12'/12 (δ_H 8.17, d, 8.0) and H-13/13' (δ_H 8.36, d, 8.0) accounting for the first para-substituted benzene ring. Further interpretation of the ¹H-¹H COSY data revealed the presence of two additional para-substituted benzene rings, (H-35/35') (δ_H 7.80, d, 8.1) and H-36/36' (δ_H 7.94, d, 8.1); the second set of aromatics were heavily overlapped (H-6/6') and (H-7/7') (δ_H 7.88). Diagnostic HMBC correlations of the aromatic protons (H-12/12') to an amide carbonyl C-10 (δ_C 165.1) along with the exchangable (NH) (δ_H 10.82) coupled to

C-10, C-7/7' established the connectivity of the two para-substituted aromatic rings (FIG. 3), which was further corroborated by ROESY correlations between NH/H-12 and NH/H-7. The COSY data revealed an additional spin system from an oxymethine H-1 (δ_H 4.08, d, 8.0) through an a-proton H-2 (δ_H 4.91, dd, 8.0, 7.7) to an exchangeable proton (NH) O_H 8.47). HMBC correlations from (i) H-2 to three amide carbonyls C-4 (δ_C 166.4), C-15 (δ_C 171.8) and C-32 (δ_C 169.2), (ii) NH (δ_H 8.48) to C-4, (iii) NH (δ_H 10.54) to C-35/35' (δ_C 119.5), (iv) H-6/6' to C-4 further extended the partial structure of cystobactamide D (4). Consideration of the 1-D and 2-D NMR data revealed an additional 1,3,4-trisubstituted and a 1,2,3,4-tetrasubstituted benzene ring. HMBC correlations were observed from the aromatic protons H-27 (δ_H 7.55) and H-29 (δ_H 7.60) to the carbonyl C-31 (δ_C 167.8) and the quaternary carbon C-25 (δ_C 133.0), while H-30 (δ_H 8.47, d, 7.0) and a methoxy signal (δ_H 3.96) were coupled to an oxygen bearing carbon C-26 (δ_C 149.1), hence revealing a 4-amino-3-methoxybenzoic acid moiety, which was later confirmed by esterification. Moreover, HMBC correlations were observed from the exchangeable proton (NH) (δ_H 7.46) to the oxygen bearing carbons C-1 (δ_C 80.8), C-18 (δ_C 141.0) and the aromatic carbon C-22 (δ_C 116.2), while H-22 (δ_H 7.48, d, 8.8) and the methoxy showed couplings to C-18 and H-21 (δ_H 7.77, d, 8.8) coupled to an amide carbonyl C-23 (δ_C 164.8). The presence of a hydroxyl functionality ortho to the methoxy was later confirmed by esterification (4a) (FIG. 4), revealing the presence of a 4-amino-2-hydroxy-3-methoxybenzamide. The attachment of the 4-amino-3-methoxybenzoic acid and 4-amino-2-hydroxy-3-methoxybenzamide substituents were confirmed by ROESY and HMBC correlations from the exchangeable NH's observed from the cystobactamide D dimethyl ester (4a). The missing substituents were to be assigned at C-14 (δ_C 150.0) and the carbonyl C-38. The λ_{max} (320 nm) and the downfield chemical shift of C-14 was suggestive of a nitro substituent at C-14 and the primary amine attached to the carbonyl C-38, generating the planar structure of 4.

TABLE 4

NMR (700 MHz, DMSO-d ₆) data for cystobactamide D (4)					
pos	δ_H , mult (J in Hz)	δ_C	COSY	ROESY	HMBC
1	4.08, d (8.0)	80.7	2		32
2	4.91, dd (8.0, 7.7)	56.4	1, 3	33	1, 4, 15, 32
3	8.47 ^a		2		4
4		166.4			
5		129.5			
6/6'	7.91, m ^b	129.0	7/7'		4, 8, 6/6'
7/7'	7.91, m ^b	120.4	6/6'		5, 7/7'
8		142.4			
9	10.82, s			12/12', 7/7'	7, 10
10		165.1			
11		140.9			
12/12'	8.17, d (8.0)	129.9	13/13'	9	10, 12/12', 14
13/13'	8.36, d (8.0)	124.3	12/12'	9	11, 13/13', 14
14		150.0			
15		171.8			
16	NO				
17		129.5			
18		141.0			
19		NO			
20		116.5			
21	7.77, d (8.8)	125.8	22		23
22	7.48, d (8.8)	115.3	21		18, 20

TABLE 4-continued

NMR (700 MHz, DMSO-d ₆) data for cystobactamide D (4)					
pos	δ_H , mult (J in Hz)	δ_C	COSY	ROESY	HMBC
23			164.8		
24	NO				
25			133.0		
26			149.1		
27	7.55, s		111.7		25, 26, 31
28			126.3		
29	7.60 ^c , d, (7.0)	123.3	30		25, 27, 31
30	8.47 ^a , d, (7.0)	120.1	29		26, 28
31			167.8		
32			169.2		
33	10.54, s				2, 35/35'
34			142.7		
35/35'	7.80, d, (8.1)	119.5	36/36'	33	35/35', 37
36/36'	7.94, d, (8.1)	129.3	35/35'		34, 36/36', 38
37			129.4		
38			165.5		
1-OMe	3.30, s		58.4		1
18-OMe	3.76, s		61.0		18
26-OMe	3.95, s		56.8		26

^{a,b,c}overlapping signals.¹³C shifts obtained from 2D HSQC and HMBC experiments.

NO—not observed

TABLE 5

NMR (700 MHz, DMSO-d ₆) data for cystobactamide D dimethyl ester (4a)					
pos	δ_H , mult (J in Hz)	δ_C	COSY	ROESY	HMBC
1	4.10 ^a	80.4	2	3	2
2	4.92, dd (8.0, 7.8)	56.1	1, 3	3, 33	1, 32
3	8.50, d(7.8)		2	1, 2, 6/6'	
4			165.6		
5			129.4		
6/6'	7.91, m ^b	128.8	7/7'	3	4, 8
7/7'	7.91, m ^b	120.1	6/6'		
8			142.0		
9	10.82, s			12/12', 7/7'	7/7'
10			164.8		
11			140.8		
12/12'	8.21, d (8.7)	129.7	13/13'	9, 13/13'	10, 12/12', 14
13/13'	8.39, d (8.7)	124.0	12/12'	12/12'	11, 13/13', 14
14			149.9		
15			NO		
16	9.65, s			18-OMe, 36/36'	38
17			129.5		
18			144.7		
19			152.1		
20			121.8		
21	7.88, d (8.8)	126.1	22		19, 23
22	7.95, d (8.8)	118.9	21		18, 20
23			162.6		
24	10.94, s			19-OMe	30
25			132.8		
26			148.3		
27	7.60, s	111.2		26-OMe	25, 29, 31
28			124.9		
29	7.67, d (8.6)	123.2	30	30	27
30	8.61, d (8.6)	119.1	29	29	
31			166.4		
32			169.2		

TABLE 5-continued

NMR (700 MHz, DMSO-d ₆) data for cystobactamide D dimethyl ester (4a)					
pos	δ_H , mult (J in Hz)	δ_C	COSY	ROESY	HMBC
33	10.59, s			2, 35/35'	
34		142.8			
35/35'	7.83, d, (8.1)	119.2	36/36'	33	35/35', 37
36/36'	7.97, d, (8.1)	129.1	35/35'	16	34, 36/36', 37, 38
37		129.3			
38		165.5			
1-O <i>Me</i>	3.31	58.1			
18-O <i>Me</i>	3.91, s	61.2		16	18
19-O <i>Me</i>	4.10', s	62.0		24	19
26-O <i>Me</i>	4.05	56.7		27	
CO ₂ <i>Me</i>	3.86, s	52.4			31

^{a,b}overlapping signals,¹³C shifts obtained from 2D HSQC and HMBC experiments.

NO—not observed

[0263] HRESI(+)MS analysis of cystobactamide E (5) revealed a pseudomolecular ion ([M+H]⁺) indicative of a molecular formula (C₂₆H₂₃O₉N₅) requiring eighteen double bond equivalents. The ¹H NMR spectrum was similar to cystobactamide D with the principle difference being the absence of signals reminiscent for the 4-amino-3-methoxybenzoic acid and 4-amino-2-hydroxy-3-methoxybenzamide moieties. Detailed analysis of the 1-D and 2-D NMR data (Table 6) lead to the planar structure of cystobactamide E (5).

TABLE 6

NMR (700 MHz, DMSO-d ₆) data for cystobactamide E (5)					
pos	δ_H , mult (J in Hz)	δ_C	COSY	ROESY	HMBC
1	4.08, d (8.2)	80.2	2		1- <i>OMe</i> , 2
2	4.90, dd (8.2, 7.7)	56.1	1, 3	17	1, 4, 15, 16
3	8.50, d (7.7)		2	6/6'	4
4		165.5			
5		129.2			
6/6'	7.91, m ^a	128.6	7/7'	3	4, 6/6', 8
7/7'	7.91, m ^a	120.0	6/6'	9	5, 7/7'
8		142.0			
9	10.82, s		7/7', 12/12'	7/7', 10	
10		164.6			
11		140.5			
12/12'	8.21, d (8.4)	129.6	13/13'	9	10, 12/12', 14
13/13'	8.38, d (8.4)	123.9	12/12'		11, 13/13', 14
14		149.9			
15		171.2			
16		168.9			

TABLE 6-continued

NMR (700 MHz, DMSO-d ₆) data for cystobactamide E (5)					
pos	δ_H , mult (J in Hz)	δ_C	COSY	ROESY	HMBC
17	10.54, s				2, 19/19', 20/20'
18		142.8			
19/19'		7.77, d (8.2)	119.0	20/20'	17
20/20'		7.90, m ^a	130.6	19/19'	17
21			125.6		18, 20/20', 22
22			167.2		
1- <i>OMe</i>	3.29	58.1			1

^aoverlapping signals,¹³C shifts obtained from 2D HSQC and HMBC experiments

[0264] HRESI(+)MS analysis of cystobactamide F (6) returned a pseudomolecular ion (M+H)⁺ consistent with the molecular Formula C₄₃H₃₉N₇O₁₃, requiring 28 DBE. Interpretation of the NMR (DMSO-d₆) data (Table 7) revealed three sets of magnetically equivalent aromatic protons which could be connected via COSY (6/6' and 7/7', 12/12' and 13/13', 33/33' and 34/34') and additionally in contrast to all other cystobactamides a set of magnetically equivalent aromatic protons (26/26' and 27/27') which could be also connected via COSY. These four sets accounted for four para-substituted benzene rings in the molecule instead of three as found in all other cystobactamides. Only one 1,2,3,4-tetra-substituted benzene ring could be detected where HMBC correlations of the aromatic proton H-22 (d_H 7.22) could be observed to the carbon C-18 (d_C 137.1) and C-20 (d_H 114.0) and from the aromatic proton H-21 (d_H 7.51) to C-23 (d_C 167.3). Protons H-21 and H-22 could be connected via COSY correlations. Since carbons C-17, C-19 and C-22 were not observable, the HR-MS/MS mass of all peptide-fragments has been established and revealed the presence of 7 carbons, 11 protons, one nitrogen and three oxygen in the respective fragment, confirming the presence of a 1,2,3,4 substituted para-amino benzene moiety on this position (see FIG. 1). HMBC data further confirmed the connection of H-37 (d_H 4.93) to C-18 (d_C 137.1). HMBC and COSY data confirmed an identical linker between the two aromatic parts of the molecule as found in cystobactamide D. HMBC correlations from the exchangeable protons H-9 (d_H 10.82) to C-10 (d_C 163.9) and C-7/7' (d_C 119.4), H-3 (d_H 8.49) to C-4 (d_C 165.1), H-31 (d_H 10.56) to C-30 (d_C 168.3) and C-32 (d_C 141.5) and H-16 (d_H 8.91) to C-36 (d_C 163.1) and C-18 (d_C 137.1) and COSY correlations from H-2 (d_H 4.92) to the exchangeable proton H-3 (d_H 8.49) as well as HRMS fragment data established the serial connectivity of all fragments. The location of the nitro-group and the presence of the free amide group in the linker between the aromatic chains was established using HR-MS/MS fragments to generate the sum-formula of the respective fragments.

TABLE 7

NMR (700 MHz, DMSO-d ₆) data for cystobactamide F (6)					
pos	δ_H , mult (J in Hz)	δ_C [*]	COSY	ROESY	HMBC
1	4.10, d(8.08)	79.7	2	1- <i>OMe</i> , 3	1- <i>OMe</i> , 2, 15, 30
2	4.92, dd(4.10, 4.10)	55.9	1, 3	31	1, 4, 15, 30
3	8.49, d(8.14)			2	1
4			165.1		1, 2, 4
5			128.7		

TABLE 7-continued

NMR (700 MHz, DMSO-d ₆) data for cystobactamide F (6)					
pos	δ_H , mult (J in Hz)	δ_C *	COSY	ROESY	HMBC
6/6'	7.91, m ^a	128.1	7/7'		4, 6/6', 8
7/7'	7.91, m ^a	119.4	6/6'	9	5, 7/7'
8		141.6			
9	10.82, s			7/7', 12/12'	7/7', 8, 10
10		163.9			
11		140			
12/12'	8.21, d(8.71)	129.1	13/13'	9	10, 12/12', 14
13/13'	8.39, d(8.71)	123.3	12/12'		11, 13/13'
14		149			
15		170.6			
16	8.91, s			34/34', 38/38'	18, 36
17		NO			
18		137.1			
19		NO			
20		114.9			
21	7.51, d(9.02)	127.5	22		23
22	7.22, d(9.02)	NO	21		18, 20
23		167.3			
24	15 very broad s				
25		144.5			
26/26'	7.78, d(8.57)	118.4	27/27'		26/26', 28
27/27'	7.86, m ^a	130.1	26/26'		25, 27/27', 29
28		123.4			
29		167.3			
30		168.3			
31	10.56, s			2, 33/33'	30, 33/33'
32		141.5			
33/33'	7.83, m ^a	118.9	34/34'		33/33', 35
34/34'	7.87, m ^a	127.5	33/33'	16	32, 34/34', 36
35		129.2			
36		163.1			
37	4.93, m ^a	71	38/38'		18
38/38'	1.21, d(6.18)	22.4	37	16	37
1-OMe	3.31, s	57.4		1	1

^aOverlapping signals,

NO = Not Observed,

*Assignments supported by HSQC and HMBC experiments.

[0265] HRESI(+)MS analysis of cystobactamide G (7) returned a pseudomolecular ion (M+H)⁺ consistent with the molecular Formula C₄₄H₄₁N₇O₁₄, requiring 28 DBE. Due to overlapping aromatic signals in DMSO-d₆ the NMR data acquired in Methanol-d₄ was used to establish the partial structures of the aromatic and the linker fragment (Table 8). The para-substituted benzene rings could be established via COSY, HSQC and HMBC correlations. The configuration of the 1,3,4-trisubstituted benzene ring (4-amino-3methoxy-benzamide) and the methoxy-substituent (1-OMe, (d_C 55.2, d_H 3.50) was established via HSQC, COSY and HMBC correlations. Since not all signals on the 1,2,3,4-substituted benzene moiety could be detected in methanol-d₄ the NMR data measured in DMSO-d₆ was interpreted to establish a 4-amino-3-isopropoxy-2-hydroxy-benzamide and an identical linker between the aromatic parts as identified in cystobactamide D. The connection between C-39 (d_C 74.4) and the carbons C-40/40' (d_C 22.7) was established by COSY correlations of H-39 (d_H 4.82) and H-40/40' (d_H 1.31) and the connectivity between the 1,2,3,4-substituted benzene ring and H-39 (d_H 4.82) was established via HMBC correlations of H-39 to C-18 (d_C 137.3 in DMSO-d₆). The configuration of this benzene moiety was further confirmed with HMBC correlations in DMSO-d₆ of H-22 (d_H 7.04) to C-18 (d_C 137.3) and C-20 (d_C 116.1) and HMBC correlations of H-21 (d_H 7.45) to C-23 (d_C 165.4) as well as COSY correlations from

H-21 to H-22. The overall sequence, the location of the nitro-group and the presence of the free amide group in the linker between the aromatic chains was established using HR-MS/MS fragments to generate the sum-formula of the respective fragments.

TABLE 8

NMR (700 MHz, Methanol-d₄) data for cystobactamide G (7), including (700 MHz, DMSO-d₆) data for dos. 17-23 and 39-40/40'.

pos	δ_H , mult (J in Hz)	δ_C *	COSY	ROESY	HMBC
1	4.17, d(7.45)	82.1	2		1-OMe, 2, 15, 32
2	5.08, d(7.37)	57.2	1		1, 4, 15, 32
3	NO				
4		168.9			
5		130.5			
6/6'	7.93, m ^a	129.4	7/7'		4, 6/6', 8
7/7'	7.89, d(8.83)	121.1	6/6'		5, 7/7'
8		142.9			
9	NO				
10		166.5			
11		141.6			
12/12'	8.16, d(8.77)	129.9	13/13'		10, 12/12', 14
13/13'	8.38, d(8.74)	124.5	12/12'		11, 13/13'
14		150.9			
15		174.4			
16	NO				

TABLE 8-continued

NMR (700 MHz, Methanol-d ₄) data for cystobactamide G (7), including (700 MHz, DMSO-d ₆) data for dos. 17-23 and 39-40/40'.					
pos	δ_H , mult (J in Hz)	δ_C *	COSY	ROESY	HMBC
17		139.4			
18	NO	NO			
19		NO			
20		NO			
21	7.74, d(8.83)	125.4	22		23, 17
22	7.51, broad d	NO			
23		168.7			
24	NO				
25		133.5			
26		149.9			
27	7.67, s	112.7			25, 26, 28, 29, 31
28		131.8			
29	7.61, d(8.22)	129.9	30		27, 30, 31
30	8.45, broad d	120.5	29		
31		174.8			
32		169.5			
33	NO				
34		142.8			
35/35'	7.83, d(8.64)	120.8	36/36'		35/35', 37
36/36'	7.93, m ^a	128.9	35/35'		34, 36/36', 38
37		131.2			
38		166.4			
39	4.82, water peak	74.4	40/40'		40
40/40'	1.31, d(6.13)	22.7	39		39
1-Ome	3.50, s	55.2			1
26-Ome	4.02, s	55.9			26
17	NO				
18		137.3			
19	NO				
20		116.1			
21	7.45, d(8.83)	123.9	22		23
22	7.04, d(8.66)	99.7	21		18, 20
23		165.4			

TABLE 8-continued

NMR (700 MHz, Methanol-d ₄) data for cystobactamide G (7), including (700 MHz, DMSO-d ₆) data for dos. 17-23 and 39-40/40'.					
pos	δ_H , mult (J in Hz)	δ_C *	COSY	ROESY	HMBC
39	5.05, m	69.7	40/40'		18, 40/40'
40/40'	1.17, d(5.98)	22.5	39		39

^aOverlapping signals,

NO = Not Observed,

*Assignments supported by HSQC and HMBC experiments.

[0266] HRESI(+)MS analysis of cystobactamide H (8) returned a pseudomolecular ion ($M+H$)⁺ consistent with the molecular Formula $C_{45}H_{39}N_7O_{14}$, requiring 28 DBE. The linker configuration between the aromatic chains was found to be identical as the one found in cystobactamide D. interpretation of HSQC, HMBC and COSY data acquired in DMSO-d₆ revealed three para-substituted benzene units as found in cystobactamide A, B, D, F and G. Further interpretation of the COSY, HSGC and HMBC data revealed a identical 1,3,4-trisubstituted benzene moiety which showed HMBC correlations to a methoxy group as found in all other cystobactamides except cystobactamide F (confirmed by HMBC correlation of 1-OMe (d_H 3.27) to C-26 (d_C 147.4)). Analysis of the NMR data revealed—in accordance with the other cystobactamides—a 1,2,3,4-substituted benzene moiety. Significant change came from the establishment of a ethoxy unit via COSY correlation of methylene protons H-39 (d_H 4.17) to methyl group H-40 (d_H 1.27) and the HMBC correlations of methylene group H-39 (d_H 4.17) to C-18 (d_C 139.5) expanding thereby the substitution pattern of the 4-amino-2-hydroxy-3-X-benzamide moiety to X=methoxy, isopropoxy or ethoxy on position 3. The sequential sequence of cystobactamide H was established by HMBC correlations of the exchangeable protons H-9 (d_H 10.93) to C-10 (d_C 163.9) and C-7/7' (d_C 119.6), H-33 (d_H 10.85) to C-32 (d_C 168.7) and C-35/35' (d_C 118.8), H-16 (d_H 8.91) to C-38 (d_C 163.1), C-18 (d_C 139.5) and C-22 (d_C 100.4) and H-24 (d_H 14.71) to C-20 (d_C 116.1), C-25 (d_C 131.0), C-26 (d_C 147.4) and C-30 (d_C 118.5) and H-2 (d_H 4.85) to C-4 (d_C 165.5) as well as HR-MS₂ fragmentation-data which also enabled the localisation of the nitro-group and the establishment of the free amide group in the linker moiety.

TABLE 9

NMR (700 MHz, DMSO-d ₆) data for cystobactamide H (8)					
pos	Δ_H , mult (J in Hz)	δ_C *	COSY	ROESY	HMBC
1	4.22, d(8.60)	79.8	2	3, 33	2, 32, 1-OMe
2	4.85, dd (8.42, 8.42)	56.3	1,3	3, 33	1, 4, 15, 32
3	9.02 s			2	
4		165.5			
5		128.8			
6/6'	7.93 m ^a	128.3	7/7'		4, 6/6', 8
7/7'	7.91 m ^a	119.6	6/6'		5, 7/7'
8		141.7			
9	10.93 s			7/7', 12/12'	
10		163.9			
11		140.3			
12/12'	8.22, d(8.72)	129.4	13/13'		10, 12/12', 14
13/13'	8.38, d(8.72)	123.5	12/12'		11, 13/13'
14		149.2			
15		170.7			
16		8.91 s		22, 39, 40	18, 22, 38
17			NO		

TABLE 9-continued

NMR (700 MHz, DMSO-d ₆) data for cystobactamide H (8)					
pos	Δ_H mult (J in Hz)	δ_C *	COSY	ROESY	HMBC
18		139.5			
19		NO			
20		116.1			
21	7.45, d(8.63)	124.1	22		18, 23
22	6.95, d(8.66)	100.4	21	16	18
23		165.8			
24	14.71 s			26-OMe, 39	23, 25, 26, 30
25		131.0			
26		147.4			
27	7.46, s	111.1			25, 26, 29, 28, 31
28		133.9			
29	7.38, m ^a	121.3	30		27, 28, 30
30	8.44, d(8.29)	118.5	29		25, 26, 28,
31		169.9			
32		168.7			
33	10.85 s			1, 2, 35/35'	35/35'
34		141.9			
35/35'	7.85, m ^a	118.8	36/36'		37
36/36'	7.85, m ^a	127.7	35/35'		34, 38
37		129.5			
38		163.1			
39	4.17, q(7.03)	65.4	40		18, 40
40	1.27, t(7.07)	15.7	39		39
1-Ome	3.27, s	57.4			1
26-Ome	3.84, s	55.2			26

^aOverlapping signals,

NO = Not Observed,

*Assignments supported by HSQC and HMBC experiments.

FIGURES

[0267] FIG. 1: Key 2D NMR correlations (700 MHz, DMSO-d₆) for cystobactamide A (1)

[0268] FIG. 2: Key 2D NMR correlations (500 MHz, DMSO-d₆) for cystobactamide C (3)

[0269] FIG. 3: Key 2D NMR correlations (700 MHz, DMSO-d₆) for cystobactamide D (4)

[0270] FIG. 4: Key 2D NMR correlations of cystobactamide D dimethyl ester (4a)

[0271] FIG. 5: Key 2D NMR correlations of cystobactamide E (5)

[0272] FIG. 6: Key 2D NMR correlations (700 MHz, DMSO-d₆) of cystobactamide F (6)

[0273] FIG. 7: Key 2D NMR correlations (700 MHz, MeOH-d₄) of cystobactamide G (7)

[0274] FIG. 8: Key 2D NMR correlations (700 MHz, DMSO-d₆) of cystobactamide H (8)

BIOLOGICAL EVALUATION OF
CYSTOBACTAMIDES

[0275] As summarized in Tables 10a/b, cystobactamides were evaluated against several microorganisms and cell lines. All derivatives demonstrated a potent inhibitory effect on various *E. coli* strains, including a nalidixic acid resistant (NAL^R) isolate. Overall potency (average MIC values) of the tested derivatives increased in the following order: CysA1, CysC<CysB<CysA, CysG<CysF. Importantly, the pathogenic Gram-negative strains *A. baumannii* and *P. aeruginosa* were also inhibited by the most active derivatives, CysA, CysB, CysG, and CysF, in the low μ g/ml range, which is in terms of MIC values only by one order of magnitude higher than for the reference drug ciprofloxacin.

[0276] Average MIC values on Gram-positive bacteria, such as *E. faecalis*, *S. aureus*, and *S. pneumoniae* were partly in the sub- μ g/ml range and the average potency of CysA and CysB exceeded that of ciprofloxacin.

[0277] Furthermore, it was shown that cystobactamides do not inhibit the growth of yeast and mammalian cells, respectively. Thus, the cystobactamides did not cause apparent cytotoxicity.

Susceptibility of Mutant *E. coli* Strains to Cystobactamides

[0278] Quinolones are a widely used class of antibiotics that target the type II topoisomerases, DNA gyrase and topoisomerase IV. Resistance to quinolones is thereby often mediated by mutations in chromosomal genes that lead to alterations in the drug targets. In GyrA the quinolone-resistance determining region (QRDR) is located between amino acids 67 and 106, whereas amino acids 83 (Ser) and 87 (Asp) are most often involved.^[1,2] In analogous regions of ParC, the secondary target of quinolones, changes of amino acid 80 (Ser) are found to confer quinolone resistance.^[3,4]

[0279] Cystobactamides were screened using a panel of *E. coli* strains with typical mutations in gyrA and parC genes (Table 11). With ciprofloxacin the MIC values increase approximately by factor 30 for the single-step gyrA mutations (strain MI and WT-3.2). However, a combination of both gyrA mutations (strain WT-3) results already in nearly clinical resistance (1 mg/L). A parC mutation (strain WT-4 M2.1) leads to a two-fold increase of the MIC of ciprofloxacin. However, MIC values for cystobactamides did not or only marginally increase for gyrA and parC mutant *E. coli* strains, which suggests that cystobactamides might interfere with amino acids 87 and 83 of GyrA and amino acid 80 of ParC to a lower extent than observed for ciprofloxacin.

[0280] High-level quinolone resistance often results from a combination of several target site mutations and altered efflux

mechanisms. The in vitro selected mutant WT III (marR Δ 74 bp) does not produce functional MarR, which acts as a repressor of marA expression. This, in turn, leads to overproduction of MarA and AcrAB and overexpression of the AcrAB efflux pump is associated with the MAR (multiple antibiotic resistance) phenotype.^[5] *E. coli* strain WT III was less susceptible to ciprofloxacin treatment by a factor of ca. 4 (cp. *E. coli* WT). In comparison, MIC values of cystobactamides B, F, and G were still in the μ g/ml range. Notably, the MIC of CysF on strain *E. coli* WT III only increased by factor 2 compared to wildtype *E. coli* DSM-1116, whereas the MIC of ciprofloxacin increased by ca. factor 10.

TABLE 10a

Test organism	Antimicrobial activity of cystobactamides (Cys).			
	CysA	CysA1	CysB	CysC
	MIC [μ g/ml]			
<i>Acinetobacter baumannii</i> DSM-30008	7.4	58.9	3.7	32.5
<i>Burkholderia cenocepacia</i> DSM-16553	>59	>59	>59	>65
<i>Chromobacterium violaceum</i> DSM-30191	>59	>59	14.7	16.3
<i>Escherichia coli</i> DSM-1116	0.9	14.7	1.8	16.3
<i>Escherichia coli</i> DSM-12242 (NAL ^R)	0.9	29.4	3.7	8.1
<i>Escherichia coli</i> DSM-26863 (tolC3)	0.5	7.4	1.8	4.1
<i>Escherichia coli</i> ATCC35218	0.9	14.7	1.8	16.3
<i>Escherichia coli</i> ATCC25922	0.5	7.4	0.9	8.1
<i>Enterobacter aerogenes</i> DSM-30053	>59	>59	>59	>33
<i>Klebsiella pneumoniae</i> DSM-30104	>59	>59	>59	65
<i>Pseudomonas aeruginosa</i> PA14	>59	58.9	14.7	65
<i>Pseudomonas aeruginosa</i> ATCC27853	>59	58.9	14.7	65
<i>Mycobacterium smegmatis</i> mc ² 155 ATCC700084	>59	>59	>59	>65
<i>Bacillus subtilis</i> DSM-10	0.12	1.8	0.46	2.0
<i>Enterococcus faecalis</i> ATCC29212	0.06	3.7	0.23	4.1
<i>Micrococcus luteus</i> DSM-1790	0.06	7.4	0.23	4.1
<i>Staphylococcus aureus</i> ATCC29213	0.12	14.7	0.12	8.1
<i>Streptococcus pneumoniae</i> DSM-20566	0.23	14.7	0.46	8.1
<i>Candida albicans</i> DSM-1665	>59	>59	>59	>65
<i>Pichia anomala</i> DSM-6766	>59	>59	>59	>65
Test organism	CysF	CysG	CIP	
<i>Acinetobacter baumannii</i> DSM-30008	—	—	0.2	
<i>Burkholderia cenocepacia</i> DSM-16553	—	—	6.4	
<i>Chromobacterium violaceum</i> DSM-30191	—	—	0.006	
<i>Escherichia coli</i> DSM-1116	0.4	0.9	0.006	
<i>Escherichia coli</i> DSM-12242 (NAL ^R)	—	—	0.05	
<i>Escherichia coli</i> DSM-26863 (tolC3)	0.4	0.9	≤0.003	
<i>Escherichia coli</i> ATCC35218	—	—	0.006	
<i>Escherichia coli</i> ATCC25922	—	—	≤0.003	
<i>Enterobacter aerogenes</i> DSM-30053	—	—	0.2	
<i>Klebsiella pneumoniae</i> DSM-30104	—	—	0.025	
<i>Pseudomonas aeruginosa</i> PA14	3.4	7.1	0.1	
<i>Pseudomonas aeruginosa</i> ATCC27853	—	—	0.1	
<i>Mycobacterium smegmatis</i> mc ² 155 ATCC700084	—	—	0.4	
<i>Bacillus subtilis</i> DSM-10	—	—	0.1	
<i>Enterococcus faecalis</i> ATCC29212	—	—	0.8	
<i>Micrococcus luteus</i> DSM-1790	—	—	1.6	
<i>Staphylococcus aureus</i> ATCC29213	—	—	0.1	
<i>Streptococcus pneumoniae</i> DSM-20566	—	—	1.6	

TABLE 10a-continued

Antimicrobial activity of cystobactamides (Cys).			
<i>Candida albicans</i> DSM-1665	—	—	>6.4
<i>Pichia anomala</i> DSM-6766	—	—	>6.4
CIP reference antibiotic ciprofloxacin			
— not determined			

TABLE 10b

Cell lines and primary cells	Cytotoxicity of cystobactamides (Cys).		
	CysA	CysA1	CysB
CHO-K1 (Chinese hamster ovary)	37-111	>111	>111
HCT-116 (human colon carcinoma)	—	—	>50
HUVEC (human umbilical vein endothelial cells)	—	—	>50
GI ₅₀ [μ M]			
Cell lines and primary cells	CysC	CysF	CysG
CHO-K1 (Chinese hamster ovary)	ca. 111	>111	37-111
HCT-116 (human colon carcinoma)	—	—	—
HUVEC (human umbilical vein endothelial cells)	—	—	—
— not determined			

TABLE 11

Test organism [resistance mutations]	Antimicrobial activity of cystobactamides (Cys) against <i>E. coli</i> mutant strains.			
	CysA	CysA1	CysB	CysC
	MIC [μ g/ml]			
<i>Escherichia coli</i> WT	0.5	14.7	1.8	8.1
<i>Escherichia coli</i> MI [gyrA(S83L)]	3.7	29.4	3.7	16.3
<i>Escherichia coli</i> WT-3.2 [gyrA(D87G)]	3.7	29.4	3.7	32.5
<i>Escherichia coli</i> WT-3 [gyrA(S83L, D87G)]	14.7	>59	7.4	>33
<i>Escherichia coli</i> WT-4 M2.1 [parC(S80I)]	0.5	14.7	1.8	8.1
<i>Escherichia coli</i> MI-4 [gyrM(S83L), parC(S80I)]	0.5	14.7	1.8	16.3
<i>Escherichia coli</i> WTIII [marRA74bp]	14.7	58.9	3.7	65
CysF CysG CIP				
Test organism [resistance mutations]	MIC [μ g/ml]			
<i>Escherichia coli</i> WT	—	—	0.013	
<i>Escherichia coli</i> MI [gyrA(S83L)]	—	—	0.4	
<i>Escherichia coli</i> WT-3.2 [gyrA(D87G)]	—	—	0.4	
<i>Escherichia coli</i> WT-3 [gyrA(S83L, D87G)]	—	—	0.8	
<i>Escherichia coli</i> WT-4 M2.1 [parC(S80I)]	—	—	0.025	
<i>Escherichia coli</i> MI-4 [gyrA(S83L), parC(S80I)]	—	—	0.4	
<i>Escherichia coli</i> WTIII [marRA74bp]	0.9	3.6	0.05	

CIP reference antibiotic ciprofloxacin

— not determined

Experimental Procedures Cell-Based Assays

[0281] Cell lines and primary cells. Human HCT-116 colon carcinoma cells (CCL-247) were obtained from the American Type Culture Collection (ATCC) and Chinese hamster ovary CHO-K1 cells (ACC-110) were obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ). Both cell lines were cultured under the conditions recom-

mended by the respective depositor. Primary HUVEC (human umbilical vein endothelial cells; single donor) were purchased from PromoCell (Heidelberg, Germany) and cultured in Endothelial Cell Growth Medium (PromoCell) containing the following supplements: 2% FCS, 0.4% ECGS, 0.1 ng/ml EGF, 1 ng/ml bFGF, 90 µg/ml heparin, 1 µg/ml hydrocortisone.

[0282] Bacterial Strains.

[0283] Bacterial wildtype strains used in susceptibility assays were either part of our strain collection or purchased from the German Collection of Microorganisms and Cell Cultures (DSMZ) or from the American Type Culture Collection (ATCC). *E. coli* strain WT^[6] and *E. coli* mutants were kindly provided by Prof. Dr. P. Heisig, Pharmaceutical Biology and Microbiology, University of Hamburg.

[0284] Cytotoxicity Assay.

[0285] Cells were seeded at 6×10^3 cells per well of 96-well plates (Corning CellBind®) in complete medium (180 µL) and directly treated with cystobactamides dissolved in methanol in a serial dilution. Compound were tested in duplicate for 5 d, as well as the internal solvent control. After 5 d incubation, 5 mg/ml MTT in PBS (20 µL) was added per well and it was further incubated for 2 h at 37° C.^[7] The medium was then discarded and cells were washed with PBS (100 µL) before adding 2-propanol/10N HCl (250:1, v/v; 100 µL) in order to dissolve formazan granules. The absorbance at 570 nm was measured using a microplate reader (EL808, Bio-Tek Instruments Inc.).

[0286] Susceptibility Testing.

[0287] MIC values were determined in microdilution assays. Overnight cultures were diluted in the appropriate growth medium to achieve an inoculum of 10^4 - 10^6 cfu/mL. Yeasts were grown in Myc medium (1% phytone peptone, 1% glucose, 50 mM HEPES, pH 7.0), *S. pneumonia* and *E. faecalis* in tryptic soy broth (TSB: 1.7% peptone casein, 0.3% peptone soymeal, 0.25% glucose, 0.5% NaCl, 0.25% K₂HPO₄; pH 7.3); *M. smegmatis* in Middlebrook 7H9 medium supplemented with 10% Middlebrook ADC enrichment and 2 ml/l glycerol). All other listed bacteria were grown in Müller-Hinton broth (0.2% beef infusion solids, 1.75% casein hydrolysate, 0.15% starch, pH 7.4). Cystobactamides and reference drugs were added directly to the cultures in sterile 96-well plates as duplicates and serial dilutions were prepared. Microorganisms were grown on a microplate shaker (750 rpm, 30-37° C., 18-48 h), except *S. pneumonia*, which was grown at non-shaking conditions (37° C., 5% CO₂, 18 h). Growth inhibition was assessed by visual inspection and the MIC was defined as the lowest concentration of compound that inhibited visible growth.

Target Identification

[0288] To test the anti-gyrase activity of cystobactamides, commercial *E. coli* gyrase supercoiling kits (Inspiralis) were used. Cystobactamide A inhibited the *E. coli* gyrase (20.5 nM eq. 1 unit) showing an apparent IC₅₀ of 6 µM. Cystobactamide A1 inhibited the *E. coli* gyrase (20.5 nM eq. 1 unit) showing an apparent IC₅₀ of 2.5 µM. Cystobactamide D inhibited the *E. coli* gyrase (20.5 nM eq. 1 unit) showing an apparent IC₅₀ of 1 µM. Cystobactamide C inhibited the *E. coli* gyrase (20.5 nM eq. 1 unit) showing an apparent IC₅₀ of 7.7 µM. Cystobactamides thus are novel inhibitors of bacterial DNA gyrase.

[0289] IC₅₀ values of cystobactamide A-D in the Gyrase inhibition assay:

Compound	IC ₅₀ /µM
cystobactamide A	6 +/- 1.4
cystobactamide A1	2.5 +/- 0.8
cystobactamide C	7.2 +/- 0.74
cystobactamide D	0.7 +/- 0.4

[0290] FIG. 9a show the results of the Gyrase inhibition assay. The gyrase reactions were titrated with varying concentrations of cystobactamide A, A1, C and D and resolved by agarose gel electrophoresis. For IC₅₀ determination the band intensity of the supercoiled plasmid was determined using Adobe Photoshop, plotted vs. [cystobactamide] and fitted using Hill's equation.

[0291] Prokaryotic DNA gyrase and topoisomerase IV share a high degree of homology and gyrase inhibitors typically show a topoisomerase IV inhibitory activity.⁸ To test the influence of the cystobactamides on topoisomerase IV a commercial *E. coli* topoisomerase IV kit (Inspiralis) was used.

[0292] Cystobactamide A inhibited the activity of *E. coli* topo IV only at the highest tested concentration of 815 µM. Cystobactamide A1 inhibited *E. coli* topo IV showing an IC₅₀ value of 6.4+/-1.8 µM. Cystobactamide C inhibited the activity of *E. coli* topo IV only at the highest tested concentration of 300 µM. Cystobactamide D inhibited *E. coli* topo IV showing an IC₅₀ value of 10+/-3 µM.

[0293] IC₅₀ values for cystobactamide A-D in the *E. coli* Topoisomerase IV inhibition assay:

Compound	IC ₅₀ /µM
cystobactamide A	>160
cystobactamide A1	6.4 +/- 1.8
cystobactamide C	>60
cystobactamide D	10 +/- 3

[0294] FIG. 9b shows the result of the Topoisomerase IV inhibition assay. The topo IV reactions were titrated with varying concentrations of A-D and resolved by agarose gel electrophoresis. For IC₅₀ determination the band intensity of the supercoiled plasmid was determined using Adobe Photoshop, plotted vs. [cystobactamide] and fitted using Hill's equation.

[0295] Prokaryotic DNA topoisomerase IV and eukaryotic topoisomerase II share a high degree of homology (type IIa topoisomerases) and inhibitors of the prokaryotic enzyme often also inhibits the eukaryotic counterpart.⁸ To test the influence of the cystobactamides on eukaryotic topoisomerase IV a commercial *H. sapiens* topoisomerase II kit (Inspiralis) was used.

[0296] Cystobactamide A inhibited the activity of human topo II only at the highest tested concentration of 815 µM. Cystobactamide A1 inhibited human topo II showing an IC₅₀ value of 9+/-0.03 µM. Cystobactamide C inhibited the activity of human topo II only at the highest tested concentration of 300 µM. Cystobactamide D inhibited human topo II showing an IC₅₀ value of 41.2+/-3 µM

[0297] IC₅₀ values for cystobactamide A-D in the *H. sapiens* Topoisomerase II inhibition assay:

Compound	IC ₅₀ /μM
cystobactamide A	>160
cystobactamide A1	9 +/- 0.03
cystobactamide C	>60
cystobactamide D	41.2 +/- 3

[0298] FIG. 9c shows the result of the Topoisomerase II inhibition assay. The topo II reactions were titrated with varying concentrations of A-D and resolved by agarose gel electrophoresis. For IC₅₀ determination the band intensity of the supercoiled plasmid was determined using Adobe Photoshop, plotted vs. [cystobactamide] and fitted using Hill's equation.

[0299] Aside the ATP-dependent type IIa topoisomerases like *E. coli* gyrase, topoIV and human topoII, the activity of cystobactamides on the ATP-independent human topoisomerase I was tested as well.

[0300] IC₅₀ values for cystobactamide A-D in the *H. sapiens* Topoisomerase I inhibition assay:

Compound	IC ₅₀ /μM
cystobactamide A	~10
cystobactamide A1	~0.7
cystobactamide C	~6
cystobactamide D	~33.6

[0301] FIG. 9d shows the result of the Topoisomerase I inhibition assay. The topo I reactions were titrated with varying concentrations of A-D and resolved by agarose gel electrophoresis. For IC₅₀ determination the band intensity of the supercoiled plasmid was determined using Adobe Photoshop, plotted vs. [cystobactamide] and fitted using Hill's equation.

[0302] IC₅₀(gyrase) vs. IC₅₀(topoisomerase IV) value comparison of cystobactamide A-D:

ratios	IC ₅₀ /μM			ratios
	gyrase	Topo IV	IC ₅₀ (topo IV)/IC ₅₀ (gyrase)	
cystobactamide A	6	~815	~136	
cystobactamide A1	2.5	6.4	~2.6	
cystobactamide D	0.7	10	~14	
cystobactamide C	7.2	~300	~42	

[0303] Cystobactamides A and C show a strong preference for gyrase as molecular target (40-100 fold stronger preference for gyrase). A1 and D both target gyrase and topoisomerase IV almost equally well (2.6-10 fold stronger preference for gyrase).

[0304] Generally, there are two described inhibition modes/binding sites for gyrase inhibitors:

[0305] 1. Compounds like the fluoroquinolones bind to the GyrA DNA complex and avoid the religation of the nicked dsDNA (gyrase poisoning); and

[0306] 2. Aminocoumarins on the other hand bind to the ATP binding pocket on GyrB (competitive inhibition).⁸

[0307] To test if cystobactamides follow any of those two inhibition modes, DNA/gyrase complex linearization assays (A) and ATP competition assays (B) were performed using cystobactamide D. (A) Here, the complex of DNA and gyrase

is trapped using SDS and the gyrase is digested using proteinase K. If the gyrase/DNA complex is trapped by a gyrase inhibitor of type 1 this will lead to the formation of linearized plasmid (as the religation is inhibited). Type 2 inhibitor-bound or compound-free samples will not show the formation of linearized plasmids. The results of the assay are shown in FIG. 10a. Ciprofloxacin (a known gyrase/DNA stabilizer) and cystobactamide D show the formation of linearized plasmid after proteinase K treatment. This effect is not seen for the untreated control. Therefore, it appears likely that cystobactamides stabilize the covalent GyrA-DNA complex in a fashion comparable to the fluoroquinolones. (B) Here, standard gyrase reactions were inhibited using a constant amount of cystobactamide D and titrated with increasing amounts of ATP. If ATP and cystobactamide D would compete for binding at the ATP binding pocket on the gyrase GyrB subunit, increasing amounts of ATP would lead to the formation of supercoiled plasmid in the assay. FIG. 10b shows the assay results. Even at the highest ATP concentration of 10 mM (2000 fold cystobactamide concentration) the gyrase activity is not regained, indicating that the ATP binding pocket is not the binding site of the cystobactamides. This result is in line with the linearization assay results.

[0308] FIG. 11 shows the results of the DNA/gyrase complex linearization assay.

Experimental Procedures

Gyrase Supercoiling Assay

[0309] To test the anti-gyrase activity of cystobactamides, commercial *E. coli* gyrase supercoiling kits (Inspiralis, Norwich, UK) were used.³ For standard reactions 0.5 μg relaxed plasmid were mixed with 1 unit (~20.5 nM) *E. coli* gyrase in 1× reaction buffer (30 μl final volume, see kit manual) and incubated for 30 minutes at 37° C. The reactions were quenched by the addition of DNA gel loading buffer containing 10% (w/v) SDS. The samples were separated on 0.8% (w/v) agarose gels and DNA was visualized using Roti-Gel-Stain (Carl Roth).

[0310] All natural products stock solutions and dilutions were prepared in 100% DMSO and added to the supercoiling reactions giving a final DMSO concentration of 5% (v/v). Ciprofloxacin stock solutions and Dilutions were prepared in 10 mM HCl and 50% DMSO and used 1:10 in the final assay.

[0311] Following natural product concentrations were used in the assay:

[0312] Cystobactamide A: 815.8 μM; 163 μM; 80 μM, 16 μM; 8 μM; 1.6 μM; 0.8 μM; 0.16 μM; 0.08 μM; 0.016 μM

[0313] Cystobactamide A1: 543.5 μM; 108.7 μM; 54 μM; 10.8 μM; 5.4 μM; 1.087 μM; 0.54 μM; 0.108 μM; 0.054 μM; 0.0108 μM

[0314] Cystobactamide C: 300 μM; 60 μM; 30 μM; 6 μM; 3 μM; 0.6 μM; 0.3 μM; 0.06 μM; 0.03 μM; 0.006 μM

[0315] Cystobactamide D: 347 μM; 173.5 μM; 86.75 μM; 43.38 μM; 21.69 μM; 10.84 μM; 5.42 μM; 2.71 μM; 1.36 μM; 0.68 μM; 0.34 μM; 0.17 μM; 0.085 μM; 0.042 μM; 0.021 μM; 0.0106 μM; 0.0053 μM

[0316] Control reactions were: no enzyme and a standard reaction in presence of 5% (v/v) DMSO.

[0317] All reaction samples were equilibrated for 10 minutes at room-temperature in the absence of DNA. Then the relaxed plasmid was added to start the reaction.

Proteinase K Linearization Assay

[0318] To test if cystobactamides stabilize the covalent complex between DNA gyrase and the nicked DNA substrate,

proteinase K linearization assay were performed (see a). Standard gyrase supercoiling assays were run in the presence of cystobactamide D (18 μ M; 1.8 μ M). Control reactions contained no gyrase, no inhibitor or the known gyrase/DNA complex stabilizer ciprofloxacin (1 μ M). The reactions were quenched by the addition of $\frac{1}{10}$ volume of 10% SDS. To linearize the nicked DNA-gyrase complexes, 50 μ g/ml proteinase K were added to the reactions and incubated for 30 minutes at 37° C. The samples were separated on 0.8% (w/v) agarose gels and DNA was visualized using Roti-GelStain (Carl Roth). To detect linearized plasmid bands the relaxed plasmid was digested by the single-cutting restriction enzyme NdeI.

Gyrase Supercoiling Assay with Varying ATP Concentrations

[0319] To test if cystobactamides compete with ATP for binding to the ATP binding pocket on GyrB, standard gyrase supercoiling assays (see a) with varying ATP concentrations were performed. Standard reaction mixes (1 mM ATP) were supplemented with ATP (0.5M ATP stock solution, ATP was purchased from Sigma-Aldrich) to final ATP concentrations of 2.5; 5 and 10 mM. All reactions were performed in triplicates.

Topoisomerase IV Relaxation Assay

[0320] To test the anti-topoisomerase IV activity of cystobactamides, commercial *E. coli* topoisomerase IV relaxing kits (Inspiralis, Norwich, UK) were used.⁴ For standard reactions 0.5 μ g supercoiled plasmid were mixed with 1 unit (~20.5 nM) *E. coli* topoisomerase IV in 1 \times reaction buffer (see kit manual) and incubated for 30 minutes at 37° C. The reactions were quenched by the addition of DNA gel loading buffer containing 10% (w/v) SDS. The samples were separated on 0.8% (w/v) agarose gels and DNA was visualized using Roti-GelStain (Carl Roth).

[0321] Following natural product concentrations were used in the assay:

[0322] Cystobactamide A: 815.8 μ M; 163 μ M; 80 μ M, 16 μ M; 8 μ M; 1.6 μ M; 0.8 μ M; 0.16 μ M; 0.08 μ M; 0.016 μ M

[0323] Cystobactamide A1: 543.5 μ M; 108.7 μ M; 54 μ M; 10.8 μ M; 5.4 μ M; 1.087 μ M; 0.54 μ M; 0.108 μ M; 0.054 μ M; 0.0108 μ M

[0324] Cystobactamide C: 300 μ M; 60 μ M; 30 μ M; 6 μ M; 3 μ M; 0.6 μ M; 0.3 μ M; 0.06 μ M; 0.03 μ M; 0.006 μ M

[0325] Cystobactamide D: 347 μ M; 173.5 μ M; 86.75 μ M; 43.38 μ M; 21.69 μ M; 10.84 μ M; 5.42 μ M; 2.71 μ M; 1.36 μ M; 0.68 μ M; 0.34 μ M; 0.17 μ M; 0.085 μ M; 0.042 μ M; 0.021 μ M; 0.0106 μ M; 0.0053 μ M

[0326] Control reactions were: no enzyme and a standard reaction in presence of 5% (v/v) DMSO. All reaction samples were equilibrated for 10 minutes at room-temperature in the absence of DNA. Then the relaxed plasmid was added to start the reaction.

Topoisomerase II Relaxation Assay

[0327] To test the anti-topoisomerase II activity of cystobactamides, commercial human topoisomerase IV relaxing kits (Inspiralis, Norwich, UK) were used.⁴ For standard reactions 0.5 μ g supercoiled plasmid were mixed with 1 unit (~20.5 nM) *E. coli* topoisomerase II in 1 \times reaction buffer (see kit manual) and incubated for 30 minutes at 37° C. The reactions were quenched by the addition of DNA gel loading buffer containing 10% (w/v) SDS. The samples were sepa-

rated on 0.8% (w/v) agarose gels and DNA was visualized using Roti-GelStain (Carl Roth).

[0328] Following natural product concentrations were used in the assay:

[0329] Cystobactamide A: 815.8 μ M; 163 μ M; 80 μ M, 16 μ M; 8 μ M; 1.6 μ M; 0.8 μ M; 0.16 μ M; 0.08 μ M; 0.016 μ M

[0330] Cystobactamide A1: 543.5 μ M; 108.7 μ M; 54 μ M; 10.8 μ M; 5.4 μ M; 1.087 μ M; 0.54 μ M; 0.108 μ M; 0.054 μ M; 0.0108 μ M

[0331] Cystobactamide C: 300 μ M; 60 μ M; 30 μ M; 6 μ M; 3 μ M; 0.6 μ M; 0.3 μ M; 0.06 μ M; 0.03 μ M; 0.006 μ M

[0332] Cystobactamide D: 347 μ M; 173.5 μ M; 86.75 μ M; 43.38 μ M; 21.69 μ M; 10.84 μ M; 5.42 μ M; 2.71 μ M; 1.36 μ M; 0.68 μ M; 0.34 μ M; 0.17 μ M; 0.085 μ M; 0.042 μ M; 0.021 μ M; 0.0106 μ M; 0.0053 μ M

[0333] Control reactions were: no enzyme and a standard reaction in presence of 5% (v/v) DMSO. All reaction samples were equilibrated for 10 minutes at room-temperature in the absence of DNA. Then the relaxed plasmid was added to start the reaction.

Topoisomerase I Relaxation Assay

[0334] To test the anti-topoisomerase II activity of cystobactamides, commercial *H. sapiens* topoisomerase I relaxing kits (Inspiralis, Norwich, UK) were used.⁴ For standard reactions 0.5 μ g supercoiled plasmid were mixed with 1 unit (~20.5 nM) *H. sapiens* topoisomerase I in 1 \times reaction buffer (see kit manual) and incubated for 30 minutes at 37° C. The reactions were quenched by the addition of DNA gel loading buffer containing 10% (w/v) SDS. The samples were separated on 0.8% (w/v) agarose gels and DNA was visualized using Roti-GelStain (Carl Roth).

[0335] Following natural product concentrations were used in the assay:

[0336] Cystobactamide A: 815 μ M; 81.5 μ M; 8.15 μ M

[0337] Cystobactamide A1: 543 μ M; 54.3 μ M; 5.43 μ M

[0338] Cystobactamide C: 300 μ M; 30 μ M; 3 μ M

[0339] Cystobactamide D: 277 μ M; 27.2 μ M; 2.77 μ M

[0340] Control reactions were: no enzyme and a standard reaction in presence of 5% (v/v) DMSO. All reaction samples were equilibrated for 10 minutes at room-temperature in the absence of DNA. Then the relaxed plasmid was added to start the reaction

Quantification and Analysis

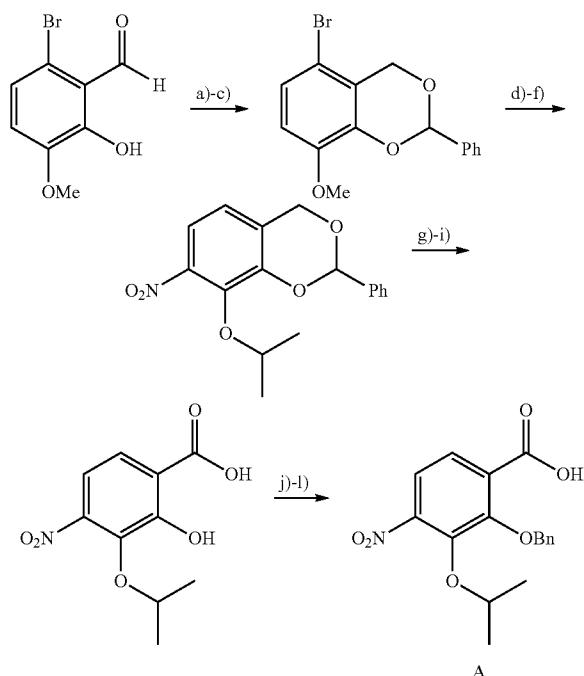
[0341] To determine IC₅₀ values, the formation of supercoiled (gyrase) or relaxed (topoisomerase I, II IV) plasmid was quantified using Adobe Photoshop (Histogram mode). Plotting of these values versus the compound concentration yielded sigmoidal shaped curves, which were fitted using Hill's equation (Origin Pro 8.5). All determined IC₅₀ values are the averages of three independent experiments.

REFERENCES

- [0342] [1] T. Gruger, J. L. Nitiss, A. Maxwell, E. L. Zechiedrich, P. Heisig, S. Seeber, Y. Pommier, D. Strumberg, *Antimicrob. Agents Chemother.* 48, 2004, 4495-4504.
- [0343] [2] H. Schedletzky, B. Wiedemann, P. Heisig, *J. Antimicrob. Chemother.* 43, 1999, 31-37.
- [0344] [3] A. B. Khodursky, E. L. Zechiedrich, N. R. Cozzarelli, *Proc. Natl. Acad. Sci. USA* 92, 1995, 11801-11805.
- [0345] [4] A. Schulte, P. Heisig, *J. Antimicrob. Chemother.* 46, 2000, 1037-1046.
- [0346] [5] D. Keeney, A. Ruzin, F. McAleese, E. Murphy, P. A. Bradford, *J. Antimicrob. Chemother.* 61, 2008, 46-53.
- [0347] [6] P. Heisig, H. Schedletzky, H. Falkenstein-Paul, *Antimicrob. Agents Chemother.* 37, 1993, 669-701.

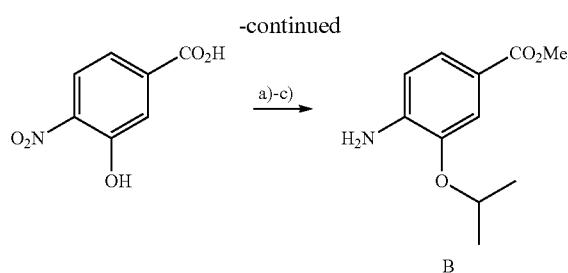
[0348] [7] T. Mosmann, *J. Immunol. Meth.* 65, 1983, 55-63.
 [0349] [8] Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. *Chemistry & Biology* 2010, 17, 421.

Synthesis of Cystobactamide A and C

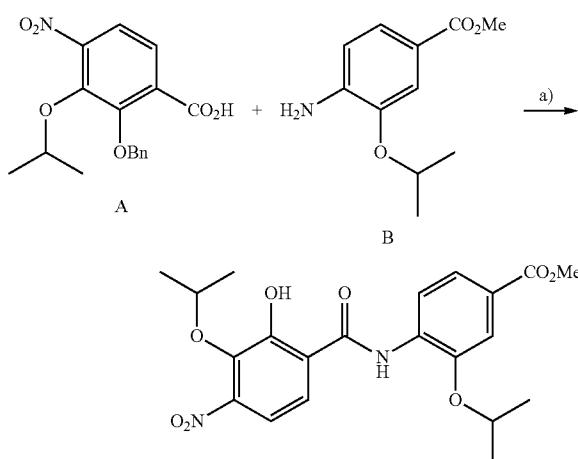

[0350] First, the synthesis of cystobactamide C is described which can further be elaborated to the other cystobactamides.

1.1. Cystobactamide C

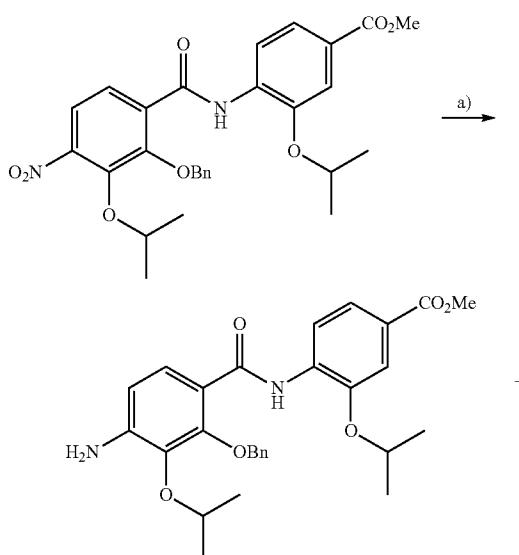
[0351] The following Schemes 1 and 2 provide an overview on the synthesis of individual aromatic building blocks followed by assembling these to generate cystobactamide C.

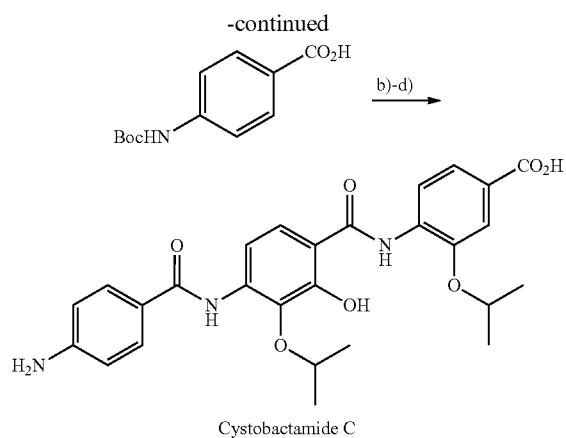

[0352] Alternatively, step e) in Scheme 1 can be modified by using another alcohol (R'OH) instead of ⁱPrOH. If for example EtOH is used, building blocks of cystobactamide H can be prepared. The same applies for step b) in the second reaction sequence given in Scheme 1. Here, also ⁱPrOH can be exchanged by any other alcohol (R'OH). If for example MeOH is used, building blocks of cystobactamides C, G and H can be prepared. For the preparation of cystobactamide F, p-amino-benzoic acid derivatives such as p-aminobenzoic acid or corresponding N-protected aminobenzoic acid derivatives and p-nitrobenzoic acids are employed instead of building block B.

Scheme 1: Syntheses of arenes A and B followed by amide coupling.
 (central aromatic moiety)


a) BBr₃, CH₂Cl₂, -40° C.-rt, 17 h (95%); b) NaBH₄, THF, -40° C.-rt, 30 min (91%);
 c) PhCH(OMe)₂, pTSA•H₂O, THF, rt, 5 days (56%); d) Ni(NO₃)₂•5H₂O, pTsOH•H₂O, acetone, rt, 2.5 h (74%); e) ⁱPrOH, DEAD, PPh₃, THF, rt, 17 h (85%); f) Pd₂(dba)₃, (PhO)₃P, ⁱPrOH, dioxane, 80° C., 1.5 h (70%); g) Camphor-10-sulfonic acid, CH₂Cl₂/MeOH (1:2), 0° C.-rt, 17 h (90%); h) MnO₂, CH₂Cl₂, rt, 17 h (81%); i) 2-methyl-2-butene, NaClO₂/NaH₂PO₄, ⁱBuOH, rt, 17 h (75%); j) TMSCHN₂, MeOH/PhMe, 0° C.-rt, 30 min (57%); k) BuOH, DEAD, PPh₃, THF, rt, 17 h (90%); l) LiOH, THF/H₂O (1:1), rt, 17 h (99%).

(terminal trisubstituted aromatic moiety)

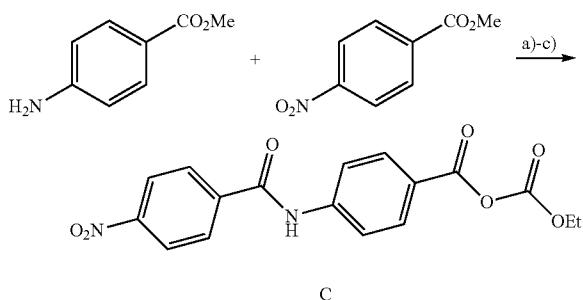

a) TMSCHN₂, MeOH/PhMe, 0° C.-rt, 30 min (90%); b) ⁱPrOH, DEAD, THF, rt, 17 h (quant); c) Pd/C, MeOH, H₂ atm., rt, 17 h (quant).


(merging aromatic moieties A and B)

a) I. A, Goshez's reagent, CH₂Cl₂, 40° C., 3 h; II. B, DIPEA, CH₂Cl₂, rt, 10 min, then I., 40° C., 2 days (68%).

Scheme 2: Finalization of cystobactamide C synthesis.
 Cystobactamide C (finalization of synthesis)

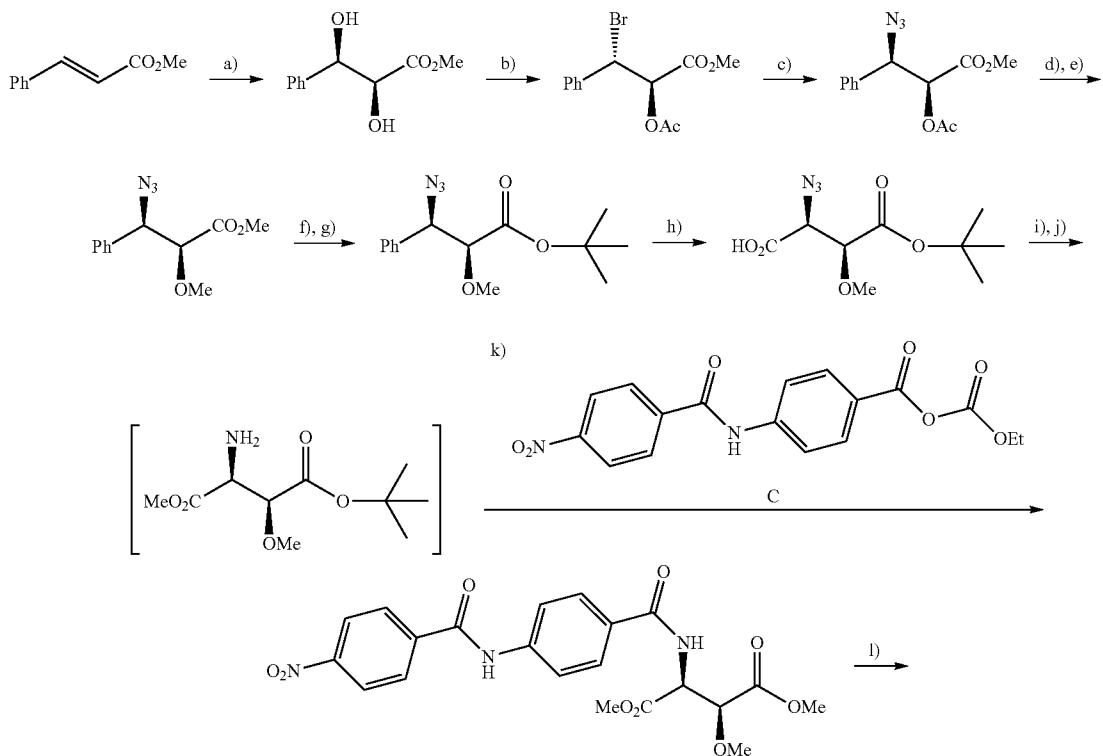
a) Pd/C, MeOH, H₂ atm., rt, 3 h (96%); b) I. 4-Boc aminobenzoic acid, Goshez's reagent, CH₂Cl₂, rt, 1 h; II. B. DIPEA, CH₂Cl₂; then I, rt, 1 day (72%); c) TFA/CH₂Cl₂ (10:1), rt, 17 h (quant.); d) LiOH, THF/H₂O (1:1), rt, 17 h (99%).

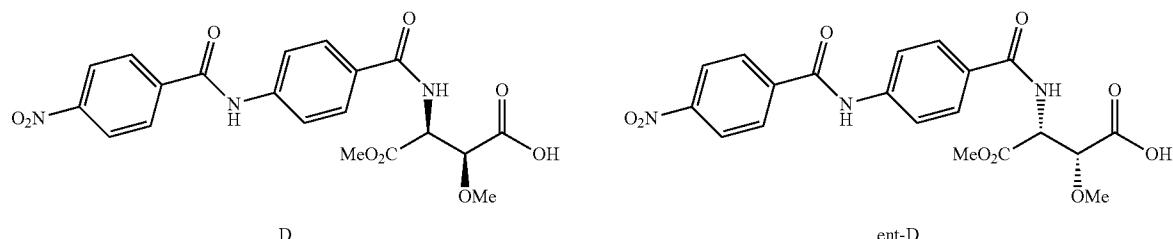

1.2 Cystobactamide A

[0353] The more complex cystobactamides consist of the bisamide that represents cystobactamide C, a bisaryl amide (fragment C) and a chiral linker element. In this section fragment C and the chiral linker element are reported first which is followed by the assembling of all three elements to provide cystobactamide A.

1.2.1 Synthesis of Bisarene C. [0354]

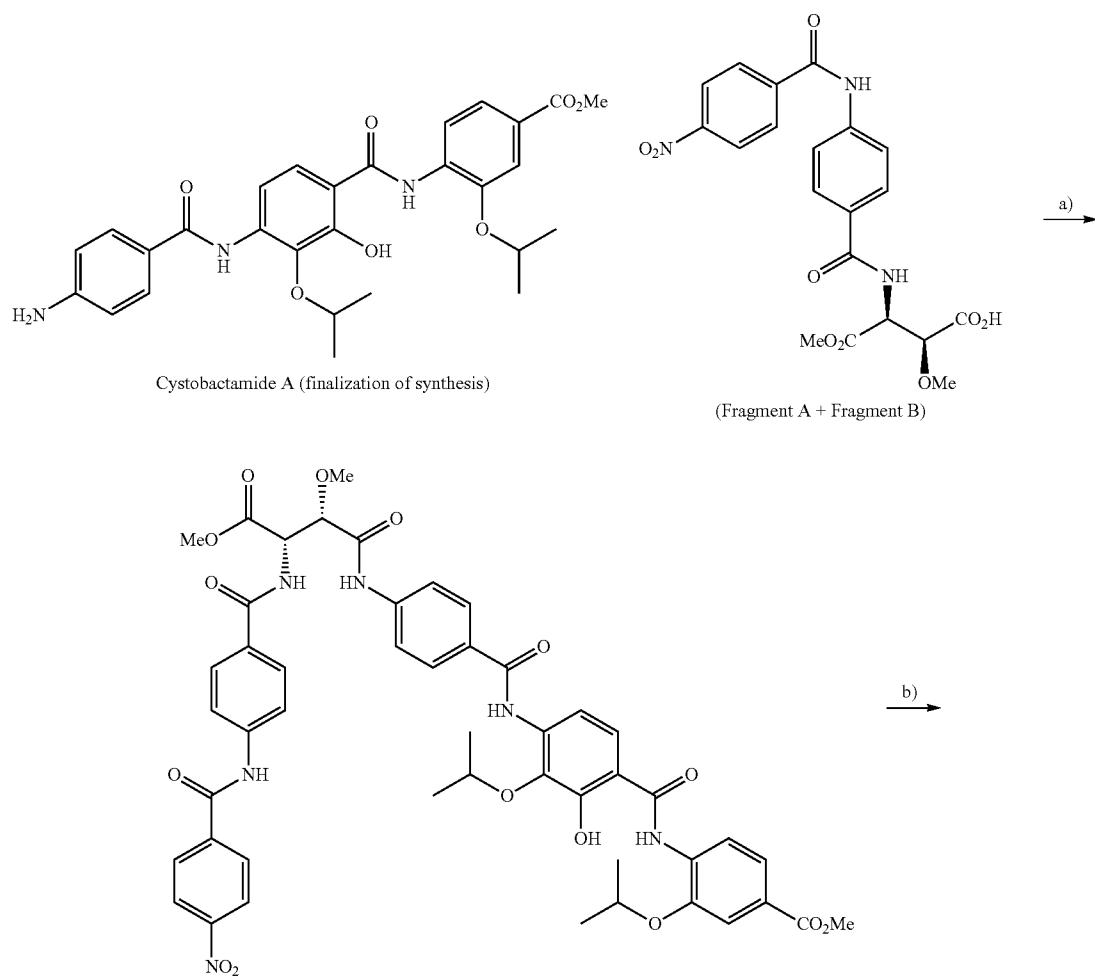
Scheme 3: Synthesis of activated fragment C.

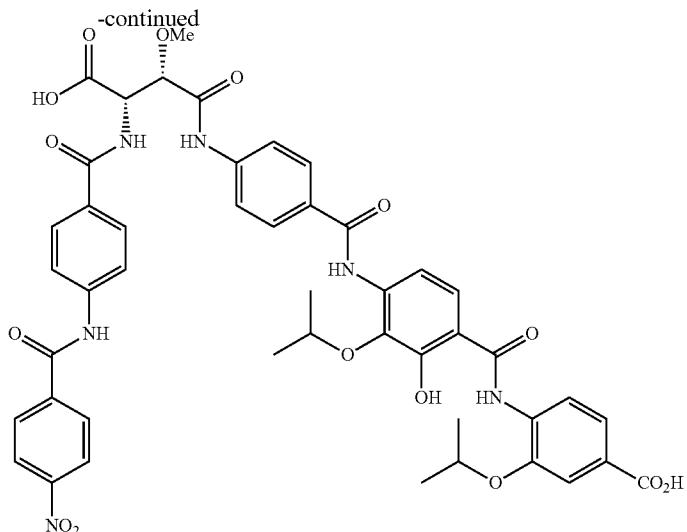

Fragment C


1.2.2 Synthesis of the Chiral Building Block D with Bisarene C Attached

[0355] The synthesis starts from methyl cinnamate and chirality is introduced by the Sharpless asymmetric dihydroxylation. The phenyl ring serves as protecting group for the second carboxylate which is oxidatively liberated. Finally, building block C is attached to the free amino group. The corresponding enantiomeric fragment (ent)-D was prepared using AD mix α instead of AD mix β .

Scheme 4: Synthesis of carboxylic acid D starting from methylcinnamate.




-continued

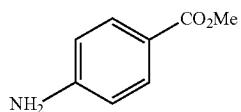
a) AD mix β , MeSO₂NH₂, tBuO/H₂O (1:1), 0°C, 12 h, then 25°C, 12 h, (79%, ee > 99%); b) 33% HBr/HOAc, 45°C, 30 min, (71%); c) NaN₃, DMF, 25°C, 3 h, then 40°C, 2 h (89%); d) KOH, THF/H₂O; e) 2. Mel, Ag₂O, CaSO₄ (74% for two steps); f) KOH, THF/H₂O; g) Me₂N—CH(OBu)₂, toluene, 80°C. (87% for two steps); h) RuCl₃·H₂O, NaIO₄, CHCl₃/CH₃COCN/H₂O, 70°C.; i) Mel, Ag₂O, CaSO₄; j) Ph₃P, THF/H₂O, 50°C.; k) DMF (16% for four steps); l) CF₃CO₂H, CH₂Cl₂, (quant).

Scheme 5: Finalization of cystobactamide A synthesis.

a) HOAt, EDC•HCl, DIPEA, CH₂Cl₂, rt, 17 h (75%); b) LiOH, THF/H₂O(1/1), rt, (95%).

2. EXPERIMENTALS

2.1 General Experimental Information


[0356] All reactions were performed in oven dried glassware under an atmosphere of nitrogen gas unless otherwise stated. ¹H-NMR spectra were recorded at 400 MHz with a Bruker AVS-400 or at 500 MHz with a Bruker DRX-500. ¹³C-NMR spectra were recorded at 100 MHz with a Bruker AVS-400 and at 125 MHz with a Bruker DRX-500. Multiplicities are described using the following abbreviations: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, b=broad. Chemical shift values of ¹H and ¹³C NMR spectra are commonly reported as values in ppm relative to residual solvent signal as internal standard. The multiplicities refer to the resonances in the off-resonance decoupled spectra. These were elucidated using the distortionless enhancement by polarization transfer (DEPT) spectral editing technique, with secondary pulses at 90° and 135°. Multiplicities are reported using the following abbreviations: s=singlet (due to quaternary carbon), d=doublet (methine), t=triplet (methylene), q=quartet (methyl). Mass spectra (EI) were obtained at 70 eV with a type VG Autospec spectrometer (Micromass), with a type LCT (ESI) (Micromass) or with a type Q-TOF (Micromass) spectrometer in combination with a Waters Aquity Ultraperformance LC system. Analytical thin-layer chromatography was performed using precoated silica gel 60 F₂₅₄ plates (Merck, Darmstadt), and the spots were visualized with UV light at 254 nm or alternatively by staining with potassium permanganate, phosphomolybdc acid, 2,4-dinitrophenol or p-anisaldehyde solutions. Tetrahydrofuran (THF) was distilled under nitrogen from sodium/benzophenone. Dichloromethane (CH₂Cl₂) was dried using a Solvent Purification System (SPS). Commercially available reagents were used as supplied. Preparative high performance liquid chromatography using a Merck Hitachi LaChrom system (pump L-7150, interface D-7000, diode array detector L-7450 (A=220-400 nm, preferred monitoring at λ =230 nm)) with column (abbreviation referred to in the experimental part given in parentheses):

ses): Trentec Reprosil-Pur 120 C18 AQ 5 μ m, 250 \times 8 mm, with guard column, 40 \times 8 mm (C18-SP). Flash column chromatography was performed on Merck silica gel 60 (230-400 mesh). Eluents used for flash chromatography were distilled prior to use. Melting points were measured using a SRS OptiMelt apparatus. Optical rotations $[\alpha]$ were measured on a Polarimeter 341 (Perkin Elmer) at a wavelength of 589 nm and are given in 10⁻¹ deg cm² g⁻¹.

2.2 Specific Procedures

4-Aminomethylbenzoate

[0357]

[0358] MeOH (200 mL) was provided in a flask and acetyl chloride (2.6 mL, 36.5 mmol, 1 eq) was slowly added. Then 4-aminobenzoic acid (5.00 g, 36.5 mmol) was added and the solution was stirred 7 days at room temperature. The solvent was removed under reduced pressure and 4-aminomethylbenzoate (5.38 g, 35.59 mmol, quantitative) was obtained as a beige solid.

[0359] The titled compound decomposes before reaching its melting point.

[0360] ATR-IR (neat): $\tilde{\nu}$ =2828, 2015, 1724, 1612, 1558, 1508, 1430, 1316, 1280, 1181, 1109, 1072, 1022, 984, 959, 853, 786, 757, 686, 653 cm⁻¹.


[0361] ¹H-NMR (400 MHz, CD₃OD): δ 8.19-8.13 (m, 2H), 7.53-7.48 (m, 2H), 3.93 (s, 3H) ppm.

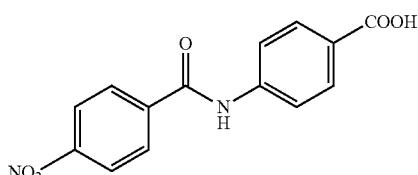
[0362] ¹³C-NMR (100 MHz, CD₃OD): δ 167.2, 137.0, 132.4, 131.7, 124.2, 53.0 ppm

[0363] HRMS (ESI): Calculated for $C_8H_{10}NO_2$ ($M+H$)⁺: 152.0712. found: 152.0706.

4-(4-Nitrobenzamido)methyl benzoate

[0364]

[0365] A solution of $P(OMe)_3$ (3.5 mL, 29.8 mmol) in CH_2Cl_2 (100 mL) was cooled with an ice bath, then I_2 (7.56 g, 29.8 mmol) was added. After the solid iodine was completely dissolved, p-nitrobenzoic acid (5.52 g, 29.8 mmol) and Et_3N (4.70 mL, 33.7 mmol) were added in sequential order, and the solution was stirred for 10 minutes in a cooling bath. 4-aminomethylbenzoate (3.00 gr, 19.9 mmol) was added and the mixture was stirred for 10 minutes. After removing the cooling bath, the reaction mixture was stirred for 3 days at room temperature, then diluted with saturated aqueous $NaHCO_3$ and extracted with dichloromethane (3×). The combined, organic layer was sequentially washed with H_2O , 1 M HCl, H_2O , and brine. The combined organic layers were dried with anhydrous $MgSO_4$ and the solvent concentrated in vacuo, yielding the title compound (4.4 g, 14.65 mmol, 75%) as a beige solid. mp: 245-246° C.


[0366] 1H NMR (400 MHz, DMSO) δ 10.87 (s, 1H_{NH}), 8.39 (d, J =8.8 Hz, 2H), 8.20 (d, J =8.8 Hz, 2H), 7.99 (d, J =8.8 Hz, 2H), 7.95 (d, J =8.8 Hz, 2H), 3.84 (s, 3H_{OMe}) ppm.

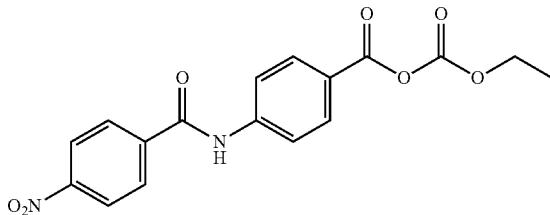
[0367] ^{13}C NMR (100 MHz, DMSO) δ 166.2, 164.9, 149.7, 143.6, 140.7, 130.7, 129.8, 125.3, 124.2, 120.2, 52.4 ppm.

[0368] HRMS (ESI): Calculated for $C_{15}H_{13}N_2O_2Na$ ($M+H$)⁺: 301.0824. found: 301.0828.

4-(4-Nitrobenzamido)benzoate

[0369]

[0370] 4-(4-Nitrobenzamido)methyl benzoate (4.32 g, 14.38 mmol) was dissolved in a mixture 1/1 of THF/H_2O (77/77 mL). Then, solid LiOH (5.16 g, 215.66 mmol) was added and the system was stirred at room temperature for 17 hours. 1M HCl was added until pH-1 and the resulting solid was filtered and dried in vacuo. The title compound (3.3 g, 11.54 mmol, 80%) was obtained as a pale yellow solid. mp: 322-324° C.

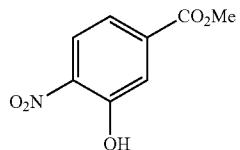

[0371] 1H NMR (400 MHz, C_6D_6) δ 10.83 (s, 1H_{CO2H}), 8.34 (d, J =8.6 Hz, 1H), 8.29 (d, J =8.6 Hz, 1H), 8.13 (d, J =8.6 Hz, 1H), 8.06 (d, J =8.6 Hz, 1H), 7.75 (s, 1H_{NH}) ppm.

[0372] ^{13}C NMR (100 MHz, C_6D_6) δ 168.2, 164.6, 162.2, 149.7, 143.9, 141.1, 131.1, 129.8, 123.5, 120.4 ppm.

[0373] HRMS (ESI): Calculated for $C_{14}H_9N_2O_5$ ($M-H$)⁻: 285.0511. found: 285.0506.

(Ethyl carbonic) 4-(4-nitrobenzamido)benzoic anhydride

[0374]


[0375] To a stirred solution of 4-aminobenzoic acid (1.5 g, 10.9 mmol) and N, N-dimethylaniline (2.0 g, 10.9 mmol) in acetone was added 4-nitrobenzoyl chloride at 0° C. Then, the reaction mixture was allowed to warm to room temperature and stirred for another hour. The resulting solid was filtered and purified by recrystallization in DMF to afford 4-(4-nitrobenzoylamino)-benzoic acid (2.75 g, 88%).

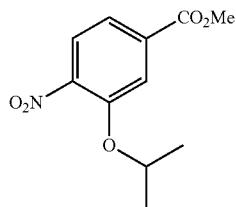
[0376] 4-(4-Nitro-benzoylamino)-benzoic acid (0.6 g, 2.1 mmol) was dissolved in 14 mL CH_3CN . Then Et_3N (0.31 mL, 2.2 mmol) was added at 0° C. To this resulting solution ethyl chloroformate was added. After stirring for 30 min at 0° C., the white precipitate was filtered and washed with cold CH_3CN , then dried under high vacuum at room temperature to afford the title anhydride 0.5 g, 67%.

[0377] 1H -NMR (400 MHz, DMSO, DMSO=2.50 ppm): δ =1.33 (dd, J =7.2 Hz, 3H), 4.37 (q, J =7.2 Hz, 2H), 8.02-8.09 (m, 4H), 8.21 (d, J =8.8 Hz, 2H), 8.40 (d, J =8.8 Hz, 2H), 11.01 (s, 1H).

3-Hydroxy-4-nitromethylbenzoate

[0378]

[0379] $TMSCHN_2$ (2.0 M in Et_2O , 13.20 mL, 26.48 mmol) was added to a solution of 3-hydroxy-2-nitrobenzoic acid (2.50 g, 13.65 mmol) in a mixture of toluene/methanol (81/36 mL) at 0° C. After stirring at 0° C. for 30 minutes, the solvent was evaporated in vacuo to give an oily residue, which was purified by flash chromatography (petroleum ether/ethyl acetate=9:1) to yield the title compound (2.43 g, 12.33 mmol, 90%) as a yellow solid.


[0380] mp: 91-92° C.

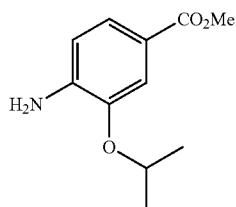
[0381] 1H NMR (400 MHz, $CDCl_3$) δ 10.49 (s, 1H_{OH}), 8.17 (d, J =8.8 Hz, 1H), 7.83 (d, J =1.8 Hz, 1H), 7.61 (dd, J =8.8, 1.8 Hz, 1H), 3.96 (s, 3H) ppm. ^{13}C NMR (100 MHz,

CDCl_3) δ 165.0, 154.8, 138.1, 125.4, 121.8, 120.74, 53.1 ppm. HRMS (ESI): Calculated for $\text{C}_8\text{H}_6\text{NO}_5$ ($\text{M}-\text{H}$) $^-$: 196.0246. found: 196.0249.

3-Isopropoxy-4-nitromethylbenzoate

[0382]

[0383] 3-Hydroxy-4-nitromethylbenzoate (2.30 g, 10.89 mmol) was dissolved in THF (100 mL). $^i\text{PrOH}$ (1.10 mL, 14.16 mmol) and PPh_3 (3.90 g, 14.70 mmol) were added, and the mixture was stirred until all components were dissolved. DEAD (2.2 M in toluene, 14.16 mmol, 6.50 mL) was added and the mixture was stirred at room temperature 17 hours. The solvent was evaporated in vacuo to give an oily residue, which was purified by flash chromatography (petroleum ether/ethyl acetate=95:5) to yield the title compound (2.61 g, 10.91 mmol, quantitative) as a yellow oil.


[0384] ^1H NMR (400 MHz, CDCl_3) δ 7.75 (d, $J=8.4$ Hz, 2H), 7.64 (dd, $J=8.3, 1.6$ Hz, 1H), 4.77 (hept, $J=6.1$ Hz, 1H), 3.95 (s, 3H), 1.41 (s, 3H), 1.40 (s, 3H) ppm.

[0385] ^{13}C NMR (100 MHz, CDCl_3) δ 165.5, 150.9, 134.6, 125.2, 121.2, 117.1, 73.2, 52.9, 21.9 ppm.

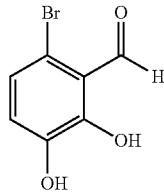
[0386] HRMS (Qtof): Calculated for $\text{C}_8\text{H}_6\text{NO}_5$ ($\text{M}+\text{Na}$) $^+$: 262.0691. found: 262.0700.

3-Isopropoxy-4-aminomethylbenzoate

[0387]

[0388] 3-Isopropoxy-4-nitromethylbenzoate (2.60 g, 10.87 mmol) was dissolved in MeOH (91.0 mL) and degassed. Pd/C (10% wt., 0.58 g, 0.54 mmol) was added and vacuum was applied under cooling to remove air. The flask was flushed with H_2 and the suspension was stirred for 17 hours at room temperature. The catalyst was filtered over Celite®, washed with MeOH and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether/EtOAc=7/3). 3-Isopropoxy-4-aminomethylbenzoate was obtained (2.27 g, 10.85 mmol, quantitative) as a light orange solid.

[0389] mp: 55-57° C.

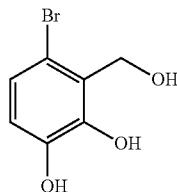

[0390] ^1H NMR (400 MHz, CDCl_3) δ 7.51 (dd, $J=8.2, 1.7$ Hz, 1H), 7.46 (d, $J=1.7$ Hz, 1H), 6.66 (dd, $J=8.2, 5.1$ Hz, 1H), 4.63 (sept, $J=5.1$ Hz, 1H), 3.85 (s, 3H), 1.36 (s, 3H), 1.35 (s, 3H) ppm.

[0391] ^{13}C NMR (100 MHz, CDCl_3) δ 167.5, 144.24, 142.3, 124.0, 119.5, 114.1, 113.5, 70.9, 51.8, 22.3 ppm.

[0392] HRMS (ESI): Calculated for $\text{C}_{11}\text{H}_{16}\text{NO}_3$ ($\text{M}+\text{H}$) $^+$: 210.1130. found: 210.1126.

6-Bromo-2,3-dihydroxybenzaldehyde

[0393]


[0394] To a solution of 6-bromo-2-hydroxy-3-methoxybenzaldehyde (25.0 g, 108.2 mmol) in CH_2Cl_2 (270 mL) at -30° C. was slowly added BBr_3 (1 M in CH_2Cl_2 , 200.0 mL, 200.0 mmol) via additional funnel over a period of 45 minutes. The solution was allowed to warm to room temperature and stirred 17 hours. H_2O was added and the reaction mixture was stirred for additional 30 minutes. The solution was then extracted with EtOAc (3x) and washed with H_2O . The combined, organic layers were dried over anhydrous MgSO_4 , filtered and concentrated in vacuo to give the title compound (22.16 g, 102.11 mmol, 95%) as a yellow solid. mp: 135-136° C.

[0395] ^1H NMR (400 MHz, CDCl_3) δ 12.13 (d, $J=0.5$ Hz, 1H, $-\text{OH}$), 10.27 (s, 1H, $-\text{CHO}$), 7.07 (d, $J=8.5$ Hz, 1H), 7.02 (dd, $J=8.5, 0.5$ Hz, 1H), 5.67 (s, 1H, $-\text{OH}$) ppm.

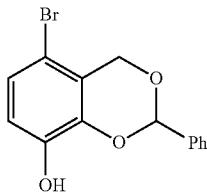
[0396] ^{13}C NMR (100 MHz, CDCl_3) δ 198.4, 151.2, 145.0, 124.4, 122.0, 117.5, 116.1 ppm. HRMS (ESI): Calculated for $\text{C}_7\text{H}_4\text{BrO}_3$ ($\text{M}-\text{H}$) $^-$: 214.3943. found: 214.9344.

4-Bromo-3-hydroxymethylbenzene-1,2-diol

[0397]

[0398] A solution of 6-bromo-2,3-dihydroxybenzaldehyde (22.16 g, 102.10 mmol) in THF (650 mL) at -40° C. was treated with NaBH_4 (3.86 g, 102.10 mmol) portion wise (3x). The resulting mixture was stirred for 30 minutes at room temperature. A saturated aqueous solution of NH_4Cl was added and the mixture was stirred for another 10 minutes, before being finally treated with 1M HCl. After 10 minutes of additional stirring, the aqueous phase was extracted with EtOAc (3x). The combined, organic extracts were dried over anhydrous MgSO_4 and filtered. The solvent was removed

under reduced pressure to yield the title compound (20.27 g, 92.53 mmol, 91%) as a colorless solid.


[0399] mp: 90-92° C.

[0400] ^1H NMR (400 MHz, MeOD) δ 6.88 (d, $J=8.5$ Hz, 1H), 6.64 (d, $J=8.5$ Hz, 1H), 4.82 (s, 2H) ppm.

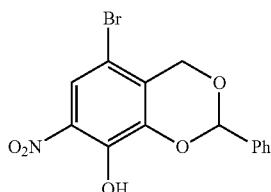
[0401] ^{13}C NMR (100 MHz, MeOD) δ 147.1, 146.1, 126.9, 123.9, 116.6, 114.4, 61.1 ppm. HRMS (ESI): Calculated for $\text{C}_7\text{H}_6\text{BrO}_3$ ($\text{M}-\text{H}$) $^-$: 216.9500. found: 216.9505.

5-Bromo-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol

[0402]

[0403] A solution of 4-bromo-3-hydroxymethylbenzene-1,2-diol (20.27 g, 92.53 mmol) in THF (550 mL) was treated with $\text{PhCH}(\text{OMe})_2$ (20.8 mL, 138.8 mmol) and pTSA. H_2O (0.19 g, 1.02 mmol). The mixture was stirred at room temperature for 5 days. CH_2Cl_2 was added and then washed successively with 5% aqueous NaHCO_3 and brine. The aqueous phase was extracted with EtOAc (3x). The combined, organic extracts were dried over anhydrous MgSO_4 , filtered and the solvent was removed under reduced pressure. Purification by flash chromatography (petroleum ether/EtOAc=95/5) afforded 5-bromo-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol (16.02 g, 52.16 mmol, 56%) as a colorless solid.

[0404] mp: 89-91° C.


[0405] ^1H NMR (400 MHz, CDCl_3) δ 7.62-7.55 (m, 2H), 7.50-7.43 (m, 3H), 7.07 (d, $J=8.6$ Hz, 1H), 6.78 (d, $J=8.6$ Hz, 1H), 5.97 (s, 1H), 5.40 (s, 1H, $-\text{OH}$), 4.99 (s, 2H) ppm.

[0406] ^{13}C NMR (100 MHz, CDCl_3) δ 144.0, 141.8, 136.1, 130.1, 128.8, 126.7, 124.9, 121.0, 115.0, 109.4, 100.0, 67.8 ppm.

[0407] HRMS (ESI): Calculated for $\text{C}_{14}\text{H}_{10}\text{BrO}_3$ ($\text{M}-\text{H}$) $^-$: 304.9813. found: 304.9813.

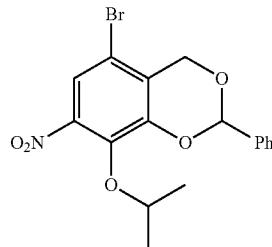
5-Bromo-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol

[0408]

[0409] 5-Bromo-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol (6.00 g, 19.54 mmol; max. amount) was dissolved in acetone (250 mL). Then, $\text{Ni}(\text{NO}_3)_2 \cdot 5\text{H}_2\text{O}$ (5.68 g, 19.54 mmol) and pTSA. H_2O (3.72 g, 19.54 mmol) were added. The mixture was stirred at room temperature for 2.5 h. The reaction mixture was filtered over Celite®, washed with CH_2Cl_2 and con-

centrated in vacuo. Purification by flash chromatography (dry load: $\text{SiO}_2 + \text{CH}_2\text{Cl}_2$; petroleum ether/ethyl acetate=9:1) yielded the title compound (5.08 g, 14.43 mmol, 74%) as a bright yellow solid.

[0410] mp: 154-156° C.


[0411] ^1H NMR (400 MHz, CDCl_3) δ 10.60 (s, 1H, $-\text{OH}$), 7.96 (s, 1H), 7.65-7.57 (m, 2H), 7.48-7.42 (m, 3H), 6.02 (s, 1H), 4.99 (s, 2H) ppm.

[0412] ^{13}C NMR (100 MHz, CDCl_3) δ 144.9, 135.5, 133.2, 130.2, 129.0, 128.9, 126.7, 119.2, 109.2, 99.9, 67.4 ppm.

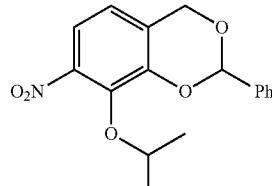
[0413] HRMS (ESI): Calculated for $\text{C}_{14}\text{H}_9\text{BrNO}_5$ ($\text{M}-\text{H}$) $^-$: 359.9664. found: 349.9660.

5-Bromo-8-isopropoxy-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxine

[0414]

[0415] 5-Bromo-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxin-8-ol (13.79 g, 39.16 mmol) was dissolved in THF (429 mL). iPrOH (4.00 mL, 50.91 mmol) and PPh_3 (13.87 g, 52.87 mmol) were added, and the mixture was stirred until all components were dissolved. DEAD (2.2 M in toluene, 23.1 mL, 50.91 mmol) was slowly added (via syringe pump) and the mixture was stirred at room temperature 17 hours. The solvent was evaporated in vacuo to give an oily residue, which was purified by flash chromatography (petroleum ether/ethyl acetate=96:4) to yield the title compound (13.08 g, 33.18 mmol, 85%) as a colorless solid.

[0416] mp: 87-89° C.


[0417] ^1H NMR (400 MHz, CDCl_3) δ 7.59 (s, 1H), 7.59-7.54 (m, 2H), 7.50-7.43 (m, 3H), 5.97 (s, 1H), 5.00 (s, 2H), 4.69 (hept, $J=6.2$ Hz, 1H), 1.31 (d, $J=6.2$ Hz, 3H), 1.28 (d, $J=6.2$ Hz, 3H) ppm.

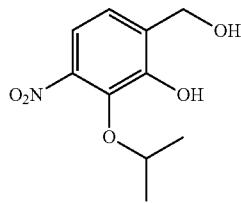
[0418] ^{13}C NMR (100 MHz, CDCl_3) δ 216.8, 149.0, 144.5, 139.9, 135.7, 130.1, 128.8, 126.4, 126.2, 119.8, 112.7, 99.7, 78.1, 67.6, 22.6, 22.4 ppm.

[0419] HRMS (Qtof): Calculated for $\text{C}_{14}\text{H}_9\text{BrNO}_5$ ($\text{M}+\text{Na}$) $^+$: 416.0110. found: 416.0101.

8-Isopropoxy-7-nitro-2-phenyl-4H-benzo-[1,3]-dioxin, 73

[0420]

[0421] 5-Bromo-8-isopropoxy-7-nitro-2-phenyl-4H-benzo[1,3]-dioxine 72 (4.00 g, 10.15 mmol), $\text{Pd}_2(\text{dba})_3$ (0.93 g, 1.01 mmol), $(\text{PhO})_3\text{P}$ (0.53 mL, 2.03 mmol), Cs_2CO_3 (4.30 g, 13.19 mmol) and $^3\text{PrOH}$ (4.7 mL, 60.88 mmol) were dissolved in 1,4-dioxane (28 mL). The oil bath was preheated to 60°C. and the mixture was stirred at 80°C. for 1.5 hours. The reaction mixture was filtered through Celite® and washed with EtOAc . The combined, organic extracts were dried over anhydrous MgSO_4 and concentrated in vacuo. The crude material was purified by flash chromatography (petroleum ether/ethyl acetate=96:4) to yield the title compound (2.24 g, 7.10 mmol, 70%) as a pale yellow solid.


[0422] mp: 80-82°C.

[0423] ^1H NMR (400 MHz, CDCl_3) δ 7.65-7.55 (m, 2H), 7.51-7.41 (m, 3H), 7.37 (d, $J=8.5$ Hz, 1H), 6.81 (d, $J=8.5$ Hz, 1H), 6.01 (s, 1H), 5.19 (d, $J=15.5$ Hz, 1H), 5.03 (d, $J=15.5$ Hz, 1H), 4.71 (hept, $J=6.2$ Hz, 1H), 1.32 (d, $J=6.2$ Hz, 3H), 1.28 (d, $J=6.2$ Hz, 3H) ppm.

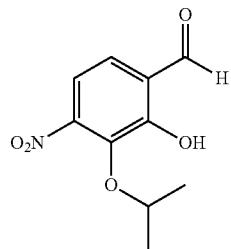
[0424] ^{13}C NMR (100 MHz, CDCl_3) δ 147.67, 144.27, 140.55, 136.26, 129.85, 128.72, 126.54, 126.34, 118.82, 116.69, 99.61, 77.71, 66.44, 22.65, 22.41 ppm. HRMS (QToF): Calculated for $\text{C}_{17}\text{H}_{17}\text{NO}_5\text{Na}$ ($\text{M}+\text{Na})^+$: 338.1004. Found: 338.1003.

6-Hydroxymethyl-2-isopropoxy-3-nitrophenol

[0425]

[0426] To a mixture of 8-isopropoxy-7-nitro-2-phenyl-4H-benzo[1,3]-dioxine (4.24 g, 13.43 mmol) in MeOH (102 mL) and CH_2Cl_2 (42 mL) at 0°C. was added camphor sulfonic acid (3.12 g, 13.43 mmol). The mixture was stirred at room temperature for 17 hours. The reaction mixture was quenched with Et_3N until pH-8, concentrated in vacuo and purified by flash chromatography (petroleum ether/ethyl acetate=7:3) to yield the title compound (2.75 g, 12.09 mmol, 90%) as a brownish solid.

[0427] mp: 39-41°C.


[0428] ^1H NMR (400 MHz, CDCl_3) δ 7.46 (d, $J=7.4$ Hz, 1H), 7.12 (d, $J=7.4$ Hz, 1H), 6.61 (s, 1H, H_{OH}), 4.81 (d, $J=3.5$ Hz, 2H), 4.39 (hept, $J=7.4$ Hz, 1H), 1.36 (s, 3H), 1.35 (s, 3H) ppm.

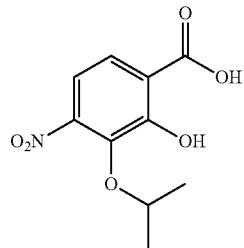
[0429] ^{13}C NMR (100 MHz, CDCl_3) δ 148.9, 138.5, 132.4, 122.1, 116.5, 79.2, 61.3, 22.5 ppm.

[0430] HRMS (ESI): Calculated for $\text{C}_{10}\text{H}_{12}\text{NO}_5$ ($\text{M}-\text{H})^-$: 226.0715. found: 226.0717.

2-Hydroxy-3-isopropoxy-4-nitrobenzaldehyde

[0431]

[0432] 6-Hydroxymethyl-2-isopropoxy-3-nitrophenol (2.97 g, 13.05 mmol) was dissolved in CH_2Cl_2 (58 mL). Then MnO_2 (11.35 g, 130.53 mmol) was added and the mixture was stirred at rt 17 h. The mixture was filtered over Celite® and washed with CH_2Cl_2 . The solvent was concentrated to give the title compound (2.38 g, 10.57 mmol, 81%) as a brown oil.


[0433] ^1H NMR (400 MHz, CDCl_3) δ 11.44 (s, 1H, H_{CHO}), 9.97 (s, 1H, H_{OH}), 7.39 (d, $J=8.4$ Hz, 1H), 7.23 (d, $J=8.4$ Hz, 1H), 4.88 (hept, $J=6.2$ Hz, 1H), 1.33 (s, 3H), 1.32 (s, 3H) ppm.

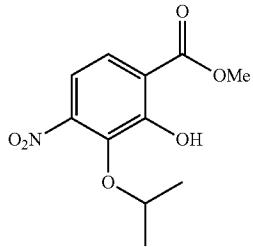
[0434] ^{13}C NMR (100 MHz, CDCl_3) δ 196.39, 156.53, 149.36, 139.74, 127.28, 122.57, 114.32, 77.42, 77.16, 22.51. ppm.

[0435] HRMS (ESI): Calculated for $\text{C}_{10}\text{H}_{10}\text{NO}_5$ ($\text{M}-\text{H})^-$: 224.0559. Found: 224.0535.

2-Hydroxy-3-isopropoxy-4-nitrobenzoic acid

[0436]

[0437] 2-Hydroxy-3-isopropoxy-4-nitrobenzaldehyde (2.36 g, 10.49 mmol) was dissolved in tert-buthanol (71 mL). 2-Methyl-2-butene (2M in THF, 36.7 mL, 73.45 mmol) and a solution of NaClO_2 (2.85 g, 31.48 mmol) and NaH_2PO_4 (6.32 g, 47.22 mmol) in H_2O (51 mL) were added in sequential order. The reaction mixture was stirred at room temperature for 17 hours. 6M NaOH was added until pH-10 and the solvent was concentrated in vacuo. H_2O was added and the organic layer was extracted with petroleum ether (2 \times). The aqueous layer was acidified with 6M HCl until pH-1 and extracted with ethyl acetate (3 \times). The organic extracts were combined, dried over MgSO_4 and filtered. The solvent was concentrated in vacuo to yield the title compound (1.90 g, 7.87 mmol, 75%) as a dark wax.


[0438] ^1H NMR (400 MHz, MeOD) δ 7.72 (d, $J=8.7$ Hz, 1H), 7.15 (d, $J=8.7$ Hz, 1H), 4.86-4.82 (m, 1H), 1.28 (s, 3H), 1.26 (s, 3H) ppm.

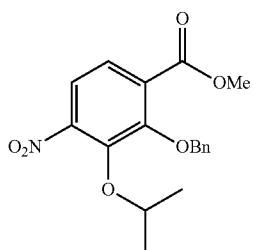
[0439] ^{13}C NMR (100 MHz, MeOD) δ 172.7, 158.0, 140.0, 125.8, 117.4, 113.8, 77.5, 22.6 ppm.

[0440] HRMS (ESI): Calculated for $C_{10}H_{10}NO_6$ ($M-H^-$): 240.0508. found: 240.0510.

2-Hydroxy-3-isopropoxy-4-nitrobenzoate

[0441]

[0442] $TMSCHN_2$ (2.0 M in Et_2O , 0.87 mL, 1.75 mmol) was added to a solution of 2-hydroxy-3-isopropoxy-4-nitrobenzoic acid (0.32 g, 1.35 mmol) in a mixture of toluene/methanol (10.4/2 mL) at 0° C. After stirring at 0° C. for 30 minutes, the solvent was evaporated in vacuo to give an oily residue, which was purified by flash chromatography (SiO_2 ; Et_3N ; petroleum ether/ethyl acetate=95:5) to yield the title compound (0.24 g, 0.94 mmol, 57%) as a yellow oil.


[0443] 1H NMR (400 MHz, $CDCl_3$) δ 11.29 (s, 1H, OH), 7.63 (d, $J=8.8$ Hz, 1H), 7.12 (d, $J=8.8$ Hz, 1H), 4.84 (hept, $J=6.2$ Hz, 1H), 4.00 (s, 3H), 1.32 (s, 3H), 1.31 (s, 3H) ppm.

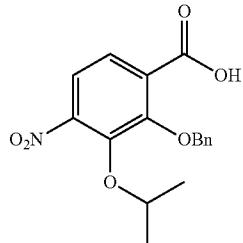
[0444] ^{13}C NMR (100 MHz, $CDCl_3$) δ 198.2, 188.9, 176.1, 170.0, 157.0, 149.2, 139.8, 123.9, 115.7, 113.4, 77.4, 53.2, 22.5 ppm.

[0445] HRMS (ESI): Calculated for $C_{11}H_{12}NO_6$ ($M-H^-$): 254.0665. found: 254.0666.

2-Benzylxy-3-isopropoxy-4-nitrobenzoate

[0446]

[0447] 2-Hydroxy-3-isopropoxy-4-nitrobenzoate (0.17 g, 0.69 mmol) was dissolved in THF (7.5 mL). $BnOH$ (92.6 μ L, 0.89 mmol) and PPh_3 (0.24 g, 0.93 mmol) were added, and the mixture was stirred until all components are dissolved. DEAD (2.2 M in toluene, 0.41 mL, 0.89 mmol) was slowly added (via syringe pump) and the mixture was stirred at room temperature 17 hours. The solvent was evaporated in vacuo to give an oily residue, which was purified by flash chromatography (petroleum ether/ethyl acetate=95:5) to yield the title compound (0.20 g, 0.58 mmol, 85%) as a colorless oil.


[0448] 1H NMR (400 MHz, $CDCl_3$) δ 7.53 (d, $J=8.6$ Hz, 1H), 7.50 (d, $J=8.6$ Hz, 1H), 7.48-7.44 (m, 2H), 7.42-7.35 (m, 3H), 5.14 (s, 2H), 4.74 (hept, $J=6.2$ Hz, 1H), 3.86 (s, 3H), 1.28 (s, 3H), 1.26 (s, 3H) ppm.

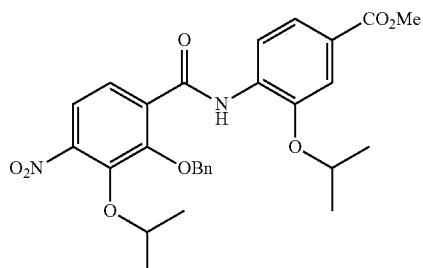
[0449] ^{13}C NMR (100 MHz, $CDCl_3$) δ 165.3, 153.4, 148.4, 145.7, 136.4, 130.9, 128.7, 128.7, 128.7, 125.1, 119.3, 78.2, 76.4, 52.8, 22.5 ppm.

[0450] HRMS (QToF): Calculated for $C_{18}H_{19}NO_6Na$ ($M+Na^+$): 368.1110. found: 368.1112.

2-Benzylxy-3-isopropoxy-4-nitrobenzoic acid

[0451]

[0452] 2-Benzylxy-3-isopropoxy-4-nitrobenzoate (0.23 g, 0.67 mmol) was dissolved in a mixture 1/1 of THF/H_2O (3.5/3.5 mL). Then, solid $LiOH$ (0.16 g, 6.67 mmol) was added and the reaction mixture was stirred at room temperature for 17 hours. The aqueous layer was acidified with 1M HCl until pH-1 and extracted with $EtOAc$ (3x). The organic extracts were combined, dried over anhydrous $MgSO_4$ and filtered. The solvent was concentrated in vacuo to yield the title compound (0.21 g, 0.63 mmol, 95%) as a yellow wax.


[0453] 1H NMR (400 MHz, $CDCl_3$) δ 7.91 (d, $J=8.7$ Hz, 1H), 7.58 (d, $J=8.7$ Hz, 1H), 7.41 (s, 5H), 5.35 (s, 2H), 4.71-4.62 (m, 1H), 1.36 (s, 3H), 1.35 (s, 3H) ppm.

[0454] ^{13}C NMR (100 MHz, $CDCl_3$) δ 164.3, 152.8, 149.7, 144.7, 134.1, 129.8, 129.4, 129.2, 126.98, 120.0, 79.1, 77.7, 22.5 ppm.

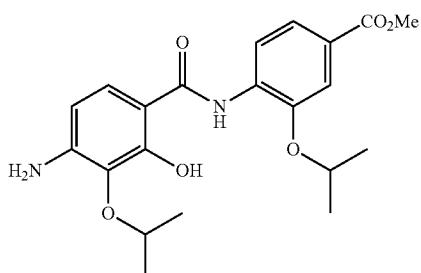
[0455] HRMS (ESI): Calculated for $C_{17}H_{16}NO_6$ ($M-H^-$): 330.0978. found: 330.0976.

4-(2-(Benzylxy)-3-isopropoxy-4-nitrobenzamido)-3-isopropoxybenzoate

[0456]

[0457] 2-Benzylxy-3-isopropoxy-4-nitrobenzoic acid (51.5 mg, 0.16 mmol) was dissolved in CH_2Cl_2 (8 mL) and preactivated with Ghosez's reagent (66.0 μ L, 0.50 mmol) for 3 hours at 40° C. 3-Isopropoxy-4-aminomethylbenzoate (0.12 g, 0.55 mmol) was dissolved in CH_2Cl_2 (8 mL) and N,N -diisopropylethylamine (DIPEA) was added (0.20 mL, 1.12 mmol). The solution containing the acid chloride was then added and the reaction mixture stirred for 2 days at 40°

C. The solvent was then removed and the crude product was purified by preparative HPLC (RP-18; run time 100 min; $H_2O/MeCN=100:0\rightarrow0:100$; $tr=80$ min) providing the title compound (56.9 mg, 0.11 mmol, 68%) as a light yellow oil.


[0458] 1H NMR (400 MHz, $CDCl_3$) δ 10.33 (s, 1H, $_{NH}$), 8.55 (d, $J=8.5$ Hz, 1H), 7.85 (d, $J=8.7$ Hz, 1H), 7.70 (dd, $J=8.5, 1.7$ Hz, 1H), 7.59 (d, $J=8.7$ Hz, 1H), 7.57 (d, $J=1.7$ Hz, 1H), 7.25-7.12 (m, 5H), 5.25 (s, 2H), 4.75-4.67 (m, 1H), 4.67-4.59 (m, 1H), 3.93 (s, 3H), 1.40 (d, $J=6.2$ Hz, 6H), 1.28 (d, $J=6.0$ Hz, 6H) ppm.

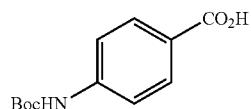
[0459] ^{13}C NMR (100 MHz, $CDCl_3$) δ 167.0, 161.4, 151.1, 147.9, 146.1, 145.2, 134.1, 132.9, 132.9, 130.0, 129.4, 128.7, 125.79, 125.6, 123.3, 120.1, 119.5, 113.3, 78.9, 77.4, 71.7, 52.3, 22.6, 22.1 ppm.

[0460] HRMS (ESI): Calculated for $C_{28}H_{31}N_2O_8$ ($M+H$) $^+$: 523.2080. found: 523.2075.

4-(4-Amino-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoate

[0461]

[0462] 4-[2-(Benzyl)oxy]-3-isopropoxy-4-nitrobenzamido]-3-isopropoxybenzoate (7.9 mg, 0.015 mmol) was dissolved in MeOH (0.5 mL) and degassed. Pd/C (10% wt, 2 mg, 0.0014 mmol) was added and vacuum was applied under cooling to remove air. The flask was flushed with H_2 and the suspension was stirred for 3 hours at room temperature. The catalyst was filtered off over Celite®, washed with MeOH and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether/ethyl acetate=7:3) and the title compound was obtained (5.8 g, 0.014 mmol, 96%) as a yellow oil.


[0463] 1H NMR (400 MHz, $CDCl_3$) δ 12.21 (s, 1H, $_{OH}$), 8.81 (s, 1H, $_{NH}$), 8.49 (d, $J=8.5$ Hz, 1H), 7.69 (dd, $J=8.5, 1.8$ Hz, 1H), 7.58 (d, $J=1.7$ Hz, 1H), 7.07 (d, $J=8.8$ Hz, 1H), 6.28 (d, $J=8.7$ Hz, 1H), 4.80-4.72 (m, 1H), 4.72-4.63 (m, 1H), 4.28 (s, 2H, $_{NH_2}$), 3.91 (s, 3H), 1.44 (d, $J=6.1$ Hz, 6H), 1.34 (d, $J=6.2$ Hz, 7H) ppm.

[0464] ^{13}C NMR (100 MHz, $CDCl_3$) δ 168.5, 166.9, 156.4, 146.5, 146.0, 132.7, 132.0, 125.1, 123.40, 121.5, 119.1, 113.4, 106.5, 106.3, 77.4, 74.4, 72.0, 52.3, 22.9, 22.4 ppm.

[0465] HRMS (ESI): Calculated for $C_{21}H_{25}N_2O_6$ ($M-H$) $^-$: 401.1713. found: 401.1716.

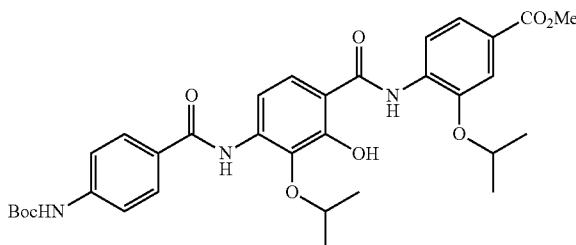
4-(tert-butoxycarbonylamino)benzoic acid

[0466]

[0467] 4-Aminobenzoic acid (1.00 g, 7.29 mmol) was dissolved in 1,4-dioxane (15 mL) and H_2O (7 mL). Et_3N (2.0 mL, 14.58 mmol) was added to the solution and the reaction mixture was stirred for 5 minutes at room temperature. Di-tert-butyl dicarbonate (3.18 g, 14.58 mm mol) was then added to the solution in one portion and the reaction mixture was stirred for 24 hours. Following removal of the solvent in vacuo, 3M HCl was added to the residue yielding a white precipitate. The slurry was then filtered and washed with H_2O before drying in under high vacuum. Recrystallization from hot methanol yielded the titled compound as a colorless solid (1.63 g, 6.85 mmol, 94% yield).

[0468] mp: 192-194 $^{\circ}C$.

[0469] 1H NMR (400 MHz, DMSO) δ 9.73 (s, 1H, $_{CO_2H}$), 7.83 (d, 2H, $J=8.9$ Hz), 7.55 (d, 2H, $J=8.9$ Hz), 1.47 (s, 9H) ppm.


[0470] ^{13}C NMR (100 MHz, $CDCl_3$) δ 167.1, 152.6, 143.8, 130.4, 124.0, 117.2, 79.7, 28.1 ppm.

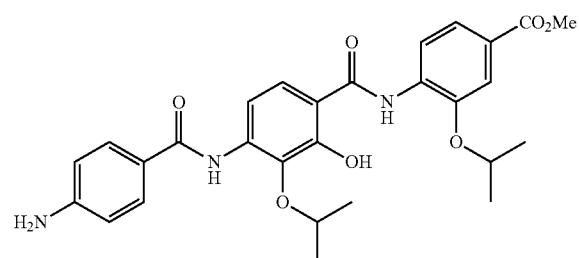
[0471] HRMS (ESI): Calculated for $C_{12}H_{15}NnaO_4$ ($M+Na$) $^+$: 260.0893. found: 260.0897.

[0472] The spectroscopic data are in accordance with those reported in the literature (*J. Am. Chem. Soc.* 2012, 134, 7406-7413).

Methyl-4-(4-(4-(tert-butoxycarbonyl)amino)benzamido)-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoate

[0473]

[0474] 4-(tert-butoxycarbonylamino)benzoic acid (40.0 mg, 0.17 mmol) was dissolved in CH_2Cl_2 (8.4 mL) and pre-activated with Ghosez's reagent (22.5 μ L, 0.17 mmol) for 2 hours at room temperature. 4-(4-Amino-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoate (68.4 mg, 0.17 mmol) was dissolved in CH_2Cl_2 (8.4 mL) and N,N-diisopropylethylamine (DIPEA) was added (59.2 μ L, 0.34 mmol). The solution containing the acid chloride was then added and the reaction mixture stirred for 1 day at room temperature. The solvent was then removed and the crude product was purified by preparative HPLC (RP-18; run time 100 min; $H_2O/MeCN=100:0\rightarrow0:100$; $tr=70$ min) providing the title compound as a light yellow oil (47.3 mg, 0.076 mmol, 72%).


[0475] ^1H NMR (400 MHz, CDCl_3) δ 7.98 (d, $J=7.5$ Hz, 2H), 7.78 (d, $J=1.4$ Hz, 1H), 7.72 (dd, $J=7.5, 1.4$ Hz, 1H), 7.69 (s, 1H— NH), 7.68 (d, $J=7.3$ Hz, 3H), 7.56 (d, $J=7.5$ Hz, 1H), 7.17 (d, $J=7.5$ Hz, 1H), 5.72 (s, 1H— NH), 5.49 (s, 1H— NH), 4.02-3.96 (m, 2H), 3.95 (d, $J=3.7$ Hz, 3H), 1.49 (s, 9H), 1.46 (d, $J=5.6$ Hz, 6H), 1.41 (d, $J=5.5$ Hz, 6H) ppm.

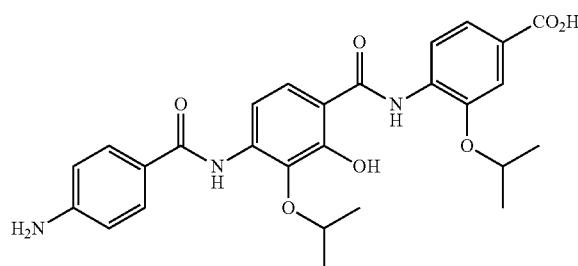
[0476] ^{13}C NMR (100 MHz, CDCl_3) δ 166.89, 166.67, 166.61, 158.88, 154.93, 146.90, 141.47, 135.07, 134.68, 131.70, 130.38, 130.38, 127.26, 127.17, 123.25, 121.40, 120.63, 120.63, 115.87, 114.85, 113.39, 106.06, 80.65, 75.89, 74.13, 52.08, 28.41, 28.41, 21.80, 21.80, 21.80, 21.80 ppm.

[0477] HRMS (ESI): Calculated for $\text{C}_{33}\text{H}_{38}\text{N}_3\text{O}_9$ ($\text{M}-\text{H}$) $^-$: 620.2687. found: 620.2689.

Methyl-4-(4-(4-aminobenzamido)-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoate

[0478]

[0479] Methyl-4-(4-(4-(tert-butoxycarbonyl)amino)benzamido)-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoate (40.0 mg, 0.064 mmol) was dissolved in a mixture 10/1 dichloromethane/trifluoroacetic acid (1 mL) and stirred 17 hours at room temperature. The solvent was removed under reduced pressure and the residual acid was removed under high vacuum to give the titled compound (33.4 mg, 0.064 mmol, quantitative) as yellow oil.


[0480] ^1H NMR (400 MHz, CDCl_3) δ 7.86 (d, $J=1.4$ Hz, 1H), 7.83 (s, 1H— NH), 7.79 (dd, $J=7.5, 1.4$ Hz, 1H), 7.75 (d, $J=7.5$ Hz, 1H), 7.70 (d, $J=7.5$ Hz, 2H), 7.65 (d, $J=7.5$ Hz, 1H), 7.05 (d, $J=7.5$ Hz, 1H), 6.94 (s, 1H— NH), 6.75 (d, $J=7.5$ Hz, 2H), 6.09 (s, 1H— OH), 4.02-3.97 (m, 1H), 3.95-3.89 (s, 3H), 3.92 (m, 1H), 3.85 (s, 2H— NH), 1.47 (d, $J=5.7$ Hz, 6H), 1.40 (d, $J=5.5$ Hz, 6H) ppm.

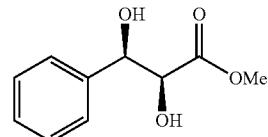
[0481] ^{13}C NMR (100 MHz, CDCl_3) δ 166.89, 166.67, 166.61, 158.88, 152.59, 146.90, 135.07, 134.68, 131.70, 130.93, 130.93, 127.17, 123.25, 122.42, 121.40, 115.87, 114.85, 114.35, 114.35, 113.39, 106.06, 75.89, 74.13, 52.08, 21.80, 21.80, 21.80 ppm.

[0482] HRMS (ESI): Calculated for $\text{C}_{28}\text{H}_{32}\text{N}_3\text{O}_7$ ($\text{M}+\text{H}$) $^+$: 522.2162. found: 522.2160.

Cystobactamide C

[0483]

[0484] Methyl-4-[4-(4-aminobenzamido)-2-hydroxy-3-isopropoxybenzamido]-3-isopropoxybenzoate (30.0 mg, 0.058 mmol) was dissolved in a mixture 1/1 of $\text{THF}/\text{H}_2\text{O}$ (0.3/0.3 mL). Then, solid LiOH (13.9 mg, 0.58 mmol) was added and the reaction mixture was stirred at room temperature for 17 hours. The aqueous layer was acidified with 1M HCl until pH-1 and extracted with ethyl acetate (3 \times). The organic extracts were combined, dried over anhydrous MgSO_4 and filtered. The solvent was concentrated in vacuo to yield the title compound (27.4 mg, 0.054 mmol, 93%) as a yellow oil.


[0485] ^1H NMR (400 MHz, CDCl_3) δ 7.91 (d, $J=1.4$ Hz, 1H), 7.87 (dd, $J=7.5, 1.4$ Hz, 1H), 7.70 (d, $J=7.5$ Hz, 2H), 7.65 (d, $J=7.5$ Hz, 1H), 7.53 (d, $J=7.5$ Hz, 1H), 7.05 (d, $J=7.5$ Hz, 1H), 6.95 (s, 1H— NH), 6.77 (s, 1H— NH), 6.75 (d, $J=7.5$ Hz, 2H), 6.12 (s, 1H— OH), 3.97-3.89 (m, 2H), 3.85 (s, 2H— NH), 1.40 (d, $J=5.5$ Hz, 6H), 1.39 (d, $J=5.5$ Hz, 6H) ppm.

[0486] ^{13}C NMR (100 MHz, CDCl_3) δ 167.79, 166.67, 166.61, 158.88, 152.59, 149.81, 136.38, 135.07, 134.68, 130.93, 130.93, 125.08, 123.25, 122.80, 122.42, 120.37, 114.35, 114.35, 113.76, 113.39, 106.06, 75.89, 74.13, 21.80, 21.80, 21.80 ppm.

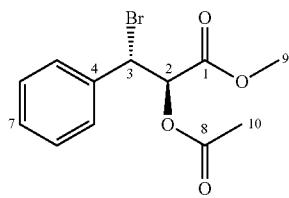
[0487] HRMS (ESI): Calculated for $\text{C}_{28}\text{H}_{32}\text{N}_3\text{O}_7$ ($\text{M}+\text{H}$) $^+$: 508.2006. found: 508.2008.

(2S,3R)-Methyl 2,3-dihydroxy-3-phenylpropanoate

[0488]

[0489] AD mix β (20.0 g) was dissolved in a mixture of $\text{tBuOH}/\text{H}_2\text{O}$ (1:1; 142 mL) at 25° C. Afterwards, $\text{CH}_3\text{SO}_2\text{NH}_2$ (1.36 g, 14.3 mmol, 1.0 eq.) was added and the reaction mixture cooled to 0° C. Then, methylcinnamate (2.31 g, 14.3 mmol, 1.0 eq.) was added and the resulting mixture was vigorously stirred for 16 h at 0° C. Stirring was continued for additional 6 h at 25° C. The reaction mixture was hydrolyzed by addition of an aqueous Na_2SO_3 solution (21.4 g, 170 mmol, 12.0 eq.) and stirring was continued for additional 2.5 h. The reaction mixture was diluted with ethyl acetate and the layers were separated. The aqueous layer was extracted with EtOAc (3 \times). The combined organic layers

were washed with H_2O (1 \times) and dried over Na_2SO_4 , filtered and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether/ethyl acetate=1:1) afforded the desired diol (2.21 g, 11.3 mmol, 79%) as a colorless solid. The spectroscopic data are in accordance with those reported in the literature.


[0490] $R_f=0.38$ (PE/EtOAc 1:1); m.p.=84-85° C. (lit: m.p.=80-81° C.); $[\alpha]_D^{20}=-9.8^\circ$ (c 1.28, $CHCl_3$) {lit.: $[\alpha]_D^{26}=-9.8^\circ$ (c 1.07, $CHCl_3$)};

[0491] 1H -NMR (400 MHz, $CDCl_3$, $CHCl_3$ =7.26 ppm): $\delta=7.42-7.29$ (5H, m, ArH), 5.03 (1H, dd, $J=2.7, 7.2$ Hz, H-3), 4.38 (1H, dd, $J=2.7, 6.0$ Hz, H-2), 3.82 (3H, s, H-8), 3.12 (1H, d, $J=6.0$ Hz, OH- \square), 2.76 (1H, d, $J=7.2$ Hz, OH- β) ppm;

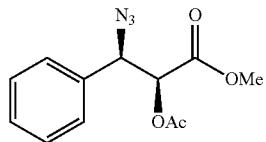
[0492] ^{13}C -NMR (100 MHz, $CDCl_3$, $CHCl_3$ =77.16 ppm): $\delta=173.3$ (q, C-1), 140.1 (q, C-4), 128.6 (2C, t, C-6), 128.3 (t, C-7), 126.3 (2C, t, C-5), 74.8 (t, C-2), 74.6 (t, C-3), 53.1 (p, C-8) ppm; HRMS (ESI): m/z calculated for $C_{10}H_{12}O_4Na$ [$M+Na$] $^+$: 219.0633. found 219.0633.

(2R,3S)-Methyl
2-acetoxy-3-bromo-3-phenylpropanoate (3)

[0493]

[0494] To (2S,3R)-Methyl 2,3-dihydroxy-3-phenylpropanoate (2.15 g, 10.9 mmol, 1.0 eq.) was added HBr/HOAc (33%; 16.9 mL) dropwise at 25° C. The resulting mixture was heated to 45° C. and stirred for 30 min. Then, the reaction mixture was cooled to 25° C. and poured into an ice-cooled $NaHCO_3$ -solution (40 mL). The aqueous layer was extracted with Et_2O (3 \times). The combined organic layers were washed with H_2O (1 \times) and with brine. Then, the combined organic layers were dried over Na_2SO_4 , filtered and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether/ethyl acetate=12.5:1) gave the title compound (2.32 g, 7.71 mmol, 71%) as a colorless solid. The spectroscopic data are in accordance with those reported in the literature.

[0495] $R_f=0.79$ (PE/EtOAc 1:1); m.p.=78-82° C. (lit: m.p.=78-79° C.); $[\alpha]_D^{20}=+89.9^\circ$ (c 1.74, $CHCl_3$) {lit.: $[\alpha]_D^{26}=+100.3^\circ$ (c 1.36, $CHCl_3$)};


[0496] 1H -NMR (400 MHz, $CDCl_3$, $CHCl_3$ =7.26 ppm): $\delta=7.46-7.44$ (2H, m, H-6), 7.36-7.30 (3H, m, H-5, H-7), 5.65 (1H, d, $J=6.3$ Hz, H-3), 5.35 (1H, d, $J=6.3$ Hz, H-2), 3.71 (3H, s, H-9), 2.11 (3H, s, H-10) ppm;

[0497] ^{13}C -NMR (100 MHz, $CDCl_3$, $CHCl_3$ =77.16 ppm): $\delta=169.7$ (q, C-1), 167.5 (q, C-8), 136.8 (q, C-4), 129.3 (t, C-7), 128.7 (4C, t, C-5, C-6), 75.4 (t, C-3), 52.9 (p, C-9), 49.3 (t, C-2), 20.6 (p, C-10) ppm;

[0498] HRMS (ESI): m/z calculated for $C_{12}H_{13}O_4BrNa$ [$M+Na$]: 322.9895. found 322.9891.

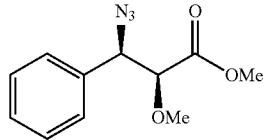
(2S,3R)-Methyl
2-acetoxy-3-azido-3-phenylpropanoate

[0499]

[0500] (2S,3R)-Methyl 2-acetoxy-3-azido-3-phenylpropanoate (2.27 g, 7.55 mmol, 1.0 eq.) was dissolved in DMF (27.0 mL) at 25° C. Then, NaN_3 (1.96 g, 30.2 mmol, 4.0 eq.) was added and the resulting mixture was heated up to 40° C. for 3 h. After cooling the reaction mixture was cooled to 25° C. and EtOAc was added. The organic layer was washed with H_2O (2 \times), followed by brine (1 \times). The combined, organic phases were dried over Na_2SO_4 , filtered and concentrated under reduced pressure. Purification by flash chromatography (petroleum ether/ethyl acetate=10:1) afforded the title compound (1.77 g, 6.71 mmol, 89%) as yellow oil. The spectroscopic data are in accordance with those reported in the literature.

[0501] $R_f=0.24$ (PE/EtOAc=10:1); $[\alpha]_D^{20}=-97.8^\circ$ (c 2.3, $CHCl_3$); {lit.: $[\alpha]_D^{26}=-104.2^\circ$ (c 2.33, $CHCl_3$)};

[0502] IR: $\tilde{\nu}=2955$ (w), 2103 (s, azide), 1747 (s, $C=O$), 1495 (w), 1454 (m), 1437 (m), 1373 (m), 1210 (s), 1099 (m), 1030 (m), 910 (m), 751 (m), 701 (s) cm^{-1} ;


[0503] 1H -NMR (400 MHz, $CDCl_3$, $CHCl_3$ =7.26 ppm): $\delta=7.42-7.33$ (5H, m, ArH), 5.24 (1H, d, $J=4.8$ Hz, H-2), 5.07 (1H, d, $J=4.8$ Hz, H-3), 3.69 (3H, s, H-9), 2.14 (3H, s, H-10) ppm;

[0504] ^{13}C -NMR (100 MHz, $CDCl_3$, $CHCl_3$ =77.16 ppm): $\delta=169.9$ (q, C-1), 168.0 (q, C-8), 134.6 (q, C-4), 129.3 (t, C-7), 129.0 (2C, t, C-6), 127.6 (2C, t, C-5), 74.9 (t, C-2), 65.4 (t, C-3), 52.8 (p, C-9), 20.5 (p, C-10) ppm;

[0505] HRMS (ESI): m/z calculated for $C_{12}H_{13}N_3O_4Na$ [$M+Na$] $^+$: 286.0804. found 286.0805.

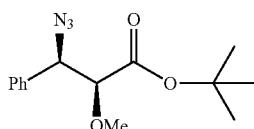
(2S,3R)-Methyl
3-azido-2-methoxy-3-phenylpropanoate

[0506]

[0507] (2S,3R)-Methyl 2-acetoxy-3-azido-3-phenylpropanoate (2.5 g, 1.0 eq) was dissolved in 190 ml THF at 0° C. Then a solution of KOH (0.5M, 10.0 eq) was added dropwise and the reaction mixture was stirred at 0° C. for 5 h. Afterwards, aqueous 2N HCl was added to the reaction mixture and the aqueous phase was extracted with ethyl acetate. The organic phases were combined and dried over Na_2SO_4 , filtered and concentrated under reduced pressure to afford the

crude acid which was directly used for the next step without further purification. The crude material (0.5 g, 1.0 eq) was dissolved in 17 ml methyl iodide. Then, CaSO_4 (2.6 g, 8.0 eq) and Ag_2O (1.7 g, 3.0 eq) were added and stirring of the suspension was carried out in the dark at room temperature for 22 h. Then, the crude mixture was filtered and concentrated in vacuum to give the title compound (70% yield) which can be directly used in the next step without further purification.

[0508] $[\alpha]_D^{20} = -143.7^\circ$ (c 1.1, CHCl_3);


[0509] $^1\text{H-NMR}$ (400 MHz, CDCl_3 , CHCl_3 =7.26 ppm): δ =3.44 (s, 3H), 3.61 (s, 3H), 3.94 (d, $J=6.4$ Hz, 1H), 4.79 (d, $J=6.4$ Hz, 1H), 7.35-7.36 (m, 5H);

[0510] $^{13}\text{C-NMR}$ (100 MHz, CDCl_3 , CHCl_3 =77.0 ppm): δ =52.2, 59.1, 66.9, 84.7, 127.7, 128.7, 128.9, 135.1, 170.0;

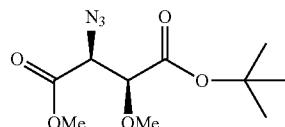
[0511] HRMS (ESI): m/z calculated for $\text{C}_{11}\text{H}_{13}\text{N}_3\text{O}_3\text{Na}$ [$\text{M}+\text{Na}]^+$: 258.0855. found 258.0852.

(2S,3S)-tert-Butyl
3-azido-2-methoxy-3-phenylpropanoate

[0512]

[0513] To a stirred solution of (2S,3R)-Methyl 3-azido-2-methoxy-3-phenylpropanoate (1.2 g, 1.0 eq) in 100 ml THF was added an aqueous solution of KOH (0.5 M, 10.0 eq) dropwise. The reaction mixture was stirred for 5 h at rt and hydrolyzed by addition of 2N HCl. The aqueous phase was extracted with ethyl acetate and the combined organic phases were dried over Na_2SO_4 and concentrated under reduced pressure to give carboxylic acid (1.2 g, 98% yield) which was subjected to the next reaction without further purification. Crude acid (0.3 g, 1.0 eq) and 3.9 ml dimethylformamide di-tert-butyl acetal (3.9 ml, 12 eq) were dissolved in 8 ml toluene at room temperature. The resulting reaction mixture was heated up to 80° C. and stirred for 7 h. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (petroleum ether/ethyl acetate=30:1) to afford the title compound (0.34 g, 89% yield).

[0514] $[\alpha]_D^{20} = -113.3^\circ$ (c 1.0, CHCl_3);

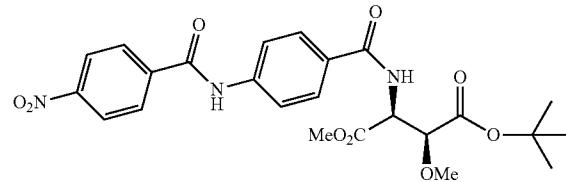

[0515] $^1\text{H-NMR}$ (400 MHz, CDCl_3 , CHCl_3 =7.26 ppm): δ =1.26 (s, 9H), 3.45 (s, 3H), 3.85 (d, $J=7.2$ Hz, 1H), 4.70 (d, $J=7.2$ Hz, 1H), 7.34-7.35 (m, 5H);

[0516] $^{13}\text{C-NMR}$ (100 MHz, CDCl_3 , CHCl_3 =77.0 ppm): δ =27.7, 58.6, 67.2, 82.3, 85.1, 128.2, 128.6, 128.9, 135.2, 168.5;

[0517] HRMS (ESI): m/z calculated for $\text{C}_{14}\text{H}_{19}\text{O}_3\text{N}_3\text{Na}$ [$\text{M}+\text{Na}]^+$: 300.1324. found 300.1332.

(2S,3S)-4-tert-Butyl 1-methyl
2-azido-3-methoxysuccinate

[0518]

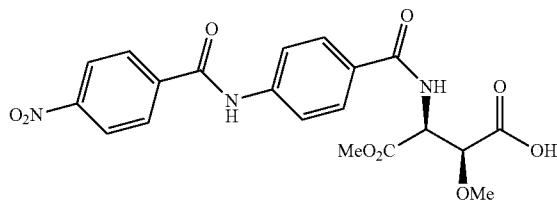

[0519] To a stirred solution of (2S,3S)-tert-butyl 3-azido-2-methoxy-3-phenylpropanoate (310 mg, 1.0 eq) in a solvent mixture of 3 ml CHCl_3 , 13 ml CH_3CN and 26 ml $\text{H}_2\text{O NaO}_4$ (7.2 g, 30 eq) and RuCl_3 (0.3 eq, 69 mg) were added portionwise at room temperature. The reaction mixture was heated under refluxing conditions for 3 h. A white precipitate formed upon cooling to room temperature. The solid was filtered off and the filtrate was extracted with diethyl ether. The combined organic phases were concentrated under reduced pressure to yield the crude product. This material was dissolved in 9 ml methyl iodide. Then, CaSO_4 (1.2 g, 8.0 eq) and Ag_2O (778 mg, 3.0 eq) were added and the reaction mixture was stirred in the dark at room temperature for 22 h. After filtration the filtrate was concentrated under reduced pressure to afford the title compound in pure form so that it can directly be employed in the next step without further purification.

[0520] $^1\text{H-NMR}$ (400 MHz, CDCl_3 , CHCl_3 =7.26 ppm): δ =1.51 (s, 3H), 3.48 (s, 3H), 4.15 (d, $J=3.6$ Hz, 1H), 4.21 (d, $J=4.0$ Hz, 1H);

[0521] $^{13}\text{C-NMR}$ (100 MHz, CDCl_3 , CHCl_3 =77.0 ppm): δ =28.1, 53.0, 59.5, 63.4, 81.2, 83.0, 167.7, 168.3.

(2S,3R)-1-tert-Butyl 4-methyl 2-methoxy-3-[4-(4-nitrobenzamido)benzamido]succinate

[0522]

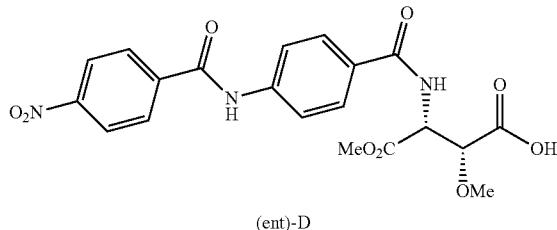

[0523] The crude mixture (2S,3S)-4-tert-butyl 1-methyl 2-azido-3-methoxysuccinate was dissolved in 12 ml THF, then 0.5 ml water and PPh_3 (881 mg, 3.0 eq) were added. The resulting reaction mixture was warmed up to 50° C. and stirring was continued for 12 hours. Then, the solvent was removed under reduced pressure to afford the crude product which was pure enough to be used directly in the next step. The crude product was dissolved in 5 ml DMF and (ethyl carbonic) 4-(4-nitrobenzamido)benzoic anhydride (481 mg, 1.2 eq) was added at room temperature. After stirring for 20 h, water was added and the aqueous solution was extracted with ethyl acetate. The combined organic phases were concentrated under reduced pressure. Purification by flash column chromatography (petroleum ether/ethyl acetate=2:1) afforded the title compound (81 mg, 16% over four steps).

[0524] $[\alpha]_D^{20} = -11.8^\circ$ (c 1.1, CHCl_3);

[0525] $^1\text{H-NMR}$ (400 MHz, CDCl_3 , $\text{CHCl}_3 = 7.26$ ppm): $\delta = 1.41$ (s, 9H), 3.45 (s, 3H), 3.78 (s, 3H), 4.34 (d, $J = 2.4$ Hz, 1H), 5.29 (dd, $J = 2.4, 9.6$ Hz, 1H), 6.76 (d, $J = 9.6$ Hz, 1H), 7.27-7.35 (m, 4H), 8.07 (d, $J = 8.8$ Hz, 2H), 8.26 (2, $J = 8.8$ Hz, 2H), 8.83 (s, 1H);

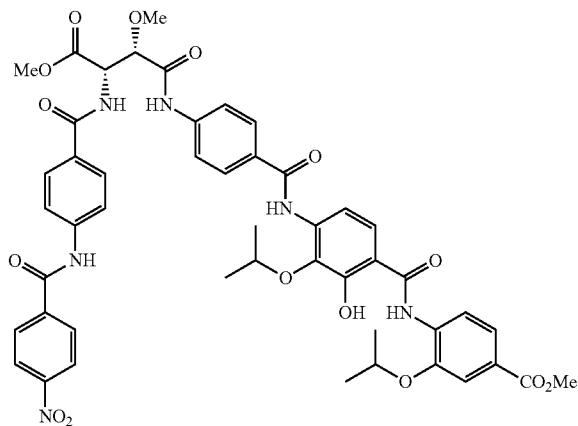
[0526] $^{13}\text{C-NMR}$ (100 MHz, CDCl_3 , $\text{CHCl}_3 = 77.0$ ppm): $\delta = 27.9, 52.9, 54.8, 59.1, 79.8, 83.2, 120.1, 123.8, 128.3, 128.7, 129.6, 140.3, 141.1, 149.7, 164.1, 166.9, 168.0, 169.7$.

[0527] HRMS (ESI): m/z calculated for $\text{C}_{24}\text{H}_{27}\text{O}_9\text{N}_3\text{Na}$ [$\text{M}+\text{Na}]^+$: 524.1645. found 524.1647.


[0528] To a stirred solution of (2S,3R)-1-tert-Butyl 4-methyl 2-methoxy-3-[4-(4-nitrobenzamido)benzamido]succinate (74.3 mg, 0.15 mmol) in 2.5 ml CH_2Cl_2 was added 1.5 ml TFA at room temperature. After stirring for 5 h, the reaction mixture was added water and extracted with ethyl acetate. The combined organic phases were washed with water (three times), dried over Na_2SO_4 and concentrated under reduced pressure to give the title compound in quantitative yield (65.9 mg, quant.).

[0529] $[\alpha]_D^{20} = -16.4^\circ$ (c 1.1, EtOAc);

[0530] $^1\text{H-NMR}$ (400 MHz, DMSO, DMSO = 2.50 ppm): $\delta = 3.37$ (s, 3H), 3.69 (s, $J = 3$ Hz), 4.34 (d, $J = 4.4$ Hz, 1H), 5.09 (dd, $J = 4.8, 8.8$ Hz, 1H), 7.89-7.90 (m, 4H), 8.21 (dd, $J = 2, 6.8$ Hz, 1H), 8.39 (dd, $J = 2, 6.8$ Hz, 1H), 8.55 (d, $J = 8.8$ Hz, 1H), 10.8 (s, 1H).


[0531] $^{13}\text{C-NMR}$ (100 MHz, DMSO, DMSO = 40.0 ppm): $\delta = 52.9, 54.8, 58.7, 79.5, 120.0, 124.1, 129.0, 129.2, 129.8, 140.8, 142.2, 149.8, 164.7, 166.6, 170.2, 170.9$. HRMS (ESI): m/z calculated for $\text{C}_{20}\text{H}_{19}\text{O}_9\text{N}_3\text{Na}$ [$\text{M}+\text{Na}]^+$: 468.1019. found 468.1016.

[0532] Optical rotation of other enantiomer:

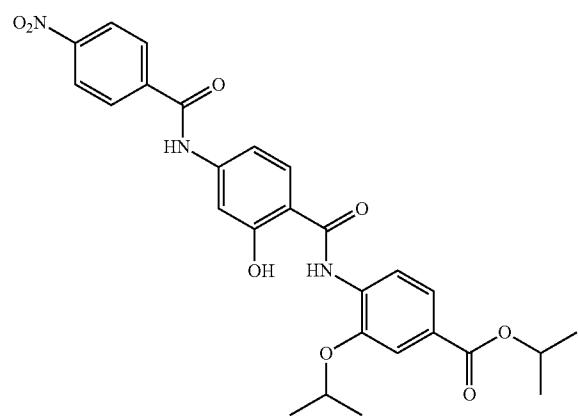
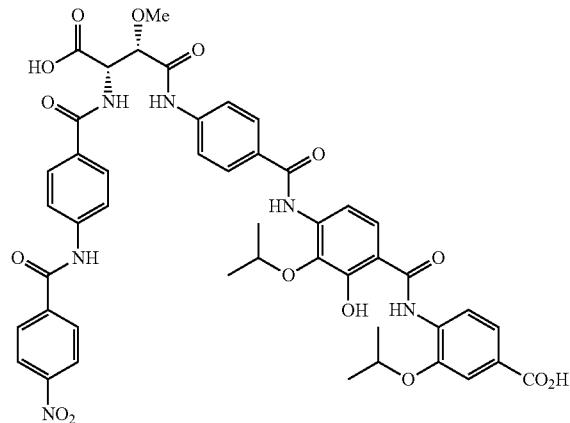
[0533] $[\alpha]_D^{20} = +13.9^\circ$ (c 1.1, EtOAc);

[0534] Methyl-4-(4-((2S,3S)-2,4-dimethoxy-3-(4-(4-nitrobenzamido)benzamido)-4-oxobutanamido)benzamido)-2-hydroxy-3-isopropoxybenzoate

[0535] Methyl-4-[4-(4-aminobenzamido)-2-hydroxy-3-isopropoxybenzamido]-3-isopropoxybenzoate (15.3 mg, 0.029 mmol) and (2S,3R)-2,4-dimethoxy-3-[4-(4-nitrobenzamido)benzamido]succinate (14.2 mg, 0.032 mmol) were dissolved in CH_2Cl_2 (3.4 mL) and cooled to 0°C. Then, HOAt (5.9 mg, 0.044 mmol), DIPEA (7.7 μL , 0.044 mmol), and EDC.HCl (6.9 mg, 0.036 mmol) were added. The mixture was stirred from 0°C to room temperature for 17 hours. The solvent was concentrated in vacuo to give an oily residue, which was purified by flash chromatography (petroleum ether/ethyl acetate = 94/6) to yield the title compound (20.1 mg, 0.021 mmol, 73%) as a colourless oil.

[0536] $^1\text{H-NMR}$ (400 MHz, CDCl_3) δ 9.07 (s, 1H- $_{\text{OH}}$), 8.37 (d, $J = 7.5$ Hz, 2H), 8.20 (d, $J = 7.5$ Hz, 2H), 8.11 (s, 1H- $_{\text{NH}}$), 8.02 (s, 1H- $_{\text{NH}}$), 8.01 (d, $J = 1.4$ Hz, 2H), 7.98 (d, $J = 7.5$ Hz, 2H), 7.90 (d, $J = 1.3$ Hz, 1H), 7.81 (dd, $J = 7.5, 1.4$ Hz, 1H), 7.78 (d, $J = 7.4$ Hz, 1H), 7.69 (d, $J = 7.5$ Hz, 1H), 7.61 (d, $J = 7.5$ Hz, 2H), 7.55 (s, 1H), 7.54 (s, 1H- $_{\text{NH}}$), 7.53 (s, 1H), 7.41 (d, $J = 7.5$ Hz, 1H), 5.72 (s, 1H- $_{\text{NH}}$), 5.63 (s, 1H- $_{\text{NH}}$), 5.10 (d, $J = 3.8$ Hz, 1H), 4.76 (d, $J = 3.8$ Hz, 1H), 4.04-3.98 (m, 2H), 3.97 (s, $J = 3.1$ Hz, 3H), 3.74 (s, 3H), 3.32 (s, 3H), 1.47 (d, $J = 5.7$ Hz, 6H), 1.39 (d, $J = 5.7$ Hz, 6H) ppm.

[0537] $^{13}\text{C-NMR}$ (100 MHz, CDCl_3) δ 173.30, 168.15, 168.07, 167.77, 166.93, 166.88, 166.82, 158.83, 151.01, 146.97, 140.78, 139.42, 138.71, 134.97, 134.55, 131.57, 130.00, 130.00, 129.41, 129.41, 129.39, 129.39, 128.12, 127.53, 127.24, 124.17, 124.17, 123.28, 122.61, 122.61, 121.78, 121.78, 121.44, 115.94, 114.88, 113.30, 106.09, 78.00, 75.89, 74.13, 58.51, 56.50, 52.17, 52.08, 21.80, 21.80, 21.80, 21.80 ppm.

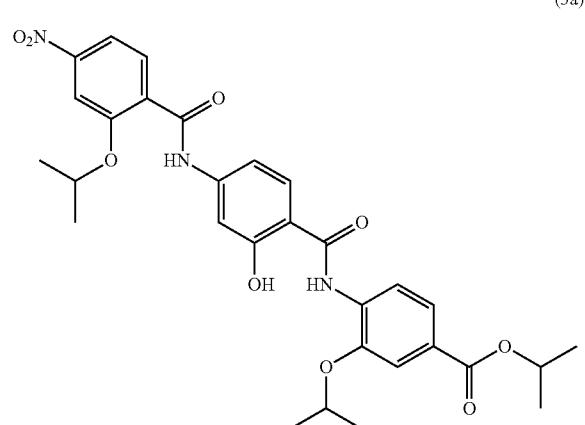
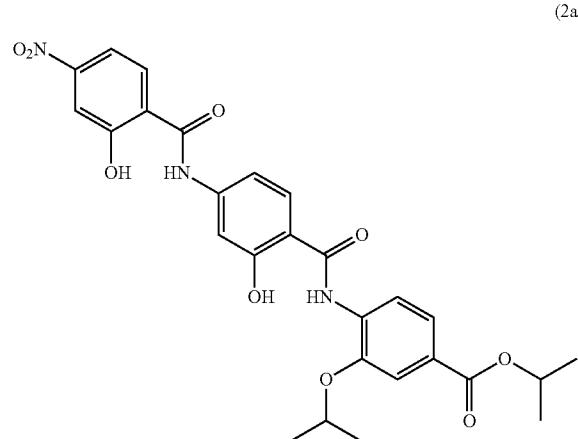


[0538] HRMS (ESI): Calculated for $\text{C}_{48}\text{H}_{47}\text{N}_6\text{O}_{15}$ ($\text{M}-\text{H}$) $^+$: 947.3178. found: 947.3175.

Cystobactamide A

Synthesis of Cystobactamide C Derivatives

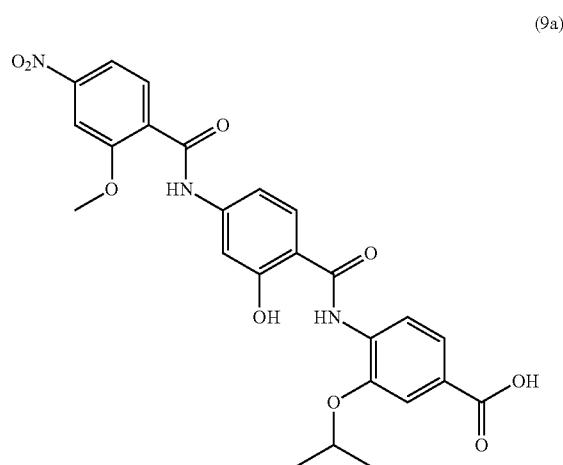
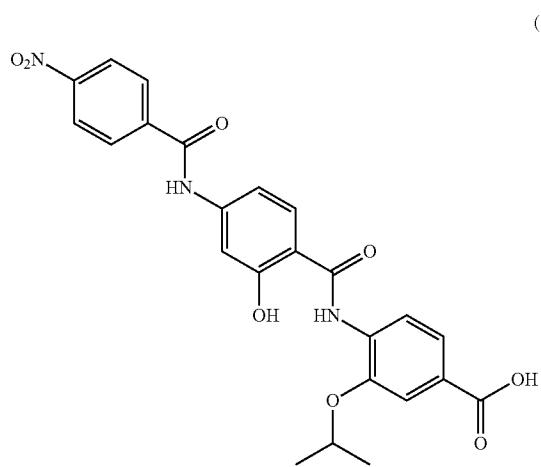
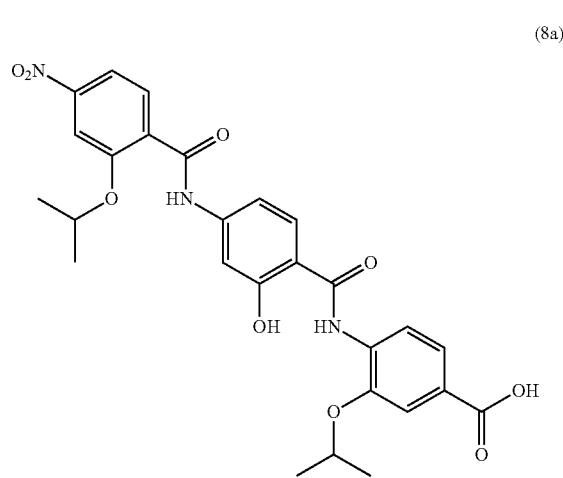
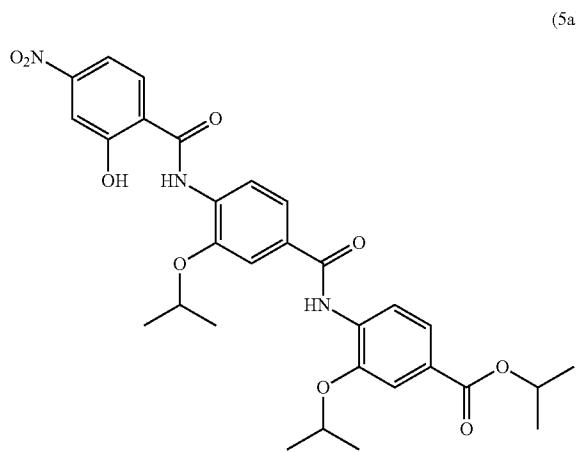
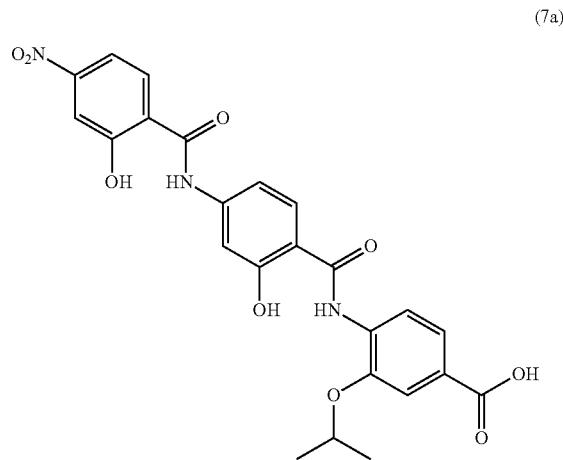
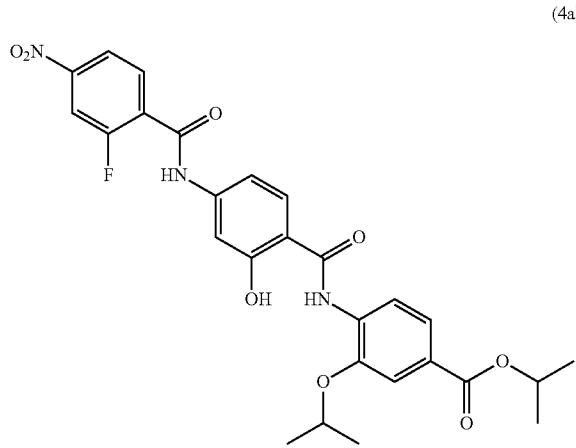
[0539]

[0545]

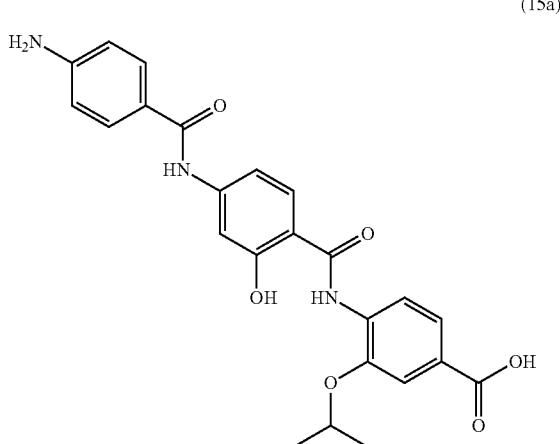
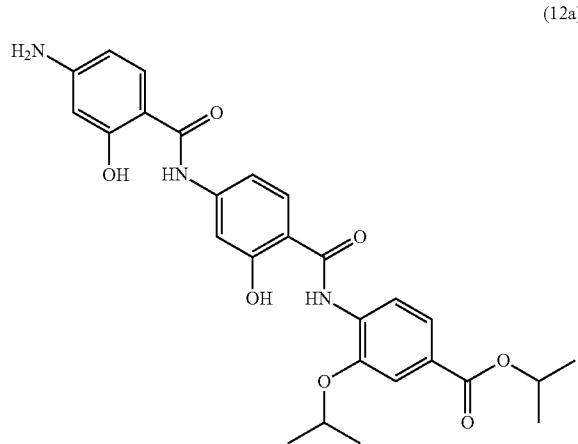
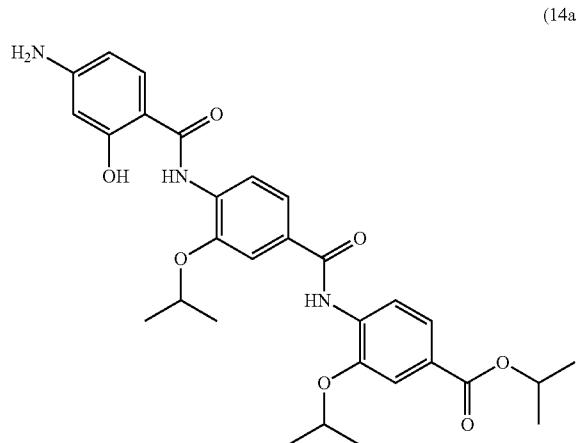
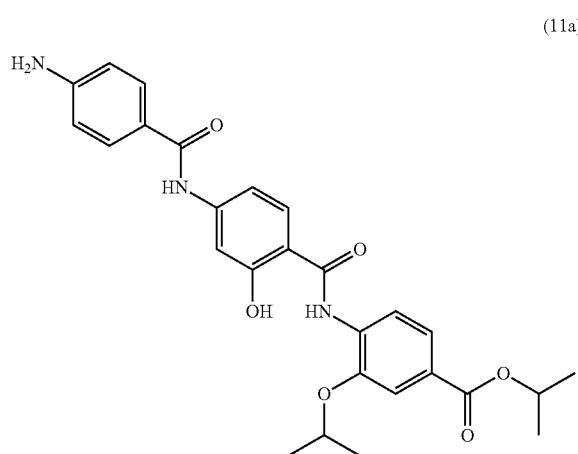
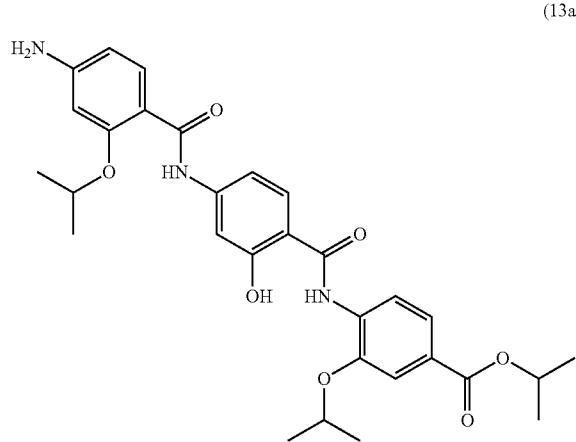
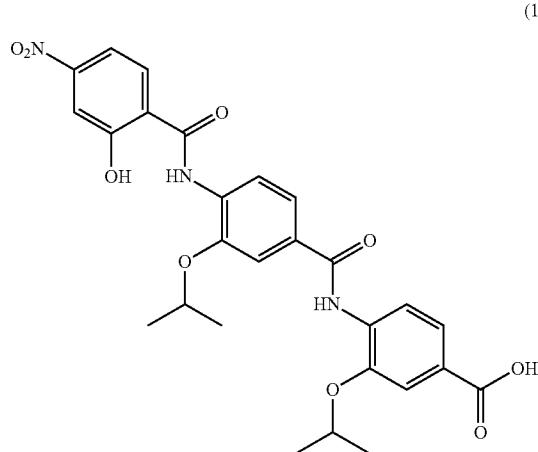


[0540] Methyl-4-4-[4-((2S,3S)-2,4-dimethoxy-3-(4-(4-nitrobenzamido)benzamido)-4-oxobutanamido]benzamido)-2-hydroxy-3-isopropoxybenzamido)-3-isopropoxybenzoate (15.2 mg, 0.016 mmol) was dissolved in a mixture 1/1 of THF/H₂O (0.2/0.2 mL). Then, solid LiOH (3.8 mg, 0.16 mmol) was added and the reaction mixture was stirred at room temperature for 17 hours. The aqueous layer was acidified with 1M HCl until pH-1 and extracted with ethyl acetate (3×). The organic extracts were combined, dried over MgSO₄ and filtered. The solvent was concentrated in vacuo to yield the title compound (13.3 mg, 0.014 mmol, 90%) as a yellow wax.

[0541] $[\alpha]_D^{20} = -19.1^\circ$ (c 1.1, EtOAc)

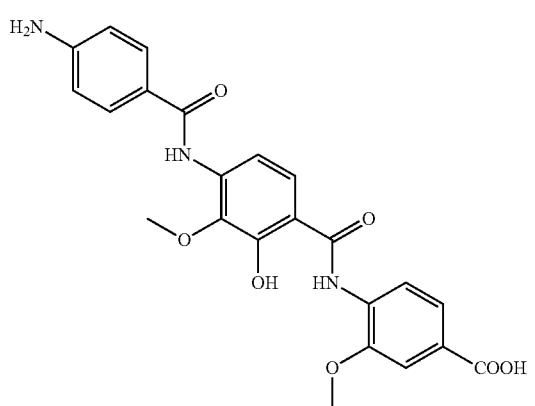
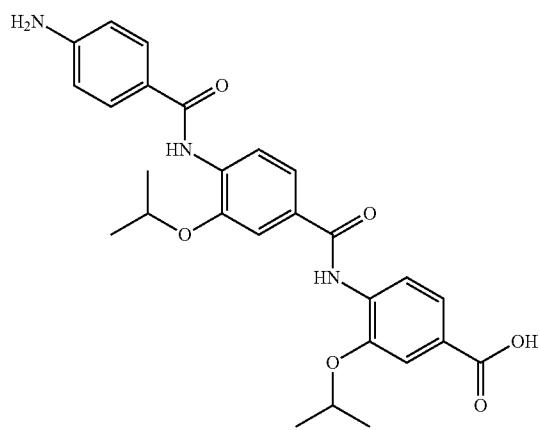
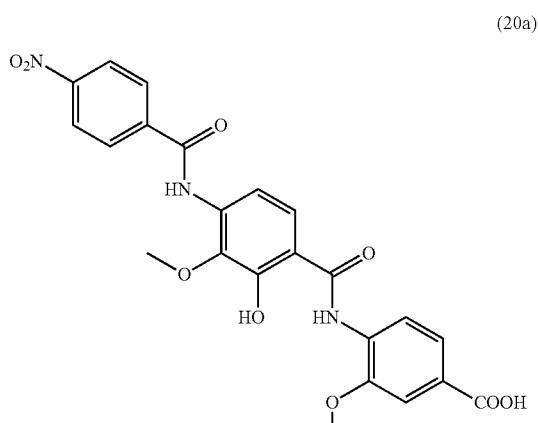
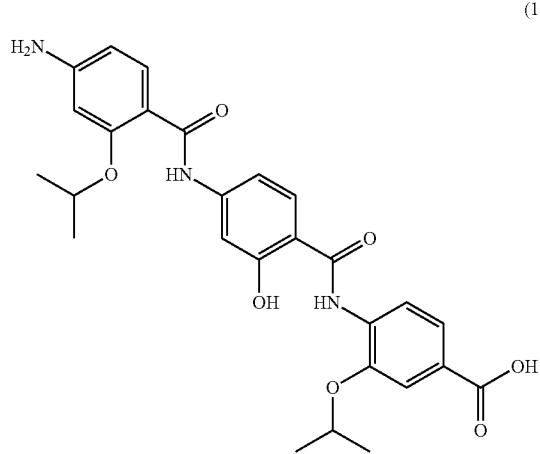
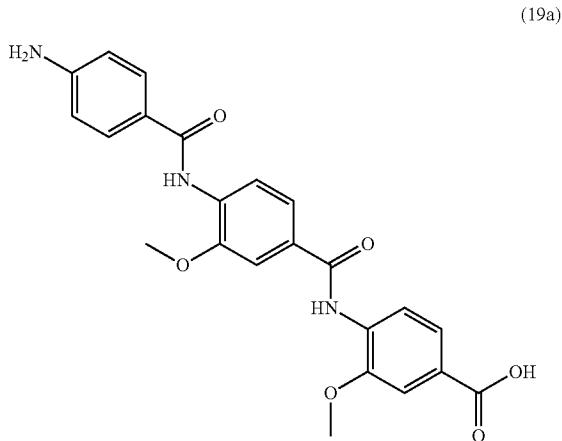
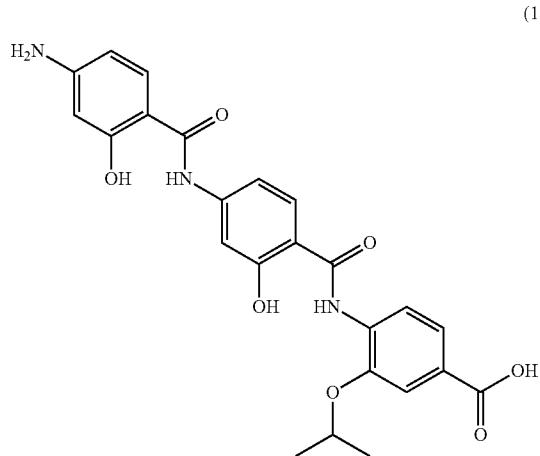
[0542] ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J=7.5 Hz, 2H), 8.15 (d, J=7.5 Hz, 2H), 8.00 (d, J=1.8 Hz, 2H), 7.98 (d, J=1.8 Hz, 2H), 7.90 (d, J=1.8 Hz, 1H), 7.86 (dd, J=7.5, 1.8 Hz, 1H), 7.78 (d, J=7.5 Hz, 1H), 7.65 (s, 1H), 7.63 (d, J=7.5 Hz, 2H), 7.58 (s, 1H, _{NH}), 7.54 (d, J=7.5 Hz, 2H), 7.51 (s, 1H, _{NH}), 7.10 (s, 1H, _{NH}), 7.03 (d, J=7.5 Hz, 1H), 6.35 (s, 1H, _{NH}), 5.57 (s, 1H, _{NH}), 5.42 (s, 1H, _{OH}), 4.93 (s, 1H), 4.70 (s, 1H), 4.01 (hept, J=5.6 Hz, 1H), 3.95 (hept, J=5.6 Hz, 1H), 3.38 (s, 3H), 1.48 (s, 6H), 1.47 (s, 6H) ppm.







[0543] ¹³C NMR (100 MHz CDCl₃) δ 173.30, 169.54, 168.18, 168.07, 167.77, 166.88, 166.82, 158.83, 151.01, 149.88, 140.78, 139.42, 138.71, 136.26, 134.97, 134.55, 130.00, 130.00, 129.41, 129.41, 129.39, 129.39, 128.12, 127.53, 125.15, 124.17, 124.17, 123.28, 122.84, 122.61, 122.61, 121.78, 121.78, 120.41, 113.82, 113.30, 106.09, 77.86, 75.89, 74.13, 58.51, 54.58, 21.80, 21.80, 21.80, 21.80 ppm.

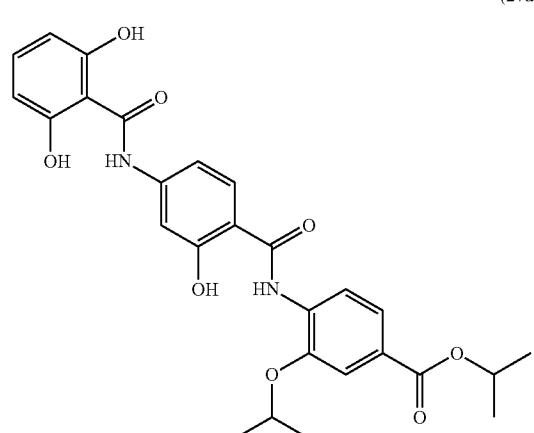
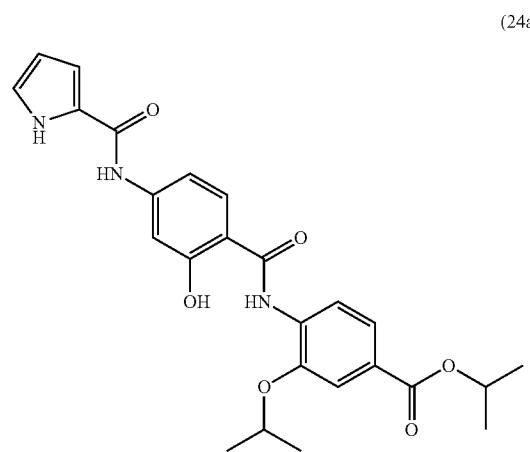
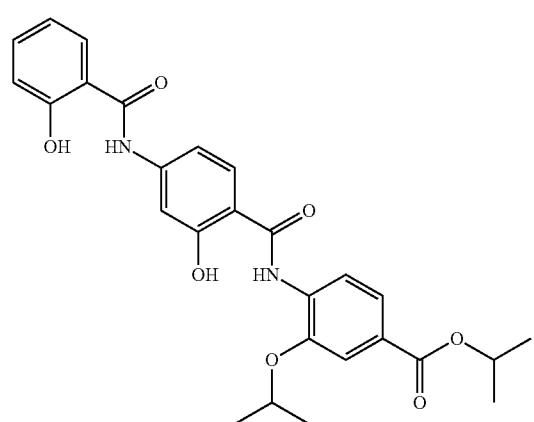
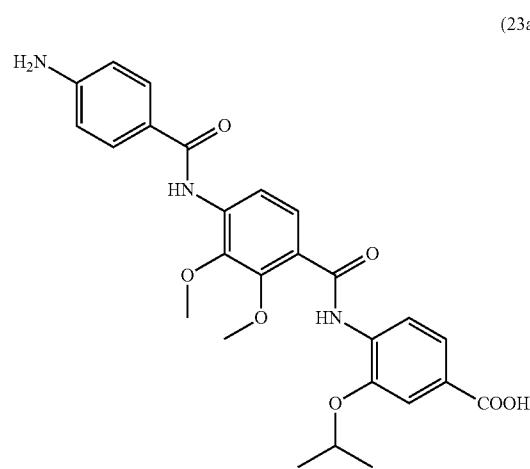
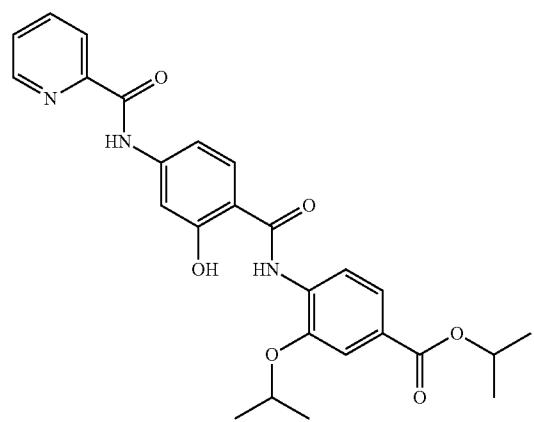
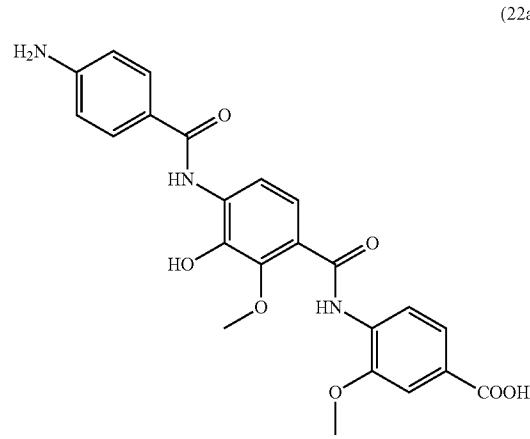
[0544] HRMS (ESI): Calculated for C₄₆H₄₃N₆O₁₅ (M-H)⁻: 920.2865. found: 920.2866.







-continued

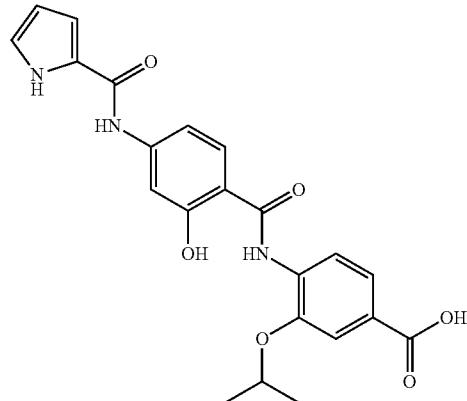
-continued







-continued

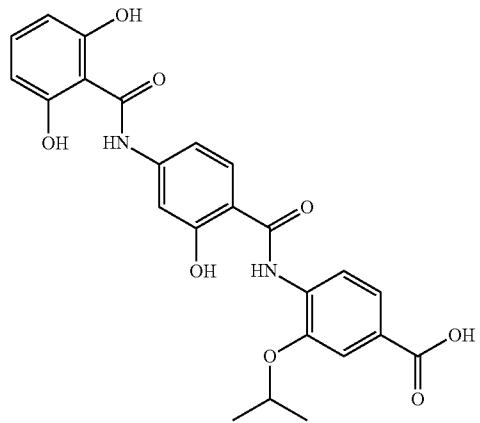
-continued







-continued

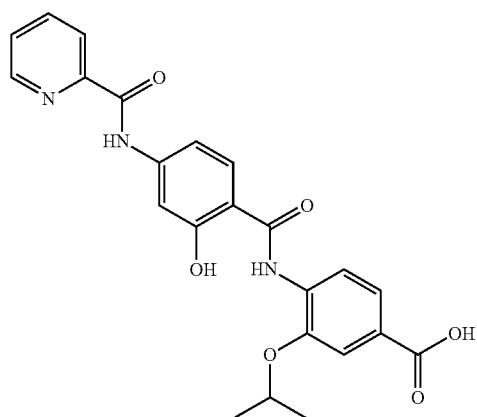
-continued

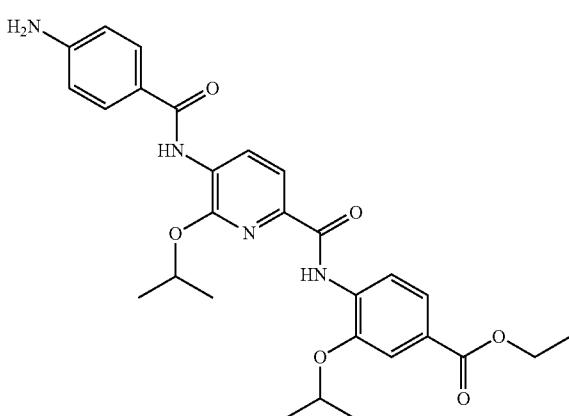

-continued

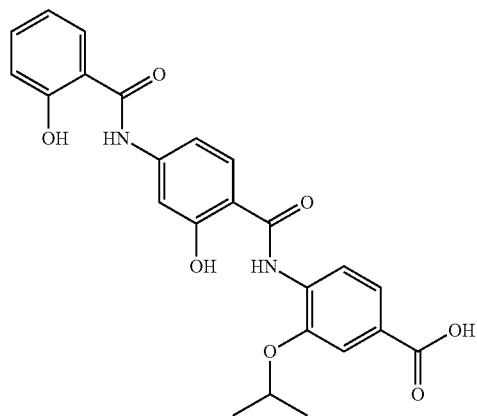
-continued

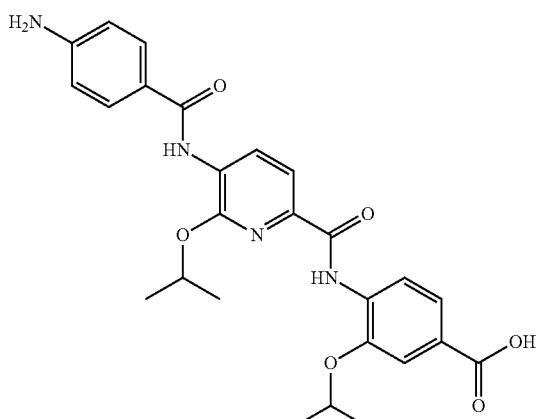


-continued


-continued


(28a)

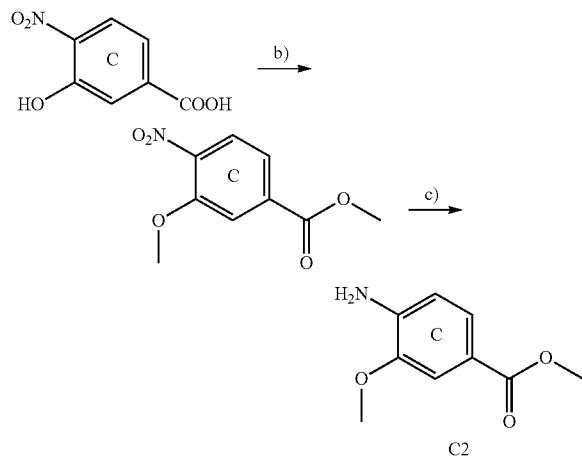
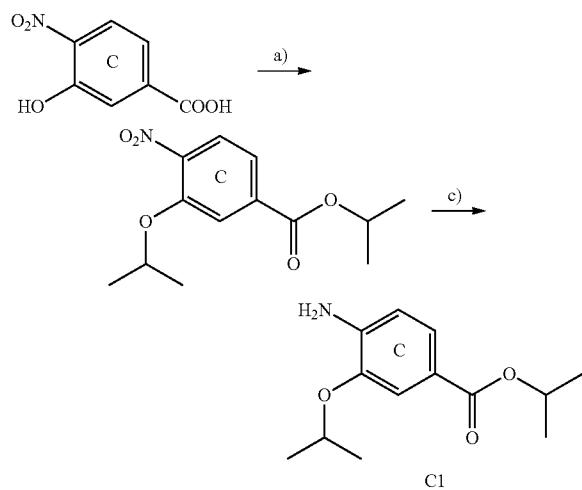

(31a)


(29a)

(32a)

(30a)

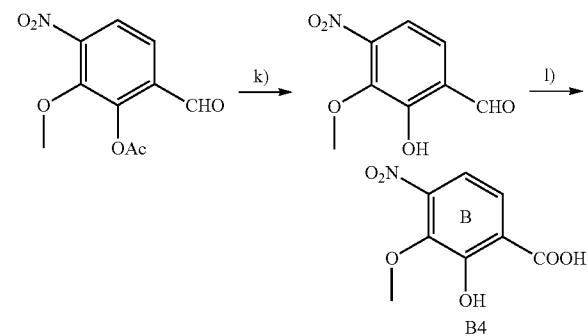
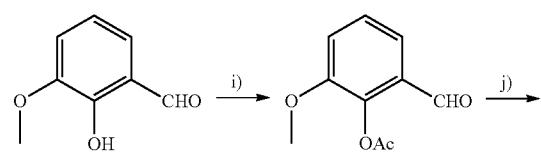
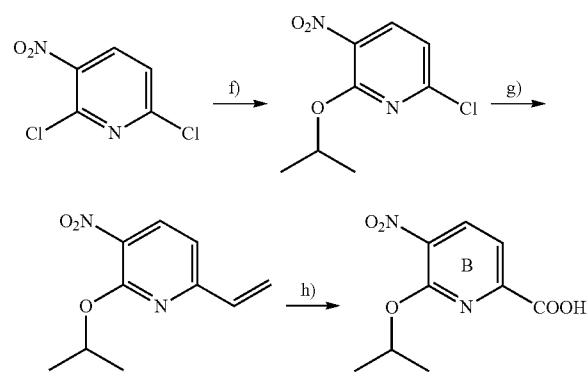
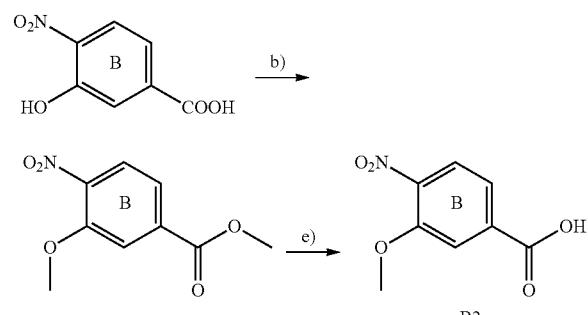
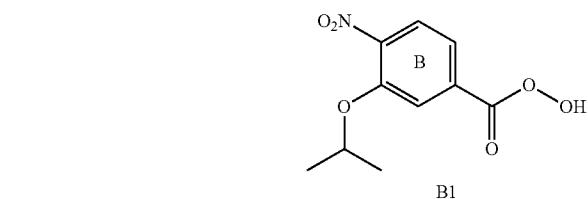
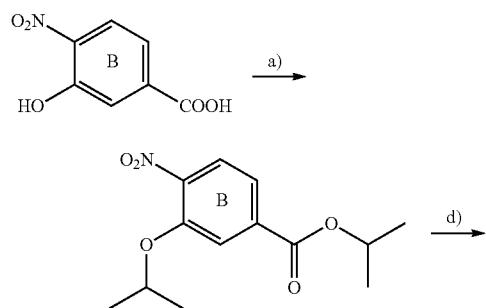
(33a)



1.1. Synthesis of the Different Used Individual Rings

[0546] The preparation of the different individual rings that were used during the synthesis of the cystobactamide C derivatives is described here.

Preparation of Ring C

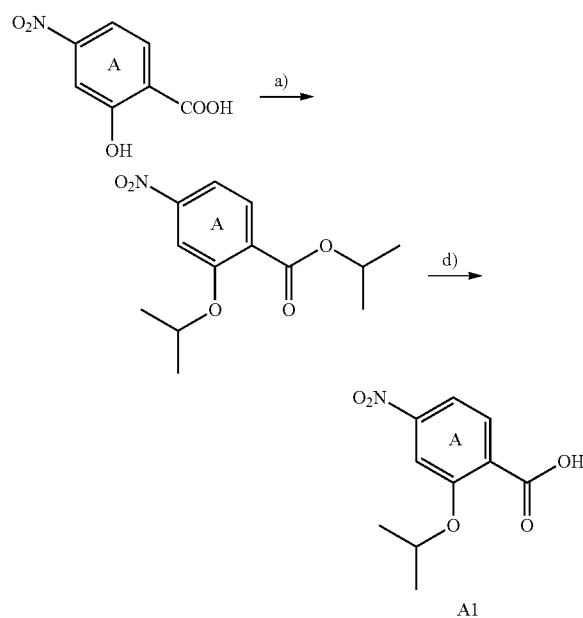
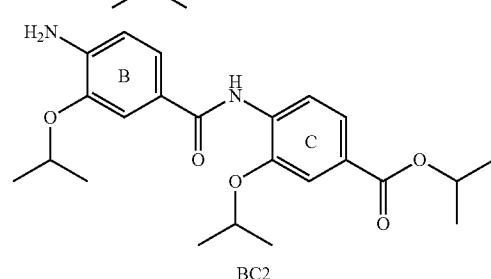
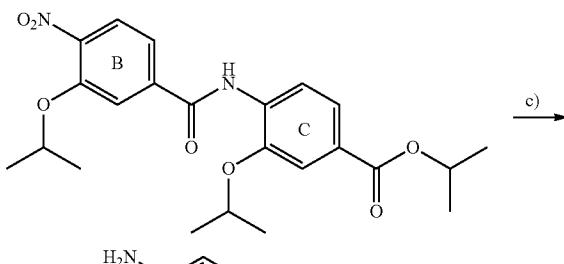
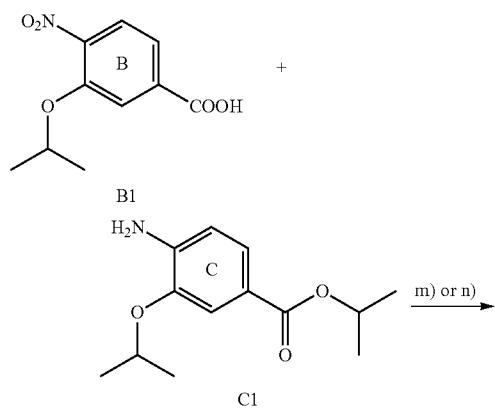
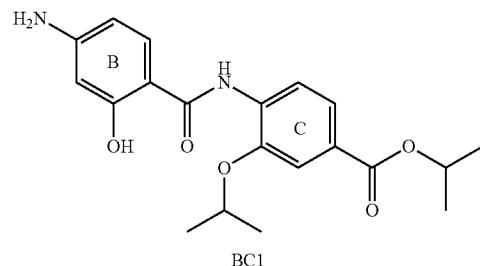
-continued







[0547]

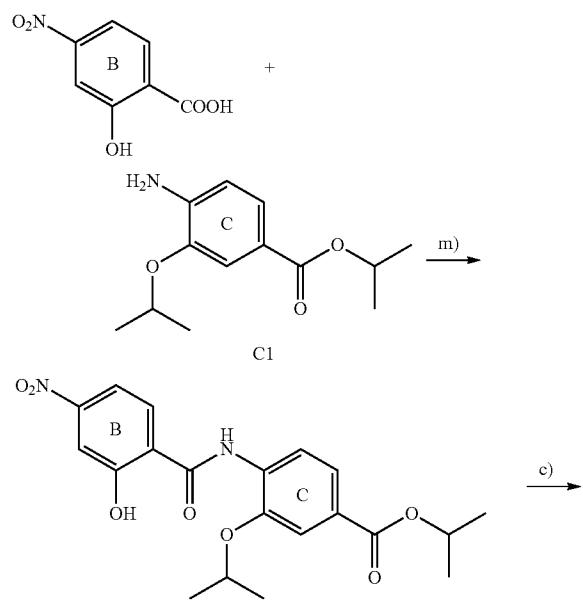
a) $\text{BrCH}(\text{CH}_3)_2$, K_2CO_3 , DMF, 90° C. , overnight; b) $\text{SO}_2(\text{OMe})_2$, K_2CO_3 , DMF, 90° C. , overnight; c) Fe , NH_4Cl , $\text{EtOH}/\text{H}_2\text{O}$, reflux, 2 hours

Preparation of Ring B

[0548]

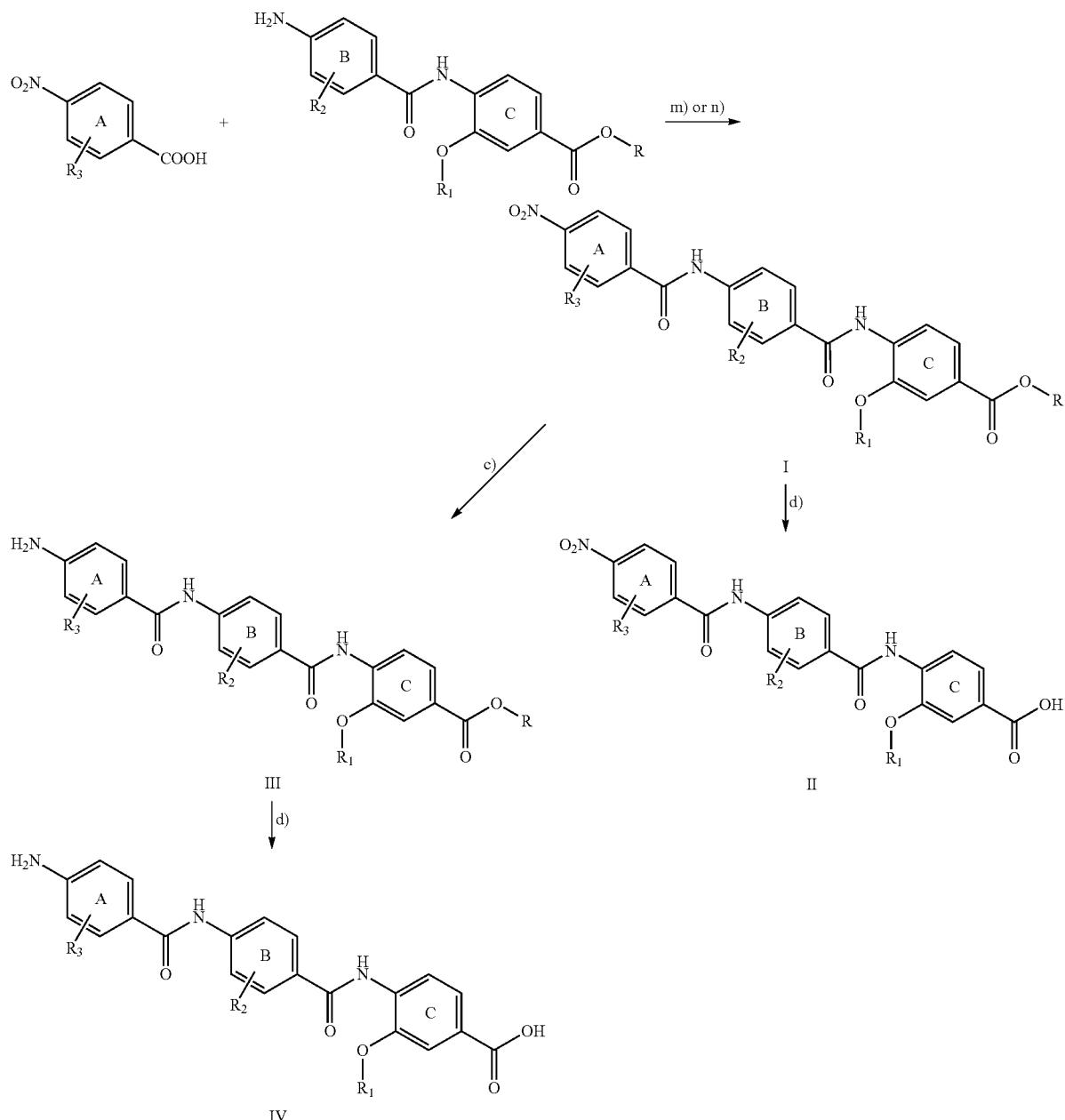
a) $\text{BrCH}(\text{CH}_3)_2$, K_2CO_3 , DMF, 90° C. , overnight; b) $\text{SO}_2(\text{OMe})_2$, K_2CO_3 , DMF, 90° C. , overnight; c) NaOH/MeOH , 45° C. , overnight; d) NaOH/MeOH , 45° C. , overnight; e) KOH , $\text{MeOH}/\text{H}_2\text{O}$; f) $\text{i-PrOH}/\text{NaH}$; g) $\text{H}_2\text{C}=\text{CHSn}(\text{Bu})_3$, $\text{Pd}[(\text{Ph})_3\text{P}]_4$; h) KMnO_4 ; i) $\text{AcCl}/\text{pyridine}$; j) KNO_3/TFAA , NaOH ; k) NaOH , l) $\text{AgNO}_3/\text{NaOH}$


Preparation of Ring A

-continued

[0549]

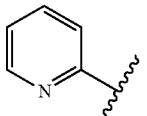
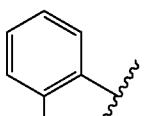
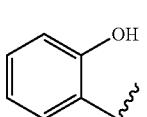
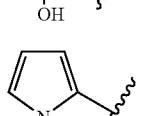
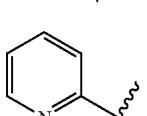
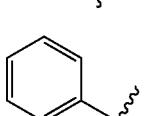
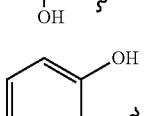
a) $\text{BrCH}(\text{CH}_3)_2$, K_2CO_3 , DMF, 90°C , overnight; d) NaOH/MeOH , 45°C , overnight


[0550]

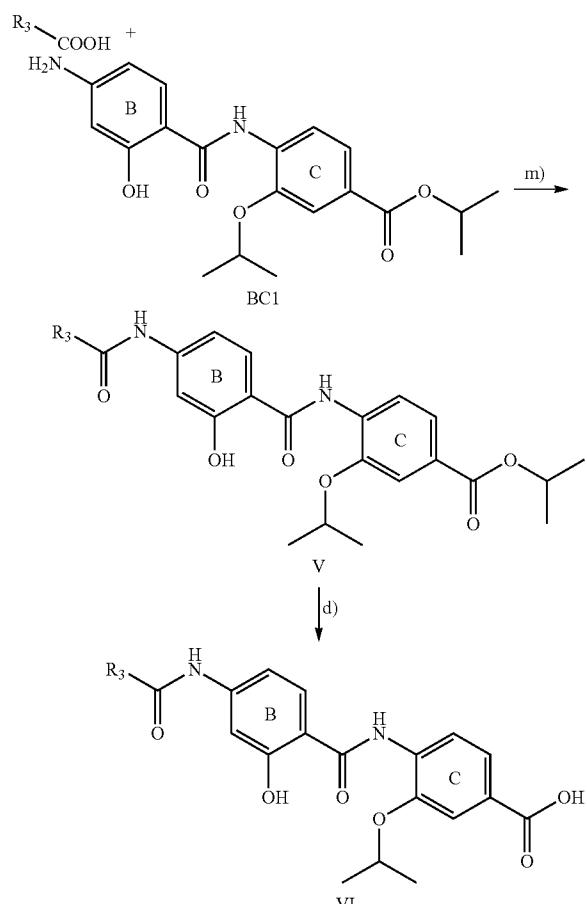
1.3. Coupling of Ring a with BC Fragments

[0551] 1.3.1. Coupling of Ring A with BC Fragments (BC1, BC2, BC3, BC5, BC6, BC7) to Synthesize the Cystobactamide C Derivatives (1a)-(23a)

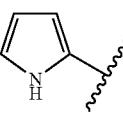
c) Fe, NH₄Cl, EtOH/H₂O, reflux, 2 hours; d) NaOH/MeOH, 45° C., overnight; m) PCl₃, CH₂Cl₂, Xylene, 145° C., 2 hours; n) Cl₂PPh₃, CHCl₃








-continued

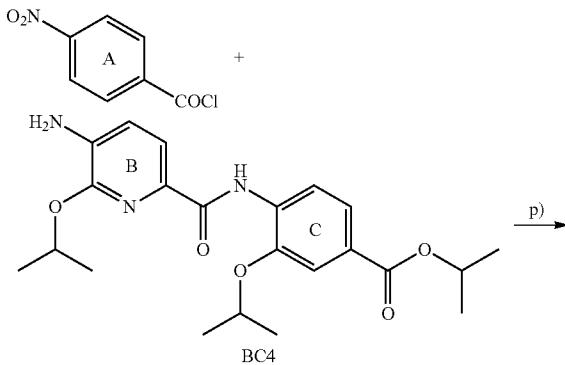
Compound	Scaffold	R	R ₁	R ₂	R ₃	Compound	Scaffold	R	R ₁	R ₂	R ₃
(1a)	I	iPr	iPr	2-OH	H	(11a)	III	iPr	iPr	2-OH	H
(2a)	I	iPr	iPr	2-OH	2-OH	(12a)	III	iPr	iPr	2-OH	2-OH
(3a)	I	iPr	iPr	2-OH	2-OiPr	(13a)	III	iPr	iPr	2-OH	2-OiPr
(4a)	I	iPr	iPr	2-OH	2-F	(14a)	III	iPr	iPr	3-OiPr	2-OH
(5a)	I	iPr	iPr	3-OiPr	2-OH	(15a)	IV	—	iPr	2-OH	H
(6a)	II	—	iPr	2-OH	H	(16a)	IV	—	iPr	2-OH	2-OH
(7a)	II	—	iPr	2-OH	2-OH	(17a)	IV	—	iPr	2-OH	2-OiPr
(8a)	II	—	iPr	2-OH	2-OiPr	(18a)	IV	—	iPr	3-OiPr	H
(9a)	II	—	iPr	2-OH	2-OMe	(19a)	IV	—	Me	3-OMe	H
(10a)	II	—	iPr	3-OiPr	2-OH						

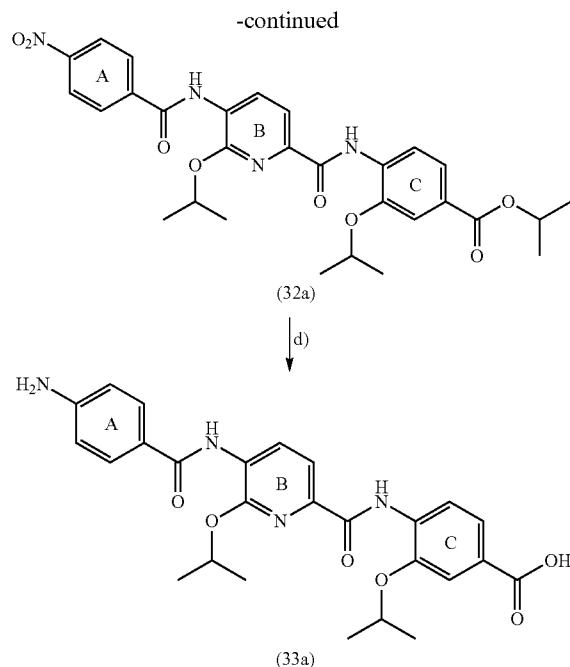

-continued

Compound	Scaffold	R	R ₁	R ₂	R ₃
(20a)	II	—	Me	2-OH, 3OMe	H
(21a)	IV	—	Me	2-OH, 3OMe	H
(22a)	IV	—	Me	2-OMe, 3OH	H
(23a)	IV	—	iPr	2,3-diOMe	H


-continued

Compound	Scaffold	R3
(25a)	V	
(26a)	V	
(27a)	V	
(28a)	VI	
(29a)	VI	
(30a)	VI	
(31a)	VI	


1.3.2. Coupling of Ring a with BC1 Fragment to Synthesize the Cystobactamide C Derivatives (24a)-(31a)



d) NaOH/MeOH, 45°C, overnight; m) PCl₃, CH₂Cl₂, Xylene, 145°C, 2 hours

Compound	Scaffold	R3
(24a)	V	

1.3.3. Coupling of Ring a with BC4 Fragment to Synthesize the Cystobactamide C Derivatives (32a)-(33a)

d) NaOH/MeOH, 45° C., overnight; p) CH₂Cl₂, pyridine, rt, overnight

2. EXPERIMENTAL

2.1. General Experimental Information

[0552] Starting materials and solvents were purchased from commercial suppliers, and used without further purification. All chemical yields refer to purified compounds, and not optimized. Reaction progress was monitored using TLC Silica gel 60 F₂₅₄ aluminium sheets, and visualization was accomplished by UV at 254 nm. Flash chromatography was performed using silica gel 60 Å (40-63 µm). Preparative RP-HPLC was carried out on a Waters Corporation setup contains a 2767 sample manager, a 2545 binary gradient module, a 2998 PDA detector and a 3100 electron spray mass spectrometer. Purification was performed using a Waters XBridge column (C18, 150×19 mm, 5 µm), a binary solvent system A and B (A=water with 0.1% formic acid; B=MeCN with 0.1% formic acid) as eluent, a flow rate of 20 mL/min and a gradient of 60% to 95% B in 8 min were applied. Melting points were determined on a Stuart Scientific melting point apparatus SMP3 (Bibby Sterilin, UK), and are uncorrected. NMR spectra were recorded either on Bruker DRX-500 (¹H, 500 MHz; ¹³C, 126 MHz), or Bruker Fourier 300 (¹H, 300 MHz; ¹³C, 75 MHz) spectrometer at 300 K. Chemical shifts are recorded as 6 values in ppm units by reference to the hydrogenated residues of deuterated solvent as internal standard (CDCl₃; δ=7.26, 77.02; DMSO-d₆; δ=2.50, 39.99). Splitting patterns describe apparent multiplicities and are designated as s (singlet), br s (broad singlet), d (doublet), dd (doublet of doublet), t (triplet), q (quartet), m (multiplet). Coupling constants (J) are given in Hertz (Hz). Purity of all compounds used in biological assays was 95% as measured by LC/MS Finnigan Surveyor MSQ Plus (Thermo Fisher Scientific, Dreieich, Germany). The system consists of LC pump, autosampler, PDA detector, and single-quadrupole MS detector, as well as the standard software Xcalibur for

operation. RP C18 Nucleodur 100-5 (125×3 mm) column (Macherey-Nagel GmbH, Dühren, Germany) was used as stationary phase, and a binary solvent system A and B (A=water with 0.1% TFA; B=MeCN with 0.1% TFA) was used as mobile phase. In a gradient run the percentage of B was increased from an initial concentration of 0% at 0 min to 100% at 15 min and kept at 100% for 5 min. The injection volume was 10 µL and flow rate was set to 800 µL/min. MS (ESI) analysis was carried out at a spray voltage of 3800 V, a capillary temperature of 350° C. and a source CID of 10 V. Spectra were acquired in positive mode from 100 to 1000 m/z and at 254 nm for UV tracing.

2.2. LC/MS Data for the Triaryl Derivatives

[0553]

Compound	LC/MS m/z (ESI ⁺)
(1a)	521.99 [M + H] ⁺
(2a)	537.87 [M + H] ⁺
(3a)	579.90 [M + H] ⁺
(4a)	540.07 [M + H] ⁺
(5a)	580.11 [M + H] ⁺
(6a)	479.98 [M + H] ⁺
(7a)	496.02 [M + H] ⁺
(8a)	537.99 [M + H] ⁺
(9a)	509.98 [M + H] ⁺
(10a)	538.11 [M + H] ⁺
(11a)	492.02 [M + H] ⁺
(12a)	508.01 [M + H] ⁺
(13a)	550.02 [M + H] ⁺
(14a)	550.13 [M + H] ⁺
(15a)	449.87 [M + H] ⁺
(16a)	465.93 [M + H] ⁺
(17a)	508.07 [M + H] ⁺
(18a)	492 [M + H] ⁺
(19a)	435 [M] ⁺
(20a)	482 [M + H] ⁺
(21a)	452 [M + H] ⁺
(22a)	452 [M + H] ⁺
(23a)	494 [M + H] ⁺
(24a)	466.20 [M + H] ⁺
(25a)	478.07 [M + H] ⁺
(26a)	493.17 [M + H] ⁺
(27a)	509.12 [M + H] ⁺
(28a)	423.53 [M + H] ⁺
(29a)	436.13 [M + H] ⁺
(30a)	451.10 [M + H] ⁺
(31a)	467.11 [M + H] ⁺
(32a)	535 [M + H] ⁺
(33a)	493 [M + H] ⁺

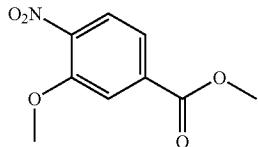
2.3 General Synthetic Procedures

[0554] a) A mixture of the acid (25 mmol), isopropyl bromide (52 mmol) and potassium carbonate (52 mmol) in 100 mL DMF were heated overnight at 90° C. Excess DMF was then removed under reduced pressure and the remaining residue was partitioned between water and ethyl acetate. The organic layer was dried over sodium sulphate and the excess solvent was then removed under reduced pressure to give the pure product.

[0555] c) To a stirred solution of the nitro derivative (10 mmol) in EtOH (60 mL), iron powder (2.80 g, 50 mmol) was added at 55° C. followed by NH₄Cl (266 mg, 5 mmol) solution in water (30 mL). The reaction was refluxed for 1-2 h, then iron was filtered while hot and the filtrate was concentrated under vacuum till dryness. The residue was diluted with water (30 mL) and basified by NaHCO₃ (saturated aqueous

solution) to pH 7-8. The mixture was extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO_4), and the solvent was removed by vacuum distillation. The obtained crude material was triturated with n-hexane, and collected by filtration.

[0556] d) Ester hydrolysis was done according to the following reported procedure.¹ The ester (0.1 mmol), sodium hydroxide 1M (3 mL) and anhydrous methanol were heated overnight at 45° C. On cooling, the reaction mixture was acidified to pH 1 (3 mL, hydrochloric acid 1 M) and extracted with dichloromethane (3×150 mL). The organic was dried over sodium sulphate and the solvent removed under reduced pressure to leave give the pure product.

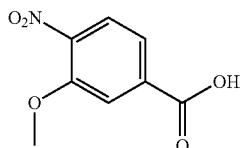

[0557] m) Amide formation was done according to the following reported procedure.² A boiling solution of the acid (1 mmol) and the amine (1 mmol) in xylenes 2.5 ml was treated with a 2M solution of PCl_3 in CH_2Cl_2 (0.4 mmol). After 2 hours the excess solvent was evaporated and the residue was purified using column chromatography.

[0558] n) To a stirred solution of the acid (2 mmol), amine (2.4 mmol) in anhydrous CHCl_3 (50 mL) under a nitrogen atmosphere, dichlorotriphenylphosphorane (3.0 g, 9 mmol) was added. The reaction was heated at 80° C. for 5 h. Solvent was removed by vacuum distillation. The residue was then purified using flash chromatography.

2.4 Specific Synthetic Procedures

Methyl 3-methoxy-4-nitrobenzoate

[0559]

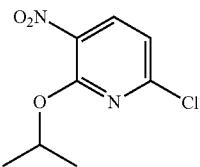


[0560] To a stirred mixture of 3-hydroxy-4-nitrobenzoic acid (9.16 g, 50 mmol) and K_2CO_3 (15.2 g, 110 mmol) in DMF (150 mL), dimethyl sulfate (25.2 g, 200 mmol) was added portion wise then the reaction was stirred at 90° C. overnight. After cooling the mixture was poured on to ice cooled water (400 mL), the precipitate was filtered, washed with cold water then n-hexane.

[0561] Yield 95% (pale yellow solid), m/z (ESI+) 212 [M+H]⁺.

3-Methoxy-4-nitrobenzoic acid

[0562]

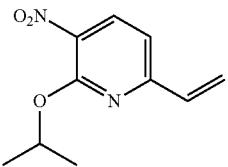

[0563] To a stirred solution of methyl 3-methoxy-4-nitrobenzoate (2.11 g, 10 mmol) in MeOH (30 mL), KOH (1.68 g, 30 mmol) in water (30 mL) was added. The reaction was

refluxed for 2 h then MeOH was evaporated by vacuum distillation. The residue was diluted with water (20 mL). The solution was cooled in an ice bath and acidified by KHSO_4 (saturated aqueous solution) to pH 3-4. The precipitated solid was collected by filtration, washed with cold water then n-hexane.

[0564] Yield 96% (off-white solid), m/z (ESI+) 198 [M+H]⁺.

6-Chloro-2-isopropoxy-3-nitropyridine

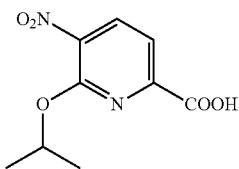
[0565]



[0566] To a stirred solution of 2,6-dichloro-3-nitropyridine (3.86 g, 20 mmol) in toluene (30 mL), isopropanol (1.44 g, 24 mmol) was added. The mixture was stirred at 0° C. for 15 min. then NaH (50-60% in mineral oil, 1.22 g, 28 mmol) was added portion wise under a nitrogen atmosphere, and the reaction was allowed to stir at room temperature overnight. The reaction was quenched with brine, then diluted with water and extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO_4), and the solvent was removed by vacuum distillation. The residue was dissolved in toluene and purified using flash chromatography (SiO_2 , n-hexane-EtOAc=5:1).

[0567] Yield 70% (yellowish white crystals), m/z (ESI+) 217 [M+H]⁺.

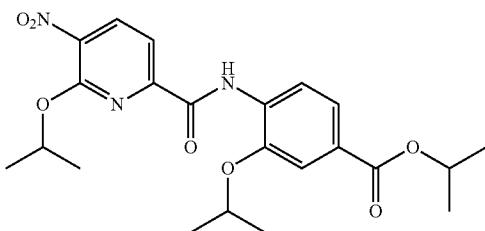
2-Isopropoxy-3-nitro-6-vinylpyridine


[0568]

[0569] To a stirred solution of 6-chloro-2-isopropoxy-3-nitropyridine (650 mg, 3 mmol), and tributyl(vinyl)tin (1.0 g, 3.15 mmol) in toluene (20 mL) under a nitrogen atmosphere, tetrakis(triphenylphosphine) palladium(0) (180 mg, 5% eq.) was added. The reaction was refluxed overnight. Brine was added, and the reaction was extracted with EtOAc. The combined organic extract was washed with brine, dried (MgSO_4), and the solvent was removed by vacuum distillation. The crude product was used directly in the next step without further purification. Yield 90% (yellow liquid), m/z (ESI+) 208 [M]⁺.

6-Isopropoxy-5-nitropyridine-2-carboxylic acid

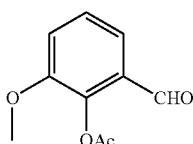
[0570]



[0571] To a stirred solution of 2-isopropoxy-3-nitro-6-vinylpyridine (625 mg, 3 mmol) in acetone (10 mL), KMnO_4 (1.9 g, 12 mmol) solution in 50% aq. acetone (50 mL) was added. The reaction was stirred at room temperature for 24 h. NaOH 0.5 M (5 mL) was added, then the mixture was filtered and filtrate was concentrated under vacuum. The residue was cooled in an ice bath and carefully acidified by KHSO_4 (saturated aqueous solution) to pH 4-5, then extracted with EtOAc . The combined organic extract was washed with brine, dried (MgSO_4), and the solvent was removed by vacuum distillation. The obtained crude material was triturated with n-hexane, and collected by filtration.

[0572] Yield 75% (beige solid), m/z (ESI+) 227 [M+H]⁺.

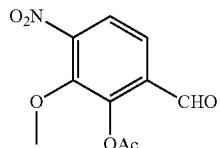
Isopropyl 3-isopropoxy-4-[(6-isopropoxy-5-nitropyridin-2-yl)carbonyl]amino]benzoate


[0573]

[0574] To a stirred solution of 6-isopropoxy-5-nitropyridine-2-carboxylic acid (226 mg, 1 mmol), and isopropyl 4-amino-3-isopropoxybenzoate (237 mg, 1 mmol) in a mixture of anhydrous CHCl_3 (50 mL) and DMF (1 mL) under a nitrogen atmosphere, HOEt (676 mg, 5 mmol) was added at 0° C. followed by EDC.HCl (958 mg, 5 mmol). The reaction was allowed to stir at 0° C. for 2 h. then at room temperature overnight. Solvent was removed by vacuum distillation. The residue was dissolved in toluene and purified using flash chromatography (SiO_2 , n-hexane— EtOAc =2:1). Yield 70% (pale yellow solid), m/z (ESI+) 446 [M+H]⁺.

2-formyl-6-methoxyphenyl acetate

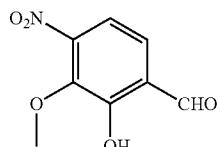
[0575]



[0576] To a stirred solution of 3-methoxysalicylaldehyde (4.56 g, 30 mmol), and pyridine (2.43 mL, 30 mmol) in DCM (40 mL), acetyl chloride (2.36 g, 30 mmol) was added drop wise. The reaction was stirred at room temperature overnight then the solvent was removed by vacuum distillation. The residue was triturated in cold dil. HCl and filtered, washed with cold water then n-hexane.

[0577] Yield 94% (off-white solid), m/z (ESI+) 195 [M+H]⁺.

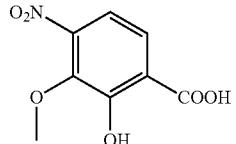
6-formyl-2-methoxy-3-nitrophenyl acetate


[0578]

[0579] To a stirred ice-cooled suspension of 2-formyl-6-methoxyphenyl acetate (1.94 g, 10 mmol), and KNO_3 (1.01 g, 10 mmol) in CHCl_3 (15 mL), trifluoroacetic anhydride (12 mL) was added. The reaction was stirred in an ice bath for 2 h. then at room temperature overnight. The reaction was diluted very carefully with water (50 mL) and extracted with CHCl_3 . The combined organic extract was dried (MgSO_4), and the solvent was removed by vacuum distillation. The residue was dissolved in toluene and purified using flash chromatography (SiO_2 , n-hexane— EtOAc =3:1). Yield 45% (yellow semisolid), m/z (ESI+) 239 [M]⁺.

2-hydroxy-3-methoxy-4-nitrobenzaldehyde

[0580]

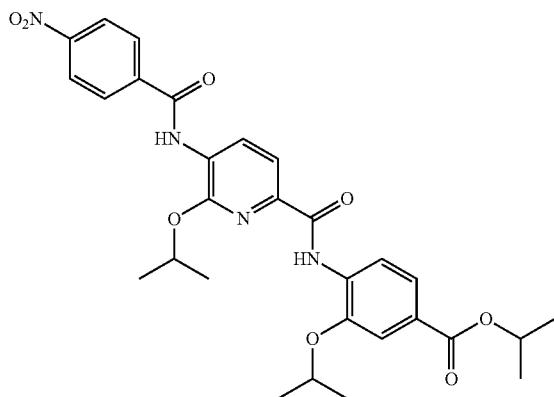


[0581] To a stirred suspension of 6-formyl-2-methoxy-3-nitrophenyl acetate (957 mg, 4 mmol) in water (30 mL), NaOH (0.8 g, 20 mmol) was added. The reaction was refluxed for 2 h then allowed to stir at room temperature overnight. The solution was cooled in an ice bath and acidified by HCl 2 M to pH 3-4. The precipitated solid was collected by filtration, washed with cold water then n-hexane.

[0582] Yield 90% (yellowish brown solid), m/z (ESI+) 197 [M]⁺.

2-hydroxy-3-methoxy-4-nitrobenzoic acid

[0583]



[0584] To a stirred solution of 2-hydroxy-3-methoxy-4-nitrobenzaldehyde (788 mg, 4 mmol), and NaOH (0.8 g, 20 mmol) in water (50 mL), AgNO_3 (3.4 g, 20 mmol) was added portion wise. The reaction was refluxed overnight, then allowed to cool and filtered through celite. Filtrate was cooled in an ice bath and acidified with HCl 37% to pH 3-4. The precipitated solid was collected by filtration, washed with cold water then n-hexane.

[0585] Yield 65% (beige solid), m/z (ESI+) 213 [M]⁺.

Isopropyl 3-isopropoxy-4[({6-isopropoxy-5-[(4-nitrobenzoyl)amino]pyridin-2-yl}carbonyl)amino]benzoate

[0586]

[0587] To a stirred solution of isopropyl 4-[(5-amino-6-isopropoxypyridin-2-yl)carbonyl]amino]-3-isopropoxybenzoate (207 mg, 0.5 mmol), and pyridine (0.1 mL) in DCM (20 mL), 4-nitrobenzoyl chloride (185 mg, 1 mmol) was added. The reaction was stirred at room temperature overnight then the HCl 2 M (20 mL) was added. The mixture was extracted with DCM then EtOAc. The combined organic extract was dried (MgSO_4), and the solvent was removed by vacuum distillation. The residue was dissolved in toluene and purified using flash chromatography (SiO_2 , n-hexane—EtOAc=1:1). Yield 80% (yellow crystals), m/z (ESI+) 565 [M+H]⁺.

5. REFERENCES

[0588] 1) Valeria Azzarito, Panchami Prabhakaran, Alice I. Bartlett, Natasha Murphy, Michael J. Hardie, Colin A. Kilner, Thomas A. Edwards, Stuart L. Warriner, Andrew J. Wilson. 2-O-Alkylated Para-Benzamide α -Helix Mimetics: *The Role of Scaffold Curvature*. Org. Biomol. Chem., 2012, 10, 6469.

[0589] 2) Alina Fomovska, Richard D. Wood, Ernest Mui, Jitender P. Dubey, Leandra R. Ferreira, Mark R. Hickman, Patricia J. Lee, Susan E. Leed, Jennifer M. Auschwitz, William J. Welsh, Caroline Sommerville, Stuart Woods, Craig Roberts, and Rima McLeod. *Salicylanilide Inhibitors of Toxoplasma gondii*. J. Med. Chem., 2012, 55 (19), pp 8375-8391.

6. ACTIVITY OF THESE COMPOUNDS

[0590] Several of these compounds were tested for their activity against an *E. coli* strain (TolC-deficient) according to the procedures described above. Most tested compounds showed an activity (MIC) of from 1 to 320 μM .

SEQUENCE LISTING

```

<160> NUMBER OF SEQ ID NOS: 73

<210> SEQ ID NO 1
<211> LENGTH: 58456
<212> TYPE: DNA
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(58456)
<223> OTHER INFORMATION: Cystobactamide biosynthetic gene cluster

<400> SEQUENCE: 1

gttagacgccg cggctcagag ggccgtgccg cagtgtttgc agtggtgccg gtccaggtcg 60
tggccctgca ggccgcagcc gggacaggcg cgccgggtcga tggcgctgct cccgggtcgcc 120
tggggcgagct ccacggacac gatgcccgtg ggcaccgcga ggatgcccgt a cccatgatc 180
atcaacaccc aggcgtatgaa ctgtccgggc accgttttgg gcgagaggtc tccgttagccc 240
accgtggtca tcgtcacgt ggcccaatac atcccccgcg ggatgtgtc gaagccgttg 300
g cgcgcgcgc ccaccatgta catcaccgcg cccatgatga cgaccgtgtc cagcaccgc 360
ccgaggaaga c gatgtatctt cccgcgactg gcccggagcg cggtgagcgc c acgtccgc 420
tccccggagga agctggcgag cttgagtacg cggaaagacgc gcagcaggcg gaacaccgc 480
accaccagca gggactgcat gcccggcgcg atcaagctca gcaccgaggg caggatggcc 540
agcagatcca ccagccgaa gaagctcagc gcatagcgca g cggccgttt caccgacagc 600

```

-continued

agccgcagca	cgtactccag	tgtgaagagc	ccgggtgaaac	accactcgag	gacgcggatg	660
gtctgccccat	gctggacgct	gatggactcc	acgctctcg	gcatcacccg	gaggacgctg	720
agcacgatgg	cccacagcaa	tgccacatcg	aaggcgcggc	ccggccgggg	gtccgactcg	780
aagatgattt	cgtgcagccg	cggccggagt	ccggacggag	cgctctgctc	ggatggatgt	840
ggcacgaggg	cagtctagcc	ctccacggcg	ccggcgggggc	ggaatgcggg	ccgcccaccg	900
tgacgcgcgg	gctactggga	gcccccttg	gagctgcggg	gggcatcgag	ttgcccggg	960
tcttccttgc	cggcccttgg	ggggcctccg	tgggtgcgcg	actcgccccg	gttgegctgc	1020
ttggggtatt	cctcgctcg	ccgcccgtcg	ccggcccg	ccgagacg	acccgagtc	1080
accttcgggt	gcagcctctc	cttgcgcgcg	tcggaaatgc	gcttcctcc	gtccctgg	1140
tgtgcacatcg	ggcacctcg	tttcctggag	gaaacatggg	gacggaagac	gggagcggct	1200
caggagtgc	ccgcgttcgc	ggggagggcg	ggccgcgggg	cgtctggagg	gaaagccgct	1260
gtcgccagtt	ggggcgttcc	tccgcgcgc	cgaccaggc	ggggacccgg	gtcgccggcc	1320
ggccccccgc	aggcgactc	agcgcttctt	cgccgactt	cgccgggggg	cggtcttcac	1380
ggcgccgcgc	acggctttct	tccgcgcgc	cgccgcgcgc	gtcaccac	tgcgcgcgtat	1440
gctacccca	ageccccgtgg	cgctcagctt	cttgcgcgcg	ggggccttcg	gtcgggtctc	1500
ctcccgccgt	tgacgggtag	gggccttggc	ggtggccctt	tgcgtcgcca	ccttcggggt	1560
gggttcgc	ttgggggggg	ccttcctcgc	ccgggttagcg	ggggcttgg	gtcgggtcg	1620
ctttttctcc	gcgggggggc	ggtagcgtt	cacggtctcg	gcgtgggc	gtccatagcc	1680
ggtggggcgt	tcaggcagg	ccgccttc	cttttccttgc	gtgagggcga	tcttgg	1740
ttcattgc	agccggggac	ccgagccctt	gtaggctcg	gccccgtgt	gcgacaagaa	1800
gggttcgaaa	ctgttaggttc	ttcccatggc	tgtctctc	ctgcgtact	gggtatctt	1860
gaagaaataa	gtttaggtg	gtccctgatt	ttggaaatggg	ccctctcaa	ggccgcgc	1920
gttccccgt	ccaggactct	tctcttccc	cgccaggta	gcccaccacg	aggccgcgg	1980
gcttgcgt	gcccggc	ctgcgcgc	cgtggatggc	ctgggtc	ttggaaatacc	2040
ggccgagctg	acgggtgc	tcgatgg	cgatccacc	ccggccatcc	gtcgcacga	2100
tcacccgc	tgcgtgtgt	ggggaccca	cttcgtgt	cttgc	ttgcgtt	2160
ccgggcgtat	gaaagcaaa	tgtcaacccg	gagcggaggt	cgcatttgc	caggatcag	2220
ggcgcgcgg	tccagggtcg	ccaggagcat	gagacggccc	ccgggacttc	aacggccccc	2280
ggagccctcc	tgcgtccgg	cgacgggtc	ctgcccagc	gccatgtgc	gccaggagc	2340
ggggcgtc	cggtcttgg	ccgggtcg	ccccgtcg	ctcatgt	cgctggagtc	2400
cgtgtgtcc	gagccgtca	cgtcaactgc	ggtgcggag	ccggccagg	cgctgtccac	2460
gccccggcg	tcggggctga	aaccggccgg	tccactggac	acggccg	cgccggagcc	2520
gcccacgtcg	ctacccggac	ccgtgtcg	actgctcg	ccgtcgatgt	cgccagcacc	2580
tgttccgc	gtgcgtccgc	ccgtgggtc	accaccc	gtggtg	ccgtcg	2640
ggttccggc	gtctca	ccgtcatgg	ccggccctg	gacgtatcg	tccggccgt	2700
tccttgattc	ccagcacccg	ccgtcg	acatccc	ccgaagac	gagccgcgg	2760
caacgcaccc	accaccac	ccttgatgt	tttcatgc	tttccttc	tccagtt	2820
cacctgtg	ggcttaggaat	ggctccacac	gggtgcatt	gacgtgaaga	cagtc	2880

-continued

gctcgggtgc	ccactgatgg	tggctcgat	tcttccttc	cctccgagcg	atgaggcacc	2940
ccgtcgttgt	gcgatgggtt	cgaccgggt	ggggctctca	ggcgaggcc	tggcgcgagg	3000
agccgggtgg	cttcgcgcgc	cagaccgggt	ccggctactt	ccaggtgtcg	ttgagggtcg	3060
cggtccccga	ggcggggatc	gtggtcgagc	ggttggcgcc	gtctcccg	gtgacgttcc	3120
cgaggccgctc	cttcttgatg	tacttgtatt	cgagggccgt	cgagccgggc	aggctgagcg	3180
tcacgctcca	cttcgggtag	ctggccggag	acaggagat	ggcgccgccc	gtgttccagt	3240
tgccgagcgc	ggcatggta	cccacgaggt	agacgttctg	tcccacgacg	gtgctggccg	3300
tcacgttcaa	ggtgacggag	gtggccgagg	aggtgctcgt	ggtgacgctc	agggegggtgc	3360
tctggcgga	ggcattgccc	gggggtgtcg	ggcgccgcac	ggtgtagccg	taggtgtgtc	3420
cggcactcag	gtcgctgtcg	gtgtagctgg	tggagacggg	tgagccacc	agcgagccat	3480
cgccgtacac	gtcatatatcg	gcatggccgc	tggcattccgt	ggaggccgctc	caggagagcg	3540
acacggagga	ggacgttctt	gacgcccgcg	tgaggcccg	ggggacggag	ggtgcgggtgg	3600
tgtcgagcgc	ggggcgctcg	ctggagacga	cgccgttctt	caccgtggag	gtgcccggcg	3660
gcaggaggta	gttgggtccc	ttttttgtgt	cccaagggtcc	tttgcctatcg	ttgaagacac	3720
actcgagctg	ggtgcccgct	cccagattga	cggtgtattt	ggcgtagccc	ggcacctcg	3780
aggtgccat	gacgttgcgc	ggcacggctc	tccacgtgcc	accgcggatg	cggaagtgg	3840
tgtatatttgc	gggegaagtt	ttttttttat	agtagacggt	ggcgctgtt	cccgcttggg	3900
tggtgacgga	cagggccgtc	ctggggcgagg	agacattgcc	cgccgcccgtc	cgggcgcc	3960
ccgtgtatgt	gttaggtgggt	ctcgccgaga	ggccggatcc	cgagtaggtc	gtccccgtga	4020
cggacgcgcac	ctgggtgcgc	tttcggagca	cctcgtagtt	cgcgacggcc	tagttgtcg	4080
tggaggccgt	ccaggccgagg	gccaccgagg	agctcgctgt	gcccgacgcc	gtcaggcccc	4140
agggaacgg	gggtgggggt	gtgtccggcg	tcagggtggc	gacgctcagg	gcgggtctct	4200
ggggggacgc	gttggccgc	ggttcccggg	cgccgacccgt	gtagctgtat	tgagtgtctcg	4260
gggagaggcc	gctgtcggt	tagggcggtc	tggtgctcga	gcccacccgc	gtgcccattcg	4320
ggaagacgtc	atagccgc	accgcacgt	tgtccgaggc	cgccgtcccg	ctcagggtca	4380
ccgagccgtc	cgttttcgc	ttcgccgtca	gtcccgagg	gaccgaggcc	gcgggtgggt	4440
ccaccacgag	gaaggatgc	gttccctgt	ccgtccgtt	ggggctctcg	atgtacttgc	4500
cggccaccag	gttgtaccgg	cccgagccca	cgtagacgga	ctggatctct	ccccgggtga	4560
tgttgccccg	gctgtcggt	gtctcgatgt	agtagtcgag	gagctggcgt	cggttagttgc	4620
ccaggtagac	gttagtagagg	tcgcccgtat	cctgcgcggg	cacctggcc	atgacgggca	4680
gttagggccgg	ctgcccaggaa	acaccattca	tgacaggctt	caggccgcgc	cggtgagcg	4740
gttagtccac	ccaggccccc	acgcggcccg	gatcgatgtt	gggaacaccc	ggggcccttgc	4800
gcgcgcgcgg	atcatagacc	tttggggtgt	tgtcgagccg	gtcgatgtc	tttggggtgt	4860
gcacccggac	gcgggccttgc	atggaggaga	tgccgctcg	gtcgatggcg	taggtgtaga	4920
ggggcaagtgc	gttgggtgg	aagtggacgc	tccagccctc	ggacttgcgt	gtgtggcgcc	4980
tgccgggggtt	gttagggccat	cgctggccccc	accagacgga	ggggcccgctc	tttgccttgg	5040
cgatgcgcgt	ctgcacgtat	ggcttggaga	agtagaggaa	ttgatttaag	gacagcgtgg	5100
gcttgacgtt	gtcgctctgg	tttgcgtatgt	agtagccgaa	gcccggatcc	atggggggca	5160

-continued

gcaggaagt	ccaggcgagt	tccgcggggt	tggcgccgccc	cgcggcagtcg	ttgttacacgt	5220
cgcggcttgc	gggaaaggac	atcatccacg	ggttgagctg	gttgcggctg	tgggtgatct	5280
gcttgcgtat	cgcgggtggtg	ggcgaccagt	gattgggggtg	cgcgtcgagc	cagatctgtc	5340
cggcggtctt	cgcgttagttg	agggcggtct	ggagcagggc	gaagttgcgc	tcgaggtagt	5400
gccagccgtg	ctcgaggggag	accgtcatgc	cctcctgcac	gccgctgagg	ttcgcttgg	5460
gagagagatt	gaggccggtg	gccccgttg	aggcggggaa	ctgacccttc	cagatgccga	5520
agggcagctt	ccagtgggtc	cactggggat	ccgaggagga	gtcgccgtg	tccaccacg	5580
agccgtcctg	gacgtgcacc	acgtcggtgg	aggcgggggt	gtggtgacgc	aggtactcgg	5640
agatgcccac	gcactgcacg	ccattggcgc	aggtgacgga	gcggccgttg	taccagggtgg	5700
agtcggagcc	ggcgcggtcg	ctcgagttgt	cgcgcattatg	cgcgtatgc	aagaactgcc	5760
gctggggAAC	gaggccctcg	aagctcttg	ggttgcacgc	gtcgacggtg	gcctcgctt	5820
cccagccctc	gagccaggag	ccgttctgg	tgacggggat	gccgacgc	cgcgaactcg	5880
cgcgggtggc	ggggtccacg	tagcgaccc	agtggggagt	ggagggaaag	gggtacttgt	5940
tcttgcgtac	ctcgctgtcg	tggccatct	gggcgcctac	ccaggagccc	acggagctgg	6000
tgttctggag	atcgccgggg	ttgggggggg	agacgagcgt	gtcgagccc	ggatcggtga	6060
ggtaggggta	gtccctggagg	gtcgccggaga	agtgggtgtc	gccgatgc	gcccactgca	6120
cgcggagctt	ggagaggggt	gggatggggc	gtcggagaa	gccgacgtcg	gtggggaaaga	6180
agcccttgg	ggactggaaag	gagccgcgc	ggaagttaggg	ctggggagc	gtggggctct	6240
ggtagatgag	atccttgggg	aagtatcg	gaccgaccag	ggggccatcg	gagtgggtgg	6300
cggtaagt	gatgagatcc	agggtgccgg	tgcccgccgg	ggtgagcagg	gcgcgtgtac	6360
ggtccttcca	ggaggcgccc	cagttcgat	tgtcgtagcc	ggggacgttc	ttcagggtga	6420
cggatcc	gacattgttc	accacggcgc	cgacatgg	gacgtgcacc	tggccgttg	6480
ggcatttgtt	tttcatgtcc	gaggcgac	ttggaggcca	gtacaggtag	gcacccgtct	6540
tcgcgttgt	cgcgtatag	gtgacgagg	catcg	catggcg	cccgtggca	6600
ggtagtatgt	gtaattggac	ggggattct	tcttcagg	gtacgtgc	gcgtatata	6660
tgtaccggat	ggggccgc	gtgggggtgg	acgcgtat	gcccagg	tagtagggcc	6720
agaagttgg	catgtgggt	tggtagac	ggcccgccgc	gatctgc	ctggggggca	6780
gggcacacag	caacagcgcc	gacaggacgg	gcctatcaa	cggcttact	cgatgc	6840
gggtccctc	ggggtaagga	ggagcgacc	ctagtg	gtccggact	ttcctcg	6900
tctgtat	aaggatttgc	cgcac	aatcg	gcac	gaaacgtcg	6960
cgaggagcaa	caacagccac	tggccgcac	cgcggctt	ctccagag	aagagccgc	7020
cgtgggggag	cggaaagcctg	gaggcctgtc	agcccgc	ggccactt	ggccgcgg	7080
cgggtgtcg	cgaaggacg	gccgactccc	agaccgg	tatgttccc	atcttgg	7140
gcttcgcctc	cgacttgc	aggttgc	ctacgg	gttgc	coat	7200
gagttcccg	gtacttcac	cgacggctcg	tgctgg	ggc	ccgact	7260
cagacgtgag	ctgcgcgtac	tttcggaa	cgcgc	aggac	aatggcat	7320
agacgaccgt	cacgtt	tttc	cgccatt	att	gatggcg	7380
cgtgcggacg	gttggggaga	tccatctcg	acaggaactc	cagcag	ctca	7440

-continued

tgcccagggt	ttgaatgaac	ccgaagagca	gttggtcgaa	ctctctcgaa	aactcgatcgaa	7500
gtgtgacgtg	gaagatgcgg	ccgttggcgc	tgaacttcga	ctggctggtc	ccgtcgatca	7560
cgctggatgt	gtactgcgtg	taggggtgggt	cagggttccg	cttgcagatc	tccgagaacg	7620
aggagatcaa	gtccttgaag	gccagccgccc	cctgcttgc	gaggtacctc	ccgacgaaac	7680
ggagtgcgcg	caggctgtac	aggctcgta	gtatcatacc	gaaccgcaca	ccctccctgt	7740
atccctcgcg	ggtaacgtcc	ttcgtcgaga	cgacgaccc	ccgcctcgctg	ttcgggttctt	7800
catcattcga	caccccccgc	ttgaactcc	cgcgctggct	gttcatcgcc	acgttggat	7860
tgagcaggag	gtgggtggatg	aggatcgctg	cggcgatgt	gctgcagagc	ttcccgatgc	7920
cctccctgaa	ggtctccgc	gttctcgccg	gaagcggcaca	gatcatctcc	acgaaacgagg	7980
agagcttgc	gcgggtgcagt	tcttcctgga	ggctcaggta	ggcgctctcc	ttgatgttgc	8040
cgcgcttcac	gtcttcgc	gtgttcgcgt	ccatcgatcg	gagcgagacc	ggctgggtgg	8100
agatcaaacc	ctcttggcgc	aggatccgcg	tgatctcgat	gaccggatca	ggcgagttct	8160
tcgcgcgcgt	cagccaaatg	gtgagcggat	agccataactt	ccgcttgcac	tcggcgatgt	8220
gctggcgat	ctcaatgtcg	cgggtcagca	tgccgaaatt	cgcgatgt	atgaagatgt	8280
agaacgcgcg	gtgctggctg	agccaggatg	tctccgcctt	gaccggatcc	atgtcgact	8340
tgaacacgcg	cgagttggtc	ggcgcccccc	agaagcaga	ggtgcactgg	tagggccatc	8400
cccggttcgt	ctcaaggggc	gcccacacgt	acttctcgct	gtcgaagtag	ccttccaggt	8460
agggagatgg	gaccgttgc	agatcctgga	tgcgcgttgc	gggctcgatgc	gtgatcagct	8520
ctccgttcgg	gtagaaggag	aggcccttgc	ccttgcggaa	gtcggggctgg	ggggagcaga	8580
gttgcggccag	gtatgtcgat	aaggataact	caccctcacc	gttgcagatc	accacccgct	8640
cgttgcggcc	atccaggatc	tgcgcggcc	gttcatcac	ctgcggacc	ccaaggatgc	8700
tgtgcgcgtt	gggcttgcgg	gggtgtgggg	tggggagcaca	ccgcttcaac	aagccatgt	8760
tccagacata	gcaagagatc	gcttagacat	ccgcatacgat	cttgcgttgc	ttgttccatgc	8820
atcggtcgat	gttgcgttgc	atcgagatgg	tttcgttgc	gcacgactcc	ctgtatcaagg	8880
gtttctcgat	ggecacgatc	cgcatgtac	cagaggccaa	gggataaaac	ccagagaaga	8940
ccgtcaactc	aatgaatgcg	acccgctgg	tggccatgac	acacgctccc	cgatccatc	9000
aaattggat	attgccaaca	tgtgggggg	caggctatgt	aaaaaaat	ctctccggca	9060
ctctcatgtt	cctgggttcc	cgggctcagt	gggcgagcag	cttgcatacg	cggaacgcct	9120
cgcgctcgat	cgcgatcgac	aggacgtcg	actgcatacg	cacgtatacc	aggtacccgg	9180
agaggggata	tcgcgcgcgg	aaatccctca	gcggcgcc	cgatcgatc	tcggagagga	9240
tccgctcgat	gtgctggcc	gctagaccga	gctgctccag	cacgacgcgc	tcgtactcc	9300
ccatcatctt	cgggctgagg	tactcgatgg	tgaactctgg	cagcagatgc	ccgatggcga	9360
gccggcgat	ctctccatc	tcactccaca	ccagcttgc	cacgttcatg	aagaggacc	9420
cgtggcgcc	ctcgatcgat	acatggatc	ccatcacc	atggagact	tcgtatgt	9480
acttctcacc	cgtcaggatc	agcagatcc	tggtgaatgt	gtttcccg	atgcagatcg	9540
cgatgatcc	ccagagcccg	tgcagatcgat	ccggcagccg	gtgcttgcgc	aaagccatgg	9600
ccctggacag	gtccgtttcc	gttcccagg	gcagcggctt	gacgcccgtg	cgctgtcgat	9660
tctgcccata	gaagtcgcgt	gccacgtagg	cgtataggc	ctcatcgat	atgcacggat	9720

-continued

gcgcgtcggt	gcggatgtcg	tccgggaacg	tgtatgggcgt	gtgaccgttg	gcgatcttca	9780
tcgcccaccc	gttgacggtc	tccgtctcga	agatggcgat	gtccccatg	aactttagg	9840
cggagtggat	gaagaacacg	cgcagcgtct	cgggcggaaag	gttcttcatg	agcgggtgg	9900
tgagcagggc	cgccttggcc	ggcgggtaca	ggtgcccgac	cacgtcccc	tccggcagta	9960
cgcgcgggg	cttgcgtgegt	gtggcggcaaa	gcgaatccca	caccaactcc	ttggacttgt	10020
atgcctctgg	ggaatacgcg	cccgaccttt	ctgctaccaa	ccctgtcttc	cctgttgtcc	10080
cattcaactct	ggttctccg	acggcaccgt	attgcgtcat	tgaaaggaaa	gcgagcgcct	10140
gcgggcgtg	gtcgcgcgcg	ctcagcgttt	gactccgtgc	accaggtatac	cctggggcac	10200
acgggggggt	ccgcgtggcg	ccacggggaa	gggcccagcgc	ccgagctgtct	tcccgatggc	10260
cgcgggtgg	tagacgtggg	ggtcccagcc	aatcggccctt	agaatcacct	cgggctcg	10320
ggtgcgcgaa	tggcggggega	ggtcgtgcat	caacttgacg	cgcgaggagt	ccaaaatcga	10380
acggccaaacg	acgtcgatga	ggacgatgct	ctcggttgcg	ctcagggtgt	tgacaoggc	10440
catgagcagc	gtgacctcg	cctcggtgag	gtagacgagc	aatccctcg	tgageccacag	10500
ggtgggcacg	ccgggatcga	atccgcgttt	cttcagcggcc	gcccgcacgt	catcgccacag	10560
atcgaccgac	acggcatgtc	gctcacattt	cggcgcgcacg	ccggctcgat	tcgcctccct	10620
gtcctggagc	acggcgtegt	ggtcgagotc	gaacagccgc	gtgtctcccg	gccaggccaa	10680
acggtaggeg	ccggcatac	ttcccgggc	gaggatgacg	atctggcga	tgcccgoggcc	10740
caaccccage	gtgatctgt	catcgagcca	gwgctgtcg	acctcgatgg	cgggaggcat	10800
ggcgcctca	ccggcattgc	ggcgcgcacg	ctccctcgacg	agcgtgtc	ccggcgactcg	10860
acgggcaaaag	ggatcccgga	acagtgggtt	ggaacgctcg	gtctcaagcg	cgcgattcc	10920
cggccacccaa	agtgcgtct	ggccgatctc	ttgcataatgt	tttatgaccc	ccgcctcg	10980
agatgggtta	agggttcggc	aacacgtcaa	ctcgcaacga	cgagcgctc	agcgtccgt	11040
gctggatcg	cgaagcgega	acgcgcggcc	ttgcggatcc	tgcacacgg	cgatgogatc	11100
gccattcgga	agttccatgg	ggccgatgac	gacgcctccg	gccttgccga	cgacccat	11160
cgcgggatcg	agegcgggaa	cgcgaaatg	gaacagecag	tgtgaatgga	ccccctttag	11220
ccccggccacg	tccacgacccg	agccggcgct	cggtctcg	gagcgcagg	tgaactcct	11280
gtgaacccccc	agcgcaccaa	ggtcgcccgg	atccgagacg	cgccatccga	acaggtcg	11340
atacgaggcg	gcccgtcttt	gcacgttcgc	ggcatagacg	tgctgccaga	ccacccctgg	11400
ctggagcgct	ctcgctgtt	ccggtgccgt	cgccacggcg	aaggtcgccc	ctccaggatc	11460
gcggaggatc	gwgacgcgc	ccggctcgat	cgtcgggtgg	gtcggggccga	gctgggtcg	11520
cccgccgcac	acgaacgcgc	gcaccgcgtt	atcgacgtcc	tgcacgcgc	cgtaacccag	11580
ccaatgggcg	ggtgccgcgc	ggcaatcgc	ctgctcggtc	agcggcacga	tgtctcg	11640
ggcggcgccc	tcaccgaaca	gagccgtgt	gaacgcccgt	gccgcgggaa	cgttgggtgg	11700
gcgcacttgg	agcttgaaga	acggttcat	accacgtac	ctcgatcc	ccggggggcc	11760
ggctcagggt	gtctgatgc	cgtcgaccac	cattccaa	gcctggcga	gggcgacggc	11820
ggctccacg	ccaacacgcg	tcccttgc	ctgggtcg	ttcgggtcg	agatgaaatt	11880
ggtcgatcga	gcaaaattgg	tcttggtgag	gacgcagccc	tgcacgg	atccctggcat	11940
atcggtggcc	gtgaagtccg	actcgccgag	gtccacgtca	atgaagtgg	cttcgcgc	12000

-continued

ggagcagcca	acgaaccgcg	tcttgcgtag	attcaacttc	aagaaggagc	tgttagcgcag	12060
atcgcactgt	tcgaactgga	cgtccggcat	ggttccgagt	ccactccagt	ccacgcccatt	12120
gaggcgggtg	tctttgaagg	tcacgcttcg	cagcgcgagc	ttctccggta	ccatccgcag	12180
gagatcgcat	ccctcgaata	cacaatcctc	caggcggctc	cggacccagc	ggctttcggg	12240
caacttgcac	cgccggaaacg	tgcagcgcctc	gaattccttg	ccggagagat	cagccgactc	12300
gatcgagaga	tcaaaaaacg	tgacgtcgcc	aaaaaaagtcg	ccactttcca	gagagggagt	12360
ggagcgggccc	ggcatatgtc	ctcatggctc	acacgcgagc	cggcccttaa	taccagtgcg	12420
tgcgctaggg	atccagcaca	gtcagtccta	tgtcctccaa	ccgacatatac	gtctagatga	12480
gtcaaaactta	agttgactcc	acaacacgta	tgtgccttga	atcgagcata	actgaactcg	12540
tggcgtgcgc	ggggccgaatg	ccgagtgctg	cggcctgtcc	ggaaacgcct	gcctcgccg	12600
gagacggccc	caactggggc	cgacgcgcctc	ttgtggctcg	gtggacgcag	ggcaggaaagc	12660
gtatttggcc	gaaccgcaag	ttgccccggcc	gcgaggctcg	gcaggggaac	gacgatgagc	12720
atgaacgggg	acgaagccga	gtacgttgc	ttgatcaacg	gcgaagagca	gtactcgctc	12780
tggcccggtc	accgcgaaat	tcggggcggt	tggaagacccg	ttggggccaa	gggaagcaag	12840
gaaacgtgtc	agtcctacat	ccaggaggctc	tggacggaca	tgagggccaa	atcgctacgg	12900
gaagccctga	cgcgccageaa	ctgctgatcc	cgctgcctcg	ggggctctcg	taccgcgcgtc	12960
gtctccagat	gaggattgca	gegaggccac	aaccaatgag	tacgcgcagca	gcaggagcga	13020
agccgtctta	tctcgccgggt	attgaaacgg	tgtatggtcg	acctgagctt	gaggaggttc	13080
gctacctgac	cgtggagagc	ggcgacggac	ggcagagatc	cctctatgag	ttcggtccga	13140
aggacgcgga	gaaggtcg	gtcttgcgc	cctacggagt	cactttcttgc	ctgggtggcgc	13200
gactcgcccg	gctctctcc	cagcgattcc	atgtcttgc	ttggggatca	aggggggtgc	13260
cggactccgc	catcccggt	tatgacacgg	accttgggtc	cgccgaccag	tcaaggcatt	13320
tctccgaggt	cctcaagcag	cagggttcg	aggcggttca	cttcgtcgcc	ttgtgtcagg	13380
cggegcagct	ggccgtgc	gcacccgcca	gcccgcagg	caagccgcgg	acgatgtctt	13440
ggattgcccc	gggggggtcg	ggttactcg	tggtaagtc	cgagttcgat	cgatgtgcac	13500
tgcccata	cctggagatc	gagaagcatg	gcctgttgca	cgccgagaag	ctcgccaggc	13560
ttctgaacaa	ataacaatggc	gttcccgca	cggcgcagaa	cggcggcggaa	aagctgacca	13620
tgcgcattt	ggccgaccccg	cggatgacat	acgttctc	caggtacatg	aaggcgtatg	13680
aagacaacag	gctctcgcc	aagcaatttgc	tctcgaccgc	gctcgactcg	gtgccgacgc	13740
tggccattca	ctgcccggac	gacacgtaca	gccacttc	ggagtcgtt	cagtcctcg	13800
agctgcattc	atccctcgag	cttcgcctac	tcggttaaggg	cggccatctg	cagatcttca	13860
acgacccccc	cacactggcg	gagtacgttc	tccgtttcat	cgacaccagg	gcgtcgccagg	13920
ctgcccgtcc	tgccgtggcg	ggagcgttagg	gagacaacat	gatacttccc	aacaacatcg	13980
gcctcgacga	gcccgcgcag	ctcgacggc	agatcttc	gtaccagaag	aagtccacgc	14040
tgtggtggcg	cgagcgggggg	cccaccgagt	tcctcgatcg	gcagatgcgc	cttcgcacgc	14100
cgaccggggc	ggtcagcggc	gtggactggg	ccgagtacaa	gacgtcgct	cccgacgagt	14160
atcgctgggg	cctcttcatg	gtgccgtatgg	accaggacga	gatcgccctc	ggcgaccacc	14220
gtggcaagaa	ggcggtggag	gaggttccga	gcgaataccg	cacgctgctg	ctgcagcaca	14280

-continued

tctgcgtgca	ggccgacgtg	gagaacgcgg	ccgtcgagca	gagccggctg	ctgacgcaga	14340
tggcccgag	caacccggac	ctggagaacg	tgttccagtt	cttcctcgag	gagggggcgc	14400
acacacctggc	catggttcac	cttcctgtcg	cccacttcgg	tgaggacggg	gtcgctgagg	14460
ccgaagcgct	cctggagcgg	ctgagcggtg	acccgaggaa	cccccgcttgc	ctggaggcgt	14520
tcaactatcc	gaccgaggac	tggctgtccc	acttcatgtg	gtgcttgctg	gccgacccgg	14580
ttggcaagta	ccagatacat	gcagtgaccg	aggcttcgtt	cgcccccgttgc	ccccggggcgg	14640
cgaagttcat	gatgttcgag	gaaccgcgtcc	acatcgccat	gggcgcgcgtg	ggctctggAAC	14700
gagtgctggc	caggaccgccc	gaggtcaccc	tgcgtgaggg	gacgttcgtat	acgttccacg	14760
cggggggcgat	tccgttcccg	gttgcggcaga	agtatctaa	ttattggggc	ccgaagggtct	14820
acgacaccttt	cgaaaacgac	ggctccgaaac	gtcgtggcgttgc	actcttcgg	gtctgggtcc	14880
ggaggcccgcg	gaatttcgtg	ggaagcgaat	cgcagatcg	tgcgtatcgat	gagcgtatgg	14940
gacgtggact	gaccgtcg	gaagtggaaag	gggagtgggc	gatcaacgccc	atcatgcgac	15000
gacagttcat	cgccggaaatgt	caaacgcgtca	tttgcgtcg	gaacgcgcgc	ctgcgtgcgc	15060
tggggcgtcg	cttccagtttgc	tacctccctc	acgagcgctt	cagcaggacc	tatggccctt	15120
gcgcgggtct	gccttcgac	gtggacggaa	aactgtccc	ccgcggcgcacg	gagggcggaa	15180
tgcgtcgat	cttccccaca	cctcgcaac	tgcgtggat	ccgcgtcgat	atgcgtgggg	15240
agctggctcc	cgggcgttac	tccgtgtgg	tgcgtggcgtc	cgcaacgcgg	ctgagcgcgc	15300
tggtccaggg	caggaacacg	cccaaggagc	acgaatgaaa	cgaagecgtc	ggatgttgc	15360
cgggagaaga	gcgagcgtt	cgtggggac	ggagaggggc	tgcgtatgg	cggtcaagctg	15420
cctccgtgt	tgtgtccgac	accccgaaa	gagcactcat	cacatgcgtt	gcctcatcat	15480
cgacaactac	gattcggtca	cctggatct	ggcgactac	gttgcgcaga	cgatggggag	15540
cgagccgttg	gtcggtcgca	acgaccagca	tacctggcaaa	gaaatcaagg	ccttgggtct	15600
cttcggatgc	atccgtgttt	ctccgggtcc	gggctcggttgc	accatccga	aggattcaa	15660
tgtctcgat	gacgcgtcg	agcaggatgc	gttccgggttgc	tttggggcttgc	gcctggggca	15720
tcaagggtcg	gcgttacatct	acggggggcgt	gttacttcac	gttccgggttgc	cgatccacgg	15780
caggacgtcg	accatctacc	atgcggcac	gggcgtgttt	caggactcc	cgccgagctt	15840
cgacgcggcg	agatatcact	cgctgggtcg	ggggccggag	tgcgtttcccg	cgaaacctgg	15900
cgatcccgct	cggtacggat	gcggccgtat	catgggggttgc	cggtacgttgc	gtcgccggaa	15960
gtggggcgtc	cagttccatc	ccgagtcgtat	tctgacttcgc	cacggcttgc	agctcatctc	16020
caatttccgt	gacgaggcgt	accgatacg	ggggaaagag	gttccgtcg	gccgtccccca	16080
ttcgtactgc	ggcaacgggt	tccgtcg	tgtgtccagg	cgtgaccgg	gcgcggccgg	16140
cacaccggag	cggagaagggg	aacttcagac	gttcaccagg	cggtctggcg	cgtctctcg	16200
ggccgagacc	gttttccgtgg	gcctgtatgc	gggcccggcg	cactgttctt	ggctcgacag	16260
ccagtcgtgt	agagaaggga	tatcccggtt	ctcccttcat	ggctcggtgc	cgaggaggctc	16320
gctgtgtacgt	tacggcgctg	cggtacggcgc	gtcagagggg	ggcgccggcgc	ggtacccgtgc	16380
ggcgctggag	cggggcgctcg	aaagccgtat	cggtgttcgc	cccgtggatgc	ggctgcatt	16440
cgagtttcat	ggcggttaca	tccgttcat	gacctacaa	atgaaggagg	cgtttggggc	16500
cgcgacgacg	cacaagaaca	ctattcccg	cgcccttgcgg	atgcacgttgc	agcggttct	16560

-continued

ggcgttcgac	caactcgacgc	gagaagtgtg	gctggtcgccc	atcgcgaggc	tcgaggagag	16620
cgcgagcgtc	ctcgccctgga	tggacgagac	cgccgacgct	ctgaagtctcg	ttccgcgcgg	16680
cacccgttgc	ccccagtcgg	tggggttgaa	atccatctcg	gtatcaatgg	attgtggacg	16740
ggatgactac	ttcgccgcca	tcgagcgctg	caaggagaag	atcgctcgatg	gggagtccta	16800
cgaggtctgc	ttgacgaacg	gtttctcggt	cgatctgaag	ctggatcccg	tcgagctgta	16860
cgtgacgatg	cgaggaggca	atcccgcgg	gttcggcgct	ttcatcaaga	caggcaagac	16920
ctgcgtctc	agtacccccc	cgaggcgctt	cctgaagggt	gatgaggatg	ggacgggtcca	16980
ggccaagccc	atcaagggga	cctgcgacgc	ctctgacgac	cccgccaccc	acagcacgaa	17040
tgccgcgcgg	ctggccgcct	cgaggagaag	ccggggggag	aacctgtatg	tcgtggacct	17100
gatgcggAAC	gacctcgac	gggtgtccgt	gccccggcgc	gtccatgtct	ccaatcta	17160
ggacatcgag	agttcaaga	cggtccatca	gatggtcagc	accgtcgat	cgacccgtac	17220
gccggagtgc	agectcggt	acotcctgcg	cgcggttctc	ccggggggat	ccatcacccg	17280
ggctcccaag	atccgcacga	tggagatcat	cgatcggtc	gagaagagcc	ctcggggcat	17340
ctactgcggc	acgatcggt	acotcgggt	caaccggatc	gcccacctga	acatcgccat	17400
ccgcacccctg	tcctacgacg	gcaccctcg	gaagttcggt	gccccgggg	ccatcaccta	17460
cttgcacag	ccggaggggg	agtttcagga	gatcctgc	aaggcggaa	ccatccctcg	17520
gccgattttgg	cgtacatca	atggcggggg	tgctcccttc	gaaccccgat	tgcgegaccg	17580
ggttctgtgc	ctggaggaga	agccgcgaag	ggtcattcg	gccccgggt	cgcaattga	17640
tgcagtggag	cctagcgct	gaagcctacg	tgcgtcgag	acctgc	tcgcgcgtca	17700
agcccccagg	gaccatccga	accgcgtgcg	cgccccggg	gccagtggat	gattgcgttc	17760
aacccgcagg	cggggcccag	gctgcggctc	ttctgc	cgta	ccgcgtcc	17820
aacatcttcc	gggactgggc	cgccgcgtat	cccgaggggg	tcgagg	ccgcgttc	17880
tacccggggc	gccccgtacaa	cctggcggtt	ccggcgatca	gcaactgt	cgagatggcg	17940
tcacaactgc	tggcggtat	gacgcgtt	cttggcatca	acttcgc	tttcggccac	18000
agcaatggcg	ccttgatcg	cttcgagggt	gcccgcggc	tccacgc	actgaaggc	18060
cgcacatgcggc	atcaatcttct	gtcggccaag	tccgc	actaccgaa	caacaggagt	18120
aagatcagcg	gcctcaacga	cgaggactt	ctccggcg	tccggaa	gggcgtacg	18180
ccccaggaag	tgctcgacga	cgccccggct	atgcagat	tgctccaa	actgcgcgc	18240
gacttcgcgc	tcggcgagac	gtatgtgtt	cgccccggac	ccaccctgac	gtgcgcgtc	18300
agcatccctgc	gaggcgagag	cgaccacat	gtcgacggcg	agttcgtcc	gccccgtcc	18360
gagctgacga	cgggcgccgc	gagccagtac	gcaatagat	gtggccattt	cttctgtat	18420
tcccacaagt	cgcaggtcg	ggcgctcg	cgagcggc	tgcttgat	tgtgtttag	18480
cgagaaaacg	gattccaaa	taatgaccgc	tcagaacaa	gcctccgcgt	tttcttcga	18540
tctttctac	acgacggtca	atgcgtacta	ccggacggcc	gcccgtcaagg	cgccatcg	18600
gctcggcg	ttcgacgtcg	ttggcgagaa	ggcaagacc	ctggccgaga	tgcgc	18660
ctgcaacgcg	tcgcccgcgt	gatccgc	tctctgc	ttcctcg	cgatcggtt	18720
cctcaagaat	gccccgtgat	tgttcttct	cacgcgagag	atggccctgt	ttctggacaa	18780
gaagtcgccc	ggctatctgg	gccccgt	tgatttcctt	ctgtcgccgt	acatcatgga	18840

-continued

cggcttcaga	gacctcgct	cggtgtgcg	gacgggcgag	ttgacgcgtc	cggaaaaagg	18900
ggtgtggcg	ccagatcatc	cgcagtgggt	gacgttcgcg	cgcgcgatgg	cgcgcgatgtat	18960
gtccctgcca	tccttcctgc	tcgcggaaact	ggcgaccgc	caggcgaacc	agccgcctaa	19020
ggtgcgtcat	gtcgccgcgcg	gccacggcct	cttcggcctg	gccatcgccc	agcggaaatcc	19080
gaaggcgcat	gtgacgttcc	tcgactggaa	aaacgtgcta	caggtggcgc	gcgagaacgc	19140
gacgaaggcg	ggagttctcg	acagggtcga	gttccgcccc	ggagatgcct	tctccgtgga	19200
cttcggcaag	gagctggacg	tcatccttc	gacgaacttc	ttgcatcaact	tcgacgaggc	19260
gggctgcgag	aagatcctca	agaaggccca	cgctgcctc	aaggaggcgc	gccgtgtgc	19320
gacgttcgag	ttcatcgaga	acgaggaccg	gacgtgcct	ccgcgtgcgc	ccacgttcag	19380
catgtatgt	ctcggcacga	cgcgggggg	tgagacctac	gcctactccg	atctggagcg	19440
gatgttcaag	aacacgggtt	acgatcaagt	cgagctcaag	gccattctc	ccgcgcgtgga	19500
gaaggtcgtc	gtttcgatca	agggcaaagc	gcagctctga	gcaacattca	gcacaatagg	19560
accttcctggg	agatttcgaa	tggccaccaa	attgtctgac	ttcgcgctcc	tcgactccga	19620
agacgccaac	gtcatctcc	gtcgaaacga	gacggggata	tcgctggatc	tgtccaagag	19680
cgtgggtgac	ttgttcaacc	tccaggctga	gagggcgct	gacgcacagg	cgtgtctcg	19740
ccgcgcagggg	cgettgaett	acggagaact	caaccggcg	acgaaccaggc	tcgcgcacatca	19800
cctgatcg	cgaggcgtcg	ggccggatgt	tcccggtggc	gtcctgttcg	agcgctccgc	19860
cgagcagctc	atcgccatcc	tggcgctct	caaggcgggc	gggtgttatg	tcccggtgga	19920
tccgcagtac	ccgcgcgatt	acatcgacga	gttcctgacg	gacgcggggc	cgccggatgg	19980
ggtgtcgagc	cgggcgctcg	gegagcgcct	ccgctcgggc	gaggagcaga	tcgtctaccc	20040
cgtacgaa	cagctcctgg	cgcgcgacac	ccgcgaccgg	cctgtgaagg	tgttgcgg	20100
gcagctcg	tacgatgt	acacgtcg	ctcgccgg	gtgccgaagg	gcgtcatgg	20160
gcgcgcgc	cagatcctca	actggctgca	tgcactctcg	gcgcgggtgc	cgttggcg	20220
gaacgaagt	gtggcccaga	agacgtccac	gtcattcgcc	atctcagtga	aggaactctt	20280
cgcgggatt	gtcgccgggt	tccgcagggt	tttcatcgac	gatgcgcactg	tccgcgcgt	20340
tgccagctc	gttcgtgagc	tggagcgt	gcgcgtac	cggctctata	ctttccctc	20400
cagctggcg	gcgattctct	cgagcgtgaa	tggcgctac	gagcgcctcc	gtcgctgcg	20460
ccacctgtac	atctcgatcg	agccctgccc	aacagagctg	ctggcgaagc	tccggcg	20520
gatgccgtgg	gtcacccct	ggtacatcta	tggctgcacc	gagatcaacg	acgtcaccta	20580
ctgcgaccca	ggggaccagg	ctggcaacac	gggcttcgtg	ccgatcgccc	ggcccatccg	20640
caacacgcgg	gtgttgcgtcc	tcgacgaaga	gtccggatg	gtccccgtcg	gcgcgcgtgg	20700
tgagatgtac	gtggagagcc	tgagcacggc	gcggggctac	tggggcccttc	ccgagttgac	20760
ggcggagcgg	ttcatcgcca	accctcactgc	ggaggacggt	tcgcgcctgt	acaagacagg	20820
cgacctcgcc	cgttacactgc	cggatggttc	cgtggatgtc	ctcgccgc	gggactacga	20880
ggtaagatc	cgcgggtatc	gcgtggacgt	ccggcaggc	gagaaggatcc	tcggggcgca	20940
tcccgacatc	ctcgagggtgg	cggtgtgggg	ctggccgc	ggcgccccgc	atccacaact	21000
ggtcgcctac	gtcggtccga	gggcgaagggg	ggctgcctcc	atccaggaga	tccgggacta	21060
cctgtcgccg	tccctgcgg	cctacatggt	gccgacgatc	ttccaggatgc	tggcgccgc	21120

-continued

gccacgtctt	cccaatgaca	aggtgtggatcg	gtttagccctg	cccgacccttca	aggtgtggagga	21180
gcagaccgag	gggtacgtgg	cgcctcgac	ggaaaccgag	aaggtaactgg	ccgaaatctg	21240
gagcgcacgtc	ctcagccagg	gcccggcccc	cctgaccgtc	ggcgcgcacgc	acaactttt	21300
cgaactggga	ggccattcgc	ttctcgccgc	ccagatgttc	tcgcggatcc	ggcagaagtt	21360
cgatctcgaa	ctgcccata	acaccctgtt	cgagacccccc	gtgctggagg	gttttgcgag	21420
cgccgtcgac	gcccgttgg	ccgagcggaa	cggtccggcg	cagagggtga	tcaagcatgac	21480
ggaccgcggc	caggcgcttc	cgtgtcgca	cgtccaggag	cggctctgtt	tcgtgcacga	21540
gcacatggtc	gagcagcgg	gcagctacaa	cgttgccttc	gcctgcacaca	tgcgtggcaa	21600
ggggctgtcg	atgcgggccc	tgcgcgcgc	catcaacggg	ctgggtggctc	gccacgagac	21660
cttgcggacg	acgttcgtcg	tctccgagg	cgaggagat	cccgtccagc	ggatcgccga	21720
ctccctgtgg	atcgagggtt	cgtatata	gttcgtatgc	tccggaaatgc	cgcccccgc	21780
ggcggcccac	gcgggcccac	tgttcgac	tgcgaagg	cccctgtcga	agacctcggt	21840
cctgcgggtg	acgccccgatc	accacgtgtt	cttgcata	atgcatacaca	tcatctgtga	21900
tgggtggtcg	atcgacatcc	tgcgcggg	cctctacgag	ttctacaagg	cgcccgagac	21960
gggctcgca	ccgaacactgc	cggtccctgc	aatccagtat	gccgactact	ccgtgtggca	22020
gcgtcagcag	gacctcagca	gtcacctcga	ctactggaa	aagacgctcg	agggttacca	22080
gaaagggttg	tcgcttcgt	acgacttcgc	ccggccgtcc	aacaggac	ggcgtgcgc	22140
gagtgtccgg	caccagtacc	cgccggaa	cgccacccgt	ctgtcgagg	tgagcaagag	22200
ccatcaggcg	acgggtttca	tgacgttgc	ggccagc	gcaatcg	tgaaccggta	22260
cacgggtcg	gatgtctgt	gctgtgg	cacgggtcg	ggccgtg	accactcg	22320
cgagaacctg	attggcttct	tgcata	cctcgccatc	aggctcg	tca	22380
tcccacggcc	gagacgggtc	tgcagcggc	gca	gtgtggaa	gcatgaagca	22440
tcgegacactg	ccgttcgac	acatccgtgc	ggcgc	gtgcgtgc	acagcagcca	22500
gattccctg	gtgcgggt	tggtccgc	ccagaacttc	ccgac	ctcgacgg	22560
gcaggggctc	gacctgggt	tggggagat	cgagtttgg	gagcggac	cgcccaacga	22620
gctcgacatc	cagttcatcg	gca	cgacgtgg	gtgg	atcg	22680
gatctgttc	tccgagc	cgatcc	gtc	cac	ttgcac	22740
gactctcg	gaca	actg	gggtt	ccg	ctgtgc	22800
gctcgaggc	ggtgtgtcg	gtccgggg	cg	ccgac	ac	22860
gaagagcccg	gtcgagttgt	tcaac	cg	gg	tcgac	22920
catgggcgcg	gacggaa	tgac	ctt	cc	gtgc	22980
ccgcccac	atggggcgag	gggtgg	gg	gg	gg	23040
ctcgccggac	ctgtgg	cact	ctt	cc	ttcc	23100
gctcgatccg	agctatccgc	aggat	ca	aca	atc	23160
tctggat	tcgagccgg	cg	ctt	cc	ttgt	23220
gtacctcgat	gacgcgctgg	cg	cc	cc	cc	23280
ccggagcag	ctcatctac	tca	cc	cc	cc	23340
gctcg	cc	atcg	cc	cc	cc	23400

-continued

cgggcaggac	gaggtggtgg	cgcagaagac	atccacggcc	ttcgcggtct	cgatgaagga	23460
gctttcacg	gggctgctgg	cgggcgtgcc	ccaggtattc	atcgacggca	ccgtggtcaa	23520
ggacgcggcg	gccttcgtgc	tccacacctgga	gcgatggcg	gtcacccggc	tgtacacgct	23580
cccgtcgcac	ctcgatgcca	tcctgtccca	cgtcgacggg	gcggcggagc	gcctcggtc	23640
cctcgccat	gtcatcctcg	cgggggagcc	gtgccccgtt	gagctgatgg	agaagctgct	23700
cgagaccctg	ccgtcgtgca	cggcgtgggtt	caactacggc	tgtaccgagg	tcaacgacat	23760
ctcctactgc	gtccccgaacg	agcagttcca	cagctcgggg	ttcgtgcgca	tcggccggcc	23820
catccagtagc	acccggggc	tggtgctcga	cgacgagctg	cggacgggtc	cggtgggcat	23880
catgggggag	atttacgtcg	agagccccgg	gacggcgggg	ggctactgg	ggcagccgga	23940
tttgcggcc	gagcggttca	tcccccaaccc	gttcggcgag	ccgggttagcc	gtctctaccg	24000
tacggggcgt	atggcgcgt	gccttgaggaa	tggctcgctg	gagttcttgg	ggcgcggggga	24060
ctacgaggtc	aagatccgtg	gccatcgctg	ggacgtccgc	caggtcgaga	agatcctcgc	24120
gagccaccccg	gaagtcctcg	agtccgggg	gttggggctgg	ccacgggggg	cgaagaaccc	24180
tcagttgctt	gcctacgcgg	ccacgaagcc	ggcccggtccc	ctgtcgactg	aaaacgtgcg	24240
ggagtacctg	tcggcccgct	tgccgacgta	catggtgccca	acgctctacc	agttcctgcc	24300
agcgctgccc	cgectgcccc	atggcaagct	cgaccgcttc	gggctgccc	atcacaagaa	24360
agtcgagggt	ggeggcgtct	acgtcgcccc	gcagacgcgg	acggagaagg	tcttggcg	24420
actgtgggccc	gagtgcctca	agcagggcga	catgcccgg	ccgcagggtt	gccgcttgca	24480
caacttcttc	gacctcggtg	ggcactcgct	gtcgccaat	cgcgtactga	tgcaggtgca	24540
gcccatttc	ggggtcagcc	tgggcatca	tgcgttgc	ggttctccgg	tgctgaatga	24600
cttcggggcg	gccatcgaca	aggcgctcg	gaccgaggag	ccagggcagg	aaggttcgag	24660
cgaaggcacga	gaggtcgctg	cgaaggacac	ctccgtgctc	gtgccgtct	ccaccacgg	24720
gacgctgccc	agectgttct	gegtccatcc	ggtgggggg	caggtccatg	cctaccgcga	24780
gctcgccca	gcgatggaga	agcacgcag	catgtacgcg	ctccagtcgg	aggggccccg	24840
tgagttcgac	acaatcgaga	ccttggcg	cttctacgc	gatgcgatcc	gcggggctca	24900
gccccacggg	agctaccgtc	tcctcgatg	gtttcttgg	gggctcatca	ccctggcgat	24960
tgctcgcgag	ctggagcacc	agggtcgccg	cgtggagta	gtggccctcg	tggattcaaa	25020
gccaatcccc	cggttggcgg	gtgagcgccg	ctggcggtcg	ctgatcgccg	cgacgaacat	25080
cctggcgccg	atgcgggggc	gcccgttctc	gtcgcccg	gtcgatgct	ccggaaagat	25140
cctcgagtcg	cggcgatgga	cggaggatc	cttcgactcg	gagggggat	cgcggttgg	25200
ggagttggct	cggcacttcg	gcatcaccgt	cgcgcagag	tcatcgagg	accttcctgg	25260
cgggttcaag	accacgaatg	actacttgc	gctgttgc	ggcttca	cgccggcg	25320
cggggccggag	acgttacctc	atgaggcttc	agagcgggtc	ggagccac	cgaacgacga	25380
cacggggcgag	tggggggacg	cgtggatcg	caaggccctg	cgggcgaaca	tgcgtgaggt	25440
gccaggcaat	cactatactg	tcctgcagg	agagaacgt	ctgcaactgg	cgggggggat	25500
cggccaa	ttgtctgcga	tcgacaactc	ggtggtaacg	aggacgcgg	cttcgtgacc	25560
ctttcgccct	cgggttgc	aaggcgtat	tcaccggca	ggaaattccg	25620	
tgcagatgga	caatcgagag	atcgacccca	cccaatcgcc	gcgcacgcgt	gatgcgtaca	25680

-continued

cgggcggtacc	accagccaag	gccgagatac	cgtcgacgt	ctgtgtgcac	caactgttcg	25740
agttgcaggc	ggacaggatt	cccgacgcgg	ttgcggcgag	ggcgaaaaac	gagtccctga	25800
cctaccggga	gctgaacttc	cggcgaatac	agctcgcccc	gtaccttgtt	gcgaaaggcg	25860
tggtcccgcg	aggctcggtg	gccgtgtga	tgaaccggac	ccctgcgtgt	ctggtctcac	25920
tgctcgccat	catcaaggcg	ggcgccgggt	acgttccgg	ggacgcggga	ttgcccggca	25980
aacgggtgga	ctacattctg	acggacagcg	gcccgcac	cgtctgacc	gacagggaga	26040
cgcggtaact	cctcgacgag	ccgcggtcgg	cttcgcacgt	cgtcatcgac	gtggatgatc	26100
catccatcta	ttcggggcgag	accagcaacc	tcgggctcgc	tgtcgatccc	gagcagcagg	26160
tctactgcac	ctacaccccg	ggttcgcacgg	gccttcccaa	aggcgatgt	gtccagcacc	26220
gcccgcgtat	gaactacgtc	tggggggcga	agaagcagta	cgtcaccgac	gcccgtcgaga	26280
gttttgcctt	gtactcctcg	ttgtcgatcc	acctcaggt	cacctccatc	ttcgatccgc	26340
tgtatcccg	acgctgcata	gatgtgtacc	cgacccctggg	cgaggacgtc	cccgtcatca	26400
accgggtact	ggaggacaat	aaggctcgat	tctgtaaat	cacgcggccc	cacccggccc	26460
tgctcaggaa	cacggaccta	tgcggaaagcc	ggctgaaat	gctcatctg	ggaggagagg	26520
acctccggac	ggagacggcg	ggggacgtcc	acaagcggt	ggacggccgg	gcccgtatct	26580
acaacgagta	cggccccacg	gagaccgtcg	tggggatcgat	gattcaccgc	tacgaccccg	26640
cgggtggatct	gcacgggtcg	gtgcgcattg	gagttggcat	cgacaaatcg	cggtatctact	26700
tgctcgacga	ccgtcggegt	cccgtaaagc	caggagaggt	tggcgagatt	tacatcgagg	26760
gcccgcgtgt	gaccctgggg	tacaaggaca	agcctcaat	cacggggggc	cacttcatct	26820
ccaatccgtt	cgtggaaaggg	gagcgggtgt	acgcccgtgg	cgacccctggc	cggtgtatcg	26880
agcgcggcgc	gctcgatctc	ctcgccggga	aggatggca	gatcaagct	cgggggatcc	26940
ggatcgagct	ggggcgagatc	gagagcggcc	ttctctctca	tccggggatc	aaggatgca	27000
tcgtcgatcc	gaccaagacc	gcccgcgtcc	aggccgcgc	tcagctacc	tactgcacca	27060
agtgtggatct	ggcgatcgac	ttcccgaaata	cgacgtactc	cgccgagggg	gtctgcaccc	27120
actgcgaggc	cttcgcacaag	tacccgcacg	tcgtcgacga	ctacttcacg	acgtatggatc	27180
agctgcagtc	gatcgatcc	gagatgaaag	gcatccacaa	ctcgaagatc	gactgcacgc	27240
tggcgctcag	cggcgaaaaa	gacagcacgt	atgcactctg	ccggatgtac	gaaaccgggt	27300
cccggttatt	ggccttcacg	ttggataacg	gctacatctc	ggaggaggcg	aagcagaaca	27360
tcaaccgggt	cgtggccgg	ctgggagttg	atcaccgcata	tctctcgacc	ggccacatga	27420
aggagatctt	cgtcgacgc	ctgaaggcgc	acagcaatgt	tgcaacggc	tgctcaaga	27480
ccatctacac	gtttcgatcc	aacctggcg	aggaggtcg	cgtcaagcac	gtggatcgat	27540
ggttgtcaaa	gggcacactg	ttcgaaacgc	gcctctcgcc	cttgcgtatcg	acgtcgaccc	27600
tcgacaacgc	cgccttcag	aagagcctcg	tcgacgcgcg	aaagatctac	catcgatcg	27660
atgtatcgat	gagccgcctg	ctcgacacta	cttgcgtcaa	gaacgacaag	gtcatcgaga	27720
acatcagggtt	cgtggacttc	tatcgatctt	gccacgcac	ccgtcaggag	atgtacgact	27780
acatccaggaa	gagatcgagg	tggggccaggc	cgattgacac	cgggcggtcg	acgaaactgtc	27840
tcctcaatga	tgttggatcc	tacgttccaca	acaaggagcg	caggtaccac	aactactccc	27900
tgcctacag	ctgggacgtc	cggatggccc	acatcagcag	ggaagaggcg	atgagagac	27960

-continued

tcgcacgactc	ggccgacatc	gacgtcgaga	gggtcgaggg	catcatcaag	gaccctggct	28020
acgagctgaa	cgaccaggtg	gtgggctcg	cggaagccca	gctggtcgcc	tactatgtct	28080
ccgcggagga	gttccccgg	tccgacatgc	ggcagttcct	gtcggagatt	ctgcggaggt	28140
acatggtacc	caggtcggtc	gtccagctgg	acagcatccc	gctgacgccc	aatggcaagg	28200
tcaatcgta	ggeccctgecg	aagcctgacc	tgcttcggaa	ggccggcacc	gacggacaag	28260
ccgcaccccg	aacaccggtg	gagaaggagt	tggcggagct	gtggaaggag	gtgctcgagg	28320
tcgacagtgt	cgggatccac	gacaacttct	tgcagatggg	cgggcactcg	cttccggcgc	28380
tcatgctgt	ctacaagatc	gacagtca	tccataaagac	gatcagcatc	caggagttct	28440
cgaagggtccc	caccatcgc	gegcctcggg	cgcatctcg	cagtgcacacc	gaagegggtgc	28500
cgccaggggct	gggcgagggtc	gtcgatcaga	gwgccgcctgc	atacaggggta	taacgtgcgc	28560
ttcgtcaactg	tcaatggta	ggactcgcc	gtttgctcg	tgctggatcg	cggaactccag	28620
ttcggagatg	gcctgttgc	gacgatgttg	tgtgttggcg	gtgcgcgggt	cgacttcccg	28680
gaacactggg	cggggcttgc	tgagggtctgc	cgccggctgg	gaatcgaatg	ccggacatc	28740
cggcgcgaag	tgaccgctgc	gatcgccagg	tgggggtgc	ccaggggggt	cgccaaagctc	28800
gtcgtaactc	ggggaaagcac	ggagcggggaa	taccgggtcg	ccccctccgt	ccggcgcgaac	28860
tggatcctca	ccatcacgga	tgcggcgaag	tatccgctgg	cccacgagga	cagaggcgtg	28920
ggcgtaaaac	tctgccgaac	gctcgctcg	ctcgatgacc	cacagtcggc	cgggttgaag	28980
cacctaacc	ggttgccccaa	ggtgctcg	aggagggagt	gggacgacga	gtaccacgt	29040
ggcctgctga	ccgaccacgg	tggcacctc	gtcgagggtt	gcacgagca	cctgttcc	29100
gttgcgcacg	gagccttgc	gacgccc	ctgactgcgt	gcccgtgtcg	cggtatcg	29160
cggcagaagg	tcctcgacca	ctcgaaggca	atcgggatcc	gctgcggatgt	aaccaccc	29220
aagctacgag	atctcgaaca	cggggacag	gtcttc	cgaactctgt	ctacgggatt	29280
gtgcgggttgc	gtacgcgt	tggatagg	taccggatag	gtccgacac	ggcgcgttt	29340
ctgaaagacc	tttgcacagg	tgtgtactt	tgaggctcc	tggaggacgg	tatgaccgg	29400
aatttggata	gcgcggcgt	gcccgtatc	atcacgtcg	gccagcagcc	agcggcgt	29460
gaggattggg	tctcagcgaa	ccgtga	ctcgagggc	agttgaccga	gtgttaaggcc	29520
attctcttcc	gaggcttcc	tagcagga	gttctcg	gcattgc	cagcttcc	29580
gaccggcgcc	tcaactatac	ctatcggtc	acgccccgt	cggacctgg	gcagaac	29640
tacacggcga	cggagatccc	gaagcagctg	tgcattcc	agcattcg	gaacgcctac	29700
cagcgcgtact	ggccgatgaa	gctgctgttc	cactgcgt	agccggc	caaaggcc	29760
cggacgcctt	tggccgacat	gacgaaggta	acggcgtat	tcccccgg	aatcaaggag	29820
gagttcgcc	ggaagaaggt	cgggtacgt	cggaactacc	gtgctgg	ggtatctgc	29880
tggaaagagg	tgtttggaa	gagcaacaag	gcagagg	agaagttct	cgtcgaga	29940
ggcatagagt	accactggac	cgagggtgc	ttgaagacca	tccagg	ccagggttc	30000
gcttcgcac	cactcacgg	tgagacgatc	tggttcaatc	aggccc	acctgttcc	30060
tccgcattgg	accggccttc	acagaagatg	atgcttc	tcttc	ggccggc	30120
ccgcgcact	cgtacttcg	agacgggtcg	ccatcg	gacgtc	cgtacc	30180
cgtccgc	acgaacgc	caagg	tctcg	ttcgag	ttgc	30240

-continued

atcgacaaca	tgctggtttc	tcacggacga	gatccgttcg	aaggcagccg	gcgggtgctg	30300
gtctgcatgg	cggagccgta	ttcggaagtc	cagcggcggg	gattcgcgg	ggcaacgaac	30360
tcagggcgct	cgtaagggcc	gggctcgatg	gtggtgtcgc	tttcgcgtt	gcccggaaaca	30420
gtcggaggag	tttcttgc	cgaatttcga	tgctgctgga	gggagagctg	gaggggtacg	30480
aggacgggtt	ggaactgcgg	tacgacttcc	cgccggacgtc	aataggcg	tggagagcgg	30540
cgacgttcca	gcatagctac	ccgccccgagc	tggcgagggaa	ggtggcgagg	ctcagccgg	30600
agcagcagtc	cacgctgttc	atgagcctgg	tggcgagcct	ggcggtgtt	ttgaaccgg	30660
acacggggccg	cgaggacgtg	tgcacatcggg	cgacgggtggc	ggggccgagcg	caggtggggg	30720
cgttggggga	tctgagcggg	tccaccgtcg	acatccccc	gctgaggctg	gaccctgtcg	30780
gacgtcccgag	ccttcacgag	gtgctgcegg	ggacgaaggc	ggtgggtctg	gagggattcg	30840
agcacgaggg	gttgcggcgtc	cagattccct	tggtgccgg	ggtgggtgagg	caccagaact	30900
tcccgatggc	gcgtctggag	gggtggagtg	aggggggtgga	gctgaagaag	ttcgagctgg	30960
cgggggaaag	gacgacggcg	agcgacggagg	actggcagtt	cttcggggac	gggttcctcgc	31020
tggagctgag	cctggagttac	gcggcgccgg	tgttcagcga	gaagacggtg	aagaggatgg	31080
tggagccacca	ccagcggatg	ctggaggccgc	tggtgccgg	gctggaggag	gtgcggctgc	31140
acgaggtgcg	gctgctgacg	gaggaggagg	aggggctgca	cgggagggtt	aacgacacgg	31200
cgcgagagct	ggaggaggegc	tggagcctgg	cgagacgtt	cgagcgtcag	gtgaggagaga	31260
cacggagggc	ggtggcttgc	gttggcgtgg	aggtggcgac	gggagggcac	tgcggccga	31320
cataccggca	gctgacatac	cggcagctga	atgcgcgagc	caaccaggt	gcacggaggc	31380
tgagggcaet	gggagtgggc	gcccggacac	gggtcgagg	cttggcgtac	cgctcgccgg	31440
agctgcttgt	ggegatgtcg	gcatattca	aggccgggg	ctgctacgt	ccgggtggacc	31500
cacagtaccc	gggaagctac	atcgagcaga	tactggagg	tgcggcaccc	cagggtgt	31560
tgggcaagag	gggaagagcg	gacgggggtc	gggtggatgt	gtggctggag	ctggatggag	31620
cgcacggct	gacggacgag	gacgtggcg	cacaggaaga	gggagagctg	gagggggcgg	31680
agaggccgga	gagccagcag	ttggcgtgt	tgtatgtacac	gtcggtgtcc	acggggcagac	31740
cgaagggggt	gatggtgcgc	tacagccagt	tgcacaactg	gctggaggcg	gggaaggagc	31800
gctcgccgct	cgacgtgtgg	gaagtaatgt	tgcagaagac	ggcaatcg	ttcgcggtgt	31860
cggtaagga	gctgctgagc	ggattgtcg	cgggagtgcc	gcaggtgtat	gtgcccggaga	31920
cgctggtaa	ggacacgcgt	gacgtggcg	aggagataga	gccccggcg	gtgacgagaa	31980
tccacactgt	gccatcgac	ctggggagac	tgcggaggg	ggcgggggaa	gaggcgaagg	32040
ggctgaggct	gctgaagttac	gtcataaacgg	cgggggaggc	actggcgcag	gggggtgagg	32100
aggaggccgag	gaggaagctg	ccggggggcgc	agttgtggaa	caactacgg	tgcacggagc	32160
tgaatgacgt	gacgttaccac	cccgccagcg	aggggggagg	ggacacggta	ttcggtccaa	32220
tcggggggcc	catcgcaac	acgggggtgt	acgtgttgg	cgacgtgtt	aggcgggtgc	32280
cggtggggggt	gatggggggag	ttgtatgtgg	acacgtgtgg	gatggggagg	gggtatttgg	32340
gccagccagc	gctgacggcg	gacgtggctca	tgcgcaaccc	gtacgcgagc	cagccggag	32400
cgaggttgta	ccggacgggaa	gacatggta	gggtgctggc	ggacggctcg	ctggagtacc	32460
tggggaggcg	agactacgag	ataaaggtga	gagggcaccc	ggtggacgtg	cgccaggtgg	32520

-continued

agaagggtggc	gaacgcgcac	ccagccatcc	gccaggcggt	ggtgtcgaaa	tggccgttgg	32580
gctcgagcaa	cgcgcagttg	gtggcctacc	tggtgccgca	ggcgccccgg	acgggtggggc	32640
cgcggcaggt	gagggattac	ctggcgagg	cgctgcccgc	gtacatgggt	ccaaacgttat	32700
acacgggttt	ggaggagttg	ccgcccgtgc	cgaacgggaa	gctggaccgg	ttgtcgctgc	32760
cggagccgga	cctgtcgac	agccgagagg	agtacgtcgc	gccccacggc	gagggtcgac	32820
ggaagctggc	ggaatcttc	ggcaaccc	tggggtcgaa	acatgtcgcc	gtccacgaca	32880
acttcttcag	cctcgccggg	cactccctcc	tggctgcccc	gctgatttcg	cgcatacggg	32940
cgacccctccg	cgtggaaatg	gcatggccaa	cggtgttcg	gtccccacgg	gtggagccgc	33000
tcgcccccca	catcgaggag	aagctcaagg	acgagtctcg	ggtccagtc	tccaaatgttgc	33060
tgccgggtcg	gccccacggc	gagattccgc	tctcttaccc	gcaggagccg	ctgtgggtcg	33120
tgcacgagca	catgaaggag	cagccggacca	gtataacat	cacctggacg	ttgcacttcg	33180
ccggcaaggg	tttctcggtg	gaggcggtgc	ggacggccctt	cgatgagctg	gtggccacac	33240
acgagacact	cgccacgtgg	ttccagggtgg	gggaggggac	agagcaggcc	gtacagggtca	33300
tcggggagcc	ctggtcgtat	gagctgcgc	tgagagaggt	ggcggggacg	gagggtgacgg	33360
cggcaatcaa	tgagatgtcc	cgacaggctt	tgcacttgc	agcggggacgg	ttgctgacgg	33420
cgggggctt	gagggtggcg	gaggatgac	acatccctgt	cagcaacatc	caccacatca	33480
tcacggacgg	ctggcgttcc	gggggtatgc	tgccggagct	gagggtgg	tacgaggcag	33540
cggtgcgggg	gaagagacgc	gagctgcgc	cgctgacgt	gcagttacggc	gactatgcgg	33600
tgtggcagag	gaagcaggac	ctgagcgc	acctggcgta	ctggaaagggg	aagggtggagg	33660
agtacgagga	cggggtggag	ctgcccgtac	acttcccg	gacgtcgaa	agggtgttgc	33720
gagggcgac	gttccagttat	agctaccac	ccgagctgc	gaggtggat	gcggagctca	33780
gccggggagca	gcagtccac	ctgttcatga	gcctgggtgc	gagcctggcg	gtgggtgtga	33840
accggtagac	ggggccgcac	gacgtgtc	tcgggacac	ggggggggcc	cgagggcagg	33900
tggagcttgg	gagcttccatc	gggttcttca	tcaacatcct	cccgctgagg	ctggacactgt	33960
cgggcgctcc	gagcttccac	gaggtgtgc	ggaggacaa	ggcggtgg	ctggagggtat	34020
tgcagcacca	ggagttgcgc	ttcgagcacc	tgcgtggc	gctgaggccg	cagcgggacaa	34080
cgagccagat	tcccttgggt	ccagttgggt	tgagggacca	gaactcccg	atggcgcttc	34140
tggagggctg	gagtgagggg	gtggagctga	agaagttcga	gctgggggg	gaaaggacga	34200
cgggcgacga	gcaggactgg	cgttccatc	gggacgggtc	ctcgctgg	ctgagcttgg	34260
agtacgcggc	ggagctgttc	agcgagaaga	cggtgaggag	gatgggtgg	caccacccgc	34320
gagtgcttgg	ggcgctgggt	gaggggctgg	aggaggggct	gcacgagggt	cggctgtga	34380
cggaggagga	ggaggggctg	cacggggat	tgaacgacac	ggcgccgagag	ctggaggac	34440
gctggaggct	ggcgaggacgc	ttcgagctgc	aggtggggaa	gacaccggag	gcgggtggctt	34500
gcgttggcg	ggagggtggcg	acggggggcc	actcgccggc	gacataccgg	cagctgacat	34560
accggcagct	gaatgcgcga	gccaaccagg	tggcacggag	gctgaggac	ctggaggatgg	34620
gcgcggagac	acgggtcgcc	gtcttgcgc	accgctcgcc	ggagctgtct	gtggcgatgc	34680
tggcgatatt	caaggccggg	ggctgtatcg	tgccgggtgg	cccacagttac	ccgggacact	34740
acatcgagca	gatattggag	gatgcggcac	cgcagggtgg	gttggggcaag	aggggaagag	34800

-continued

cggacgggggt gcgggtggat gtgtgggtgg agctggatgg agcgcaacgg ctgacggacg 34860
 aggcgcgtggc ggcacaggaa gagggggagc tggagggggc ggagaggccg gagagccagc 34920
 agttggcggt tttatgtac acgtcggtgc ccacgggcag gccgaagggg gtatggtgc 34980
 cgtacagcca gttgcacaac tggctggagg cggggaaagga gcgctcgccg ctgcgcgtg 35040
 gggaaatgtat gttcagaag acggcaatcg cgatcggtgt gtccgtgaag gagctgtga 35100
 gggattgtgt ggcgggagtg ggcgcaggta tgggtccgga gacgctggta aaggacagcg 35160
 tggcgctggc gcaggagata gagcggtggc ggggtgacgag aatccacctg gtgcacatgc 35220
 acctgggagc actgctggag ggggcggggg aagaggcga ggggctgagg tcgctgaagt 35280
 acgtcataaac ggccggggag gcactggcgc aggggggtgag ggaggaggcg aggaggaaagc 35340
 tgccgggggc gcagttgtgg aacaactacg ggtgcacgga gctgaatgac gtgcacgtacc 35400
 acccccgagc cgaggggggga ggggacacgg tatccgtgcc aatccggggg cccatcgca 35460
 acacgggggt gtacgtgttg gacgagcagt tgaggcggt gccgggtgggg gtatggggg 35520
 agttgtatgt ggacagcggt gggatggcga gggggatattg gggccaccca ggcgtgacgg 35580
 cggagcgctt catcgcaac cctacgca gccagcccg agcgagggtt taccggacgg 35640
 gagacatggt gagggtgtcg gggacggcgt cgctggagta cctggggagg cgagactacg 35700
 agataaaggt gagaggcgc acgggtggacg tgcgccaggt ggagaaggtg gcgaacgcgc 35760
 atccagccat ccgcaggcg gtgggtcgat gatggccgtt gggctcgacg aacgcccgt 35820
 tggtggccata cctgggtgcg caggcggcg cgacgggtgg gccgcggcag gtgaggatt 35880
 acctggcgga gtgcgtgcac gctacatgg tgccaaacgt atacacgggt ttggaggagt 35940
 tgccgggtt gccgaacggg aagctggacc ggctgtcggt gccggaggcg gacctgtcga 36000
 gcagccgaga ggagtacgac ggcacccacg gcgaggctga gccaagactg gcccggaaatct 36060
 tcggcaacct cctggggctc gaacatgtcg gctccacga caacttcttc agcctcgccg 36120
 ggcactccct cctggctgcg cagggtgtct caaggattgg caaggagctt ggcactcaga 36180
 tctcgatcgcc cgatctgttt caaaggccca cgattgaaca gctctgtgag ctgattggag 36240
 gactggacga tcagacccag agggagctcg ccctcgctcc gtcggggaaac accgaggccg 36300
 tgctctcggtt cgcccaagag cgcatgtgtt tccatgcacaa cttcgatcgat ggcacccct 36360
 acaacacgccc agggctcgac cacctgacgg gtgagctcgat tgcggggcgctt ctagaaaaagg 36420
 ccatcccgccg ggtcatccgt cgccacgacg ccctcgccgac gaatttcgtc gagaaggacg 36480
 ggggtgtgtt ccagttgggtt gggacggaaag aacgcttccg cctgaccgtg actcccatcc 36540
 ggcacgagag cgaggctcgat cggctcatgg aagccgtat ccaaaacggca gtcgatctgg 36600
 agcggggagtt gatgtccgg gcttatctt accgggtcgat cccggggaaat cactacctgt 36660
 tcaccacccat ccatcacatc gcctcgatg gctgggtcgac atcgatcttc taccgtgagc 36720
 tggctcgatc ctacggcccg tttctccggc gcaagacag tccgctgccc ggcgtggaaa 36780
 tctccatca ggactatgcg cgatggggcgc gggccatcc ccaaggacgat gtgttggccg 36840
 aaaaactgag gtactggccg cagcggtgtt cggggcgatcg gcccctcgat cttccgacca 36900
 cctaccatcg gcccggccatc cagatgtcg ctggcgccgt cgtgaacttc gagatcgatc 36960
 gctccatcac cgagcggttg aagacgctgt tgcggagatc gggcaccacg atgtacatgg 37020
 tggctcgatc ggatgttcc gtcgggtgtgc agcgctactc cggtcaggac gacatctgc 37080

-continued

tcggctcccc	cgtggcgaac	cggggtcaca	tccagacaga	agggctgatc	ggcttggtcg	37140
tcaacacctt	ggtgatgagg	gtggatgccc	ccggaaatcc	ccgtttcatc	gacctgtcg	37200
cgcgatttca	acggacagcc	atcgatgtt	acgcgaacca	agaagtgc	ttcgagaaga	37260
tcgtggacga	cctgcaggc	gcgagagaca	cggcccgatc	tccgctcg	caggcattc	37320
tcaacttcca	caacacgct	cctcaatcc	agctggaa	ctcaggggtg	accctcacgc	37380
ggatgccgtt	gcacaacggc	acggcca	atcgatctc	atcgacgtc	gcggagacga	37440
gcgcgggtct	aacgggattc	gtggagtac	cgacggatct	gttcagcg	aacttcatcc	37500
ggcggatgtat	cgggcaccc	gagggtgtc	tggacg	cggtcg	ccgcgggcgc	37560
ctatccatga	gttgccactg	ctcacccggc	aggatcagtt	ggacactactg	tcgcggagcg	37620
gccacacagc	ccccgcgggt	gaacacgtcg	agttgatccc	tcatacgtt	gagcggcg	37680
tccaggagag	ccctcaagcg	attgcctgg	tctgcgg	cgagcgc	accta	37740
cgctcaaccg	ccgggccc	cagattgccc	gcgcctgc	cgccgc	aggatcg	37800
acacccctcg	cgggcttgc	ggggggcg	ccatcg	ggctcg	gtccttggca	37860
tcttgaaggc	gggggggtgc	tacgtgc	ccaa	tgcacccac	ctctcgccc	37920
acgacgtctt	gtatgagtc	aagggtgc	atctgttgc	cgagtc	cgctgggg	37980
gactgccgtt	cgatgaccag	gaaatcctgc	tctggatac	ccccgeggac	ggtgaagg	38040
acaaggctgt	tgcgtacgg	gaggagcc	ctgac	cttgg	ctcaactcc	38100
agtgc	tttgcgtc	gtacgtcaac	ttcac	ccctgg	ggcgcc	38160
tccgc	ccatgg	ggcgctgg	cgccggat	ccgc	cacagtc	38220
ccgc	cgta	tttgcgtc	aaggcgcc	tcacgtc	cctgggg	38280
tcc	agtg	cggt	ggcagc	gc	atcctcg	38340
cct	cgt	cgt	gtcg	cg	tcgtcc	38400
ccg	act	cgt	agcc	atcg	tgaaagg	38460
acac	ccct	ttc	atcc	ttgc	gtcg	38520
tcc	gggt	act	gg	gtcaac	tatgg	38580
agg	gggg	gttgc	ggct	tcgtcg	ggac	38640
ccg	act	cc	ggcc	ccat	cccc	38700
ac	ct	gttgc	caac	gtgg	atccc	38760
a	act	gtac	cgcc	ac	ccac	38820
cc	cc	cc	ggcc	ttc	ggcc	38880
ag	ac	ggc	ctc	ggct	cgac	38940
gg	gg	gttgc	cc	cgat	ccat	39000
gt	gt	cc	cc	cg	cgat	39060
cc	gg	gttgc	cc	cc	cg	39120
aa	gg	gttgc	cc	gg	cc	39180
ac	at	gttgc	cc	gg	gg	39240
tc	gac	cc	gg	cc	gg	39300
ac	gttgc	cc	gg	cc	gg	39360

-continued

aacgcggccca	ggtcggactg	cgagacaact	tctttgatct	gggcgggcac	tcagtgccgg	39420
ccatccaact	ggtgtccgtg	agccggaagc	acctggaggt	cgaagtcccc	ctcagctga	39480
tcttcgaatc	gccccgtcctg	gaggcgtatgg	cgcgcggcat	cgaagcgtctg	caacagcagg	39540
gccgcagcgg	cgcgggtgtcg	tcgatccatc	gggtggagcg	gaccggaccg	ctgcctctgg	39600
cgtacgtgca	ggagaggctg	tggttcgtgc	acgagcacat	gaaggagcag	cggaccagct	39660
ataacatcac	ctggacgttg	cacttcgccc	gcaagggttt	ctcggtgag	gcgttgcgg	39720
cggccttcga	tgagctggtg	gccagacacg	agacactgctg	cacgtgggtc	cagggtgggg	39780
aggggacaga	gcaggccgta	caggtcatcg	gggagccctg	gtcgatggag	ctgcccgtga	39840
gagaggtggc	ggggacggag	gtgacggcgg	caatcaatga	gatgtcccg	cagggtttcg	39900
acttgagagc	gggacggttg	ctgacggcgg	cggtcctgag	ggtggcggag	gatgagcaca	39960
tcctcgtcag	caacatccac	cacatcatca	cggacggctg	gtcggtcggt	gtgtatgtc	40020
gggagctgag	ggagttgtac	gaggccgogg	tgccccggga	gcgagcggag	ctgcccggc	40080
tgacggtgca	gtacggcgcac	tatgcgttat	ggcagaggaa	gcaggacactg	agcgagcacc	40140
tggcgtactg	gaaggggaag	gtggaggggg	acgaggacgg	gttggagctg	ccgttaagact	40200
tcccgccgac	gtcgaatagg	gctggagag	cggcgacgtt	ccagtatacg	taccaccccg	40260
agctggcgag	gaaggtggcg	gagtcagcc	gggagcagca	gtccacgctg	ttcatgagcc	40320
tggtggcgag	cctggcggtg	gtgttgaacc	ggtacacggg	ccgcgaggac	ctgtgcac	40380
ggacgacggt	ggggggcga	gcccgggtgg	aactggagag	cctcatcggt	ttcttcatca	40440
acatcctccc	gctgaggctg	gacctgtcg	gcccgtcgag	ccttcacag	gtgctgcgg	40500
ggacgaaggt	ggtgggtctg	gagggattcg	agcaccagga	gttgcgttcc	gagcacctgc	40560
tgaaggcgct	gaggccgcag	cgggacagca	gccagattcc	cttggtgc	gtgggtgt	40620
ggcaccagaa	cttcccgtat	gcccgtctgg	agggctggag	tgaggggggt	gagctgaaga	40680
agttcgagct	ggggggggaa	aggacgacgg	cgagcggagca	ggactggcag	ttcttcgggg	40740
acgggtctc	gctggagctg	agctggagt	acgcggcgga	gctgttc	acgc gagaagacgg	40800
tgaggaggat	ggtggagcac	caccaacgag	tgctggagac	gctgggtgg	gggctggagg	40860
aggggctgca	cgaagtgcgg	ctgctgacgg	aggaggagga	ggggctgcac	gggaggttga	40920
acgacacggc	gcccggcgac	gaggacgctg	ggagcctggc	ggagacgttc	gagcgtcagg	40980
tgagggagac	acggaggcg	gtggcttgc	ttggcgtgg	ggtggcgcac	ggagggcact	41040
cgcggccgac	ataccggcag	ctgacatacc	ggcagctgaa	tgccgcgagcc	aaccagg	41100
cacggaggct	gagggcactg	ggagtggcg	cgagacacg	ggtcgccgtc	ttgagcgacc	41160
gctcgccgga	gctgctgggt	cgatgtctgg	cgatattcaa	ggccgggggc	tgctacgtc	41220
cggtgaccc	acagtacccg	ggaagctaca	tcgagcagat	actggaggat	ggggcaccgc	41280
aggtgtgttt	ggcaagagg	ggaagagcgg	acgggggtgc	ggtggatgt	tggctggagc	41340
tggatggagc	gcaacggctg	acggacgagg	cgctggcg	acaggaagag	ggagagctgg	41400
agggggccgga	gaggccggag	agccagcgt	tggcgtgtt	gatgtacacg	tcgggtcc	41460
cgggcagacc	gaaggggggt	atggtgcgc	acagccagtt	gcacaactgg	ctggaggcgg	41520
ggaaggagcg	ctcgccgctc	gagcgtgggg	aagtaatgtt	gcagaagacg	gcaatcgct	41580
tcgcccgtgc	ggtgaaggag	ctgctgagcg	gattgtggc	gggagtgccg	caggtgtatgg	41640

-continued

tgccggagac	gctggtaag	gacagcgtgg	cgctggcgca	ggagatagag	cggtggcgaa	41700
tgacgagaat	ccacctggtg	ccatcgacc	tgggagca	ctgggagggg	gcggggaaag	41760
aggcgaaggg	gctgaggctcg	ctgaagtacg	tcataacggc	gggggaggca	ctggcgacgg	41820
gggtgaggga	ggaggcgagg	aggaagctgc	cggggcgca	gttgtggaa	aactacgggt	41880
gcacggagct	gaatgacgtg	acgttaccacc	ccgcgagcga	ggggggaggg	gacacggtat	41940
tcgtgccaat	cgggcgccccc	atcgcaaca	cgcgggtgt	cgttgtggac	gagcagtta	42000
ggcgggtgccc	gggtgggggt	atgggggagt	tgtatgtgg	cagcgtgggg	atggcgagg	42060
ggtattgggg	ccagccagcg	ctgacggggg	agcgcttcat	cgcgaacccg	tacgegagcc	42120
agcccgaggc	gaggttgtac	cggacgggg	acatggtgag	ggtgtggcg	gacgggtcgc	42180
tggagtacct	ggggagggcga	gactacgaga	taaagggtgag	agggcacccg	gtggacgtgc	42240
gccaggtgga	gaagggtggcg	aacgcgcata	cagccatccg	ccaggcggtg	gtgtcgggat	42300
ggccgttggg	ctcgagcaac	gcgcagttgg	tggcttacct	ggtgcggcag	gcggggcgca	42360
cgggtggggcc	gcggcagggt	agggattacc	tggcggagtc	gctgcagcgc	tacatggtgc	42420
caacgctata	cacgggtttg	gaggagttgc	cgcgggttgc	gaacgggaag	ctggacccggc	42480
tgtcggttgc	ggagccggac	ctgtcgacg	gccgagagga	gtacgtcg	ccccacggcg	42540
aggtcgagcg	gaagctggcg	gaaatctcg	gcaacctct	ggggctcgaa	catgtcgccg	42600
tccacgacaa	cttcttcaac	ctcgccggc	actccctcct	ggcttccac	ctgattcgc	42660
gcatacgggc	gacttccgc	gtggaaagtgg	cgatggccac	ggtgttgcag	tccccacgg	42720
tggagccgt	cgcggccac	atcgaggaga	agctcaagga	cgagtctcg	gtccagctct	42780
ccaacgttgt	gcgggtcgag	cggacgcagg	agttcccgct	ctcctacctg	caggagggc	42840
tgtgggttgt	gcacgacac	atgaaggaga	acgggaccag	ctataacgga	acgatgggc	42900
tccggcttcg	gggtccctcg	tcaatcccc	cgctcagggc	cacccac	gatctggtgc	42960
cccgtcacga	gagcctgegc	accgttcc	gggtccccga	aggccgcacc	acgcgggtgc	43020
aggtgattct	tgattcgatg	gatctggaca	tccggtcc	cgatgcaacc	gaggecgaca	43080
tcatcccggt	catggatgag	ctggcggtc	acatctacga	catggagaag	ggtccgtgt	43140
tcatggttcg	cctcttgegg	ctggcgagg	actcccacgt	tctcctgtatg	gggatgcata	43200
acatcgctca	cgacgcattgg	tacacgttca	atgtgtatg	tcgcgatata	aacctgtct	43260
actcggcgca	cgtgacggga	atcgaggcac	ggcttccgc	gcttccatc	cagtacggc	43320
acttctcggt	gtggcagcgc	cagcaggact	tccgtcacca	cctggactac	tggaagtcca	43380
cactggcgca	ctacccggat	gatctcgac	tgccgtatga	ctaccccg	ccgcggcagcc	43440
ggacatggca	cgcgacccga	ttcaccttc	ggtatccgga	tgcactggcg	cgcgcgttc	43500
ccaggttcaa	tcagtcacatc	cagtcgacgc	tgttcatgg	gctgctgacc	agcttcgcga	43560
tcgtgctcag	gcaactacacc	ggccgaaacg	acatctgcac	cggaacgaca	acggcgccggc	43620
gcgcggcgtt	gggtgacccc	gacatcagcg	agctcatgaa	tcgagcgaag	aagagcgtct	43680
tggcgcctt	cgagcatcaa	gctctgcgt	tgcgcgtct	cctcagtgcc	ctcaacaaac	43800
agcgtgacag	cagccatata	ccgctgggtc	ccgtcatgtt	gcccacccag	aactcccg	43860
cggcgatgac	cggaatgtgg	gccgatggtg	tggacatgga	ggtcatcgag	cgcgacgagc	43920

-continued

gcacgacgccc	caacgagctg	gacctccagt	tctttggcga	cgacacccatc	ttgcatgctg	43980
tcgtcgagtt	ccccgcgcag	ctcttcctcg	aggtgaccgt	ccggcgctctg	atgcagcgctc	44040
accagaaggt	catagagttc	atgtgcgcga	cgctgggggc	tcggtaaagc	tgctcgtag	44100
gcattccacc	ggetcccacg	acgagccggt	ggccggcgac	gtcgaactcc	gcgtcggtgg	44160
ccccggtgtg	ccggacgctc	attccagcga	gagcgttga	gtgctggcgc	ggtggctgctg	44220
gaccggccag	gagaagtacc	cgggcgctat	ggggcccgatc	cgccaggagg	gccccctggtt	44280
cgccatcccc	ttgacctgcc	cgcgccgtgc	ccggtcggcg	cgattcgcc	tctggctcg	44340
ggaactagac	cgtcaggac	agtcctcca	catggtcg	tcgtatctgg	cgcccg	44400
ccacgtgctg	gtcagcg	tcgttc	gagagccacg	cgccaa	cg	44460
ctcaacaacg	ccatctggc	tcaaccgg	tt	cctgaacggc	ctggactcc	44520
cctggctcac	ggg	ccggcagcg	ac	tcgtc	acggccggc	44580
cgagatgccc	ttcgtggagg	accgtgag	g	ccggc	ccca	44640
ggccgatg	gttgc	tcc	acc	ttcc	ggcc	44700
ggacgcg	ct	ctcg	atgacg	ggatgc	gggg	44760
ggagctcc	cagccgttcc	tg	cgact	ccgg	gggg	44820
gagggtcgat	cacatctg	tgc	tttgc	gagcc	gac	44880
gtcggttctc	gc	ccgtt	gac	gg	cc	44940
gtgcgg	ac	cc	gg	cc	cc	45000
gctctcgat	gg	cg	tc	tt	cc	45060
cgggagcggg	gg	act	cc	cc	cc	45120
gac	gg	gg	cc	tt	cc	45180
tgcatca	at	gc	cc	cc	cc	45240
cgc	ct	cg	cc	tt	cc	45300
accgc	g	gg	tt	cc	cc	45360
cgcgg	cc	gg	cc	cc	cc	45420
c	tc	tc	cc	cc	cc	45480
gcac	cc	tt	cc	cc	cc	45540
gac	cc	ttt	cc	cc	cc	45600
gacc	cc	cc	cc	cc	cc	45660
cat	tt	cc	cc	cc	cc	45720
gtcc	cc	cc	cc	cc	cc	45780
att	gg	gg	gg	gg	gg	45840
cgc	gg	tt	gg	gg	gg	45900
ctc	gg	gg	gg	gg	gg	45960
cgc	gt	gg	gg	gg	gg	46020
gtc	tt	cc	cc	cc	cc	46080
gtc	cc	cc	cc	cc	cc	46140
agt	ac	cc	cc	cc	cc	46200

-continued

cgaactcaga ccggacgatc gtgtctatac gccgtccccg accttctcg cctatggatt 46260
 gaacaacttg ctgtgtccc tcagcgcggg ggccacgac gtgatctcg tccctcgaa 46320
 cggccggatg ggtgtcgggg agatcctcgc gcggaacgaa gtaaccgtgc tcttcgggt 46380
 tcccgccgtc tataagctga tcatctcgaa gaacgaccgg ggcctgcggg tgccgaagtt 46440
 gagattgtgc atctctgtgc gcgagaagct gccattgaag ctgtatcggg aggcgcgaaag 46500
 cttttcaggc gtgaacgtac tggacggat cgggtgcacc gaagccatct cgaegtcat 46560
 ctcgaaccgg gagagttatg tgcgcgggg gtgcacgggc gtgggtggcc cggggttcga 46620
 ggtcaagctg gtgaacccgc gtggcgagct ctgcccggg ggagaggtgg gcgtccctcg 46680
 gtttcggggt ggggcgctga ccggggcata cgtgaacgcc cccgatctga cagagaagca 46740
 cttcgtggac ggctggttca acacccagga catgttcttc atggatgcgg agtacoggct 46800
 ctacaacgtg ggcagggtcg ttccgtgtcat caagatcaat tccctgcgtt tctcaacggg 46860
 gatgtatggag tcggtcctgc aatccatcc agcggtaag gagtgcgcg tctgcgtcg 46920
 cattgacgac tacgggttgc caaggccgaa ggcattcatc gtcacccggc agcatgagcg 46980
 ctcccgagccg gagtcgagc acttgcgggc cgagttgcgc gttctgtcgaa aagagaagct 47040
 tgggaaggac cactacccgc atctgttcgc gaccatcaaa acgctcccc ggacccctcag 47100
 cgggaagctg atgcggtecg aactcgcgaa gtcgtcacc agcggggcccc catgaatcca 47160
 aagttccctcg gaggcctggg ggcagggggtg tgcatecgct ctttgcctca gacggtcatg 47220
 cggaccgtgc cgctcaagga cgccggctcc ggcgacaggc cttgttagac ttgctgcca 47280
 tgcgtactcg cacaagaac ttcaatgtca tggaaatcga ctggatgcct tcctccggc 47340
 agttcaageg acgcgtcccc cgacccagc gggcggcaga ggcgtgcgc gccggacgg 47400
 gatgcttgcgat ggtatcccg gaccgcgggg atcctcgct cttcgatcgcgttgcgc 47460
 gcttcattca cgatccggcg gggggctgg actatgcgaa gcccgtgcgg aaactcgctg 47520
 atgagggttcg cgagaccctcg ttctgtgtca tgcgcgtgtc cttcgaaagg ccgcgcacca 47580
 ccacgggttg gaaaggcttc atcaatgacc cgcgcatgga tggcttttc cacatcgagg 47640
 agggcatgga gcggggaegt cgcttcgtgc tgcacgtggc cgaggagggt ctacccgtg 47700
 ccacccgggc gctggacccc atcgctcgatc agtactacgg cgacccatttcc tccctggacgg 47760
 ccattggcgc ggcgcacccgc gagtcgcaga cgacccggcga gatggcgcc ggccttcca 47820
 cccccatggg cttcaagaac ggcacggacg gtcgtcgatc tgcggccgtc aatggcatca 47880
 tctccgttc acacccgcac agttccctgg gggtgagcga aatggcgcg tgcgcacatca 47940
 tccgcacgcg cggcaacacc tacggccacc tgggtgtcg gggcggtggt gggggccca 48000
 actacgacgc cgtgtcggtg ggcgttgcgg agaaggcgct tgccaaggcc aggctaccca 48060
 ccaacatcgat ggtggactgc tctcacgcca actcctggaa gaatcccgag ctccagccgc 48120
 tggtgatgcg ggacgtggcg caccagattc gcgaggccaa ccgcgtggcgt gtcgtcgatc 48180
 tgcgtcgatc gtcgtcgatc gcaaggccatcc ggcggacccgt tgcaactgc 48240
 gctacggctg ctccgtcact gatgcgtcg tggactggaa gaccacccgg aagatgcgt 48300
 acagcgcgcgca cgaggagctg ctccacattc tgcggccgtc caagggtggc tgacgcccga 48360
 gggttgaggt gtgggtgtttt cccagcaggc gttcccccggc caggtggcgg cggcgcacgg 48420
 ctcggatcac cgcacggcgt tgagctttac ggagagctcg ggcgcggac tgggtgcgt 48480

-continued

gcccctgatt	caaaggtcga	tgcgccagacc	caccccgccc	tggatggtag	gtggagcgac	48540
ggcgatggga	ggcgtcacct	gctcgcccat	gcccggggcc	ggcaggtga	gcgcgaagcg	48600
gaactcgcca	ccccgctggc	catagttggc	ggcgatgaag	gcctcgatgc	tgagatagcg	48660
cagggccccc	tgcgtcacgt	ccaaccgtgt	gatgaaagaa	cggtcagaga	ggttgccag	48720
gttggacagg	atgaagttgg	tgttgtccca	ggatcccgga	ccggacagga	acgcgttagac	48780
ggcgccgtag	tgcggccga	ggtagaaaggg	ctgatactgg	ccctggagga	tgaggttaggg	48840
gtaggccagc	gagccgggat	agcccatcga	attgtagaag	tactcgacgc	ccacgggtggc	48900
ggtgtcgctc	tccgagtagg	cgaacgtcca	ggtcgcgcgg	ccgctcacct	gcccgggtgt	48960
accctcgggg	tagtacgcct	ctatggggag	cgcgccagg	tcgggaggca	tgccgcatt	49020
gccctggAAC	tgaccggagca	ggtctccgag	ggagacacct	tggggcatgc	ggaacatggg	49080
cgcattccgag	cccttcttga	gggcgagttc	gcccgtatgt	tcgatggggc	cgagcccgga	49140
ggagaggtcg	agcccgaaagc	ggggcttgcg	gcccgtttgg	gacacggcat	cgacgcccgg	49200
tcccgatgg	ccgagcacca	cctcgccgcg	agcagcgccc	ccgacgcggc	cgagegtatt	49260
ggccggggccg	gcgttgcga	gcaggccgag	gacgtagaag	tcccgacctt	tgcctccca	49320
ggcatgtgc	atcttgagca	tggtcgcgc	ggtgcgcgtg	tccaagaggg	cgageggatc	49380
cctgcgttgg	ggcgagagga	agtccggtggg	gttccagaag	cgcgagggtc	cccaattcac	49440
gtgtcgcttgc	ccgacgggtga	tgaagagctt	gtggccagg	tcgaagcgca	gccaggcctg	49500
atccaacagc	acgaccggat	ccgcagegac	gttggagggt	gacgtgtcg	tggggacgat	49560
gccgagggag	cccgcccttc	gggtcgatc	gaaggtgagc	cgccgtcgca	cgaaaggccgc	49620
cagecgctcg	gtggggcggg	catcgaagta	gcccgtccacc	agcatgggg	cggagaaggt	49680
ggtgttgcgt	aaggacaccc	cttcgttggc	ctgtgagtag	gcccgtcgat	agaaggccgg	49740
gccgatcttc	agcgatctt	cgacggccctc	ctcggtgtcg	aaggcgttgg	tggccgacgg	49800
gccaccgagc	gcctgcgcgt	cccggtctcg	gggcgtggcg	gagggttgt	cgggggccgc	49860
ggtggccgcgc	gcgtctgtg	cgccgggggt	ggacgcgggg	gtgtcaccga	agagggaaact	49920
ctcgccgggg	cggggcgcat	cggccggagc	gggttcgtc	tctggaggt	cgccgcgcga	49980
gagggtcgccc	tgcgtggac	gtccctggc	gagcgcgggc	agcgcggcga	gggacgcggc	50040
caggggccagg	gagggtcgcg	tgcgtatcg	cttttgcgt	cgaaccaggc	cttggtaag	50100
atgttctct	cgagcgagcg	cagggtccacg	ctttcacga	cgtacgtcggt	ggagttggtc	50160
ttctccaccc	cgtcatagaa	gcgcacatcc	tcgggttacc	agacgtccgc	cttcttggac	50220
tcgtgttgc	gtttcatcca	cttggggaaag	taggagggtc	gcatcaggcg	gccggaaagg	50280
gcgaacttct	ggcgcttgag	gtgttgcgtt	gtgtccttct	ccacccacag	gtgtaccacg	50340
gggttaggcga	cgtccacgtt	cggttcggcg	gtgaggacga	gttccaggt	ggtaacttg	50400
ccgagtttct	cctcgccctc	gaacttgcga	tcgagtcct	cgccaggcg	cgactcgatc	50460
aagtccggcgc	ggcggtgtc	ggtgcggccg	atacgtcact	gtcggtcg	ccgggtccac	50520
ttgcgggtgt	tccgggtcgta	gttccagagg	ttcttgcaca	gccgcaggta	gcccttgcgc	50580
gcctcgccct	tgggttgggt	catgaggatc	atcagctgtat	ccttctcgatc	gcgcgggtag	50640
acgacggccct	cgcgcacgac	gtctgttttg	tccttctccct	tctgctcgat	atacaccagc	50700
gacttgttagt	cgcggccgtt	cgctgggg	ttgtcgagcg	tctccaggag	cttcttgcac	50760

-continued

tcggcggggt	cggtgaggtc	cgcgcgagcg	gtcgagcggg	ccagcagcag	cgcgccgaac	50820
agggcgccga	ggagggttgcg	cagggtcatg	gtcgtaaccc	gatgtggtgc	atcgccgtga	50880
tgggcttcat	ccgcgcggcg	aggaaagagg	aatgagcga	gatgaaggtg	gtgcacagcg	50940
tgtatgaacgc	gatggcttc	atcaccgatc	cgggcttac	gatgagggtgg	agcttgcgg	51000
agaggatgaa	gagctggacg	ggcacgggca	cggagggtgc	cacggcggtt	atgagcaggc	51060
acacgcccatt	gcccacgagg	gcccacccac	tggtgcggag	cagtccgagc	acgagcgct	51120
ccaggaggaa	catcaccaggc	acgtaccaggc	gtgcgtatgc	gatggcgccgc	agggtgccga	51180
tttccgggt	gcgctcgegg	atggcgatcc	acagggtgtt	catgatgccc	accgegatga	51240
tgtatgagcag	cacgaagatg	aggacgcggc	tgagggcgctc	catgcgcac	acggtccact	51300
tgtatgaagga	gatctcgcc	tcccagttgg	tgtatgtccag	cttctgc	gtccaggcct	51360
cgcgggtgac	ggtctggaaac	ttoatgaaga	aggcccgggg	gtcatgtcc	agcacctgat	51420
aacccaactc	gggcagacgc	ttgttagaggc	gcccgcgcac	gctggggatg	gcccgcgt	51480
ccttgagggtg	gacatgagg	gcccgggtgg	agtccctcg	cagctggtag	aggcgccgca	51540
gggtggcggt	gggcaccaag	acgttgaagg	aactcagcat	gcccacgttgc	gcccgcgt	51600
ccaccacacg	taegtccacg	gtgttgcgt	tcccgcgc	ggtggacgc	gagagggtga	51660
cgctgtcacc	cacccgtacc	tcgagccgc	tcgcgcgc	gtcgaagagg	aggagggtat	51720
tgggttgcgc	caggcttcc	aaccgcac	ccgcac	cggatgc	ccag	51780
tctcgccgc	taegtgcgt	ccgcgcattc	ccgtctgcac	ggagccagac	tcgcgcacca	51840
acttgaccca	gcccgcgt	cgctggacgc	agaagtccag	ctcggggact	tccttgcgc	51900
gctgctcgag	cagttgggg	taggagg	tcac	ccacgggc	agactggcc	51960
tgtagaagcc	agccacgttgc	acgtgc	ccgt	ggtggggac	cgagacatcg	52020
tgtccttcat	gcccgtggac	aggccatg	gatg	ggatggc	acaccggc	52080
tggcgccgc	cacgagaacg	gtacggcg	tgtgggt	cagg	ttgcgc	52140
ggaggagctg	ttgcgtgg	tcactcg	gtctgc	cctgg	gagg	52200
gtcgcgaggt	acgcggggta	gaagg	tgg	ggag	ggcc	52260
gcccacga	ggttgcac	gtgg	ggact	ggaa	aggagg	52320
tagagcgct	cgttgcgc	ggggatgc	acgttgc	gcat	gtggcac	52380
ccatggcg	ctccac	gccaagac	agccccag	ccacgtt	caccac	52440
atgctcagca	cgaacgc	ctgcgc	atggcc	gggtgc	ctcgcc	52500
cgctgcagcg	tggccat	catcg	cgat	cgcc	atcg	52560
atgaagacgg	cgaagt	cacc	atgg	gac	cgact	52620
gaggccttct	gccaggagat	gtccgc	ggtagttcg	cgtcg	ccgc	52680
agctcgccca	gggtctgc	cagttctcc	ggatgttca	gcagaacc	ggtgc	52740
accacgcgc	tttgcattc	ctgtcg	tacac	ccgg	aggcg	52800
agcttctgg	cgagccgc	gagttgttgc	tcctcg	tctgg	ccgc	52860
gccaccacgc	aggcgctgc	ctgcgc	aagagcgc	tctcg	ccgc	52920
acctgctgca	ccccgcgt	cttctgc	ccgcgc	cggc	ttct	52980
agatagccgt	acagctcg	gaagg	acatc	agg	ttgagg	53040

-continued

gcggacttct	ccagccccgtc	gaactggtag	gtgccgtaga	tcttcacgtt	cacgctctgc	53100
acatagccgg	tgcgcgagaa	tgcggtgatg	gtgaggtcgt	ccccgatgcg	gatgcggtag	53160
aggtcgagca	gcgtcgccag	ctcgaggtag	aactgctggt	agcgcgtgtc	gaagttggcg	53220
tcatccatgg	tgaagaaggc	gggcagtagc	ttgcccaggt	ccgtctccctg	gctgeccagc	53280
acgcgcgttga	gcccgtccac	ggcctgttcc	gtctttaggt	cgtcgagctg	gaagaggatc	53340
tcccgctct	gggtctggtt	ctccttacc	cagcgttgaa	gttgcggatc	categgatg	53400
gtcttgcgtt	tggttatcagc	cgccttccttgc	atgagatcca	accgggtgcgc	cgtcttcagc	53460
ttgaagtctgt	tctcgtaggt	gaacttggag	agcatcatgc	cgcggtgccc	cgggggcacc	53520
ggcggtgcct	ccacgtcg	catgcggtag	aaggcttct	ggaagttgac	caggtaggtg	53580
cctacatagc	gcagggacaa	catgtcccc	tccgtcatat	acggggcgat	gcggttctcc	53640
aggaactcga	gcgagtcgaa	tggcttcctg	tgcgaaatgcg	cccagaaggc	ctcggaacgg	53700
gcgggggcca	tggactccgc	gtccgcgggg	tccgtggct	tgcgtcgat	gattccctg	53760
cgcgcgttca	tatcctccctc	gagcaagggt	atgatgtgac	gcacatgcgc	ctggaggctg	53820
tggatctgc	cggcgagttc	gggtgtgtcg	ccctgtgtcg	ctttcttgc	gagggtgcgc	53880
aggcgccca	aggtcaggtc	gatgggtttt	cccgagttga	tgaacgtggc	gcccgtgccc	53940
atgggcacca	ccgtcttac	gttgggtgc	tgcgtacca	gttgcgttgc	gcgcgagaag	54000
tcatccageg	cgtcaggtc	cggttcgcgg	cccatctgcc	cgaagagcga	gagctgtcc	54060
tggagtgccc	ccgagtagac	ctggagggtgg	ccggcgacgc	tgccgataat	gctgeggctc	54120
atcgccctgt	ccacgctgtc	gacgaggagg	ccgccccacca	ccaccagcac	gtgtccgaag	54180
aagatgtgc	ctccgatgag	gagggtgatc	ctgctcacga	acaagttgcg	cagggccact	54240
tggagcagga	gcttgagttg	gcccattagt	ggccccctc	gctcaeggcc	atgaccttct	54300
gggactcgcc	cggcgtgatg	cggtcgagga	tcttccctc	cgccaggcgc	accacggcgt	54360
tggcggtgg	catcaccttgc	ggtcggtgg	tggagaagat	gaagggtggt	ccctcttgc	54420
gtttgagctc	cttcatcagg	tcatgtatgt	tctggccgg	gacggagtcg	aggttggcg	54480
tgggctgtc	ggegagcacc	agcttggcc	gggtgaegag	agcgcgcgc	acggccacgc	54540
gctggcgctg	gcctccagac	agtcattgg	ggcggtgttt	ggcgtgttcc	tccaggccca	54600
cctgtccag	cacgtcgtc	acgcgcgtgc	ggcgctcgga	ggcggtgagc	ttgcgtgc	54660
gcagcagggg	gaactctacg	ttctggaa	cgctgagcac	cgagacgagg	ttgaagct	54720
ggaagatgaa	gccgatggtg	tgcagccgca	agtgggtgag	ctgcccgtcg	gtgagcttct	54780
tgggtctctg	gccatccacg	ctcaccacgc	ccgaggagc	cgtgtccacg	cacccgtatg	54840
gattgagcgc	cgtcgcttgc	ccactgcccc	atggggccgc	gatggagatg	aactctcccg	54900
ggtacacctc	tagcgtc	cctcgagg	cgggcacctg	cacccatccc	agggagtagc	54960
tcttggtaac	ctcggtgagg	gagacgtcg	gctgggtgt	gccggggagg	gcagtgcac	55020
ggctcatgt	tgttggatc	cttcccgaga	aacggaggga	tgggtgggg	gacgcgtgg	55080
aggggggcgc	ctcggtgtgg	gcgtgcgcgc	gacgagggtg	atggcactgg	gtattgaatt	55140
cgcagatgcg	cggctccccc	tggtattccc	ccacccgggc	aaaagttgcg	cgcttgc	55200
actactggcg	tcaagacatt	gagtcaacgc	cgaaggagag	cgcattccaa	aagaggcagc	55260
gtccatggag	cgaaggcagc	ggcgactgtgg	gcatgcgc	agagggaaa	acagggtcg	55320

-continued

taggacagag gaatcgaacc tccggggac atgtctccat gccccccacc ggtttgaag 55380
gctgggtgtgg tcagtggtt tctccctcgg agattgcac tggttccact cggtgtatc 55440
ccagggacgt aataggacg taatccgaa tccgatgggt gcagcatgcc gcagaagttc 55500
gtggggaaagt ggaagggcgg gcggtcaag ctgcgtcgatg gtccgaaggt gtggctcctc 55560
gagaagatgg tctccgggac ccggttctcg gtctccttgg cggtctccaa cgaggaggac 55620
gcccgtggccg agctggccct gttccggcgc gaccgggacg cctacccggc caagggtgaag 55680
gcccacaggt cgaggaaagt ccaggcatcc actgttagccg gggcagttcc tctgtcgaaa 55740
gatgtggggc ctccgctcga tgccgattct gtccgggagt tccctccgaca cttgacccag 55800
cgggggcga cggagggtta ccggcgggac gcccgaacct acctgtcgca atggggccgag 55860
gttctggccg gaagggacct gaggatccgc agcctccctcg agttgcgcgg cgcctggc 55920
caatggccca cggccaggaa gatgcggatc atcacgtcta agagtttctt ctcgtggctg 55980
agggaaagagg atcgccctcaa ggctgctaa gaccccacgt tgccctcaa ggtgcgcggc 56040
gcccgtcgccg agaaggggag acgggccaag gggtattcga tggcccaagt ggagaagctc 56100
tacgcggccca tcggctccca gacggtgagg gacgtgtgt gtctggggc caagaccggc 56160
atgcacgact cggagatcgc ccgcctggca tcgggcaagg gggaaactgcg cgtcgtaat 56220
gacccctccg gcatcgccgg tactgcgcgg tttctgcaca agaaccggcg cgttacatc 56280
ctcagttctgg atgcccaggc cttgtctgcg ggcgcggc tccagggtcg gggcaggccg 56340
cccatcagga acaccgtccg ggagtccatc gggtatcgct cggcgcgcatt tggcagtcg 56400
cccatccatc ccagcgagct ccgcacacgc ttcaccaccc gggccacgaa tgaggccag 56460
gtcggtgggg caacccgggg cggagtgcca ctgcgtcg tttgcctcggt tcttggccat 56520
cagtccacac gggcgaccaa gaagttctat gacgggacccg aaattcccccc gatgtatcacc 56580
gtcccgctca agctgcacatca tccacaggac ccagcggtga tgcaagtcgag gcgtaactgc 56640
tcgcggacc cctgtcgatc gagagaggca gaggcgtag acgtcaggc catcaacccgt 56700
gagggtacacg tggagacgtc cggggctctt ccccgacact cttcgaggt tgatttctgt 56760
tgctccctcg attccctcc ggctctctgt cgctggcgct cctgtccact accaccgaaa 56820
tctctgcggc tcttccctgt gacgagtgcg agtccggag cctgcgcac gacgtccccg 56880
ctacgcggagg gggaaaacca cccgtgggtgt gtctcggtcc aggtctccccc attcatattcc 56940
gttcgactc cgcgcctccaa cagaagttcc tgaggattca ggatcggggc tggttcgagg 57000
atggggctt gggccagcag acgctcgatc tgactctca cgacaacctg gtggctggga 57060
agcgatctga agtggagggtg tgcttcggcgtt atggtgccgc cccggcgtagc gcttccttcg 57120
tgctccggcg ctgaggcgag tgacccgcac tgattcaggat cctcttcaac cccggtaccg 57180
ctcgccac cggtagagct gggtgaggga gttagtccagc aacgattcgc acgacgcgc 57240
gttagtggta gcccgcacaa acggcaacca cacacgggttgcgacacgcac cctggccctc 57300
gtcgagtttgc tggcgaggtt tccacttgcg cccagggttgcgacacgcac cctcgcccaa 57360
gtacgcgcacca atggcgccca cccgtcgccgtc gtcgtatgtgc tgccgcgtcgacacccctcg 57420
gaagtccctca tgccagaact ggttagtccac gtcacttgaga gactcgccggc tggctcgaa 57480
gacggaggcc accttcgtgt gcatcagcgc cccagggttgcgacacgcac ccttcgtat 57540
ctcgtagcg cgctccaggt ttccacatc cggatcgccgc cgcgtatccac cacgtcgag 57600

-continued

aggagtggcg	ctacatccgg	gtggaagcag	ggctcaacgg	gagcgagcgc	ggcgctacgc	57660
tcgtgcaggg	ttcgcagcac	cgtgtcgaag	cggaggtccg	gccggaggtg	aacgtgcgcg	57720
cgcgcctgtg	cgtgccgtgc	ctcgccgccc	gcaagaatccg	cagcggtggg	ccacgtcacc	57780
aggaggatgg	agccattggg	cagttcctcc	acccggtgag	ctggcgtgga	cagcatgcgc	57840
tcgcggccca	cggcttccac	caacttgggg	ccgaagacgt	tgagccagaa	gatctctgtag	57900
attctgtcga	acccgtctct	ccgtgcggtc	cgcgcattcgc	gtccaaaatc	ggcgcacact	57960
gccaacgccc	tgtcagccac	gctgtgggt	gcccgcgtgag	tgaccgggta	gcaagaggcc	58020
caggtgcgtt	ccatattctac	gaattgggg	cagcgctctt	tctccgcgaa	gcgggtgagc	58080
ggttgcaccc	tagtcattac	gtccaaaagcg	ggcggaaagcg	gcccggaaatc	gagatgcagc	58140
gacatctcca	gtgtcggccg	ctgtgtcggt	tagagccagg	tgtctgtgct	tgttcatcg	58200
cgcgcgtctt	ccagagcctt	ccagatattt	gctcgggagt	atttgagtcg	ccgcctgcca	58260
ctgacgactt	ccggcatcca	atcgccctgca	tattcctcca	gcccctggaa	aatggctcg	58320
agaactttct	caagcgcgc	ctggggatca	agcgccaccc	aaaaagttag	ccggagactg	58380
tcctccgact	tcacgtcacc	aagccccagg	accttcattt	aaacaggacc	tccactcccg	58440
gaactgcctt	ctcagt					58456

<210> SEQ ID NO 2						
<211> LENGTH: 213						
<212> TYPE: DNA						
<213> ORGANISM: Cystobacter velatus						
<220> FEATURE:						
<221> NAME/KEY: misc_feature						
<222> LOCATION: (1)..(213)						
<223> OTHER INFORMATION: CysA						
<400> SEQUENCE: 2						
atgagcatga	acggggacga	agccgactac	gttgcattga	tcaacggcga	agagcactac	60
tcgtctggc	ccgtgcaccc	cggaaatccg	ggcggttgg	agaccgtgg	gcccgggg	120
agcaaggaaa	cgtgtcagtc	ctacatccag	gagggtctgg	cggacatgag	gcccggaaatcg	180
ctacgggaag	ccctgacgcg	cagcaactgc	tga			213

<210> SEQ ID NO 3						
<211> LENGTH: 954						
<212> TYPE: DNA						
<213> ORGANISM: Cystobacter velatus						
<220> FEATURE:						
<221> NAME/KEY: misc_feature						
<222> LOCATION: (1)..(954)						
<223> OTHER INFORMATION: CysB						
<400> SEQUENCE: 3						
atgagtatcg	cagcagcagg	agcgaagccg	tcctatctcg	cgggtattga	aacgggtatg	60
gtcgaacctg	agcttgagga	ggttcgttac	ctgaccgtgg	agagcggcga	cggaaggccag	120
agtaccctt	atgagttcgg	tccaaaggac	gcccggatgg	tctgtgggttt	gcccgccttac	180
ggagtcacct	tcttgctgtt	ggcgccactc	gcccggctcc	tctcccaatcg	attccatgtc	240
ttgatgggg	agtcaagggg	gtgtccggac	tccggccatcc	cgggtatgta	cacggacatt	300
gggctcgccg	accagtcaag	gcatttctcc	gagggtctca	agcagcagggg	cttcgaggcc	360
tttacttcg	tcggctgggt	tcaggcggcg	cagctggcccg	tgcgtccac	cgccagccg	420

-continued

cagggtcaagg	cgcgggacgat	gtcttggatt	gccccggcg	ggctgggtta	ctcgctggc	480
aagtcccgagt	tcgatcgatg	tgcaactgccc	atctacccgg	agatcgagaa	gcatggccctg	540
ttgcacccgg	agaagctcg	cagggttctg	aacaatacaca	atggcggttcc	cgcgacggcg	600
cagaacgcgg	cggaaaagct	gacgatgcgc	catttgcccg	acccgcggat	gacatacgtc	660
ttctccaggt	acatgaaggc	gtatgaagac	aacagggtcc	tcgccaagca	atttgtctcg	720
accgcgcgtcg	actcgggtgcc	gacgctggcc	attcactgccc	gggacgcacac	gtacagccac	780
ttctcgaggt	ccgttcagct	ctcgaagctg	catccatccc	tcgaggttcc	cctactcggt	840
aaggggcgcc	atctgcagat	cttcaacgcac	cccgccacac	tggcggagta	cgttctcggt	900
ttcatcgaca	ccaggggcgctc	gcaggctgccc	qctctcgccg	tggcgggaaqc	qtag	954

<210> SEQ ID NO 4
<211> LENGTH: 1380
<212> TYPE: DNA
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(1380)
<223> OTHER INFORMATION: CysC

<400> SEQUENCE: 4

atgatacttc ccaacaacat cggcctcgac gagcggacgc agctcgacg gcagatctcc 60
tcgttaccaga agaagttcca cgtgtgggtgg cgcgagcggg ggcccaccca gttccctcgat 120
ccggcagatgc gccttcgcac gcccggggg gcggtcagcg gcgtggactg ggccgagtag 180
aagacgatgc gtcccgacga gtatcgctgg ggctcttca tgggtggcgtt ggaccaggac 240
gagatcgcc tccggcgacca ccgtggcaag aaggcgtggg aggagggttcc gagcgaatac 300
cgcacgcgtgc tgctgcagca catctgcgtg caggccgacg tggagaacgc cgcgcgtcgag 360
cagagccggc tgctgacgca gatggcgccg agcaacccgg acctggagaa cgtgttccag 420
tttcttcctcg aggagggggcg ccacacctgg gccatggttc acctctctgtt cgcggacttc 480
ggtgaggacg gggtcgtcga ggccgaagcg ctcttggagc ggctgagcgg tgaccggagg 540
aaccggcgct tgctggaggc gttcaactat ccgaccggagg actggctgtc ccacttcatg 600
tgggtgttgc tggccgacgc ggttggcaag taccagatac atgcagtgac cgagggttcg 660
ttcgccccgt tggccggggc ggcgaagttc atgatgttgc aggaacccgtt ccacatcgcc 720
atggggcgcgg tgggtctggc acgagtgctg gccaggacgc ccgagggtcac cctgcgttag 780
gggacgttcg atacgttcca cgcggggggcg attccgttcc cgggttgcga gaagtatctc 840
aattattggg cgccgaaggt ctacgacctc ttccggaaacg acggctccga acgctcgaac 900
gaacttctcc gggctgggtt ccggaggccg cggaaatttcg tgggaagcga atcgcagatc 960
gttcgcatacg atgagcgtat gggcgacgga ctgaccgtcg tggaaagtggg agggaggtgg 1020
gcgatcaacg ccatcatgcg acgacagttc atgcggaaacg tgcaaaacgtt cattgtatcgc 1080
tggaaacgcga gcctgcgagc gctggcggtc gacttccagt tggatccccc tcacgagcgc 1140
ttcagcagga cctatggccc ctgcgcgggt ctggcccttcg acgtggacgg aaaactgttc 1200
cccccgcggca cggaggccgaa gctgcggcag taccccccac cacctcgca actcgcgaac 1260
gtccgcgtcg tggatgcagcg ggaggtggctt cccggggcagt actccctcgat gatgcggcccg 1320
tccgcgcacgc ggctgcggcgc gctggtccag ggcggaaaca cggccaaaggga gcacaaatgaa 1380

-continued

<210> SEQ ID NO 5
<211> LENGTH: 2199
<212> TYPE: DNA
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(2199)
<223> OTHER INFORMATION: CysD

<400> SEQUENCE: 5

atgcgttgc tcatcatcga caactacat tcgttacact ggaatctggc ggactacgtt 60
gcccacacgt tcgggagcga gcccgtggc gtccgcacac accagacatac ctggcaagaa 120
atcaaggcct tgggtcttcc ttggatgcata ctggtttctc cgggtccggg ctccgggtacc 180
aatccgaagg atttcaatgt ctccgcagac gccgcgtcggc aggtatggat cccgggtgttt 240
ggggtctgccc tggggccatca agggctggcg tacatctacg ggggcgagat cacteacgct 300
ccgggttcggc tccacggcag gacgtcgacc atctaccatc acggcacggg cgtgtttcag 360
ggactcccgcc cggatctcga cgcgggtgaga tatcactcgc tgggtgtcg gccggagtcg 420
cttcccgccga acctggtcgtt caccggctccg acggaaatgcg gcctgtatcat ggggttgcgg 480
cacgtgagtc gcccgaagt gggcgtccag ttccatcccg agtgcatttct gactgcgcac 540
ggcttgcagc tcatctccaa ttccgtgac gaggcgtacc gatacgcgg gaaagaggtt 600
ccgtcgccgc gtcccccattc gactgcccggc aacgggtcg ggcgcagggtc tgccaggcgt 660
gaccggagcg cccgcgcac accggagccg agaagggaaat ttcagacgtt caccaggcgg 720
ctggcgacgt ctctcgaggc cggacccgtt ttccctggcc tggatggggcc cccgcgcac 780
tgcttctggc tcgacagccca gtccgtgaga gaagggatat cccgggttctc ttcatgggc 840
tgctgtccgg aggggtcgct gctgacgtac ggccgtcgcc aagcggcgcc agagggggcc 900
ggcgagccggg acctggcgcc gctggagccg ggcgtcgaaa gccgtatcg tggatggggcc 960
gtggatgggc tgccattcga gttcatggc ggctacatcg gttcatgac ctacgaaatg 1020
aaggaggcgt ttggggccgc gacgacgcac aagaacacta ttcccgacgc cttgtggatg 1080
cacgtgaagc ggttcttgcgc ttccgttccac tccgtcgccg aagtgtggct ggtcgccatc 1140
gcggagctcg aggagagccgc gaggcgtccctc gcctggatgg acgagaccgc cgacgctctg 1200
aagtgcgttc cgcgcggcgcac ccgttccggcc cagttccctgg ggttggaaatc catctcggt 1260
tcaatggatt gtggacggga tgactacttc gcccgcacatcg agcgctgcgg ggagaagatc 1320
gtcgatgggg agtcctacga ggtctgttcc acgaaacgggtt ttcgttgcgt tctgaagctg 1380
gtatcccgccg agctgtacgt gacgtcgcc agaggcaatc cccggccgggtt cggcgctttc 1440
atcaagacag gcaagacccgt cgtccctcgtt acctcccccgg agcgcttccctt gaagggtggat 1500
gaggatggga cgggtccagcc caagcccatc aaggggacccgt ggcgcgcgc tgacgacccc 1560
gcacccgcaca gcacgaaatgc cgcgcgggtt gcccgcctgg agaaggacccgt ggcggagaac 1620
ctgtatgtatcg tggacccgtat gggaaacgc acgtccgttccg tggatggggcc gggcagcgcc 1680
catgtctccaa atctaatttgcgatc catcgagacccgttcaagacgc tccatcgatcg ggtcgtcgacc 1740
gtcgaatcga ccttgcacgc gggatgcacgc ctcgttgcgttccgtccgc ggtcttcccg 1800
ggggatccaa tcacccggcc tcccaagatc cgcacgttccg agatcatcgatc tggatggggcc 1860
aaggccctc gggggatccaa ctggggatccaa ctggggatccaa cccggatccaa 1920

-continued

gacctgaaca tcgccccatccg cacccttgc ttcacggca ccctcgtaa gttcggtgcc	1980
ggcgagcca tcacactt gtcacagccg gagggggagt ttcaggat cctgtcaag	2040
gcggaatcca tccctccggcc gatggcaatg tacatcaatg gcgccgggtgc tcccttcgaa	2100
ccccagttgc gcgaccgggt tctgtgcctg gaggagaagc cgccaaagggt cattcggtgc	2160
cacgggtcgg caatttgcg agtggagccg agcgcgtga	2199

<210> SEQ ID NO 6	
<211> LENGTH: 732	
<212> TYPE: DNA	
<213> ORGANISM: Cystobacter velatus	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (1)..(732)	
<223> OTHER INFORMATION: CysE	
 <400> SEQUENCE: 6	
atgattgcgt tcaacccgca ggccgcggccc aggctgcggc tttctgttt tccgtacgcc	60
ggtggcgacg cgaacatctt cccggactgg gccgcggcga tgcccgagggg ggtcgaggc	120
ctccggcggtt agtaccccg gccgcggtacc aacctggcgt tgccgcgcgt cagcgcgtgt	180
gacgagatgg cgtcacaact gctggcggtt atgacgcgcgt tgcttggcat caacttcgct	240
tttttcggcc acagcaatgg cgccttgatc agcttcgagg tggcgegaag gctccacgac	300
gaactgaagg gccgcgtcg gcatcacttc ctgtcgccca agtccgcggcc tcactacccg	360
aacaacagga gtaagatcg cggcctcaac gacgaggact ttctccgggc gatccggaaag	420
atggggcggtt cggcccgaggaa agtgctcgac gacgcggcgc tgatgcgat tctgtgcaca	480
agactgcgcg cggacttgcg gctcgccggag acgtatgtgt ttcgcggccgg accccacccgt	540
acgtgcgaag tcagcatactt cggaggcgag agcgcaccacc tggcgcgacgg cgagttcggtc	600
cagcggttggt ccgagctgac gacggccggc gcgaggccagt acgcaataga tggtgccat	660
ttcttcctga attccacaa gtcgcagggtc gtggcgctcg tgcgagccgc actgettgag	720
tgtgtgttgc ag	732

<210> SEQ ID NO 7	
<211> LENGTH: 1038	
<212> TYPE: DNA	
<213> ORGANISM: Cystobacter velatus	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (1)..(1038)	
<223> OTHER INFORMATION: CysF	
 <400> SEQUENCE: 7	
atgaccgcgtc agaaccaagc ctccgcgttt tcttgcgtatc tcttctacac gacggtaat	60
gcgtactacc ggaccgcgcg cgtcaaggcg gccatcgagc tcggcggttt cgacgtcggt	120
ggcgagaagg gcaagaccct ggccgagatc gcaaggccgt gcaacgcgtc gccgcgtggc	180
atccgcattt tctgcgggtt ctcgtgtcg atcggttcc tcaagaatgc gggtgatgtt	240
ttcttcctca cgcgagatggat ggccctgttt ctggacaaga agtcgcggccg ctatctgggc	300
ggcagcattt attccttctt gtcgcgtac atcatggacg gcttcaagga cctcgcgtcg	360
gtggtgccga cgggcgagtt gacgctgcgcg gaaaaagggg tggtggccgc agatcatccg	420
cagtggttgcg cgttcgcgcg cgcgtggcg ccgtatgtatgt ccctgcacatc ctcctgttc	480

-continued

gcggaaactgg	cgaccgcga	ggcgaaccag	ccgctcaagg	tgctcgatgt	cgccgcggc	540
cacggcctct	tcggcctggc	catcgcccag	cggaatccga	aggcgcatgt	gacgttctc	600
gactgggaaa	acgtgctaca	ggtggcgccg	gagaacgcga	cgaaggcggg	agttctcgac	660
agggtcgagt	tccgcccggg	agatgccttc	tccgtggact	tcggcaagga	gctggacgtc	720
atccctcctga	cgaacttctt	gcatcaacttc	gacgaggcgg	gctgcgagaa	gatcctcaag	780
aaggccccacg	ctgcccgtaa	ggagggcgcc	cgtgtgtga	cgttcgagtt	catecgaaac	840
gaggaccgga	cgtcgccctcc	gcttgccgc	acgttcagca	tgtatgtatgt	cgccacgacg	900
cccgccgggtg	agacctacgc	ctactccgat	ctggagcgga	tgttcaagaa	cacgggttac	960
gatcaagtcg	agtcgatggc	cattccccc	gcgatggaga	aggtcgtcg	ttcgatcaag	1020
ggcaaagcgc	agctctga					1038

<210> SEQ ID NO 8

<211> LENGTH: 5979

<212> TYPE: DNA

<213> ORGANISM: Cystobacter velatus

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(5979)

<223> OTHER INFORMATION: CysG

<400> SEQUENCE: 8

atggccacca	aattgtctga	cttcgcgtc	ctcgactccg	aagacgc当地	cgcatctcc	60
cgctcgaa	agacggggat	atcgctggat	ctgtccaaga	gcgtgggtga	cttggtaac	120
ctccaggtcg	agagggcgcc	tgacgccacg	gcgtgtctcg	gccgc当地	gcgttact	180
tacggagaac	tcaaccggcg	gacgaaccag	ctcgccatc	acctgatcgc	gcgaggcg	240
gggcggatg	tcccgtggg	cgtccgttc	gagcgtccg	ccgagcagct	catecgatc	300
ctgggcgtcc	tcaaggcggg	cggggttat	gtcccggttgg	atccgc当地	ccccgc当地	360
tacatgc当地	aggccctgac	ggacgc当地	ccgc当地atgg	tgggtgc当地	ccgggatc	420
ggcgagc当地	tccgctcg	cgaggagcag	atcgctacc	tcgatgacga	acagtc当地	480
gcgegc当地	cccgcaacc	gctgtgaag	gtgtgc当地	agcagtc当地	gtacgtatg	540
tacacgtcg	gtcgatccgg	agtgc当地	ggcgtcatgg	tgc当地atcg	ccagatc	600
aactggctgc	atgc当地ct	ggcgccgg	ccgttccgg	agaacgaa	gttgc当地ccag	660
aagacgtcca	cgtcatc	catctcagtg	aaggaactct	tcgc当地	ggtgc当地gg	720
gtcccg	c当地atcg	cgatgc当地	gtccgc当地	ttgc当地	cgatcgatg	780
ctggagc	ggcgc当地	gatgc当地	gtccgc当地	ggc当地	atccgc当地	840
tgc当地	atggc当地	cgagcgc当地	cgatcgatc	gccacctg	catctc当地	900
gagccctg	ccacagagct	gctggc当地	ctccgggg	cgatgc当地	ggtca	960
tggtacatct	atggc当地	cgagatca	gacgtcac	actgc当地	aggggaccag	1020
gctggc当地	cgggatc	ccgatc	ggccatcc	gcaacacg	ggtgttgc当地	1080
ctcgacg	agctccggat	ggtgccgc	ggcgc当地	gtgagatg	cgtggagagc	1140
ctgagc	c当地	ctgggg	cccgagttg	cgccgg	gatcg	1200
aaccctc	c当地	cgaggagc	ttcgcc	tacaagac	gc当地	1260
ccggatgg	ccctgg	gatgg	ttcgcc	tacaagac	gc当地	1320

-continued

cgcggtggacg	tccggcaggt	cgagaaggtc	ctcggggcgc	atcccacat	cctcgaggtg	1380
gcgggtggtg	gctggccgct	cggcgccccg	aatccacaac	tggtcgccta	cgtcgccg	1440
agggcgaagg	ggggtgcctc	catccaggag	atccgggact	acctgtcgcc	gtccctgcgg	1500
gcctacatgg	tgecgacgt	cttccaggtg	ctggcgccgc	tgccacgtct	tcccaatgac	1560
aagggtggatc	gggtgagct	gcccggaccc	aagggtggagg	agcagaccga	gggggtacgtg	1620
gcgcctcgca	cggaaaccga	gaaggtaactg	gcccggaaatct	ggagcgacgt	cctcagccag	1680
ggccggggccc	ccctgaccgt	cggcgccgac	cacaactttt	tgcgacttggg	aggccattcg	1740
cttctcgccg	cccagatgtt	ctcgcggtc	cggcagaagt	tgcgtctcg	actgeccatc	1800
aacacccctgt	tgcgagaccc	cgtgctggag	ggctttgcga	gcccgggtcg	cgccgggtctt	1860
gccgagcgga	acgggtccggc	gcagaggctg	atcagcatga	cgggaccggg	ccaggcgctt	1920
ccgtgtcg	acgtccagga	ggggctctgg	tgcgtgcacg	agcacatgtt	cgagcagcgg	1980
agcagctaca	acggtgcctt	cgcgtccac	atgcgtggc	aggggctgtc	gatgeccggc	2040
ctgcgcgcgg	ccatcaacgg	gctgggtgg	cgcacgaga	ccttgcggac	gacgttgc	2100
gtctccgagg	gcccggaggaga	tcccgtccag	cgatcgccg	actccctgtg	gatcgagggt	2160
cgcgtatatg	aggtcgtatgc	gtcggaatgc	cggggccgc	tggccggccca	cgccggccac	2220
gtgttcgacc	ttgcgaaaggg	ccccctgtgt	aagacctcg	tccctgggggt	gacgeccgat	2280
caccacgtgt	tcttgcataa	catgcatac	atcatctgt	atgggtggc	gatcgacatc	2340
ctgtgtcg	acctctacga	gttctacaag	gcccggaga	cgggctcg	gccgaaacct	2400
cgggtccctgc	caatccagta	tgccgactac	tccgtgtgg	agcgtcag	ggacctcagc	2460
agtacacctcg	actactggaa	gaagacgctc	gagggtacc	aggaagggtt	gtcggttcc	2520
tacgacttcg	ccggcccg	caacaggacc	tggcgtccg	cgagtgtcc	gcaccaggatc	2580
cggcgggaac	tcgcccacccg	tctgtcgag	gtgagcaaga	gccatcaggc	gacgggttcc	2640
atgacgttga	tggccageac	ggcaatcg	ctgaacccgt	acacgggtcg	ggatgtatcg	2700
tgcgtgggtg	ccacgggtggc	ggggcggtg	cacttcgagc	tgcgaaacct	gattggctc	2760
tgcgtcaaca	tccctcgccat	caggctcgac	ctcageggga	atcccacggc	cgagacgggt	2820
ctgcagcg	cgcgagcg	ggtgctggaa	ggcatgaagc	atcgcacat	gccgttgc	2880
cacatccctgg	cggcgctcg	gaagcagcgc	gacagcagcc	agatcccc	ggtgcgggt	2940
atggtccgccc	accagaactt	cccgacagt	acctcgagg	agcaggggt	cgacctgggt	3000
atcggggaga	tgcgagtttg	tgagcggac	acgcccac	agctcgacat	ccagttcatc	3060
ggcgagggaa	gcacgctg	ggtgggtgc	gagta	cgacgt	cgcc	3120
acgatccacg	ggctcatc	gcacttgc	caggctgc	agactctcg	ggacaagcc	3180
gactgcccggc	tgacggattt	tccgtgg	gcccgggac	cgctcgagg	cggtgtgtc	3240
ggctccgggg	gcccggac	gaccggca	ctcgacgt	cgaagagccc	ggtcgagtt	3300
ttcaacgagc	gggttagagc	ctcgccgac	ggggctcg	gcatgggc	ggacggaa	3360
ctgacactacc	gggagctgg	ccgaaggcc	aatcagg	cccgccac	gatggggc	3420
gggggtggggc	gggagacgc	ggtgggg	tggtcg	gctcgccg	cctgctgg	3480
gcactccctgg	gcataact	ggcg	tgcttcgt	cgctcgat	gagctatcc	3540
caggagtaca	tcaacaacat	cgtcgcc	gcccggcc	ttctgg	gtcgagccgg	3600

-continued

gcgctgggct	cacgcctgtc	actggaggca	gggcggctgg	tgtacctcga	tgacgcgctg	3660
gcggcgtcca	ccgatgcgag	cgatccccag	gtgcgcacatcg	acccggagca	gctcatctac	3720
gtcatgtaca	cctccggttc	caccggctcg	ccgaaggggg	tgctcggtcc	ccatcgccag	3780
atcctgaact	ggctgtaccc	gctgtggggcg	atggtgccct	tcgggcagga	cgaggtggtg	3840
gcccagaaga	catccacggc	cttcgcgtc	tcgatgaagg	agcttccac	ggggctgctg	3900
gcgggcgtgc	cccaggtatt	catcgacggc	accgtggtca	aggacggggc	ggccttcgtg	3960
ctccacctgg	agegtatggcg	ggtcacccgg	ctgtacacgc	tcccgtcga	cctcgatgcc	4020
atcctgtccc	acgtcgacgg	ggcggcggag	cgccctgggt	ccctgeggca	tgtcatcctc	4080
gcggggggagc	cgtgccccgt	tgagctgtatg	gagaagctgc	gcgagacccct	gcccgtgtgc	4140
acggcgttgtt	tcaactacgg	ctgtacccgg	gtcaacgaca	tctctactg	cgtccogaac	4200
gagcagttcc	acagctcggg	gttcgtgcgg	atcggccggc	ccatccagta	cacccggggc	4260
ctgggtgtcg	acgacgagct	gcccgggtg	ccgggtggca	tcatggggg	gatttacgtc	4320
gagagccccc	ggacggcgcg	gggtacttgg	aggcagccgg	atttgacggc	cgagegggtc	4380
atccccaaacc	cgttcggcga	gcggggtagc	cgtctctacc	gtacgggcga	tatggggcga	4440
tgccttgagg	atggctcgct	ggagtttttgc	gggcgcgggg	actacgaggt	caagatccgt	4500
ggccatcgg	tggacgtcgg	ccaggtcgag	aagatcctcg	cgagccaccc	ggaagtccctc	4560
gagtcggcgg	tgtggggctg	gcccacgggg	gcgaagaacc	ctcagttgt	tgcctacgcc	4620
gccacgaagc	cggggcggtc	cctgtcgact	gaaaacgtgc	gggagttact	gtcgccccc	4680
tgcgcacgt	acatgggtcc	aacgctctac	cagttcctgc	cagcgtgtcc	gcgcctgccc	4740
aatggcaagc	tcgaccgtt	cgggctgccc	gatcacaaga	aagtcgaggt	ggcggcggtc	4800
tacgtcgccc	cgcagacgac	gacggagaag	gtcttgggg	gactgtgggc	cgagtccttc	4860
aagcagggcg	acatgcccgc	gcccgggttgc	acaacttctt	cgaccctcggt	4920	
ggcactcgc	tgetcgccaa	tgcgtactg	atgcagggtgc	agcggcattt	cggggtcagc	4980
ctgggcatac	gtgcgttgg	cggttctccg	gtgctgaatg	acttcggggc	ggccatcgac	5040
aaggcgctcg	ggaccggagga	gecagggag	gaagggtcga	gcgacgcacg	agaggtcgct	5100
gcgaaggaca	cctccgtgtc	cgtgcgcgtc	tccacccacg	ggacgctgccc	gagcctgttc	5160
tgcgtccatc	cgggtgggg	gcaggtccat	gcctaccccg	agctcgccca	ggcgatggag	5220
aagcacgcca	gcatgtacgc	gtcccgatcg	gaggggccccc	gtgagttcga	cacaatcgag	5280
accttggcgc	gcttctacgc	cgatgcgtatc	cgccggggc	agcccgcacg	gagctaccgt	5340
ctcttcggat	ggttttctgg	tgggtctatc	accctggcga	ttgctcgccg	gctggagcac	5400
cagggctcg	ccgtggagta	cgtgggcctc	gtggattcaa	agccaatccc	gcgggttggcg	5460
ggtgagcgcg	gctggggcgtc	gctgatcgcg	gcgacgaaaca	tcctggggc	gatgcgggggg	5520
cgccgcttct	cggtcgccga	ggtcgtatgc	gcccggaaaga	tcctcgatgc	gcgcggatgg	5580
acggaggagt	ccttcgactc	ggagggggat	ggggcggtgg	aggagttggc	tgcgcacttc	5640
ggcatcacgg	tcgcgcaga	gtcatcgag	tacctctgg	cccggttcaa	gaccacgaaag	5700
tactacttgt	cgtgttgcgc	tggcttcaag	ccggcgccgc	tcggggccgg	gacgtacctc	5760
tatgaggctt	cagagcggtt	cggagccacc	tcgaacgacg	acacgggcga	gtggggggac	5820
gcgcgtggatc	gcaaggccct	gccccggcaac	atcgatcgagg	tgccaggcaa	tcaactatact	5880

-continued

gtcctgcagg gagagaacgt gctgcaactg gcggggcgga tcgcccgaagc cttgtctgctg	5940
atcgacaaact cggtggtaac gaggacgctg gcttcgtga	5979
<210> SEQ_ID NO 9	
<211> LENGTH: 2928	
<212> TYPE: DNA	
<213> ORGANISM: Cystobacter velatus	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (1)..(2928)	
<223> OTHER INFORMATION: CysH	
<400> SEQUENCE: 9	
atggacaatc gagagatcgc acccacccaa tcggcgcgca cgcgtatgc gtacacggcg	60
gtaccaccag ccaaggccga gtatccgtcg gacgtctgtg tgcaccaact gttcgagttg	120
caggcggaca ggattcccgca cgcgcgttgcg gcgaggccgg ggaacgagtc cctgacactac	180
cgggagctga acttccgggc gaatcagotc gcccggtacc ttgttgccaa aggcgtggc	240
ccgcegaggtt cgggtggccgt gctgtatgc acggacccctg cgtgtctggt ctcactgctc	300
gccatcatca aggccccccg ggcgtacgtt cgggtggacg cgggattggcc cgccaaacgg	360
gtggactaca ttctgacgga cagcgccgac acctgcgtcc tgaccgcac gggacgcgg	420
tcactcctcg acgagcccgac gtccggcttcg acgctcgatca tcgacgttgc tgatccatcc	480
atctattcgg gcgagaccag caacctcggtt ctgcgtgtcg atcccgacca gcaggatctac	540
tgcattatca cctcggttgc gacggccctt cccaaaggcg tgcgttccca gcacccggcg	600
ctgtatcaact acgtctgggtt ggcgttgcggc acgtacgtca cggacgcgggtt cgagatgttt	660
gccctgtact cctcggttgc gttcgaccc acggatccctt ccatcttcgt tccgttgc	720
tccggacgtt gcatcgatgt gtaccggac ctggggcgagg acgtccccgtt catcaaccgg	780
gtactggagg acaataaggt cgatgtcgtaa aagctcaccgc cggccacact tgcgttgc	840
aggaacacgg acctatcgca aagccggctt aagatgttca tccctggagg agaggaccc	900
cggcggaga cggccggggga cgtccacaag cggctggacg gcccggccgtt gatctacaac	960
gagtcggcc acacccggac cgtcggtggg tgcgttgc accgcgttccca ccccgccgtt	1020
gatctgcacg ggtcggttgc gattggatgtt ggcgttgcata acatgcggat ctacttgc	1080
gacgaccgtt cgcgttccgtt caagccaggaa gaggatggcg agatgttcat cggaggccac	1140
ggtgtgaccc tgggttacaa ggacaaggctt caagtcacgg cggaccacccat catctccaa	1200
ccgttcgtgg aagggggagcg gttgtacgca cgtggccacc tcggccgggtt gaatgagcgc	1260
ggcgccgttcccg ttttcgttgcg cccggatgtt ttgcgttgc accgcgttccca ccccgccgtt	1320
gagctggcg agatcgagag cggccgttcccg tccatccgg ggttcaaggaa atgcgttgc	1380
gatttcgttccca agacccggca gagccaggcc gcccgttccca tcacccatgtt ccccgccgtt	1440
ggtctggcg cggatgttccca gaatacgacgtt tactccggcc accgggttctgtt caaccactgc	1500
gaggccgttcccg acaaggatcccg cggccgttcccg tccatccgg ggttcaaggaa atgcgttgc	1560
cgttcgttcccg tcacccgttccca gaatacgacgtt tactccggcc accgggttctgtt caaccactgc	1620
ctcgccgttcccg gaaaaggacag cacgttatgc tccatccgg ggttcaaggaa atgcgttgc	1680
gtattggccct tcacccgttccca taacggcttccca atctccggcc accgggttctgtt caaccactgc	1740
cgggttcccg tccatccgg ggttcaaggaa atgcgttgc	1800

-continued

atcttcgtcg	acagcctgaa	gacacacagc	aatgtgtgca	acggctgttt	caagaccatc	1860
tacacgtttg	cgatcaacct	ggcgccaggag	gtcgccgtca	agcacgttgt	catggggttg	1920
tcaaaggccc	aactgttcga	aacgcgcctc	tccgccttgt	tccgcacgtc	gacccctcgac	1980
aacgcgcct	tcgagaagag	cctcggtcgac	gacgcgaaaga	tctaccatcg	catcgatgtat	2040
gcccgtgagcc	gcctgtcgaa	cactacttgc	gtcaagaacg	acaaggatcat	cgagaacatc	2100
aggttcgtgg	acttctatcg	ttattgccac	gccagccgtc	aggagatgtt	cgactacatc	2160
caggagagag	tcgggtgggc	caggccgatt	gacaccgggc	ggtcgacgaa	ctgtctccctc	2220
aatgtatgtt	gcatctacgt	tcacaacaag	gagcgcaggt	accacaacta	ctccctgccc	2280
taacagctggg	acgtccggat	gggccacatc	agcaggaaag	aggcgatgtt	agagctcgac	2340
gactcggccg	acatcgacgt	cgagagggtc	gagggcatca	tcaaggacct	tggctacgag	2400
ctgaacgacc	aggtgtgggg	ctcgccggaa	gcccagctgg	tccgcctacta	tgtctcccg	2460
gaggagttcc	cccggtccga	cctgcggcag	ttccctgtcg	agattctgcc	ggagttacatg	2520
gtacccaggt	cgttcggtca	gctggacagc	atcccgctga	cgcccaatgg	caaggtaat	2580
cgtcaggccc	tgcggaaagcc	tgacctgttt	cggaaggccg	gcacccgacgg	acaagccgca	2640
ccccgaacac	cgggtgggaa	gcagttggcg	gagctgtgg	aggaggtgt	gcagggtcgac	2700
agtgtcggga	tccacgacaa	cttcttcgag	atgggcgggc	actcgettcc	ggcgttcatg	2760
ctgtcttaca	agatcgacag	tcagttccat	aagacgtatca	gcatccagg	gttcttogaag	2820
gtccccacca	tcagcgcgt	cgccggccat	ctcgccagtg	acaccgaagc	ggtgcggcca	2880
gggctgggg	aggtcgtcg	tcagcgcgt	cctgcataca	ggggataa		2928

<210> SEQ ID NO 10

<211> LENGTH: 819

<212> TYPE: DNA

<213> ORGANISM: Cystobacter velatus

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(819)

<223> OTHER INFORMATION: CysI

<400> SEQUENCE: 10

gtgcgttcg	tcactgtcaa	tggtgaggac	tccgcgttt	gtcggtgt	ggatcgccga	60
ctccagttcg	gagatggct	gttcgagacg	atgtgtgt	ttggccgtgc	gcccgtcgac	120
tcccggaac	actgggcgcg	gcttgttgg	ggctgccc	ggctggaaat	cgaatgccc	180
gacatccggc	gcgaagtgtac	cgctgcgtac	gccagggtgg	gtgtccca	ggcggtcgcc	240
aagctcgctg	tcactcgggg	aagcaccgg	cggggatacc	ggtgcgc	ttccgtccgg	300
ccgaacttgg	tcctcaccat	cacggatgc	ccgaagtatac	cgctggccca	cgaggacaga	360
ggcgtggccg	tcaaactctg	ccgaacgctc	gtctcgctcg	atgaccacaca	gtggccggg	420
ttgaaggacc	tcaaccgggtt	gccccagggt	ctcgccagg	gggagtggg	cgacgagtac	480
cacgtggcc	tgtgtaccga	ccacgggtgt	cacctcgctg	agggttgcac	gagcaacctg	540
ttccctcggt	ccgacggcgc	cttgaggacg	cccgatctga	ctgcgtgcgg	tgtgcgcgg	600
atcggtggcc	agaaggctct	cgaccactcg	aaggcaatcg	ggatccctgt	cgaggtaacc	660
accctgaagc	tacgagatct	cgaacacgcg	gacgagggtct	tcctgacgaa	ctctgtctac	720
gggattgtgc	cggttggtag	cgtcgatgtt	atgaggtaacc	ggatagg	tcc	780

-continued

cgtttgctga aagaccccttg ccaggggtgtg tacttttga	819
<210> SEQ ID NO 11 <211> LENGTH: 984 <212> TYPE: DNA <213> ORGANISM: Cystobacter velatus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(984) <223> OTHER INFORMATION: CysJ	
<400> SEQUENCE: 11	
atgaccggta atttggatag cgccggcatgg cccgtaatca tcacgcctgg ccagcagcc	60
gccccgctgg aggattgggt ctcagcgaac cgtgacggac tcgagcggca gttgacccgag	120
tgttaaggcca ttctctttcg aggcttcgtt agcaggaatg gtttcgagag cattgccaac	180
agcttcttcg accggcgcct caactataacc tatcggtcga cggcccgatc ggacctgggg	240
cagaacctct acacggcgac ggagttacccg aagcagctgt cgattccgca gcattgcgag	300
aacgcctacc aacgcgactg gccgatgaag ctgctgttcc actgcgttgg gccgggagac	360
aaaggccggcc ggaacgcccgg ggccgacatg acgaaggtaa cggcgatgtat ccccgccgaa	420
atcaaggagg agttcgcgcg gaagaagggtc gggtaacgtgc ggaactaccg tgctggagtg	480
gatctgcctt gggaaagaggt gtttggaaacg agcaacaagg cagaggttga gaagttctgc	540
gtcgagaatg gcatagagta ccactggacc gagggtggct tgaagaccat ccaggtctgc	600
caggcggtcg cttagcatcc actcaceggg gagacgatct gttcaatca ggccacccctg	660
tttcacccctt ccgcatttgc cccggcttca cagaagatga tgctttcctt ctgcggtag	720
ggccggctcc cggcaactc gtacttcggg gacgggtcgcc ccatcggtgg cgacgtctcc	780
gaccagatcc gctccgctta cgaacgcac aaggctctgt tcgagttggca gaaggacgac	840
gtgttgctga tcgacaacat gctggttctt cacggacgag atccgttgcg aggccgggg	900
cggtgtctgg tctgcatttgc ggagccgtat tcggaagtcc agccggggggg attccgggg	960
gcaacgaact cagggcgctc gttaa	984
<210> SEQ ID NO 12 <211> LENGTH: 13638 <212> TYPE: DNA <213> ORGANISM: Cystobacter velatus <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (1)..(13638) <223> OTHER INFORMATION: CysK	
<400> SEQUENCE: 12	
atgctgctgg agggagagct ggaggggtac gaggacgggt tggaactgcc gtacgacttc	60
ccgcggacgt cgaataggcc gtggagagcg gcgacgttcc agcatagcta cccgccccag	120
ctggcgagga aggtggcgga gtcagccgg gaggcagcgtt ccacgctgtt catgagccctg	180
gtggcgagcc tggcggttgtt gttgaacccg tacacggggc gcgaggacgt gtgcatttgg	240
acgacgggtgg cggcccgagc gcagggtgggg gcgttggggg atctgagccg gtccacccgtc	300
gacatccctcc cgctgaggct ggacctgtcg ggcgcgtccga gccttcacgaa ggtgctgg	360
aggacgaagg cgggtgggtct ggagggattc gacgacggagg cggttgcgttgc ccagattccc	420
ttggtgccgg tggtggttag gcaccagaac ttcccgatgg cgcgttgcgaa gggctggagt	480

-continued

gagggggtgg	agctgaagaa	gttcgagctg	gcgggggaaa	ggacgacggc	gagcggcag	540
gactggcagt	tcttcgggaa	cgggtcctcg	ctggagctga	gcctggagta	cgccggggag	600
ctgttcagcg	agaagacggt	gaagaggatg	gtggagcacc	accagcggat	gctggaggcg	660
ctgggtggagg	ggctggagga	ggtgcggctg	cacgaggtgc	ggctgctgac	ggaggaggag	720
gaggggctgc	acgggaggtt	gaacgacacg	gcccggagac	tggaggagcg	ctggagcctg	780
gcccggacgt	tcgagcgtca	ggtgagggag	acacccgggg	cggtggcttgc	cggtggcgtg	840
gagggtggcga	cggggggcga	ctcgccggcc	acataccggc	agctgacata	ccggcagctg	900
aatgcgcgag	ccaaccagg	ggcacggagg	ctgagggcac	tgggagtggg	cgccggagaca	960
cgggtcgccg	tcttgagcga	ccgcgtcgcc	gagctgctgg	tggcgatgt	ggcgatattc	1020
aaggccgggg	gctgctacgt	gcccgtggac	ccacagtacc	cgggaagcta	catcgagcag	1080
atactggagg	atgcggcacc	gcaggtgggt	ttgggcaaga	ggggaaagacg	ggacgggggt	1140
cgggtggatg	tgtggctgga	gctggatgga	gcccacggc	tgacggacga	ggcgctggcg	1200
gcacaggaag	agggagagct	ggggggggcg	gagggccgg	agagccagca	gttgggtgt	1260
ttgtatgtaca	cgtcggtc	cacgggcaga	ccgaaggggg	tgtatggtgc	gtacagccag	1320
ttgcacaact	ggctggaggc	ggggaaaggag	cgctcgccgc	tcgagcgtgg	ggaagtaatg	1380
ttgcagaaga	cggcaatcgc	gttcgcgggt	tccgtgaagg	agctgtcgag	cggttgcgt	1440
gcggggatgg	cgcaggatgt	ggtgcggag	acgctggta	aggacagcgt	ggcgctggcg	1500
caggagatag	agegggtggcg	ggtgacgaga	atccacctgg	tgccatcgca	cctgggagca	1560
ctgtgggagg	ggggggggga	agaggcgaag	gggctgaggt	cgctgaagta	cgtcataacg	1620
gcgggggagg	cactggcgca	gggggtgagg	gaggaggcga	ggaggaagct	gcggggggcg	1680
cagtgttgg	acaactacgg	gtgcacggag	ctgaatgacg	tgacgtacca	ccccggagc	1740
gagggggggg	gggacacgg	attcgtgc	atcgccggc	ccatcgca	cacgggggt	1800
tacgtgttgg	acgagcgtt	gaggcggttgc	ccgggtgggg	tgtatgggg	gttgtatgt	1860
gacagcgtgg	ggatggcgag	ggggatttgg	ggccagccag	cgctgacggc	ggagegcttc	1920
atcgcaacc	cgtacgcgag	ccagcccgaa	gcaagggtgt	accggacggg	agacatggtg	1980
agggtgttgg	cggacggc	gtggagttac	ctggggaggc	gagactacga	gataaagg	2040
agagggcacc	gggtggacgt	gcccgggttgc	gagaagggttgc	cgaacgcgc	tccagccatc	2100
cggcaggccg	tggtgtcg	atggccgttgc	ggctcgagca	acgcgcagtt	ggtggctac	2160
ctgggtccgc	aggcgccgc	gacgggtgggg	ccgcggcagg	tgagggatta	cctggggag	2220
tcgtcgccgg	cgtacatgttgc	gccaacgc	tacacgggttgc	tggaggagtt	gccgcggctg	2280
cggcaacggg	agctggacgg	gttgtcgctg	ccggagccgg	acctgtcg	cagccgagag	2340
gagtaacgtcg	cgcacccacgg	cgaggatcg	cgaaagctgg	cggaaatctt	cgcaacctc	2400
ctggggctcg	aacatgtcg	cgtccacgc	aacttcttca	gcctcgccgg	gcactccctc	2460
ctggctcc	agctgtatttgc	gcgcatacg	gcaacgttcc	gcgtgaaagt	ggcgatggcc	2520
acgggtgtcg	agtccccccac	ggtggagccg	ctcgccggcc	acatcgagga	gaagctcaag	2580
gacgagtc	gggtccacgt	ctccaacgtt	gtgcgggtcg	agcggacgc	ggagattccg	2640
ctctcctacc	tgcaggagcg	gtgtgggttgc	gtgcacgagc	acatgaagga	gcagcggacc	2700
agctataaca	tcacactggac	gttgacttgc	gcggcaagg	gttctcggt	ggaggcgttgc	2760

-continued

cggaacggcct	tcgatgagct	ggtgtggccaga	cacgagacac	tgcgcacgtg	gttccagggt	2820
ggggagggga	cagagcaggc	cgtacaggtc	atcggggagc	cctggtcgt	ggagctgccg	2880
ctgagagagg	tggcggggac	ggaggtgacg	gcccgaatca	atgagatgtc	ccgacaggtc	2940
ttcgacttga	gagcggggacg	gttgctgacg	gcccgcgtcc	tgagggtggc	ggaggatgag	3000
cacatccctcg	tcagcaacat	ccaccacatc	atcacggacg	gctggtcgtt	cggggtgatg	3060
ctgggggagc	tgagggagtt	gtacgaggca	gcccgtgggg	ggaagagagc	ggagctgccg	3120
cgcgtgacgg	tgcaagtacgg	cgactatgcg	gtgtggcaga	ggaagcagga	cctgagcgg	3180
cacctggcgt	actggaaagg	gaagggtggag	gagtacgagg	acgggttgg	gctgcgttac	3240
gacttcccgc	ggacgtcgaa	tagggcgtgg	agagcggcga	cgttccagta	tagctaccca	3300
cccgagctgg	cgaggaaggt	ggcggagatc	agccggggagc	agcagtccac	gctgttcatg	3360
agcctggtgg	cgagcctggc	ggtgtgttgc	aaccggta	cgggccggca	ggacgtgtgc	3420
atcgggacga	cggtggcggg	ccgagcgcag	gtggagctgg	agagcctcat	cggttcttc	3480
atcaacatcc	tcccgctgag	gttgttgcgt	tcgggcgtc	cgagccttca	cgaggtgtc	3540
cgaggagcga	aggcgggttgt	gttgtgggaa	tgcgagcacc	aggagttgcc	gttcgagcac	3600
ctgtcaagg	cgtgtggcgc	gcagcggggac	agcagccaga	ttcccttgg	gccagtgg	3660
gtgaggcacc	agaacttccc	gttgtggcgt	ctggagggtc	ggagtgtgg	gttgtgg	3720
aagaagttcg	agctggcggg	ggaaaggacg	acggcgcagc	agcaggactg	gcagtttctc	3780
ggggacgggt	cctcgctgga	gttgacgtc	gagtacgccc	cgagatgtt	cagcggagaag	3840
acgggtgagga	ggatggtgg	gcaccaccag	cgagtgttgc	aggcgtgtgt	ggaggggctg	3900
gaggaggggc	tgcacgaggt	cgccgtgtc	acggaggagg	aggaggggt	gcacggagg	3960
ttgaacgaca	cggcgcgaga	gttgtggagg	cgctggagcc	tggcggagac	gttcgagcgt	4020
cagggtgagg	agacaccgg	ggcggtgtgt	tgcgttggc	tggaggtggc	gacggggagg	4080
cactcgccgc	cgacataccg	gcagctgaca	taccggcagc	tgaatgcgc	agccaaaccag	4140
gtggcacgg	ggctgaggggc	actgggagtg	ggcgccggaga	cacgggtcgc	ggtcttgc	4200
gaccgcgtc	cgaggactgt	ggtgtggcgt	ctggcgat	tcaaggccgg	gggtgtctac	4260
gtgcgggtgg	acccacagta	cccgggacac	tacatcgac	agatattgg	ggatgcggca	4320
ccgcagggtgg	tgttggca	gaggggaa	gcccgggggg	tgcgggtgg	tgtgtgttgc	4380
gagctggatg	gagcgcaacg	gctgacggac	gaggcgctgg	cgccacagga	agagggggag	4440
ctggagggggg	cgagagggcc	ggagagccag	cagttggcgt	gtttgtatgt	cacgtcggc	4500
tccacgggca	ggccgaagg	gttgtgtgt	ccgtacagcc	agttgcacaa	ctggctggag	4560
gcggggagg	agcgctcgcc	gctcgacgt	ggggaaagta	tgttgcacaa	gacggcaatc	4620
gcgttcgcgg	tgtcggtgaa	ggagctgtc	agcggattgc	tggcggagg	ggcgccagg	4680
atggtgtccgg	agacgctgtt	gaaggacagc	gtggcgctgg	cgcaggagat	agagcggtgg	4740
cggtgtacga	gaatccacot	gttgtccatcg	cacctggag	cactgttgc	gggggggggg	4800
gaagaggcga	aggggctgag	gtcgctgaag	tacgtcataa	cgccggggga	ggcactggc	4860
caggggggtga	gggaggaggc	gaggagggaa	ctggcgggggg	cgcagttgt	gaacaactac	4920
gggtgcacgg	agctgaatga	cgtgacgtac	caccccgccg	gcccgggggg	agggggacac	4980
gtattcgtgc	caatcgccgc	gccccatcgcc	aacacgggg	tgtacgttgc	ggacgagcag	5040

-continued

ttgaggcggg	tgccgggtggg	ggtgatgggg	gagttgtatg	tggacagcgt	ggggatggcg	5100
agggggtatt	ggggccagcc	agcgctgacg	gcggagcgt	tcatcgccaa	cccgtaacgc	5160
agccagcccg	gagcgaggtt	gtaccggacg	ggagacatgg	tgagggtgct	ggcggacggc	5220
tcgctggagt	acctggggag	gcgagactac	gagataaagg	tgagaggca	ccgggtggac	5280
gtgcgccagg	tggagaaggt	ggcgaacgcg	catccagcca	tccgcccaggc	ggtgggtgtcg	5340
ggatggccgt	tgggctcgag	caacgcgcag	ttgggtggct	acctggtgcc	gcaggggggc	5400
gcgacgggtgg	ggccggcggca	ggtgagggt	tacctggccg	agtcgctgcc	agcgtaatcg	5460
gtgccaacgc	tatacacggt	gttggaggag	ttggccgggt	tgccgaacgg	gaagctggac	5520
cggtgtcggt	tgcggagcc	ggacctgtcg	agcagccgag	aggagtaatcg	cgccgcocccac	5580
ggcgagggtcg	ageggaagct	ggcgaaatc	ttcggaacc	tcctggggct	cgaacatgtc	5640
ggcggtccacg	acaacttctt	cagcctcgcc	gggcactccc	tcctggctgc	ccaggtggtc	5700
tcaaggattg	gcaaggagct	tggcactcaag	atctcgatcg	ccgatctgtt	tcaaaggccc	5760
acgattgaac	agctctgtga	gtgttggga	ggactggacg	atcagaccca	gaggggagctc	5820
gccctcgctc	cgttggggaa	caccgaggcg	gtgtctcgat	tgcgcgaaga	gcccgtgtgg	5880
ttcctgcaca	acttcgtcaa	gggcatgcc	tacaacacgc	cagggtcgaa	ccacctgacg	5940
ggtgagctcg	atgtcgccgc	gctagaaaag	gcccattcgcg	cggtcatccg	tcgcacacag	6000
ccctcgccga	cgaatttctgt	cgagaaggac	gggggtctgt	cccagttgtt	ggggacggaa	6060
gaacgcttcc	gcctgacegt	gactccatc	cgcgacgaga	gcgaggctgc	gcggctcatg	6120
gaagccgtga	tccaaacgc	agtcgatctg	gagcggggat	tgtatgtatcg	ggcttatctc	6180
tacccgggtcg	accccgccaa	tcactacctg	ttcaccacca	tccatcacat	cgcccttcgtat	6240
ggctgggtcg	catcgatctt	ctaccgtcg	ctggctcgat	actacgcgc	gtttctccgg	6300
cgcgaagaca	gtccgctgcc	cgcgctggaa	atctccatc	aggactatgc	ccgctgggg	6360
cggggccatt	tccaggaega	ggtgttggcg	aaaaactga	ggtaactggcg	gcageggctg	6420
tccggcgctc	ggccccctgt	acttcgcacc	acctaccatc	ggccgcaccat	ccagagttc	6480
gctggcgccg	tctgtgaactt	cgagatcgat	cgctccatca	ccgaggggtt	gaagacgctg	6540
tccggcgact	cgggcaccac	gatgtacatg	gtgttgcgt	gcgcgttctc	cggtgtgtcg	6600
cagcgctact	ccggctcgaa	cgacatctgc	atcggtctcc	ccgtggcgaa	ccgggggtcac	6660
atccagacag	aagggtctgtat	cggttgcgtt	gtcaacaccc	tgggtatgag	ggtggatgcc	6720
gccgggaatc	cccggttcat	cgacctgtcg	gcgcgcattc	aacggacacgc	catcgatgt	6780
tacgcgaacc	aagaagtgc	cttcgagaag	atcggtggacg	acctgcacgt	cgcgagagac	6840
acggcccgat	ctccgctcgat	gcaggtcatt	ctcaacttcc	acaacacgc	tcctcaatcc	6900
gagctggAAC	tgcagggggt	gaccctcagc	cggtatggccg	tgcacaacgg	cacgccaaag	6960
ttcgagctct	ccatcgacgt	cgcgagacg	agcgccggc	taacgggatt	cggtggat	7020
gcgcacggatc	tgttgcgca	gaacttcatc	cgccggatgt	tccggccact	cgaggtgggt	7080
ctggacgcgg	tccgtcgca	tccggggcg	cctatccatg	agttgcact	gctcaccgg	7140
caggatcaat	tggacctact	gtcgccggacg	ggccacacag	ccccccgggt	ggaacacgtc	7200
gagttgatcc	ctcatacgtt	cgagcggcgc	gtccaggaga	gccctcaacg	gattccctg	7260
gtctgcggtg	acgagcgcgt	cacctactcc	cgctcaacc	gccggggccag	ccagattgc	7320

-continued

cgccgcctgc	gcgcgcagg	gatcgaccg	gacaccctcg	tcgggcttg	cgccccgcgc	7380
tccatcgaga	tggctctggg	cgtccttgc	atcttgaagg	cgggcgggtc	gtacgtccca	7440
atcgacccca	cctccctcgcc	cgaggtgatc	tacgacgtcc	tgtatgagtc	gaaggtgcgg	7500
catctgttga	ccgagtcgag	cctggtcggg	ggactgccgg	tcgatgacca	ggaaatcctg	7560
ctctggata	cccccgccga	cggtgaaggg	gacaaggctg	ttgctgaccg	ggaggagccca	7620
cctgaccttgc	gcgaggtca	cctcaactcc	gagtgttgg	cgtacgtcaa	ttcacactcc	7680
gactccggtg	gggcgcgcag	gggcgcgcgc	gtccgcacatg	gggcgcgtggc	tcgcggatg	7740
gccgcggcc	acgcacagta	cctggccaa	tccgcgtac	gtttcctgct	gaaggcgccg	7800
ctcacgttgc	acctggcggt	cgcgagatcg	ttccagtgga	tcgtcagcg	ggcagcctg	7860
agcatcctcg	accccaatgc	cgaccgcgac	gcctctgcct	tcctcgcgca	ggtgcgcagg	7920
gactcgatttgc	gctgttctta	ctgcgtcccc	tccgaactct	cgacgctgttgc	gagccacctg	7980
gagcgcgagc	gtgaaagggt	gcatgagatcg	aacaccctcc	ggttcatatt	ctgcggcggg	8040
gataccctgg	cggttacatgt	cgtcgagatcg	ctcggttgc	tggtgcggggc	gggcgcgttc	8100
ccgcgtgcggc	tggtcaacatgt	ctatggacag	aaggagacgg	gaatcgccgc	gggttgcgttc	8160
gagtgcgcgc	tggacgcgaa	cgaccccaagc	gccgaactcc	cgccggggacg	gtctcgcat	8220
gagcgatgc	ccatcggegg	gcccgcacag	aacctgttgc	tctatgttgc	gcaacccaaac	8280
gttggcctgg	ctccgttggg	catcccgggg	gaactgtacg	tccgcggcgc	gcaactcgcc	8340
gacgcccgtt	tcggcgaega	gcccacggcg	acccaccccg	gttcgttccc	gaaccccttc	8400
cgagcgccgg	cgaggaaagga	ctggctgtac	aagacggggg	acctcgccg	ctggctgcct	8460
caggggccgc	tcgagcttgc	cagcgcggct	cgggagcg	acggaggccg	ggaccacccg	8520
ctcgatcgatcg	gttcgtatcg	ggcgccatcg	cgtcgtgtgg	ccattgtccg	cgacgcgtg	8580
gtggcctatcg	tcccgatcg	ccaggacagg	gcccgggtgg	tggcctacgt	cgttctgaag	8640
gagtcgcgcg	cggcggaegt	ggagccgcgc	aaagggggg	aaacgctgaa	ggctcgatgc	8700
agcgccgaac	ttgggagac	gttgcggag	tacatgttcc	cgccgcctca	cgtgttcatg	8760
gacagcctgc	cgttgcacggc	ttacgggagg	atcgacggga	aagccctgcc	cgagcgaggag	8820
gatgacccgc	acgggtggtag	tgcgatcgcc	tacgtggccc	cgcgcgggccc	cacggagaag	8880
gcactggcgc	acatggca	gcaagtgc	aaacgcccc	aggtcgact	gcgagacaac	8940
ttctttgagc	tgggcgggca	ctcagtgccg	gccatccaac	tggtgtccgt	gagccggaaag	9000
cacctggagg	tcgaagtccc	cctcagcctg	atcttcgaat	cgccggctct	ggaggcgatg	9060
gcgcgcggca	tcgaagcgct	gcaacagcag	ggccgcagcg	gcgcgggtgc	gtcgatccat	9120
cgggtggaggc	ggaccggacc	gtgcctctg	cgatcgatgc	aggagagat	gtggttcgat	9180
cacgagcaca	tgaaggagca	gcggaccagc	tataacatca	cctggacgtt	gcacttcgccc	9240
ggcaagggtt	tctcggttgg	ggcggttgcgg	acggccctcg	atgagctgtt	ggccagacac	9300
gagacactgc	gcacgttgc	ccaggtgggg	gaggggacag	agcaggccgt	acaggtcatc	9360
ggggagccct	ggtcgtatgg	gctgcgcgt	agagaggtgg	cggggacgga	ggtgcggcg	9420
gcaatcaatg	agatgtcccg	cgaggttcc	gacttgagag	cgggcgcgtt	gctgcacggcg	9480
cggttccatgc	gggtggcgga	ggatgagcac	atcctcgatca	gcaacatcca	ccacatcatc	9540
acggacggct	ggtcgttccg	ggtgtatgc	cgggagctga	gggagttgt	cgaggccgcgc	9600

-continued

gtgcgggggg	agcgagcgga	gtgcgcgcg	ctgacgggtc	agtacggcga	ctatgcggta	9660
tggcagagga	agcaggacct	gagcgagcac	ctggcgtaact	ggaagggaa	ggtggagggg	9720
gacgaggacg	ggttggagct	gccgtacgac	ttcccgcgga	cgtcgaatag	ggcgtggaga	9780
gcggcgacgt	tccagttatag	ctaccacccc	gagctggcga	ggaaggtggc	ggagctcagc	9840
cgggagcage	agtccacgct	gttcatgagc	ctggtggcga	gcctggcggt	ggtgttgaaac	9900
cggtacacgg	gccgcgagga	cctgtgcatc	gggacgacgg	tggcggcccg	agcgcagggt	9960
gaactggaga	gcctcatcg	gttcttcatc	aacatcctcc	cgctgaggct	ggacctgtcg	10020
ggcgctccga	gccttcacga	ggtgctgccc	aggacgaagg	tggtgggtct	ggagggattc	10080
gagcaccagg	agttgcgtt	cgagcacctg	ctgaaggcgc	tgaggcggca	gcgggacagc	10140
agccagatc	ccttggtgcc	agtggtggtg	aggcaccaga	acttcccgat	ggcgcgtctg	10200
gagggcttgg	gtgaggggggt	ggagctgaag	aagttcgagc	tggcggggga	aaggacgacg	10260
gcgagcgagc	aggactggca	gttcttcggg	gacgggtctt	cgctggagct	gagcctggag	10320
tacgcggcg	agctgttcag	cgagaagacg	gtgaggagga	tggtggagca	ccaccaacga	10380
gtgtctggagg	cgctggtgga	ggggctggag	gaggggctgc	acgaagtgcg	gctgtgcacg	10440
gaggaggagg	aggggctgca	cgggaggtt	aacgacacgg	cgcgagacgt	ggaggagcgc	10500
tggagcctgg	cgagagacgtt	cgagcgtca	gtgagggaga	cacccggaggc	ggtggcttgc	10560
gttggcgtgg	aggtggcgcac	gggagggcac	tcgcggccga	cataccggca	gctgacatac	10620
cggcagctga	atgcgcgagc	caaccagggt	gcacggaggc	tgaggggact	gggagtggc	10680
gcggagacac	gggtcgccgt	cttgagcgcac	cgctcgccgg	agctgtgtgt	ggcgatgctg	10740
gcgtatattca	aggccgggggg	ctgctacgt	ccgggtggacc	cacagtaccc	gggaagctac	10800
atcgagcaga	tactggagga	tgcgccacc	caggtggtgt	tggcaagag	gggaagagcg	10860
gacgggggtgc	gggtggatgt	gtggctggag	ctggatggag	cgcaacggct	gacggacgag	10920
gcgttggcg	cacaggaaga	gggagagctg	gagggggccgg	agagggccgga	gagccagcag	10980
ttggcgtgtt	tgtatgtacac	gtcggtctcc	acgggcagac	cgaaggggggt	gatggtgcgc	11040
tacagccagt	tgcacaactg	gtggaggcg	gggaaggagc	gctcgcgcgt	cgagegtgg	11100
gaagtaatgt	tgcagaagac	ggcaatcg	ttcgccgtgt	cggtgaagga	gctgtgcac	11160
ggattgtctgg	cgggagtgcc	cgaggtatg	gtgcggaga	cgctggtaa	ggacagcgt	11220
gcgttggcgc	aggagataga	gcggtggcgg	gtgacgagaa	tccacctgt	gccatcgac	11280
ctggggcac	tgctggaggg	ggcgggggaa	gaggcgaagg	ggctgaggct	gctgaagtac	11340
gtcataaacgg	cggggggaggc	actggcgcag	gggggtgaggg	aggaggccgag	gaggaagctg	11400
cggggggcgc	agttgtggaa	caactacggg	tgcacggac	tgaatgacgt	gacgttaccac	11460
cccgcgagcg	agggggggagg	ggacacggta	tccgtgc	tccggcggcc	catcgcaac	11520
acgcgggtgt	acgtgttgg	cgagcagtt	aggcgggtgc	cggtgggggt	gatggggag	11580
ttgtatgtgg	acagcgtgg	gatggcgagg	gggtatttgg	gcccacccac	gctgcacggc	11640
gagcgcttca	tcgcgaaccc	gtacgcgagc	cagccggag	cgaggttgta	ccggacggga	11700
gacatggtga	gggtgtggc	ggacggctcg	ctggagttacc	tggggaggcg	agactacgag	11760
ataaaggtga	gagggcaccg	ggtggacgt	cgccagggtgg	agaaggtggc	gaacgcgcac	11820
ccagccatcc	gccaggcggt	ggtgtcg	ttggccgttgg	gctcgagcaa	cgcgacgtt	11880

-continued

gtggccctacc tggtgccgca ggccggccgcg acgggtgggc cgccggcaggt gagggattac 11940
ctggcgaggat cgctgccagc gtacatgggt ccaacgctat acacgggtgtt ggaggaggtt 12000
ccggcggtgc cgaacgggaa gctggacccg ctgtcggtgc cggagccgga cctgtcgagc 12060
agccgagagg agtacgtcgc gccccacggc gaggtcgagc ggaagctggc gaaatcttc 12120
ggcaacctcc tggggctcga acatgtcgcc gtccacgaca acttcttcaa cctcgccggg 12180
caactccctcc tggctccca gctgatttcg cgcatacggg cgacctccg cgtgaaagtgc 12240
gcgatggcca cgggtgttcga gtccccacgc gtggagccgc tcgccccca catcgaggag 12300
aagctcaagg acgagtctcg ggtccagtc tccaaacgttg tgccggtcga gccggacgcag 12360
gagcttccgc tctcctaccc gcaggagagg ctgtgggtcg tgcacgagca catgaaggag 12420
cagcggaccac gctataacgg aacgatcgcc ctccggcttc ggggtccctct gtcaatcccc 12480
gcgctcaggc ccacccctca cgtatcggtc gcccgtcaca agagctcgca caccgtcttc 12540
cgggtccccc aaggccgcac cacgcccggc caggtgattc ttgattcgat ggtatcgac 12600
atcccggtcc gcgatgcaac cgaggccgac atcatccgg gcatggatga gctggcggtt 12660
cacatctacg acatggagaa gggtccgtg ttcatgggtc gcctcttgcg gctggccgag 12720
gactccacg ttctcctgtat ggggatgtcat cacatcgct acgacgtat gtcacagttc 12780
aatgtgtatgc gtcgcatat caacctgtc tactcgccgc acgtgacggg aatcgaggca 12840
cggttcccg cggttcccat ccagtgaccc gacttctcg tggtggcagcg ccagcaggac 12900
ttccgtcacc acctggacta ctggaaagtcc acactggggc actaccgggat tgatctcgag 12960
ctggcgatag actaccccgcc gccggccacgc cggacatggc acgacgacccg attcaccttc 13020
cggtatccgg atgcactggc gcgccgttc gccaggttca atcagttccca tcagtcgacg 13080
ctgttcatgg ggctgtgtac cagttcgccg atcgtgtatca ggcactacac cggccggaaac 13140
gacatctgca tcggaaacgac aacggcgcccc cggcccaagt tggagttggaa gaaacctgtt 13200
ggcttcttca tcaacatcttcc gccgttgcgc atcaatctgg cgggtgaccc cgacatcagc 13260
gagctcatgtatgc gacgacatgttca gaaagacgtc ttggggcgct tcgagcatca agctctcgcc 13320
ttcgagacgtc tccctcgtgc cctcaacaaa cagctgtaca gcaacgtat cccgctgggtt 13380
cccgatcatgt tgccggccacca gaaactcccg acggcgatgt cccggcaagt ggcggatgtt 13440
gtggacatgg aggtcatgtatgc gccggacacgc cggacacgc ccaacgacgtt ggcacccatcc 13500
ttctttggcc acgacacatgtatgc cttgtcatgtt gtcgtcgagtt tccggccgtca gcttcttcc 13560
gaggtgaccgc tccggcgatgtt gatgcacgtt caccagaagg tcatagatgtt catgtcgccg 13620
acgctggggggg ctccgtgtatgc 13638

```
<210> SEQ ID NO 13
<211> LENGTH: 3072
<212> TYPE: DNA
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)...(3072)
<223> OTHER INFORMATION: CysL
```

<400> SEQUENCE: 13

```
gtgaacgtgc tcgctaggca ttccacccggc tcccacgacg agccggtgcc cggcgacgtc 60  
qaactccqcq tcqqtqqccc cqqtatqqccq qacqctcatt ccaqcqqaqq cqttqaatq 120
```

-continued

ctggcgccgt ggctgcccac cgccgaggag aagtacccgg ggcgtcatggg cccgatccgc	180
caggaggggcc cctgggtcgc catcccggtt acctgcccgc ggggtgcccgc gtcggcgcga	240
ttccggctct ggctcgggga actagacccgt cagggacacgc tcctccacat ggtcgccctcg	300
tatctggcgg ccgtgcacca cgtgtggtc acgcgttcgcg agcccacgc caacgtctg	360
gaggtgtctgg tctctgactc aacaacgcca tctgggctca accgggttctt gaacggcctg	420
gactccgtcc tggagatctt ggctcacggg cgccagcggacc tcctccctgca gcatctcacc	480
ggccggcgtgc cccccgacga gatgcccttc gtggaggacc gtgaggagcgc cgaggagcac	540
ccggccacccg atgtcgagac cgtatcggtt gtctccgtcc tggccaaacc agttacttc	600
ccgagcctgg cgagggtggg cgcgcggcctc ctgcgtatg acgacgagga tgccggcggc	660
gtggggccggg tccctggggga gctccctccag ccgttccgtc tcgactccgc caggatgacc	720
gtggggcggaa aggccgtgag ggtcgatcac atctgcgtc ctgggttgc ggcgagccgac	780
agoagagcgg cggaggagtc gggttcgcg cccgccttc gcttggcgcac gaagccgggt	840
ccggatttcg tcgcgttgcg ccggaaacacc gcccctgccc tggggagacag gctgcocccac	900
ttgcgtcgcc agggccgcgt ctgcgtatgc ggcgtcaacgg cgctcccttc gttgcacccgg	960
gtgctggaca cgcttatcg gageggggga ctgaaggacc atcgccctcac gctegagctg	1020
gttggcgcggc atccacggac cgaggcccgat ttcggggcc gggactccgtg gctggggcgg	1080
gaacggggccg cttcggtcgc atcaacggat gcaccggcgc tcgacgtcgt cgccctgttc	1140
ccggcggcac ggccgagcgc gctcgagctg cggccagaca ggcgtcgatc cgaccctttt	1200
ggcacctgga gcctgagacc ggcgaccggag gttctggcga agaacatcgt ctacgtgcga	1260
ggggccctcg tccgttcgc cggagagggcc gtcgtctcga ctccctccctt cgccggcggat	1320
cgagtggagc cggcgctctt cgaggcgctt ctccggaaac tcgacgcggg ggcagtagt	1380
gacgggtcgc cccacgagca ccgccttgcg atttggggca ttgcgggtt ctgggggttag	1440
atccggccggg cggagttggg cgcctttcat tcgcgcgc gggggggagct ggcgaggttt	1500
cagggtgtcg ggcaggtgac cggccaaat ccggggctcg ccagctgcg cgtggggcgg	1560
acgaacatct gcaatacat ctccggaa ggcacccctc gtcgggtcgc gtgcctcgatc	1620
gatccccaga gggggccagtc cgcgcacccat gcccggatgc ggcgactggc ggcagcgtac	1680
gcccggccgtt tccgggttccgc cggggagacg tcgtggcgct cggccggccgg	1740
gatgggattt cgtccgtcgc ggtgatgtcg ggttgcgttcc tgggggggtt ggtcttcgcg	1800
ccgctcaacc acaccgcctc ggcgggtgaa ttcggggcga tgggtggatcc cggccgtccc	1860
cgcctgggtc tccatgcgc gtcgcggcgc gcccggccatc tgccggccctt gagcacgcgg	1920
cgatcgccgg aactcgccgc cttccgtcccg cggacgcgc tggacggcgtt ggaggggggac	1980
gtcacccccc tgccagggtc accggaaagcc cccggccgtca tgctgttacat ctcgggttcc	2040
acggggggggc cgaaggcagt gacgcacacc cacggccact tcacacccgt cagtcgcac	2100
tacgcacccat atgtcgatcgactc cagacccgttgc gacgtatcgatc tctatacgcc gtcggccacc	2160
ttcttcgcctt atggatttggaa caacttgcgtt ctgtccctca ggcggggggc caccgcacgtt	2220
atctcggtcc ctcgcacccgg cggggatgggt gtcgcggaga tccctcgccg gaacggatgt	2280
accgtgtctt ctcgcgttcc cggccgtat aagctgtatca tctcgaaagaa cggccggggc	2340
ctgcgggttgc cgaagggttgcg attgtgcgtt ctcgcgttgcg agaaggtgcc attgtgcgttgc	2400

-continued

tatcgggagg	cgcgaagctt	cttcagcgta	aacgtactgg	acgggatcg	gtgcacccgaa	2460
gccccatctcg	cgttcatctc	gaaccgggag	agttatgtcg	cgcccggtg	cacgggcgtg	2520
gtggtcccg	ggttcgaggt	caagctggtg	aaccgcgtg	gcgagctctg	ccgggtggaa	2580
gaggtggcg	tcctctgggt	tcgggggtggg	gctgaccc	ggggctacgt	gaacgcccc	2640
gatctgacag	agaaggactt	cgtggacggc	tggtaaaca	cccaggacat	gttcttcatg	2700
gtgccgagt	acccgctcta	caacgtggc	agggctggtt	cggtcatcaa	gatcaattcc	2760
tgctggttct	cacccggat	gatggagtcg	gtcctgcaat	cccatccagc	ggtgaaggag	2820
tgtgccgtct	gcgtcgat	tgacgactac	gggttgccaa	ggccgaaggc	attcatcg	2880
acccggcggc	atgagcgctc	cgagccggag	ctcgagact	tgtggccgca	gttgcgcgtt	2940
ctgtcgaaag	agaagcttgg	gaaggaccac	tacccgcata	tgttcgcgac	catcaaaacg	3000
cttccccgg	cctccagegg	gaagctgtat	cggtccgaac	tcgcgaagct	gtcaccaggc	3060
ggggccccat	ga					3072

<210> SEQ ID NO 14
 <211> LENGTH: 117
 <212> TYPE: DNA
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1) ..(117)
 <223> OTHER INFORMATION: CysM

<400> SEQUENCE: 14
 atgaatccaa agttcctcgaggcctgggg gcaggggtgt gcatecgctc tttgttccag 60
 acggtcatgc ggaccgtgcc gctcaaggac gcccgtccg ggcacaggc ttgttag 117

<210> SEQ ID NO 15
 <211> LENGTH: 1074
 <212> TYPE: DNA
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1) ..(1074)
 <223> OTHER INFORMATION: CysN

<400> SEQUENCE: 15
 atgtcgactc gcaccaagaa cttaatgtc atggaaatcg actggatgcc ttctcccg 60
 gagttcaagc gacgcgtccc gcccggccag cggccggcag agggcgtgt cgccggacgg 120
 agatgcttga tggatatactt ggaccgggg gatcctcgcc tcttcgtcat cgtggggccc 180
 tgctccatcc acgatccgtt ggcggggctg gactatgcg agcggctgctg gaaactcg 240
 gatgagggtt cgcagaccct gttcgtgggt atgcgcgtgt acttcgaaaa gccgcgcacc 300
 accacgggtt gggaaaggctt catcaatgac ccgcgcatgg atggctcttt ccacatcg 360
 gagggcatgg agcggggacg tcgcttcctg ctgcacgtgg ccgaggaggc tctaccgc 420
 gccaccgggg cgcgtggaccc catcgctcg cagactacg ggcacccat ttccgtggac 480
 gcccattggcg cgcgcacccgc cgagtcgcag acgcacccgc agatggcgtc cggccttcc 540
 accccagtag gcttcaagaa cggcacggac ggctcgctgg atgcggccgt caatggcatc 600
 atctccgcctt cacacccgca cagttcctg ggggtgagcg aaaatggcgc gtcgcacatc 660
 atccgcacgc gcgcaacac ctacggccac ctgggtgtgc gggcggtgg tggcgccatc 720

-continued

aactacgacg	ccgtgtcggt	ggcgcttgcg	gagaaggcgc	ttgccaaggc	caggctaccc	780
accaacatcg	tggtgtgactg	ctctcacgcc	aactcctgga	agaatcccg	gctccagccg	840
ctgggtatgc	gggacgtgg	gcaccagatt	cgcgagggca	accgctcggt	ggtgggcctg	900
atgatcgaga	gcttcatcga	ggcaggcaac	cagcccatcc	cggcggacct	gtcgcaactg	960
cgctacggct	gctcggtac	tgtatcgatgt	gtggactgga	agaccaccga	gaagatgctg	1020
taacagcgcgc	acgaggagct	gttccacatt	ctgccccgta	gcaagggtggc	ttga	1074

<210> SEQ ID NO 16						
<211> LENGTH: 612						
<212> TYPE: DNA						
<213> ORGANISM: Cystobacter velatus						
<220> FEATURE:						
<221> NAME/KEY: misc_feature						
<222> LOCATION: (1)..(612)						
<223> OTHER INFORMATION: CysO						
<400> SEQUENCE: 16						
atgccccccc	gctccactcc	ctctctggaa	agtggcgact	tttcgcgcga	cgtcacgttt	60
tctgatctct	cgatcgagtc	gggtgatotc	tccggcaagg	aattcgagcg	ctgcacgttc	120
cggggggtgca	agttggccga	aagccgcgtgg	gtccggagcc	gcctggagga	ttgtgtattc	180
gagggatgctg	atctcctgcg	gatggtacccg	gagaagctcg	cgctgctgaa	cgtgacccctc	240
aaagacaccc	gcctcatggg	cgtggactgg	agtggactcg	gaaccatgcc	ggacgtccag	300
ttcgaacagt	gcgtatctgcg	ctacagctcc	ttcttgaagt	tgaatctacg	caagacgcgg	360
ttcggttgcgt	gctccgcgcg	cgaaggccaa	tccattgacg	tggacctcgc	cgagtcggac	420
ttcacccgca	ccgatatgcc	aggatgcacc	atgcagggct	gcgtcctcac	caagaccaat	480
tttgctcgat	cgaccaattt	catcttcgac	ccgaaggcga	accaggtaaa	agggacgcgt	540
gttggcgtgg	agaccgcgt	cgccctcgcc	caggcgttgg	aatgggtgg	cgacggctat	600
cagacacccct	ga					612

<210> SEQ ID NO 17						
<211> LENGTH: 702						
<212> TYPE: DNA						
<213> ORGANISM: Cystobacter velatus						
<220> FEATURE:						
<221> NAME/KEY: misc_feature						
<222> LOCATION: (1)..(702)						
<223> OTHER INFORMATION: CysP						
<400> SEQUENCE: 17						
atgaaacggt	tcttcaagct	ccagttgcgc	accaccaacg	tccccggggc	acggggcgttc	60
tacacggctc	tgttcggtga	gggcgcggcc	aacgcagaca	tctgtccgcgt	gccccggcag	120
gcgttgcgc	ggggcgcgcacc	cgccccattgg	ctgggttacg	tccggcgtcga	ggacgtcgat	180
gaagcggtgc	gtctcggtcg	ggggcgccgg	gcgaccggcgc	tccggccgcac	ccacccggcgc	240
aacgacggcg	gggcgcgtcgc	gtccctcgcc	gtccctggag	gggcgcaccc	cgccgtggcg	300
acggcaccgg	caacgcacgg	agcgctccag	ccggagggtgg	tctggcagca	gtctatgcc	360
gcgaacgtgc	aacagacggc	cgccctcgat	tgcgacccgt	tccggatggcg	gctctcggt	420
cgccgcgacc	ttgggtgcgt	gggggttccac	caggagttca	cctggcgtc	ggacgagccg	480
agcgccggct	cggtcggtgg	cggtggcgccgg	ctcaaggggg	tccattcaca	ctggctgttc	540

-continued

cattccgcgc tcgeccgcgc cgatccgcgc atggaggctcg tccgcaaggc cggaggcgctc 600
 gtcatcgccc ccatggaact tccgaatggc gatcgcatcg ccgtgtgcga ggatccgcaa 660

cgggcggcggt tcgegcttcg cgaatccagc cacggacgct ga 702

<210> SEQ ID NO 18
 <211> LENGTH: 795
 <212> TYPE: DNA
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(795)
 <223> OTHER INFORMATION: CysQ

<400> SEQUENCE: 18

atgcaagaga tcggccagac ggcactttgg gtggcgggaa tgcgcgcgt tgagaccgag 60
 cgttccaaacc cactgttccg ggatcccttt gcccgtcgac tgcgcgggtga cacgctcgctc 120
 gaggagctgc ggccgcgcgaa tgccggtgag ggcgcctatgc ctcggccatcg cggatcg 180
 acgatcgatca gatcagctgc gggttggcc gccgcattcg ccagatcg 240
 atccatcgccg cgggaatggc tgccgcgcgc taccgttgg cctggccggg agacaacgcgg 300
 ctgttcgagc tcgaccacgaa cgcgcgtgc caggacaagg aggcgaagct gaccggcg 360
 gcccggaaat gtgagcgaca tgccgtgtcg gtcgatctgg ccgatgactg gcccggggcg 420
 ctgaagaaaa gcgatcgatcg tcccggttgtc cccaccctgt ggctcatcg gggattgtc 480
 gtctacctca ccgaggcgca ggtcacgtc ctatggccc gtgtcaacgc cctgagcg 540
 cccgagagca tcgtccatcg cgcgtcgatggcc ttttggactc ctgcgcgcgc 600
 aagttgatgc acgacatcgcc cgcgcgttc ggcaccgacg agcccgaggt gattctaagg 660
 ccgattggct gggacccca cgtctacacc accgcggcca tcgggaagca gtcgggcgc 720
 tggcccttc ccgtggcgcc acgcggcacc cccgggtgtc cccaggata cctggtgac 780
 ggagtcaagc gctga 795

<210> SEQ ID NO 19
 <211> LENGTH: 1002
 <212> TYPE: DNA
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1002)
 <223> OTHER INFORMATION: CysR

<400> SEQUENCE: 19

gtgaatggaa cgcacaggaa gacagggttg gtagcagaaa ggtcgccgc gattcccc 60
 agggactaca agtccaaaggaa gttgggtgtgg gattcgctg ccgcacacg cagcaagccc 120
 cggcgcgtac tgccggaggg ggacgtgtgc gggcacctgt acccgccgc caaggccgc 180
 ctgctcaccc acccgctcat gaagaacctt ccgcggaga cgctgcggct gttttcatc 240
 cactccgcct acaagttcat gggggacatc gcatcttcg agacggagac cgtcaacag 300
 gtggcgatga agatcgccaa cggtcacacg cccatcacgt tcccgacga catccgcac 360
 gacgcgcgtca ccgtcatcat cgatgaggcc tatcacgcct acgtggacacg cgacttcatg 420
 cggcagatcg agcagcgcac gggcgtcaag ccgcgtcccc tggaaacgga aacggacactg 480
 tccaggccaa tggcttcgg caagcaccgg ctgcggaga cgctgcacgg gctctggaa 540

-continued

atcatcgccg tctgcacatcg ggaaaacaca ctcaccaagg atctgctgaa cctgacgggt	600
gagaagtctt tcaacgaagt gctccatca gatggagg accatgttcg cgacgagggc	660
cgccacgccc tcctcttcat gaacgtgtc aagctgggtt ggagtggat ggaggagagc	720
gccccgtcg ccatcggtca gctgctgcca gagttcatcc gcgagttaccc cagccccaa	780
atgtatggcg agtacgagcg cgtcggtcg gacgacgtcg gtctacggc cgacacatc	840
gaggggatcc tctccgagac gtactcgag cccggctgg aggatttccg cgccgatata	900
ccctctccg ggtacctgtt ctacgtgtc atgcagtgcg acgtcctgtc gcacgcccgg	960
acgacgaggc cgttccggcc attcaagctg ctgcggccact ga	1002

<210> SEQ ID NO 20

<211> LENGTH: 1929

<212> TYPE: DNA

<213> ORGANISM: Cystobacter velatus

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(1929)

<223> OTHER INFORMATION: CysS

<400> SEQUENCE: 20

atggccaaacc aacggggtegc attcatttag ttgacgggtct tctctggcgt ttatcccttg	60
gcctctggct acatgcgtgg cgtggccggc cagaaccctt tgcgtgcaggc	120
tccgaaatcc actcgatcg catcaacgac gaccgattcg aagacaagtc caacaagatc	180
gatgccgatg tctacgcgtat ctcttgcata gtctggaaaca tgggcttcgtt gaagegggtgg	240
ctccccaccc tcaccggccggc caagccaaac ggcacatca tccttggcgg tccgcgggtg	300
atgaaccacg gggcgcgatca cctggatccg ggcaacgagc ggggtgggtct ctgcaacgggt	360
gagggtgagt ataccttgcg gaactacctg ggcgaactct gtcctccca gcccgcaccc	420
ggcaagggtca agggccttc cttctaccgg aacggagagc tgcgtacgc cggcccaaa	480
gcgcgcattcc aggtatctaa cacggtccca tctccctacc tggaggcata cttcgacagc	540
gagaagtacg tggggcgcc ctttgagacg aaccggggat gcccctacca gtgcacccat	600
tgcttctggg gggcgccgac caactcgccg gtgttcaagt ccgacatggc cccgggtcaag	660
gcggagatca cctggctcgcc ccagcaccgg ggttctaca tcttcatacg cgcgcgaaat	720
tccggcatgc tgaccggcga cattgagatc gcccacaca tcggcggatcg caagggaaag	780
tatggctatc cgctcaccat ttggctgagc gggcgaaaga actcgccatcg cccgggtcacc	840
cagatcacgc ggatcctgag ccaggagggtt tgcgtctcc cccagccggt ctgcgtcccg	900
acgatggacg cgaacacgct gaagagcgta aacgcggcga acatcaaggaa gagcgccat	960
ctgaggcctcc aggaagaact gcaccgcgcg aagctctctt cgtcggtgg gatgtatcg	1020
ccgcttcccg gcgagacgct ggagacccctt aacggggggca tcgggaaatct ctcgcgtac	1080
gacgcccacg cgatcctcat ccaccaccc tcgtctcatca acaacgtgcc gatgaacagc	1140
cagcgccgagg agttcaagct ggaggtgtcg aatgtatggaa acccgaaacag cgaggcgac	1200
gtcgctcgcc cgacgaaaggaa ctttacccgc gaggatatac aaggagggtgtt ggggttccgg	1260
tatcatctca cggccctgtt cagcctgcgc gactccgtt tcgtcggtgg gatgtatcg	1320
aacgaggggc ggctggcctt caaggacttg atctcctcgat tctcggttgc ctgcacggc	1380
aaccctgacc acccctacac gcagtgatcc accagcgtga tcgacgggac cagccagtcg	1440

-continued

aagttcagcg ccaacggcg	catcttccac gtcacactc acgagttcg cagagagttc	1500
gaccaactgc tttcggtt cattcaaacc ctgggcatga tgaacgatga gctgctggag		1560
ttcctgttcg agatggatct cctcaaccgt ccgcacgtgt acagcaacac gcccatcaat		1620
aatggcgaag ggttgctgaa acacgtgacg gtcgtctcg aaggagaagga tgccattgtc		1680
ctgcgcgttc ccgaaaagta cgcgacgtc acgtctgagc tactcgggct cgagggcgct		1740
cccgacacga gcctgcgcgt gaagtaccgc gggactcaaa tgccgttcat ggcgaacaag		1800
ccgtacgagg acaacctctc ctactgcgag gcgaaagctcc acaagatggg aagcataactt		1860
ccggtctggg agtccggccgt ccctcgcgc acaccggtcc ggcggccaca agtggccgtc		1920
gcgggctga		1929

<210> SEQ ID NO 21	
<211> LENGTH: 3804	
<212> TYPE: DNA	
<213> ORGANISM: Cystobacter velatus	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (1)..(3804)	
<223> OTHER INFORMATION: CysT	
<400> SEQUENCE: 21	
atgcatcgag tgaagccgtt gatagggccc gtccctgtcg cgctgttgcgt gtgtgcctcg	60
cccgccaggg cgccagatgc cgccggccac gtctaccacca accacatgcc caacttctgg	120
gcctactaeg acctgggeca atacgcgtcc acgcccaccc gggcccccatt ccggatcatcg	180
tatgacgcgc aggtcatcaa cctgaagaag aatccccctt ccaattacac atactacctg	240
ccatcgccgg cgcccatgcc gcacgatgac ctgcgtcacctt attactcgca caacgogaag	300
acgggtgcctt acctgtactg gcctccaagg gtcgcctcg acatgaaaac caatgcggcc	360
accggccagg tgcacgtcac catgtccggc ggcgtggtga acaatgtcca ggatctcg	420
accctgaaga acgtccccgg ctacgacaat ccgaactggg ggcgcctctg gaaggaccgc	480
tacagcgccc tgcgtcaccc cgccggcaac cgccaccctgg atctcatcca cttcacccgc	540
caccactcca tggggccctt ggtccgtccc gactacttcc tcaaggatct catctaccag	600
agcgccacgc tcgcggccagcc ctacttccctt ggccgttcctt tccagtcctc caagggttc	660
ttccccaccc agtccggctt ctccgagcgc ctcatccccca ccctctccaa gtcggcgtg	720
cagttggcccg tcatcgccga caaccacttc tcccgacccc tcaaggacta cccctacctc	780
aacgatccgg gctccgacac gtcgtctcc ccggccaaacc ggcggatctt ccagaacacc	840
agctccgtgg gtccttgggtt gaggcccaacg atggcccaacg agcagcaggatcatcaagaac	900
aagtaccctt tgcgtctccac tccccactgg gtgcgtactg tggaccccccac cacggggcgc	960
gagtcgcgcg tgcgtccgtt cccctcaac cagaacggctt cctggctcgaa gggctggaa	1020
ggcgaggcca ccgtcgacgt cgtcaacccac aagagcttcg agggcctcg tccccagcgg	1080
cagttcttcg tcatcgccga tgcgtccgtt aactcgacgtt gacgcgcggg ctccgactcc	1140
acctggtaca acggccgcgtc cgtcacctgc gccaatggcg tgcgtgcgtt gggcatctcc	1200
gagttacctcg tccaccacac ccccgccctcc accgacgtgg tgcacgtccca ggacggctcg	1260
tgggtggaca cgccgcactc ctccctggat ccccaactggc accactggaa gtcgccttc	1320
ggcatctgga agggtcagtt ccccgcccttc aacgcccggca ccggcctcaa tctctctccc	1380

-continued

aagacgaacc	tcagcggcgt	gcaggagggc	atgacggct	ccctcgagca	cggtggcac	1440	
tacctcgago	gcaacttcgc	cctgctccag	gcccctca	actacgcgaa	gaccgcccag	1500	
cagatctggc	tcgacgcgc	cccaatcac	tggatcgccca	ccaccgcgat	cgacaagcag	1560	
atcacccaca	cgggcaacca	gctcaacccg	tggatgtatgt	ccttcccg	caagggcgac	1620	
gtgaacaacg	actggggcggg	cggcgccaa	cccgccgaa	tcgcctggta	cttcctgctg	1680	
ccgcgcatgg	actcgggctt	cggctactac	gacgagaacc	aggacgacaa	cgtcaagccc	1740	
acgtgtcct	tcaatcaatc	cctctacttc	tccaaagccct	acgtgcagca	gcgcatcgcc	1800	
caggacaaga	cggggccctc	cgtctggtgg	gcccagcgct	ggccctacaa	ccccggcagc	1860	
gccaacaccc	acaagtccga	gggctggac	ctccacttct	tcaacaacca	cttcgcctc	1920	
tacacctacg	cctacgcacgc	gagcggcatac	tcctccatca	aggcccgcgt	ccgggtgcac	1980	
acccacaaga	gcatcgaccc	gctcgacaac	acccacaagg	tctatgtacc	ggcggggcgc	2040	
aaggccgcgg	gtgttccaa	catcgatccg	gcccgcgtgg	gcccctgggt	ggactacccg	2100	
ctcaccgcgc	gcgacctgaa	gcgtgtatg	aatgggtgttt	cctggcagcc	cgcctacctg	2160	
cccgcatgg	ccaaggtgoc	cgogcaggag	atcggcggacc	tctactacgt	ctacctgggc	2220	
aactaccgcg	accagctct	cgactactac	atcgaggcca	ccgacagccg	gggcaacatc	2280	
acccggggag	agatccagtc	cgtctacgtg	ggctcgggccc	ggtacaacct	ggtggggcgc	2340	
aagtacatcg	aggaccccaa	cggcacggta	caggaaacgc	atcccttct	cgtgggtggac	2400	
accaccgcgc	cctcggtccc	ctcgggactg	accgcgaagg	cgaagacgga	ccgctcggtg	2460	
acctcgatgt	ggagcgcggc	ctcgacaaac	gtggcggtga	gcccgtatga	cgtcttccgc	2520	
gatggcacgc	aggtgggctc	gagcaccaggc	acggcctata	ccgacagccg	cctctccccc	2580	
agcactcaat	acagctacac	cgtgcgcgc	cgggacgcgg	cgggcaacgc	gtccgcacccag	2640	
agcacccgc	tgagcgtgc	caccctgacg	ccggacacca	ccccaccctc	cgttccctcg	2700	
ggcctgacgg	cgtcggtgc	gacgagctcc	tccgggtggcc	tcgcctggac	ggcctccacc	2760	
gacaacta	cgctcgcgaa	ctacgagggt	ctccgaaac	gcacccaggt	cgctccgtc	2820	
acggggacga	cctactcgga	taccggc	tccggagca	ccacccatag	ctacaccgt	2880	
cgcgcgcggg	acgcggcggg	caatgtctcc	tccggccagca	cgccctgtc	cgtcaccacc	2940	
cagacgggc	acagcgccac	cgtctactat	ttcaacaaca	acttcgcct	caaatacatc	3000	
cacttccgca	tcggcggtgg	cacgtggacg	accgtgccc	gcaacgtcat	ggccaccc	3060	
gaggtgccgg	gctacgccaa	atacaccgtc	aatctgggag	cgccacccca	gctcgagtgt	3120	
gtcttcaacg	atggcaagg	cacctggac	aacaacaagg	gcaacaacta	cctctggccc	3180	
gcggcacct	ccacggtgaa	ggacggcgtc	gtctccagcg	gagcgcgcgc	gctcgacacc	3240	
accgcaccc	ccgtccctc	gggcctc	cgccgcgtcca	agacgtc	ctccgtgtcg	3300	
ctctccctgg	gcgcctccac	ggatgcc	ggcatcgcc	gatatgacgt	gtaccgcgat	3360	
ggctcgctgg	tgggtcacc	cgtctccacc	agctacacccg	acagcgac	gagtgcggc	3420	
acgcacccat	gctacaccgt	gcgcgcgc	gacaccgcgg	gcaatgc	cgcccagagc	3480	
accgcaccc	cgctcaccac	gagcacctc	tcggccac	ccgtcac	caacgtac	3540	
gccagcaccg	tcgtggaca	gaa	ctcggtggta	accatgc	gcgtggcaac	3600	
tggAACACCG	gcgcgc	cat	cctctgtct	ccggccag	accgaa	gagcgtac	3660

-continued

ctcagcctgc	ccggctcgac	ggccctcgaa	tacaagtaca	tcaagaagga	cggtccggg	3720
aacgtcacct	gggagagcg	cgccaaccgc	tcgaccacga	tccccgcctc	ggggaccgcg	3780
accctcaacg	acacctggaa	gttag				3804

<210> SEQ ID NO 22
 <211> LENGTH: 831
 <212> TYPE: DNA
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(831)
 <223> OTHER INFORMATION: ORF1

<400> SEQUENCE: 22

gtgccacatc	catccgagca	gagcgctccg	tcgggactcc	ggggcgccgt	gcacgaaatc	60
atcttcgagt	cgacaccc	ggggggccgc	gccttcgatg	tggcattgt	gtggccatc	120
gtgtcagcg	tcctcgcggt	gatgctcgag	agcggtggagt	ccatcagcg	ccagcatgg	180
cagaccatcc	cggtccctga	gtggtgttcc	accgggctct	tcacactgga	gtacgtgctg	240
cggtgtgt	cggtgaaacg	gcggctgccc	tatgcgtgta	gcttctcg	gtgggtggat	300
ctgtggcca	tcctggccctc	ggtgctgccc	ttgtatgtgc	ccggcatgca	gtccctgctg	360
gtggtgccgg	tgttccgcct	gtgtcggtc	ttcccgctac	tcaagtcgc	cagcttcctc	420
ggggaggccgg	acgtgtgtct	caccgcgtc	cgggccagtc	ggcgaaat	catcgcttcc	480
ctcgccggccgg	tgttgcgtac	atgggcgcgg	tgtatgtacat	gttggagggg		540
cgcgcacaacg	gtttcgacag	catcccgcgg	ggatgttatt	ggccatcg	gacgtatgacc	600
acgggtgggt	acggagacct	ctcgccaaag	acgggtgccc	gacagttcat	cgccctcggt	660
ttgtatgtca	tgggcttaegg	catccctcg	gtgcccacgg	gcatcggtc	cgtggagctc	720
gcccaggccga	ccggccagca	cgccatcgac	ccgcgcgcct	gtcccggt	cgccctgcag	780
ggccacgcacc	tggacgcgc	ccactgcaag	cactgcggca	ccggccctctg	a	831

<210> SEQ ID NO 23
 <211> LENGTH: 237
 <212> TYPE: DNA
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(237)
 <223> OTHER INFORMATION: ORF2

<400> SEQUENCE: 23

atggcacagg	accaggacag	ggagaagctg	cattccgacg	cgacaaggaa	gaggctgcac	60
ccgaaggctcg	actcgggtga	cgtctcgccc	cgggggccgc	agcgccggcc	cgacgaggaa	120
taccccaagc	agcgcaacgc	ggcgaggttc	ggcacccacg	gaggccccaa	caaggccggc	180
aaggaagacc	ggcgccact	gcatgcccc	ggcagctcca	aggcgccgtc	ccagtag	237

<210> SEQ ID NO 24
 <211> LENGTH: 489
 <212> TYPE: DNA
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(489)
 <223> OTHER INFORMATION: ORF3

-continued

<400> SEQUENCE: 24

```
atgggaagaa cctacagttt cgaacccttc ttgtcgcaac aacccgcgca gacctacaag 60
ggctcggtc cccggctcgaa caatgaagaa cacaagatcg ccctcaccaaa ggaagaggag 120
aaggcggccc tgcctgacac gcccacccgc tatggacagg cccacgcgca gaccgtgaag 180
cgctaccgcg cccgcgcgga gaagaagcgc acggagccca agaccccccgc taccggggcg 240
aagaaggccg cccccaaggc gaagcccacc cggaaaggtagg cgacgcaaga ggccacccgc 300
aaggcccccta cccgtcaacgc gggggaggag accgagccga agggcccccgc ggcacaagaag 360
ctgagcgcca cggggctcggt gggtagcata cggcgcaagg tggtgactcg ggccgcgggtc 420
gccccgcaaga agaccgtggc ggcgcgcgtg aagaccgcgc cccgcgcgaa gtccgcgaaag 480
aagcgctga 489
```

<210> SEQ ID NO 25

<211> LENGTH: 264

<212> TYPE: DNA

<213> ORGANISM: Cystobacter velatus

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(264)

<223> OTHER INFORMATION: ORF4

<400> SEQUENCE: 25

```
atgagcccg caagacgcaaa ggagagcaag cagcacgaaag tgggctccgc cacacacgca 60
cggegggtga tcgtggcgac ggatggccgg ggttggtacg tccgattcga gggcaaccgt 120
cagtcggcc ggtattccaa cgtgaccacg gccatccacg gggggcgac gctggctcgc 180
cagcacaaggc cccggggcgt cgtggcgac tacctggacg gggaaaggaga agagtccctgg 240
tacggggacc gcgaggcgcc ttga 264
```

<210> SEQ ID NO 26

<211> LENGTH: 450

<212> TYPE: DNA

<213> ORGANISM: Cystobacter velatus

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(450)

<223> OTHER INFORMATION: ORF5

<400> SEQUENCE: 26

```
atgaaacaca tcaaggcggt ggtgggggt gcgttgtccg cggctctgt ctccggcg 60
ggatgtcaga cgacggcggt tgctggaaat caaggaacgg gggggagcga tacgtctcag 120
ggcggcacca tgacccgaa tgagacgacc ggaacccgaa cggccggagg caccacggaa 180
ggtgtgaca ccacgggggg aggccacccggc ggaacagggtg ctggcgacat cgacgggtcg 240
agcagtggca gcacgggctc cggtagcgac gtggggcggt cccgcggctc gggcgtgtcc 300
agtgaacccgg gcggtttcag ccccgacgca tcggggcggtt acagcgaccc gggcggtcc 360
ggcacccggca gtgacgtggaa cggctccggc acacggact ccagcggcaaa catgagcg 420
acgggctccg aagacgacac cagccgctga 450
```

<210> SEQ ID NO 27

<211> LENGTH: 1578

<212> TYPE: DNA

<213> ORGANISM: Cystobacter velatus

<220> FEATURE:

-continued

<221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(1578)
 <223> OTHER INFORMATION: ORF6

<400> SEQUENCE: 27

atgagcacgc	gcacacctcc	ggccctggcc	gctccctcg	ccgcgtgcc	cgcgctgcc	60
caggagcg	tc	ccagcgagg	cgac	cttc	ggccggcaca	120
ccggccgat	tg	cgac	ccgc	gtgc	acac	180
ccggccgac	ag	agac	ccgc	gtgc	ccac	240
gaccggat	cg	cgac	ccgc	gtgc	ccac	300
gcccgtc	agg	ccgc	gtgc	gtgc	ccac	360
aacgaagg	tt	ccgc	gtgc	gtgc	ccac	420
ttcgatg	cc	ccgc	gtgc	gtgc	ccac	480
ccgacccg	agg	ccgc	gtgc	gtgc	ccac	540
gctgcgg	at	ccgc	gtgc	gtgc	ccac	600
ctttcat	cc	ccgc	gtgc	gtgc	ccac	660
accgactt	cc	ccgc	gtgc	gtgc	ccac	720
gacccatg	tc	ccgc	gtgc	gtgc	ccac	780
ggctgtc	aca	ccgc	gtgc	gtgc	ccac	840
ggcgagg	tg	ccgc	gtgc	gtgc	ccac	900
aagcccc	tc	ccgc	gtgc	gtgc	ccac	960
ctcgccct	aga	ccgc	gtgc	gtgc	ccac	1020
ggagac	tc	ccgc	gtgc	gtgc	ccac	1080
cccatagagg	cg	ccgc	gtgc	gtgc	ccac	1140
acgttc	act	ccgc	gtgc	gtgc	ccac	1200
atgggctat	cc	ccgc	gtgc	gtgc	ccac	1260
ttctacct	gg	ccgc	gtgc	gtgc	ccac	1320
gacaacac	ca	ccgc	gtgc	gtgc	ccac	1380
cggttgg	tg	ccgc	gtgc	gtgc	ccac	1440
aactatgg	cc	ccgc	gtgc	gtgc	ccac	1500
ggcgagc	tg	ccgc	gtgc	gtgc	ccac	1560
ctgcgc	ac	ccgc	gtgc	gtgc	ccac	1578

<210> SEQ ID NO 28
 <211> LENGTH: 786
 <212> TYPE: DNA
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: misc_feature
 <222> LOCATION: (1)..(786)
 <223> OTHER INFORMATION: ORF7

<400> SEQUENCE: 28

atgaccctc	gcacac	ccgc	gtgc	gtgc	ccac	60
gctcgccg	ac	ccgc	gtgc	gtgc	ccac	120

-continued

cgccagcgca acggcgcgca ctacaagtgcg ctgggtgtata tcgagcgacaa ggagaaggac	180
aaaacacacg tcgtgcgcga ggccgtcgctc taccggcgcg acgagaagga tcagctgatg	240
atcctcatga ccaagccaa gggcgaggcc ggcaagggct acctgcggct ggacaagaac	300
ctctggagct acgacccgaa caccggcaag tgggaccggc gcaccgagcg tgagcgatc	360
gcccgcaccc acagccgcgcg cgccgacttc gacgagtcgc gcctggccga ggagctcgat	420
ggcaagttcg agggcgagga gaaaactcgcc aagtccacca cctggaaagct cgtcctcacc	480
gccaagccga acgtggacgt cgccctacccc gtggtaacacc tgggggttggaa gaaggacacg	540
aacaacatcc tcaagcgcca ggagttcgcc ctttccggcc gcctgtatgcg caccctctac	600
ttccccaaagt ggtgaagct cttagcgag tccaaagaagg ccgacgtctg gtaccogcag	660
gagatgcgtct tctatgacga ggtggagaag accaactcca ccgtcatcg tctgtaaagac	720
gtggacctgc gctcgctcgaa ggagaacatcc ttcaaccaagg cctggttcgaa gagcaaaagc	780
cgatga	786

<210> SEQ ID NO 29

<211> LENGTH: 1302

<212> TYPE: DNA

<213> ORGANISM: Cystobacter velatus

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1) ..(1302)

<223> OTHER INFORMATION: ORF8

<400> SEQUENCE: 29

atgcaacagc tcctccatcg cgcagtgcgc aacctggca cccacaagcg ccgtacgctt	60
ctgtgtggcg gcgcacatgc cggtgtcacg gcccgtctcg tcataccatcg gggctgtcc	120
aacggcatga aggacacgtat gctccgtcc gccaccacgc tggtgaccgg gcacgtcaac	180
gtggctggct tctacaaggt gacggccggc cagtcgtgcgc ccgtgggtac ctcctacccc	240
aagctgtcg agcagctcgca aaggaagtc cccgagctgg acttctccgt ccagegcacg	300
cgcggctggg tcaagttggt gagcgagtct ggctccgtgc agacggaaat cggcggcatc	360
gacgttagcgg ccgagactgg catccgcaag gtgctgeagt tgcgggggg tccgggtggaa	420
gacctggcgc aaccaatac ctcctctctc ttcaacgagc aggcgaagcg gtcgaggtc	480
aagggtgggtg acagcgtcac ctcctccggc tccaccatgc gccggatcg caacaccgtg	540
gacgtacgtg tgggtggccat cgccgccaac gtggcatgc tgagttcctt caacgtcttgc	600
gtgcccacg ccaccctgcg cgccctctac cagtcgtgcgc aggactccac cggcgcctc	660
atgttccacc tcaaggacat gagcgccatc cccagctgcg aggcgccct ctacaacgcgt	720
ctgcccagat tgggttatca ggtgttggag catgacccccc gggccttctt catgaagttc	780
cagaccgtca accgcgaggc ctggacgggg cagaagctgg acatcacca ctgggaggac	840
gagatctct tcatcaagtgc gaccgtgtcg gcatggacg ccctcacccg cgtcctcatc	900
ttcgtgtcg tcatcatcat cgccgtgggg atcatgaaca ccctgtggat cgccatccgc	960
gagcgacacc gggaaatcg caccctgcgc gccatcgca tgcagcgctg gtacgtgtcg	1020
gtgtatgtcc tccctggaggc gtcgtgtctc ggactgtctcg gcaccacggt gggcgcctc	1080
gtgggcatgg gcgtgtgcct gtcatcaac gccgtggacc ctcctcgcc cgtgcccgtc	1140
cagctttca tcctctccga caagctccac ctcatcgta agcccgatc ggtgtatgaga	1200

-continued

gcccacgcgt	tcatcacgt	gtgcaccacc	ttcatctcg	tcattccctc	tttcctcgcc	1260
gcgcggatga	agcccatcac	ggcgatgcac	cacatcggtt	ga		1302
<210> SEQ_ID NO 30						
<211> LENGTH: 2106						
<212> TYPE: DNA						
<213> ORGANISM: Cystobacter velatus						
<220> FEATURE:						
<221> NAME/KEY: misc_feature						
<222> LOCATION: (1)..(2106)						
<223> OTHER INFORMATION: ORF9						
<400> SEQUENCE: 30						
atggggcaac	tcaagctct	gttccaagtgc	gcctgcgc	acttgttgcgt	gagcaggatc	60
aacctcctca	tcggaggcat	catcttcttc	ggcacccgtgc	tggtggttgt	gggcggctcc	120
ctcgatcgaca	gcgtggacga	ggcgatgagc	cgcagcattt	tccgcagcgt	cgccggccac	180
ctccagggtgt	actcggccca	cttcaaggac	gagctctcg	tcttcggca	gatggggccgc	240
gaaccggacc	tgagcgcgt	ggatgacttc	tgcgcatca	agcaacttgtt	acagcagcac	300
cccaacgtga	agacgggtgt	gcacatgggc	accggcgcca	cgttcatcaa	ctcgggaaac	360
accatcgacc	tgaccttggc	gcccgcgc	gacctctaca	agaaaggcgc	acagggcgac	420
acacccgaac	tccgcgggca	gatccacagc	ctccaggcgc	atgtgcgtca	catcatcacc	480
ttgtcgagg	aggatatgaa	ggggcgcagg	gaaatcatcg	acgacaagac	cacggacccc	540
gcggacgcgg	aggccatggc	ccgcgc	ccgttgcgt	tctgggggca	cttcgacag	600
aagccattcg	actcgctcg	gttccctggag	aaccgcatcg	ccccgtatata	gacggacggg	660
gacatgttgt	ccctgcgtta	tgtaggcacc	gacctggtca	acttccagaa	gaccttcgac	720
cgcgtgcga	tcgtggaggg	cacgcccgtt	ccccggggc	accggccat	gatgtctcc	780
aagttcacct	acgagaacga	cttcaagctg	aagacggcgc	accgggttga	tctcatcaag	840
gaggcgcgtg	ataccaacca	caagaccatc	gcgtggatc	cgcaactcca	gcgtgggtg	900
aaggagaacc	agacccagac	gccccggatc	ctttccagc	tgcacgac	caagacgaag	960
caggccgtgg	ageggctcca	gcccgtgt	ggcagccagg	agacggac	ggcaagcta	1020
ctgccccct	tcttcacca	ggatgacg	ccatcgac	cgcaacttca	gcagttctac	1080
tccgagctgg	cgacgtgtct	cgacgtgtac	cgcatccga	tccggggcga	cctcaccatc	1140
accgcattct	cgccgcacccgg	ctatgtgcag	agcgtgaac	tgaagatcta	cggcacctac	1200
cagttcgacg	ggctggagaa	gtccgcggc	gccggagccc	tcaacctgt	ggacctgtat	1260
tccttcgcg	agctgtacgg	ctatctcacc	gttgcggat	aggccggat	cgccggcctg	1320
cagaaggcca	gcgggggtgca	gcagggtga	cgcgaggac	ccgagacggc	gcttttggc	1380
gagcaggcga	gcgcctcg	ggtggccgag	gggaccgc	gccagatcg	cgaggacaag	1440
caactcgac	ggctcgccca	gaagctgcac	cgcgaggac	tcgcctcccg	ggtgtacac	1500
cagcaggaaa	tcaaagcgg	cggtgtgtc	agcaccgcgg	ttctgtgtaa	gcatcoggag	1560
aagctggagc	agaccctggc	cgagctgcgg	aaatcgccgg	acgacgcgaa	actaccctt	1620
cggatcatct	cctggcagaa	ggccctccggc	acgatcgcc	agttcgct	ggtcgcac	1680
ctgggtgtct	acttcgcgt	tttgcgtgttgg	cgctcg	tcatca	acacaac	1740
gcgtatgtga	tggccacgt	gcagcgggtg	cgcgaggatgg	gcaccctgcg	ggccatcg	1800

-continued

ggcgcggcgt cgttcgtgtc gagcatggtg ctggtgaaa cggtgtgtct ggggctcgct	1860
ttccggcgtgc tgggagccgc catggaggt gccatcatgtc acatgtcggtt ccacgtgggc	1920
atccccggccg gcaacgaggc gctctacttc ttcttctcggtt gaccccgctt cttcccccagt	1980
ctccacacgtt caaaacctgtt ggcggcccttc gtcatgtgtc tcgttggtgtc cggccctctcc	2040
acotttctacc ccgcgtacctt cgcgaccgggtt gtatcgccctt tccaggcgat gcagacggac	2100
gagtga	2106

<210> SEQ ID NO 31
<211> LENGTH: 762
<212> TYPE: DNA
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(762)
<223> OTHER INFORMATION: ORF10

<400> SEQUENCE: 31

atgagccagg tcactgcctt cccggcagc acccagccga tcgtctccct caccgaggtt 60
accaagacgt actccctggg taagggtgcag gtggccgcac tccgaggcgt gacgctagag 120
gtgtaccggg gagagttcat ctccatcgcc ggccatcgcc ggagtgccaa gacgacggcg 180
ctcaatctca tcggctgcgt ggacacggcc tccctggggcg tggtgagcgt ggtatggccag 240
gacaccaaga agctcaccga gcggcagctc acccacttgc ggatgcacac catcgcttc 300
attttccaga gcttcaacct cgtctcggtg ctccatcggtt tccagaacgt agagttcccc 360
ctgctgtgc agcgcaagct caacgcctcc gagggccgcac cggcggtgtat gacgctgtcg 420
gagcagggtgg gcctggagaa gcacgccaaa caccggccca atgagctgtc tggaggccag 480
cgccagcgcc tggccgtggc gcggcgcttc gtccatcggtt ccaagctggt gctcgccgac 540
gagccacccg ccaacctcgat ctccatcgacc ggccagaaca tcatcgaccc gatgaaggag 600
ctcaacccgca aggagggcgcac cacccatcgat ttccatcgacc acgacgccaa ggtgtatgacc 660
cacggccaaacg ccgtgggtgcg cctggccggac gggaaatgcc tccgaccgcac cacggccggcc 720
qaqqqcccaqa aqqtcatqqc cqtaqccqaq qqqqqccact aa 762

```
<210> SEQ ID NO 32
<211> LENGTH: 1194
<212> TYPE: DNA
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(1194)
<223> OTHER INFORMATION: ORF11

<400> SEQUENCE: 32

atgccgcaga agttcgtggg gaagtggaaag ggccggccgg tcaagctgt cgtatggtcgg 60
aagggtgtggc tcctcgagaa gatggtctcc gggggcccggt ttcgggttc cttggcggtc 120
tcacaacgagg aggacgcgcgt ggccgagctg gcccgttcc ggccgcgaccg ggacgcctac 180
ctggccaagg tgaaggccga caggtcgag gaagtccagg catccactgt agccggggca 240
gttcctctgt cgggggatgt ggggcctcgg ctgcgtccg attctgtccg ggagtccctc 300
cgacacttga cccagcgggg gcgaacggag gttaccggc gggacgcccg aacacctac 360
tcgcaatggg ccgagggttct ggccggaaagg gacctgagta cctgcgcgtt cctcgagtt 420
```

-continued

cgccgcgccc	tgagccaatg	gcccacggcc	aggaagatgc	ggatcatcac	gctcaagagc	480
ttttctcg	ggctgaggga	agaggatgc	ctcaaggctg	ctgaagaccc	cacgttgtcc	540
ctcaaggtgc	cggccgcggt	cggggagaag	gggagacggg	ccaaggggta	ttcgatggcc	600
caagtggaga	agctctacgc	ggccatcgcc	tccagacgg	tgagggacgt	gctgtgtctg	660
cgggccaaga	cggcatgca	cgactcgag	atcgccgccc	tggcatcggg	caagggggaa	720
ctggcgctcg	tcaatgaccc	ctccggatc	gcccgtactg	cgcggtttct	gcacaagaac	780
ggccgcgttc	acatcctcg	tctggatgca	caggcccttg	ctgcccgcga	gcggctccag	840
gttcggggca	ggggccccat	caggaacacc	gtccgggagt	ccatcggtt	tgctcgccg	900
cgcattgggc	agtcgcccatt	ccatcccaggc	gagctccggcc	acagcttcac	cacctggggcc	960
acgaatgagg	gccaggtcg	gagggcaacc	cggggcggag	tgccactcg	tgctcggtcc	1020
tcggttcttg	gccatcagtc	cacacggggc	accaagaagt	tctatgacgg	gaccggaaatt	1080
cccccgatga	tcaccgtccc	gctcaagotg	catcatccac	aggacccagc	ggtgatgcag	1140
ctgaggcgta	actgctcgcc	ggaccccgtc	gtgacgagag	aggcagaggc	gtga	1194

<210> SEQ ID NO 33

<211> LENGTH: 375

<212> TYPE: DNA

<213> ORGANISM: Cystobacter velatus

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(375)

<223> OTHER INFORMATION: ORF12

<400> SEQUENCE: 33

gtgtccctcg	cattcccttc	cggccctctg	tgcgtggcgc	tcctgtccac	taccaccgaa	60
atctctcgcc	ctttccctgt	ggacgagtgc	gagtcggcga	gcctgccc	cgagctgccc	120
gctacgcccag	ggggaaagcc	accctgttgt	tgtctcggtc	caggctcgcc	cattcattc	180
cgcttcgact	ccgcgcctca	acagaagtcc	ctgaggattc	aggatcgccc	ctggttcgag	240
gattggcctt	tggccagca	gacgctcgta	ctgactccctc	acgacaacct	ggtggctggg	300
aagegatctg	aagtggaggt	gtgttcgag	gtgggtgcgc	ccccggcggt	cgcttccttc	360
gtgtccggc	gctga					375

<210> SEQ ID NO 34

<211> LENGTH: 339

<212> TYPE: DNA

<213> ORGANISM: Cystobacter velatus

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(339)

<223> OTHER INFORMATION: ORF13

<400> SEQUENCE: 34

atgcacacga	agggtccctc	cgtttcgag	gcaacgccc	agtctctcg	tgacgtggac	60
taccagttct	ggcatgagga	cttcccagg	gtgttcgagc	ggcagcacat	cgacgogcac	120
gcgggtcccc	ccattggcgc	gtacttggc	gaggtctgg	tgcgttaaccc	gggcggcaag	180
tggataccctc	gccagaaact	cgacgaggcc	caggtctcg	tcggcaacc	tgtgtgggtt	240
ccgtttgcgc	gggctcacca	ctacatgcgc	tcgtgcgaat	cgttgcgttga	ctactccctc	300
acccagctct	accgcgtggc	cgagcggtac	cgggggttga			339

-continued

```

<210> SEQ ID NO 35
<211> LENGTH: 915
<212> TYPE: DNA
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(915)
<223> OTHER INFORMATION: ORF 14

<400> SEQUENCE: 35

atgaagggtgc tggggcttgg tgacgtgaag tcggaggaca gtctccggct cacttttag 60
ggtgcgccttg atccgcaggc tgcgcctttag aaagttctcg agccattttt ccaggcgctg 120
gagaaatatg caggcgattt gatgcggaa gtcgtcagtg gcaggcgccg actcaaatac 180
tcccggccca atatctggaa ggctctggag gagcggcgccg atgaacgaag cacagacacc 240
tggctctacc gcacacagcg gcccacactg gagatgtcgc tgcacatctcg gtttccgccc 300
cttccgcggc ctttggacgt aatgactacg gtgcaaccgc tcaccccgctt cgcggagaag 360
gagcgctgccc gcacattcgta agaaatggta cgcacccctggg cctcttgcata cccgggtact 420
cagcgccgacg cccacacgctt gggtgacagg ggcgttggcag gtgcgcggca ttttggacgc 480
gatgcgcggca cccgcacggag agacgggttc gacagaatct acgagatctt ctggctcaac 540
gtcttcggcc ccaagttgggt ggaagccgtg ggccgcgagc gcatgtgtc caccgcacgt 600
caccgggtgg aggaactgccc caatggctcc atccttcggc tgacgtggcc caccgcgtcg 660
gacttcgcgg ggcgcgcggc acggcaegca caggcgccgc cgcacgttca cctccggccg 720
gaccccgctt tcgacacacgtt gctgcgaacc ctgcacacggc gtgcgcggccg gtcgttccc 780
gtttagccctt gcttccaccc ggatgttagcg ccactccctt ctcacgttggt ggatagcgct 840
gcatccggaa tggggaaaac ctggggcgcc ctaacgagca ttacagaact ctggctgagc 900
acctcggtggc gctga 915

<210> SEQ ID NO 36
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(32)
<223> OTHER INFORMATION: CysL KO For

<400> SEQUENCE: 36

tgattgattt atcggcgca ttccgcctct gg 32

<210> SEQ ID NO 37
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(32)
<223> OTHER INFORMATION: CysL KO Rev

<400> SEQUENCE: 37

tcaatcaatc atcggggtcgc ggtctcaggc tc 32

```

-continued

<210> SEQ ID NO 38
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(37)
<223> OTHER INFORMATION: CysK KO For

<400> SEQUENCE: 38

tgattgattg aaaaacagtc ggaggagttt cttgtcc 37

<210> SEQ ID NO 39
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(32)
<223> OTHER INFORMATION: CysK KO Rev

<400> SEQUENCE: 39

tcaatcaatc aactcccaagt gccctcagcc tc 32

<210> SEQ ID NO 40
<211> LENGTH: 70
<212> TYPE: PRT
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(70)
<223> OTHER INFORMATION: CysA

<400> SEQUENCE: 40

Met Ser Met Asn Gly Asp Glu Ala Glu Tyr Val Val Leu Ile Asn Gly
1 5 10 15

Glu Glu Gln Tyr Ser Leu Trp Pro Val His Arg Glu Ile Pro Gly Gly
20 25 30

Trp Lys Thr Val Gly Pro Lys Gly Ser Lys Glu Thr Cys Gln Ser Tyr
35 40 45

Ile Gln Glu Val Trp Thr Asp Met Arg Pro Lys Ser Leu Arg Glu Ala
50 55 60

Leu Thr Arg Ser Asn Cys
65 70

<210> SEQ ID NO 41
<211> LENGTH: 317
<212> TYPE: PRT
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(317)
<223> OTHER INFORMATION: CysB

<400> SEQUENCE: 41

Met Ser Thr Pro Ala Ala Gly Ala Lys Pro Ser Tyr Leu Ala Gly Ile
1 5 10 15

Glu Thr Val Met Val Glu Pro Glu Leu Glu Val Arg Tyr Leu Thr
20 25 30

-continued

Val Glu Ser Gly Asp Gly Arg Gln Ser Thr Leu Tyr Glu Phe Gly Pro
 35 40 45

Lys Asp Ala Glu Lys Val Val Val Leu Pro Pro Tyr Gly Val Thr Phe
 50 55 60

Leu Leu Val Ala Arg Leu Ala Arg Leu Leu Ser Gln Arg Phe His Val
 65 70 75 80

Leu Ile Trp Glu Ser Arg Gly Cys Pro Asp Ser Ala Ile Pro Val Tyr
 85 90 95

Asp Thr Asp Leu Gly Leu Ala Asp Gln Ser Arg His Phe Ser Glu Val
 100 105 110

Leu Lys Gln Gln Gly Phe Glu Ala Phe His Phe Val Gly Trp Cys Gln
 115 120 125

Ala Ala Gln Leu Ala Val His Ala Thr Ala Ser Gly Gln Val Lys Pro
 130 135 140

Arg Thr Met Ser Trp Ile Ala Pro Ala Gly Leu Gly Tyr Ser Leu Val
 145 150 155 160

Lys Ser Glu Phe Asp Arg Cys Ala Leu Pro Ile Tyr Leu Glu Ile Glu
 165 170 175

Lys His Gly Leu Leu His Ala Glu Lys Leu Gly Arg Leu Leu Asn Lys
 180 185 190

Tyr Asn Gly Val Pro Ala Thr Ala Gln Asn Ala Ala Glu Lys Leu Thr
 195 200 205

Met Arg His Leu Ala Asp Pro Arg Met Thr Tyr Val Phe Ser Arg Tyr
 210 215 220

Met Lys Ala Tyr Glu Asp Asn Arg Leu Leu Ala Lys Gln Phe Val Ser
 225 230 235 240

Thr Ala Leu Asp Ser Val Pro Thr Leu Ala Ile His Cys Arg Asp Asp
 245 250 255

Thr Tyr Ser His Phe Ser Glu Ser Val Gln Leu Ser Lys Leu His Pro
 260 265 270

Ser Leu Glu Leu Arg Leu Leu Gly Lys Gly Gly His Leu Gln Ile Phe
 275 280 285

Asn Asp Pro Ala Thr Leu Ala Glu Tyr Val Leu Gly Phe Ile Asp Thr
 290 295 300

Arg Ala Ser Gln Ala Ala Ala Pro Ala Val Ala Gly Ala
 305 310 315

<210> SEQ ID NO 42
 <211> LENGTH: 459
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(459)
 <223> OTHER INFORMATION: CysC

<400> SEQUENCE: 42

Met Ile Leu Pro Asn Asn Ile Gly Leu Asp Glu Arg Thr Gln Leu Ala
 1 5 10 15

Arg Gln Ile Ser Ser Tyr Gln Lys Lys Phe His Val Trp Trp Arg Glu
 20 25 30

Arg Gly Pro Thr Glu Phe Leu Asp Arg Gln Met Arg Leu Arg Thr Pro
 35 40 45

-continued

Thr Gly Ala Val Ser Gly Val Asp Trp Ala Glu Tyr Lys Thr Met Arg
 50 55 60

Pro Asp Glu Tyr Arg Trp Gly Leu Phe Met Val Pro Met Asp Gln Asp
 65 70 75 80

Glu Ile Ala Phe Gly Asp His Arg Gly Lys Lys Ala Trp Glu Glu Val
 85 90 95

Pro Ser Glu Tyr Arg Thr Leu Leu Gln His Ile Cys Val Gln Ala
 100 105 110

Asp Val Glu Asn Ala Ala Val Glu Gln Ser Arg Leu Leu Thr Gln Met
 115 120 125

Ala Pro Ser Asn Pro Asp Leu Glu Asn Val Phe Gln Phe Phe Leu Glu
 130 135 140

Glu Gly Arg His Thr Trp Ala Met Val His Leu Leu Leu Ala His Phe
 145 150 155 160

Gly Glu Asp Gly Val Val Glu Ala Glu Ala Leu Leu Glu Arg Leu Ser
 165 170 175

Gly Asp Pro Arg Asn Pro Arg Leu Leu Glu Ala Phe Asn Tyr Pro Thr
 180 185 190

Glu Asp Trp Leu Ser His Phe Met Trp Cys Leu Leu Ala Asp Arg Val
 195 200 205

Gly Lys Tyr Gln Ile His Ala Val Thr Glu Ala Ser Phe Ala Pro Leu
 210 215 220

Ala Arg Ala Ala Lys Phe Met Met Phe Glu Glu Pro Leu His Ile Ala
 225 230 235 240

Met Gly Ala Val Gly Leu Glu Arg Val Leu Ala Arg Thr Ala Glu Val
 245 250 255

Thr Leu Arg Glu Gly Thr Phe Asp Thr Phe His Ala Gly Ala Ile Pro
 260 265 270

Phe Pro Val Val Gln Lys Tyr Leu Asn Tyr Trp Ala Pro Lys Val Tyr
 275 280 285

Asp Leu Phe Gly Asn Asp Gly Ser Glu Arg Ser Asn Glu Leu Phe Arg
 290 295 300

Ala Gly Leu Arg Arg Pro Arg Asn Phe Val Gly Ser Glu Ser Gln Ile
 305 310 315 320

Val Arg Ile Asp Glu Arg Met Gly Asp Gly Leu Thr Val Val Glu Val
 325 330 335

Glu Gly Glu Trp Ala Ile Asn Ala Ile Met Arg Arg Gln Phe Ile Ala
 340 345 350

Glu Val Gln Thr Leu Ile Asp Arg Trp Asn Ala Ser Leu Arg Ala Leu
 355 360 365

Gly Val Asp Phe Gln Leu Tyr Leu Pro His Glu Arg Phe Ser Arg Thr
 370 375 380

Tyr Gly Pro Cys Ala Gly Leu Pro Phe Asp Val Asp Gly Lys Leu Leu
 385 390 395 400

Pro Arg Gly Thr Glu Ala Lys Leu Ala Glu Tyr Phe Pro Thr Pro Arg
 405 410 415

Glu Leu Ala Asn Val Arg Ser Leu Met Gln Arg Glu Leu Ala Pro Gly
 420 425 430

Gln Tyr Ser Ser Trp Ile Ala Pro Ser Ala Thr Arg Leu Ser Ala Leu
 435 440 445

Val Gln Gly Arg Asn Thr Pro Lys Glu His Glu

-continued

450

455

```

<210> SEQ ID NO 43
<211> LENGTH: 732
<212> TYPE: PRT
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(732)
<223> OTHER INFORMATION: CysD

<400> SEQUENCE: 43

Met Arg Cys Leu Ile Ile Asp Asn Tyr Asp Ser Phe Thr Trp Asn Leu
1 5 10 15

Ala Asp Tyr Val Ala Gln Thr Phe Gly Ser Glu Pro Leu Val Val Arg
20 25 30

Asn Asp Gln His Thr Trp Gln Glu Ile Lys Ala Leu Gly Ser Phe Gly
35 40 45

Cys Ile Leu Val Ser Pro Gly Pro Gly Ser Val Thr Asn Pro Lys Asp
50 55 60

Phe Asn Val Ser Arg Asp Ala Leu Glu Gln Asp Glu Phe Pro Val Phe
65 70 75 80

Gly Val Cys Leu Gly His Gln Gly Leu Ala Tyr Ile Tyr Gly Gly Glu
85 90 95

Ile Thr His Ala Pro Val Pro Phe His Gly Arg Thr Ser Thr Ile Tyr
100 105 110

His Asp Gly Thr Gly Val Phe Gln Gly Leu Pro Pro Ser Phe Asp Ala
115 120 125

Val Arg Tyr His Ser Leu Val Val Arg Pro Glu Ser Leu Pro Ala Asn
130 135 140

Leu Val Val Thr Ala Arg Thr Glu Cys Gly Leu Ile Met Gly Leu Arg
145 150 155 160

His Val Ser Arg Pro Lys Trp Gly Val Gln Phe His Pro Glu Ser Ile
165 170 175

Leu Thr Ala His Gly Leu Gln Leu Ile Ser Asn Phe Arg Asp Glu Ala
180 185 190

Tyr Arg Tyr Ala Gly Lys Glu Val Pro Ser Arg Arg Pro His Ser Thr
195 200 205

Ala Gly Asn Gly Val Gly Ala Gly Ala Ala Arg Arg Asp Pro Ser Ala
210 215 220

Arg Arg Thr Pro Glu Arg Arg Glu Leu Gln Thr Phe Thr Arg Arg
225 230 235 240

Leu Ala Thr Ser Leu Glu Ala Glu Thr Val Phe Leu Gly Leu Tyr Ala
245 250 255

Gly Arg Glu His Cys Phe Trp Leu Asp Ser Gln Ser Val Arg Glu Gly
260 265 270

Ile Ser Arg Phe Ser Phe Met Gly Cys Val Pro Glu Gly Ser Leu Leu
275 280 285

Thr Tyr Gly Ala Ala Glu Ala Ala Ser Glu Gly Gly Ala Glu Arg Tyr
290 295 300

Leu Ala Ala Leu Glu Arg Ala Leu Glu Ser Arg Ile Val Val Arg Pro
305 310 315 320

Val Asp Gly Leu Pro Phe Glu Phe His Gly Gly Tyr Ile Gly Phe Met
325 330 335

```

-continued

Thr Tyr Glu Met Lys Glu Ala Phe Gly Ala Ala Thr Thr His Lys Asn
 340 345 350
 Thr Ile Pro Asp Ala Leu Trp Met His Val Lys Arg Phe Leu Ala Phe
 355 360 365
 Asp His Ser Thr Arg Glu Val Trp Leu Val Ala Ile Ala Glu Leu Glu
 370 375 380
 Glu Ser Ala Ser Val Leu Ala Trp Met Asp Glu Thr Ala Asp Ala Leu
 385 390 395 400
 Lys Ser Leu Pro Arg Gly Thr Arg Ser Pro Gln Ser Leu Gly Leu Lys
 405 410 415
 Ser Ile Ser Val Ser Met Asp Cys Gly Arg Asp Asp Tyr Phe Ala Ala
 420 425 430
 Ile Glu Arg Cys Lys Glu Lys Ile Val Asp Gly Glu Ser Tyr Glu Val
 435 440 445
 Cys Leu Thr Asn Gly Phe Ser Phe Asp Leu Lys Leu Asp Pro Val Glu
 450 455 460
 Leu Tyr Val Thr Met Arg Arg Gly Asn Pro Ala Pro Phe Gly Ala Phe
 465 470 475 480
 Ile Lys Thr Gly Lys Thr Cys Val Leu Ser Thr Ser Pro Glu Arg Phe
 485 490 495
 Leu Lys Val Asp Glu Asp Gly Thr Val Gln Ala Lys Pro Ile Lys Gly
 500 505 510
 Thr Cys Ala Arg Ser Asp Asp Pro Ala Thr Asp Ser Thr Asn Ala Ala
 515 520 525
 Arg Leu Ala Ala Ser Glu Lys Asp Arg Ala Glu Asn Leu Met Ile Val
 530 535 540
 Asp Leu Met Arg Asn Asp Leu Gly Arg Val Ser Val Pro Gly Ser Val
 545 550 555 560
 His Val Ser Asn Leu Met Asp Ile Glu Ser Phe Lys Thr Val His Gln
 565 570 575
 Met Val Ser Thr Val Glu Ser Thr Leu Thr Pro Glu Cys Ser Leu Val
 580 585 590
 Asp Leu Leu Arg Ala Val Phe Pro Gly Gly Ser Ile Thr Gly Ala Pro
 595 600 605
 Lys Ile Arg Thr Met Glu Ile Ile Asp Arg Leu Glu Lys Ser Pro Arg
 610 615 620
 Gly Ile Tyr Cys Gly Thr Ile Gly Tyr Leu Gly Tyr Asn Arg Ile Ala
 625 630 635 640
 Asp Leu Asn Ile Ala Ile Arg Thr Leu Ser Tyr Asp Gly Thr Leu Val
 645 650 655
 Lys Phe Gly Ala Gly Gly Ala Ile Thr Tyr Leu Ser Gln Pro Glu Gly
 660 665 670
 Glu Phe Gln Glu Ile Leu Leu Lys Ala Glu Ser Ile Leu Arg Pro Ile
 675 680 685
 Trp Gln Tyr Ile Asn Gly Ala Gly Ala Pro Phe Glu Pro Gln Leu Arg
 690 695 700
 Asp Arg Val Leu Cys Leu Glu Glu Lys Pro Arg Arg Val Ile Arg Gly
 705 710 715 720
 His Gly Ser Ala Ile Asp Ala Val Glu Pro Ser Ala
 725 730

-continued

```

<210> SEQ ID NO 44
<211> LENGTH: 243
<212> TYPE: PRT
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(243)
<223> OTHER INFORMATION: CysE

<400> SEQUENCE: 44

Met Ile Ala Phe Asn Pro Gln Ala Arg Pro Arg Leu Arg Leu Phe Cys
1 5 10 15

Phe Pro Tyr Ala Gly Gly Asp Ala Asn Ile Phe Arg Asp Trp Ala Ala
20 25 30

Ala Met Pro Glu Gly Val Glu Val Leu Gly Val Gln Tyr Pro Gly Arg
35 40 45

Gly Thr Asn Leu Ala Leu Pro Pro Ile Ser Asp Cys Asp Glu Met Ala
50 55 60

Ser Gln Leu Leu Ala Val Met Thr Pro Leu Leu Gly Ile Asn Phe Ala
65 70 75 80

Phe Phe Gly His Ser Asn Gly Ala Leu Ile Ser Phe Glu Val Ala Arg
85 90 95

Arg Leu His Asp Glu Leu Lys Gly Arg Met Arg His His Phe Leu Ser
100 105 110

Ala Lys Ser Ala Pro His Tyr Pro Asn Asn Arg Ser Lys Ile Ser Gly
115 120 125

Leu Asn Asp Glu Asp Phe Leu Arg Ala Ile Arg Lys Met Gly Gly Thr
130 135 140

Pro Gln Glu Val Leu Asp Asp Ala Arg Leu Met Gln Ile Leu Leu Pro
145 150 155 160

Arg Leu Arg Ala Asp Phe Ala Leu Gly Glu Thr Tyr Val Phe Arg Pro
165 170 175

Gly Pro Thr Leu Thr Cys Asp Val Ser Ile Leu Arg Gly Glu Ser Asp
180 185 190

His Leu Val Asp Gly Glu Phe Val Gln Arg Trp Ser Glu Leu Thr Thr
195 200 205

Gly Gly Ala Ser Gln Tyr Ala Ile Asp Gly Gly His Phe Phe Leu Asn
210 215 220

Ser His Lys Ser Gln Val Val Ala Leu Val Arg Ala Ala Leu Leu Glu
225 230 235 240

Cys Val Leu

```

```

<210> SEQ ID NO 45
<211> LENGTH: 345
<212> TYPE: PRT
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(345)
<223> OTHER INFORMATION: CysF

<400> SEQUENCE: 45

Met Thr Ala Gln Asn Gln Ala Ser Ala Phe Ser Phe Asp Leu Phe Tyr
1 5 10 15

Thr Thr Val Asn Ala Tyr Tyr Arg Thr Ala Ala Val Lys Ala Ala Ile
20 25 30

```

-continued

Glu Leu Gly Val Phe Asp Val Val Gly Glu Lys Gly Lys Thr Leu Ala
 35 40 45
 Glu Ile Ala Lys Ala Cys Asn Ala Ser Pro Arg Gly Ile Arg Ile Leu
 50 55 60
 Cys Arg Phe Leu Val Ser Ile Gly Phe Leu Lys Asn Ala Gly Glu Leu
 65 70 75 80
 Phe Phe Leu Thr Arg Glu Met Ala Leu Phe Leu Asp Lys Lys Ser Pro
 85 90 95
 Gly Tyr Leu Gly Gly Ser Ile Asp Phe Leu Leu Ser Pro Tyr Ile Met
 100 105 110
 Asp Gly Phe Lys Asp Leu Ala Ser Val Val Arg Thr Gly Glu Leu Thr
 115 120 125
 Leu Pro Glu Lys Gly Val Val Ala Pro Asp His Pro Gln Trp Val Thr
 130 135 140
 Phe Ala Arg Ala Met Ala Pro Met Met Ser Leu Pro Ser Leu Leu Leu
 145 150 155 160
 Ala Glu Leu Ala Asp Arg Gln Ala Asn Gln Pro Leu Lys Val Leu Asp
 165 170 175
 Val Ala Ala Gly His Gly Leu Phe Gly Leu Ala Ile Ala Gln Arg Asn
 180 185 190
 Pro Lys Ala His Val Thr Phe Leu Asp Trp Glu Asn Val Leu Gln Val
 195 200 205
 Ala Arg Glu Asn Ala Thr Lys Ala Gly Val Leu Asp Arg Val Glu Phe
 210 215 220
 Arg Pro Gly Asp Ala Phe Ser Val Asp Phe Gly Lys Glu Leu Asp Val
 225 230 235 240
 Ile Leu Leu Thr Asn Phe Leu His His Phe Asp Glu Ala Gly Cys Glu
 245 250 255
 Lys Ile Leu Lys Ala His Ala Ala Leu Lys Glu Gly Arg Val
 260 265 270
 Leu Thr Phe Glu Phe Ile Ala Asn Glu Asp Arg Thr Ser Pro Pro Leu
 275 280 285
 Ala Ala Thr Phe Ser Met Met Met Leu Gly Thr Thr Pro Gly Gly Glu
 290 295 300
 Thr Tyr Ala Tyr Ser Asp Leu Glu Arg Met Phe Lys Asn Thr Gly Tyr
 305 310 315 320
 Asp Gln Val Glu Leu Lys Ala Ile Pro Pro Ala Met Glu Lys Val Val
 325 330 335
 Val Ser Ile Lys Gly Lys Ala Gln Leu
 340 345

<210> SEQ ID NO 46
 <211> LENGTH: 1992
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(1992)
 <223> OTHER INFORMATION: CysG

<400> SEQUENCE: 46

Met Ala Thr Lys Leu Ser Asp Phe Ala Leu Leu Asp Ser Glu Asp Ala
 1 5 10 15

-continued

Asn Val Ile Ser Arg Ser Asn Glu Thr Gly Ile Ser Leu Asp Leu Ser
 20 25 30

Lys Ser Val Val Asp Leu Phe Asn Leu Gln Val Glu Arg Ala Pro Asp
 35 40 45

Ala Thr Ala Cys Leu Gly Arg Gln Gly Arg Leu Thr Tyr Gly Glu Leu
 50 55 60

Asn Arg Arg Thr Asn Gln Leu Ala His His Leu Ile Ala Arg Gly Val
 65 70 75 80

Gly Pro Asp Val Pro Val Gly Val Leu Phe Glu Arg Ser Ala Glu Gln
 85 90 95

Leu Ile Ala Ile Leu Gly Val Leu Lys Ala Gly Gly Cys Tyr Val Pro
 100 105 110

Leu Asp Pro Gln Tyr Pro Ala Asp Tyr Met Gln Gln Val Leu Thr Asp
 115 120 125

Ala Arg Pro Arg Met Val Val Ser Ser Arg Ala Leu Gly Glu Arg Leu
 130 135 140

Arg Ser Gly Glu Glu Gln Ile Val Tyr Leu Asp Asp Glu Gln Leu Leu
 145 150 155 160

Ala Arg Glu Thr Arg Asp Pro Pro Val Lys Val Leu Pro Glu Gln Leu
 165 170 175

Ala Tyr Val Met Tyr Thr Ser Gly Ser Ser Gly Val Pro Lys Gly Val
 180 185 190

Met Val Pro His Arg Gln Ile Leu Asn Trp Leu His Ala Leu Leu Ala
 195 200 205

Arg Val Pro Phe Gly Glu Asn Glu Val Val Ala Gln Lys Thr Ser Thr
 210 215 220

Ser Phe Ala Ile Ser Val Lys Glu Leu Phe Ala Gly Leu Val Ala Gly
 225 230 235 240

Val Pro Gln Val Phe Ile Asp Asp Ala Thr Val Arg Asp Val Ala Ser
 245 250 255

Phe Val Arg Glu Leu Glu Gln Trp Arg Val Thr Arg Leu Tyr Thr Phe
 260 265 270

Pro Ser Gln Leu Ala Ala Ile Leu Ser Ser Val Asn Gly Ala Tyr Glu
 275 280 285

Arg Leu Arg Ser Leu Arg His Leu Tyr Ile Ser Ile Glu Pro Cys Pro
 290 295 300

Thr Glu Leu Leu Ala Lys Leu Arg Ala Ala Met Pro Trp Val Thr Pro
 305 310 315 320

Trp Tyr Ile Tyr Gly Cys Thr Glu Ile Asn Asp Val Thr Tyr Cys Asp
 325 330 335

Pro Gly Asp Gln Ala Gly Asn Thr Gly Phe Val Pro Ile Gly Arg Pro
 340 345 350

Ile Arg Asn Thr Arg Val Phe Val Leu Asp Glu Glu Leu Arg Met Val
 355 360 365

Pro Val Gly Ala Met Gly Glu Met Tyr Val Glu Ser Leu Ser Thr Ala
 370 375 380

Arg Gly Tyr Trp Gly Leu Pro Glu Leu Thr Ala Glu Arg Phe Ile Ala
 385 390 395 400

Asn Pro His Ala Glu Asp Gly Ser Arg Leu Tyr Lys Thr Gly Asp Leu
 405 410 415

Ala Arg Tyr Leu Pro Asp Gly Ser Leu Glu Phe Leu Gly Arg Arg Asp

-continued

420	425	430
Tyr Glu Val Lys Ile Arg Gly Tyr Arg Val Asp Val Arg Gln Val Glu		
435	440	445
Lys Val Leu Gly Ala His Pro Asp Ile Leu Glu Val Ala Val Val Gly		
450	455	460
Trp Pro Leu Gly Gly Ala Asn Pro Gln Leu Val Ala Tyr Val Val Pro		
465	470	475
Arg Ala Lys Gly Ala Ala Pro Ile Gln Glu Ile Arg Asp Tyr Leu Ser		
485	490	495
Ala Ser Leu Pro Ala Tyr Met Val Pro Thr Ile Phe Gln Val Leu Ala		
500	505	510
Ala Leu Pro Arg Leu Pro Asn Asp Lys Val Asp Arg Leu Ser Leu Pro		
515	520	525
Asp Pro Lys Val Glu Glu Gln Thr Glu Gly Tyr Val Ala Pro Arg Thr		
530	535	540
Glu Thr Glu Lys Val Leu Ala Glu Ile Trp Ser Asp Val Leu Ser Gln		
545	550	555
Gly Arg Ala Pro Leu Thr Val Gly Ala Thr His Asn Phe Phe Glu Leu		
565	570	575
Gly Gly His Ser Leu Leu Ala Ala Gln Met Phe Ser Arg Ile Arg Gln		
580	585	590
Lys Phe Asp Leu Glu Leu Pro Ile Asn Thr Leu Phe Glu Thr Pro Val		
595	600	605
Leu Glu Gly Phe Ala Ser Ala Val Asp Ala Ala Leu Ala Glu Arg Asn		
610	615	620
Gly Pro Ala Gln Arg Leu Ile Ser Met Thr Asp Arg Gly Gln Ala Leu		
625	630	635
Pro Leu Ser His Val Gln Glu Arg Leu Trp Phe Val His Glu His Met		
645	650	655
Val Glu Gln Arg Ser Ser Tyr Asn Val Ala Phe Ala Cys His Met Arg		
660	665	670
Gly Lys Gly Leu Ser Met Pro Ala Leu Arg Ala Ala Ile Asn Gly Leu		
675	680	685
Val Ala Arg His Glu Thr Leu Arg Thr Thr Phe Val Val Ser Glu Gly		
690	695	700
Gly Gly Asp Pro Val Gln Arg Ile Ala Asp Ser Leu Trp Ile Glu Val		
705	710	715
Pro Leu Tyr Glu Val Asp Ala Ser Glu Val Pro Ala Arg Met Ala Ala		
725	730	735
His Ala Gly His Val Phe Asp Leu Ala Lys Gly Pro Leu Leu Lys Thr		
740	745	750
Ser Val Leu Arg Val Thr Pro Asp His His Val Phe Leu Met Asn Met		
755	760	765
His His Ile Ile Cys Asp Gly Trp Ser Ile Asp Ile Leu Leu Arg Asp		
770	775	780
Leu Tyr Glu Phe Tyr Lys Ala Ala Glu Thr Gly Ser Gln Pro Asn Leu		
785	790	795
Pro Val Leu Pro Ile Gln Tyr Ala Asp Tyr Ser Val Trp Gln Arg Gln		
805	810	815
Gln Asp Leu Ser Ser His Leu Asp Tyr Trp Lys Lys Thr Leu Glu Gly		
820	825	830

-continued

Tyr Gln Glu Gly Leu Ser Leu Pro Tyr Asp Phe Ala Arg Pro Ser Asn
 835 840 845
 Arg Thr Trp Arg Ala Ala Ser Val Arg His Gln Tyr Pro Ala Glu Leu
 850 855 860
 Ala Thr Arg Leu Ser Glu Val Ser Lys Ser His Gln Ala Thr Val Phe
 865 870 875 880
 Met Thr Leu Met Ala Ser Thr Ala Ile Val Leu Asn Arg Tyr Thr Gly
 885 890 895
 Arg Asp Asp Leu Cys Val Gly Ala Thr Val Ala Gly Arg Asp His Phe
 900 905 910
 Glu Leu Glu Asn Leu Ile Gly Phe Phe Val Asn Ile Leu Ala Ile Arg
 915 920 925
 Leu Asp Leu Ser Gly Asn Pro Thr Ala Glu Thr Val Leu Gln Arg Ala
 930 935 940
 Arg Ala Gln Val Leu Glu Gly Met Lys His Arg Asp Leu Pro Phe Glu
 945 950 955 960
 His Ile Leu Ala Ala Leu Gln Lys Gln Arg Asp Ser Ser Gln Ile Pro
 965 970 975
 Leu Val Pro Val Met Val Arg His Gln Asn Phe Pro Thr Val Thr Ser
 980 985 990
 Gln Glu Gln Gly Leu Asp Leu Gly Ile Gly Glu Ile Glu Phe Gly Glu
 995 1000 1005
 Arg Thr Thr Pro Asn Glu Leu Asp Ile Gln Phe Ile Gly Glu Gly
 1010 1015 1020
 Ser Thr Leu Glu Val Val Val Glu Tyr Ala Lys Asp Leu Phe Ser
 1025 1030 1035
 Glu Arg Thr Ile Gln Arg Leu Ile Thr His Leu Gln Gln Val Leu
 1040 1045 1050
 Gln Thr Leu Val Asp Lys Pro Asp Cys Arg Leu Thr Asp Phe Pro
 1055 1060 1065
 Leu Val Ala Gly Asp Ala Leu Gln Gly Gly Val Ser Gly Ser Gly
 1070 1075 1080
 Gly Ala Thr Lys Thr Gly Lys Leu Asp Val Ser Lys Ser Pro Val
 1085 1090 1095
 Glu Leu Phe Asn Glu Arg Val Glu Ala Ser Pro Asp Ala Val Ala
 1100 1105 1110
 Cys Met Gly Ala Asp Gly Ser Leu Thr Tyr Arg Glu Leu Asp Arg
 1115 1120 1125
 Arg Ala Asn Gln Val Ala Arg His Leu Met Gly Arg Gly Val Gly
 1130 1135 1140
 Arg Glu Thr Arg Val Gly Leu Trp Phe Glu Arg Ser Pro Asp Leu
 1145 1150 1155
 Leu Val Ala Leu Leu Gly Ile Leu Lys Ala Gly Gly Cys Phe Val
 1160 1165 1170
 Pro Leu Asp Pro Ser Tyr Pro Gln Glu Tyr Ile Asn Asn Ile Val
 1175 1180 1185
 Ala Asp Ala Gln Pro Leu Leu Val Met Ser Ser Arg Ala Leu Gly
 1190 1195 1200
 Ser Arg Leu Ser Leu Glu Ala Gly Arg Leu Val Tyr Leu Asp Asp
 1205 1210 1215

-continued

Ala	Leu	Ala	Ala	Ser	Thr	Asp	Ala	Ser	Asp	Pro	Gln	Val	Arg	Ile
1220						1225					1230			
Asp	Pro	Glu	Gln	Leu	Ile	Tyr	Val	Met	Tyr	Thr	Ser	Gly	Ser	Thr
1235						1240					1245			
Gly	Leu	Pro	Lys	Gly	Val	Leu	Val	Pro	His	Arg	Gln	Ile	Leu	Asn
1250						1255					1260			
Trp	Leu	Tyr	Pro	Leu	Trp	Ala	Met	Val	Pro	Phe	Gly	Gln	Asp	Glu
1265						1270					1275			
Val	Val	Ala	Gln	Lys	Thr	Ser	Thr	Ala	Phe	Ala	Val	Ser	Met	Lys
1280						1285					1290			
Glu	Leu	Phe	Thr	Gly	Leu	Leu	Ala	Gly	Val	Pro	Gln	Val	Phe	Ile
1295						1300					1305			
Asp	Gly	Thr	Val	Val	Lys	Asp	Ala	Ala	Ala	Phe	Val	Leu	His	Leu
1310						1315					1320			
Glu	Arg	Trp	Arg	Val	Thr	Arg	Leu	Tyr	Thr	Leu	Pro	Ser	His	Leu
1325						1330					1335			
Asp	Ala	Ile	Leu	Ser	His	Val	Asp	Gly	Ala	Ala	Glu	Arg	Leu	Arg
1340						1345					1350			
Ser	Leu	Arg	His	Val	Ile	Leu	Ala	Gly	Glu	Pro	Cys	Pro	Val	Glu
1355						1360					1365			
Leu	Met	Glu	Lys	Leu	Arg	Glu	Thr	Leu	Pro	Ser	Cys	Thr	Ala	Trp
1370						1375					1380			
Phe	Asn	Tyr	Gly	Cys	Thr	Glu	Val	Asn	Asp	Ile	Ser	Tyr	Cys	Val
1385						1390					1395			
Pro	Asn	Glu	Gln	Phe	His	Ser	Ser	Gly	Phe	Val	Pro	Ile	Gly	Arg
1400						1405					1410			
Pro	Ile	Gln	Tyr	Thr	Arg	Ala	Leu	Val	Leu	Asp	Asp	Glu	Leu	Arg
1415						1420					1425			
Thr	Val	Pro	Val	Gly	Ile	Met	Gly	Glu	Ile	Tyr	Val	Glu	Ser	Pro
1430						1435					1440			
Gly	Thr	Ala	Arg	Gly	Tyr	Trp	Arg	Gln	Pro	Asp	Leu	Thr	Ala	Glu
1445						1450					1455			
Arg	Phe	Ile	Pro	Asn	Pro	Phe	Gly	Glu	Pro	Gly	Ser	Arg	Leu	Tyr
1460						1465					1470			
Arg	Thr	Gly	Asp	Met	Ala	Arg	Cys	Leu	Glu	Asp	Gly	Ser	Leu	Glu
1475						1480					1485			
Phe	Leu	Gly	Arg	Arg	Asp	Tyr	Glu	Val	Lys	Ile	Arg	Gly	His	Arg
1490						1495					1500			
Val	Asp	Val	Arg	Gln	Val	Glu	Lys	Ile	Leu	Ala	Ser	His	Pro	Glu
1505						1510					1515			
Val	Leu	Glu	Ser	Ala	Val	Leu	Gly	Trp	Pro	Arg	Gly	Ala	Lys	Asn
1520						1525					1530			
Pro	Gln	Leu	Leu	Ala	Tyr	Ala	Ala	Thr	Lys	Pro	Gly	Arg	Pro	Leu
1535						1540					1545			
Ser	Thr	Glu	Asn	Val	Arg	Glu	Tyr	Leu	Ser	Ala	Arg	Leu	Pro	Thr
1550						1555					1560			
Tyr	Met	Val	Pro	Thr	Leu	Tyr	Gln	Phe	Leu	Pro	Ala	Leu	Pro	Arg
1565						1570					1575			
Leu	Pro	Asn	Gly	Lys	Leu	Asp	Arg	Phe	Gly	Leu	Pro	Asp	His	Lys
1580						1585					1590			
Lys	Val	Glu	Val	Gly	Val	Tyr	Val	Ala	Pro	Gln	Thr	Pro	Thr	

-continued

1595	1600	1605
Glu Lys Val Leu Ala Gly Leu Trp Ala Glu Cys Leu Lys Gln Gly		
1610	1615	1620
Asp Met Pro Ala Pro Gln Val Gly Arg Leu His Asn Phe Phe Asp		
1625	1630	1635
Leu Gly Gly His Ser Leu Leu Ala Asn Arg Val Leu Met Gln Val		
1640	1645	1650
Gln Arg His Phe Gly Val Ser Leu Gly Ile Ser Ala Leu Phe Gly		
1655	1660	1665
Ser Pro Val Leu Asn Asp Phe Ala Ala Ala Ile Asp Lys Ala Leu		
1670	1675	1680
Gly Thr Glu Glu Pro Gly Glu Glu Gly Ser Ser Asp Ala Arg Glu		
1685	1690	1695
Val Ala Ala Lys Asp Thr Ser Val Leu Val Pro Leu Ser Thr His		
1700	1705	1710
Gly Thr Leu Pro Ser Leu Phe Cys Val His Pro Val Gly Gly Gln		
1715	1720	1725
Val His Ala Tyr Arg Glu Leu Ala Gln Ala Met Glu Lys His Ala		
1730	1735	1740
Ser Met Tyr Ala Leu Gln Ser Glu Gly Ala Arg Glu Phe Asp Thr		
1745	1750	1755
Ile Glu Thr Leu Ala Arg Phe Tyr Ala Asp Ala Ile Arg Gly Ala		
1760	1765	1770
Gln Pro Asp Gly Ser Tyr Arg Leu Leu Gly Trp Ser Ser Gly Gly		
1775	1780	1785
Leu Ile Thr Leu Ala Ile Ala Arg Glu Leu Glu His Gln Gly Cys		
1790	1795	1800
Ala Val Glu Tyr Val Gly Leu Val Asp Ser Lys Pro Ile Pro Arg		
1805	1810	1815
Leu Ala Gly Glu Arg Gly Trp Ala Ser Leu Ile Ala Ala Thr Asn		
1820	1825	1830
Ile Leu Gly Ala Met Arg Gly Arg Gly Phe Ser Val Ala Glu Val		
1835	1840	1845
Asp Ala Ala Gly Lys Ile Leu Glu Ser Arg Gly Trp Thr Glu Glu		
1850	1855	1860
Ser Phe Asp Ser Glu Gly His Ala Ala Leu Glu Glu Leu Ala Arg		
1865	1870	1875
His Phe Gly Ile Thr Val Ala Gln Glu Ser Ser Glu Tyr Leu Leu		
1880	1885	1890
Ala Arg Phe Lys Thr Thr Lys Tyr Tyr Leu Ser Leu Phe Ala Gly		
1895	1900	1905
Phe Lys Pro Ala Ala Leu Gly Pro Glu Thr Tyr Leu Tyr Glu Ala		
1910	1915	1920
Ser Glu Arg Val Gly Ala Thr Ser Asn Asp Asp Thr Gly Glu Trp		
1925	1930	1935
Gly Asp Ala Leu Asp Arg Lys Ala Leu Arg Ala Asn Ile Val Gln		
1940	1945	1950
Val Pro Gly Asn His Tyr Thr Val Leu Gln Gly Glu Asn Val Leu		
1955	1960	1965
Gln Leu Ala Gly Arg Ile Ala Glu Ala Leu Ser Ala Ile Asp Asn		
1970	1975	1980

-continued

Ser Val Val Thr Arg Thr Arg Ala Ser
1985 1990

<210> SEQ_ID NO 47
<211> LENGTH: 975
<212> TYPE: PRT
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(975)
<223> OTHER INFORMATION: CysH

<400> SEQUENCE: 47

Met Asp Asn Arg Glu Ile Ala Pro Thr Gln Ser Ala Arg Thr Arg Asp
1 5 10 15

Ala Tyr Thr Ala Val Pro Pro Ala Lys Ala Glu Tyr Pro Ser Asp Val
20 25 30

Cys Val His Gln Leu Phe Glu Leu Gln Ala Asp Arg Ile Pro Asp Ala
35 40 45

Val Ala Ala Arg Ala Gly Asn Glu Ser Leu Thr Tyr Arg Glu Leu Asn
50 55 60

Phe Arg Ala Asn Gln Leu Ala Arg Tyr Leu Val Ala Lys Gly Val Val
65 70 75 80

Pro Arg Gly Ser Val Ala Val Met Asn Arg Thr Pro Ala Cys Leu
85 90 95

Val Ser Leu Leu Ala Ile Ile Lys Ala Gly Ala Ala Tyr Val Pro Val
100 105 110

Asp Ala Gly Leu Pro Ala Lys Arg Val Asp Tyr Ile Leu Thr Asp Ser
115 120 125

Gly Ala Thr Cys Val Leu Thr Asp Arg Glu Thr Arg Ser Leu Leu Asp
130 135 140

Glu Pro Arg Ser Ala Ser Thr Leu Val Ile Asp Val Asp Asp Pro Ser
145 150 155 160

Ile Tyr Ser Gly Glu Thr Ser Asn Leu Gly Leu Ala Val Asp Pro Glu
165 170 175

Gln Gln Val Tyr Cys Ile Tyr Thr Ser Gly Ser Thr Gly Leu Pro Lys
180 185 190

Gly Val Met Val Gln His Arg Ala Leu Met Asn Tyr Val Trp Trp Ala
195 200 205

Lys Lys Gln Tyr Val Thr Asp Ala Val Glu Ser Phe Ala Leu Tyr Ser
210 215 220

Ser Leu Ser Phe Asp Leu Thr Val Thr Ser Ile Phe Val Pro Leu Ile
225 230 235 240

Ser Gly Arg Cys Ile Asp Val Tyr Pro Asp Leu Gly Glu Asp Val Pro
245 250 255

Val Ile Asn Arg Val Leu Glu Asp Asn Lys Val Asp Val Val Lys Leu
260 265 270

Thr Pro Ala His Leu Ala Leu Arg Asn Thr Asp Leu Ser Gln Ser
275 280 285

Arg Leu Lys Val Leu Ile Leu Gly Gly Glu Asp Leu Arg Ala Glu Thr
290 295 300

Ala Gly Asp Val His Lys Arg Leu Asp Gly Arg Ala Val Ile Tyr Asn
305 310 315 320

-continued

Glu Tyr Gly Pro Thr Glu Thr Val Val Gly Cys Met Ile His Arg Tyr
 325 330 335
 Asp Pro Ala Val Asp Leu His Gly Ser Val Pro Ile Gly Val Gly Ile
 340 345 350
 Asp Asn Met Arg Ile Tyr Leu Leu Asp Asp Arg Arg Arg Pro Val Lys
 355 360 365
 Pro Gly Glu Val Gly Glu Ile Tyr Ile Gly Gly Asp Gly Val Thr Leu
 370 375 380
 Gly Tyr Lys Asp Lys Pro Gln Val Thr Ala Asp His Phe Ile Ser Asn
 385 390 395 400
 Pro Phe Val Glu Gly Glu Arg Leu Tyr Ala Ser Gly Asp Leu Gly Arg
 405 410 415
 Val Asn Glu Arg Gly Ala Leu Val Phe Leu Gly Arg Lys Asp Leu Gln
 420 425 430
 Ile Lys Leu Arg Gly Tyr Arg Ile Glu Leu Gly Glu Ile Glu Ser Ala
 435 440 445
 Leu Leu Ser Tyr Pro Gly Ile Lys Glu Cys Ile Val Asp Ser Thr Lys
 450 455 460
 Thr Ala Gln Ser Gln Ala Ala Ala Gln Leu Thr Tyr Cys Thr Lys Cys
 465 470 475 480
 Gly Leu Ala Ser Ser Phe Pro Asn Thr Thr Tyr Ser Ala Glu Gly Val
 485 490 495
 Cys Asn His Cys Glu Ala Phe Asp Lys Tyr Arg Ser Val Val Asp Asp
 500 505 510
 Tyr Phe Ser Thr Met Asp Glu Leu Gln Ser Ile Val Thr Glu Met Lys
 515 520 525
 Ser Ile His Asn Ser Lys Tyr Asp Cys Ile Val Ala Leu Ser Gly Gly
 530 535 540
 Lys Asp Ser Thr Tyr Ala Leu Cys Arg Met Ile Glu Thr Gly Ala Arg
 545 550 555 560
 Val Leu Ala Phe Thr Leu Asp Asn Gly Tyr Ile Ser Glu Glu Ala Lys
 565 570 575
 Gln Asn Ile Asn Arg Val Val Ala Arg Leu Gly Val Asp His Arg Tyr
 580 585 590
 Leu Ser Thr Gly His Met Lys Glu Ile Phe Val Asp Ser Leu Lys Arg
 595 600 605
 His Ser Asn Val Cys Asn Gly Cys Phe Lys Thr Ile Tyr Thr Phe Ala
 610 615 620
 Ile Asn Leu Ala Gln Glu Val Gly Val Lys His Val Val Met Gly Leu
 625 630 635 640
 Ser Lys Gly Gln Leu Phe Glu Thr Arg Leu Ser Ala Leu Phe Arg Thr
 645 650 655
 Ser Thr Phe Asp Asn Ala Ala Phe Glu Lys Ser Leu Val Asp Ala Arg
 660 665 670
 Lys Ile Tyr His Arg Ile Asp Asp Ala Val Ser Arg Leu Leu Asp Thr
 675 680 685
 Thr Cys Val Lys Asn Asp Lys Val Ile Glu Asn Ile Arg Phe Val Asp
 690 695 700
 Phe Tyr Arg Tyr Cys His Ala Ser Arg Gln Glu Met Tyr Asp Tyr Ile
 705 710 715 720
 Gln Glu Arg Val Gly Trp Ala Arg Pro Ile Asp Thr Gly Arg Ser Thr

-continued

725	730	735	
Asn Cys Leu Leu Asn Asp Val Gly Ile Tyr Val His Asn Lys Glu Arg			
740	745	750	
Arg Tyr His Asn Tyr Ser Leu Pro Tyr Ser Trp Asp Val Arg Met Gly			
755	760	765	
His Ile Ser Arg Glu Glu Ala Met Arg Glu Leu Asp Asp Ser Ala Asp			
770	775	780	
Ile Asp Val Glu Arg Val Glu Gly Ile Ile Lys Asp Leu Gly Tyr Glu			
785	790	795	800
Leu Asn Asp Gln Val Val Gly Ser Ala Glu Ala Gln Leu Val Ala Tyr			
805	810	815	
Tyr Val Ser Ala Glu Glu Phe Pro Ala Ser Asp Leu Arg Gln Phe Leu			
820	825	830	
Ser Glu Ile Leu Pro Glu Tyr Met Val Pro Arg Ser Phe Val Gln Leu			
835	840	845	
Asp Ser Ile Pro Leu Thr Pro Asn Gly Lys Val Asn Arg Gln Ala Leu			
850	855	860	
Pro Lys Pro Asp Leu Leu Arg Lys Ala Gly Thr Asp Gly Gln Ala Ala			
865	870	875	880
Pro Arg Thr Pro Val Glu Lys Gln Leu Ala Glu Leu Trp Lys Glu Val			
885	890	895	
Leu Gln Val Asp Ser Val Gly Ile His Asp Asn Phe Phe Glu Met Gly			
900	905	910	
Gly His Ser Leu Pro Ala Leu Met Leu Leu Tyr Lys Ile Asp Ser Gln			
915	920	925	
Phe His Lys Thr Ile Ser Ile Gln Glu Phe Ser Lys Val Pro Thr Ile			
930	935	940	
Ser Ala Leu Ala Ala His Leu Gly Ser Asp Thr Glu Ala Val Pro Pro			
945	950	955	960
Gly Leu Gly Glu Val Val Asp Gln Ser Ala Pro Ala Tyr Arg Gly			
965	970	975	

<210> SEQ ID NO 48
 <211> LENGTH: 272
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(272)
 <223> OTHER INFORMATION: CysI

<400> SEQUENCE: 48

Val Arg Phe Val Thr Val Asn Gly Glu Asp Ser Ala Val Cys Ser Val			
1	5	10	15
Leu Asp Arg Gly Leu Gln Phe Gly Asp Gly Leu Phe Glu Thr Met Leu			
20	25	30	
Cys Val Gly Gly Ala Pro Val Asp Phe Pro Glu His Trp Ala Arg Leu			
35	40	45	
Asp Glu Gly Cys Arg Arg Leu Gly Ile Glu Cys Pro Asp Ile Arg Arg			
50	55	60	
Glu Val Thr Ala Ala Ile Ala Arg Trp Gly Ala Pro Arg Ala Val Ala			
65	70	75	80
Lys Leu Val Val Thr Arg Gly Ser Thr Glu Arg Gly Tyr Arg Cys Ala			
85	90	95	

-continued

Pro Ser Val Arg Pro Asn Trp Ile Leu Thr Ile Thr Asp Ala Pro Lys
 100 105 110

Tyr Pro Leu Ala His Glu Asp Arg Gly Val Ala Val Lys Leu Cys Arg
 115 120 125

Thr Leu Val Ser Leu Asp Asp Pro Gln Leu Ala Gly Leu Lys His Leu
 130 135 140

Asn Arg Leu Pro Gln Val Leu Ala Arg Arg Glu Trp Asp Asp Glu Tyr
 145 150 155 160

His Asp Gly Leu Leu Thr Asp His Gly Gly His Leu Val Glu Gly Cys
 165 170 175

Thr Ser Asn Leu Phe Leu Val Ala Asp Gly Ala Leu Arg Thr Pro Asp
 180 185 190

Leu Thr Ala Cys Gly Val Arg Gly Ile Val Arg Gln Lys Val Leu Asp
 195 200 205

His Ser Lys Ala Ile Gly Ile Arg Cys Glu Val Thr Thr Leu Lys Leu
 210 215 220

Arg Asp Leu Glu His Ala Asp Glu Val Phe Leu Thr Asn Ser Val Tyr
 225 230 235 240

Gly Ile Val Pro Val Gly Ser Val Asp Gly Met Arg Tyr Arg Ile Gly
 245 250 255

Pro Thr Thr Ala Arg Leu Leu Lys Asp Leu Cys Gln Gly Val Tyr Phe
 260 265 270

<210> SEQ ID NO 49
 <211> LENGTH: 327
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(327)
 <223> OTHER INFORMATION: CysJ

<400> SEQUENCE: 49

Met Thr Gly Asn Leu Asp Ser Ala Ala Trp Pro Val Ile Ile Thr Pro
 1 5 10 15

Gly Gln Gln Pro Ala Ala Leu Glu Asp Trp Val Ser Ala Asn Arg Asp
 20 25 30

Gly Leu Glu Arg Gln Leu Thr Glu Cys Lys Ala Ile Leu Phe Arg Gly
 35 40 45

Phe Arg Ser Arg Asn Gly Phe Glu Ser Ile Ala Asn Ser Phe Phe Asp
 50 55 60

Arg Arg Leu Asn Tyr Thr Tyr Arg Ser Thr Pro Arg Thr Asp Leu Gly
 65 70 75 80

Gln Asn Leu Tyr Thr Ala Thr Glu Tyr Pro Lys Gln Leu Ser Ile Pro
 85 90 95

Gln His Cys Glu Asn Ala Tyr Gln Arg Asp Trp Pro Met Lys Leu Leu
 100 105 110

Phe His Cys Val Glu Pro Ala Ser Lys Gly Arg Thr Pro Leu Ala
 115 120 125

Asp Met Thr Lys Val Thr Ala Met Ile Pro Ala Glu Ile Lys Glu Glu
 130 135 140

Phe Ala Arg Lys Lys Val Gly Tyr Val Arg Asn Tyr Arg Ala Gly Val
 145 150 155 160

-continued

Asp Leu Pro Trp Glu Glu Val Phe Gly Thr Ser Asn Lys Ala Glu Val
 165 170 175

Glu Lys Phe Cys Val Glu Asn Gly Ile Glu Tyr His Trp Thr Glu Gly
 180 185 190

Gly Leu Lys Thr Ile Gln Val Cys Gln Ala Phe Ala Ser His Pro Leu
 195 200 205

Thr Gly Glu Thr Ile Trp Phe Asn Gln Ala His Leu Phe His Leu Ser
 210 215 220

Ala Leu Asp Pro Ala Ser Gln Lys Met Met Leu Ser Phe Phe Gly Glu
 225 230 235 240

Gly Gly Leu Pro Arg Asn Ser Tyr Phe Gly Asp Gly Ser Ala Ile Gly
 245 250 255

Ser Asp Val Leu Asp Gln Ile Arg Ser Ala Tyr Glu Arg Asn Lys Val
 260 265 270

Ser Phe Glu Trp Gln Lys Asp Asp Val Leu Leu Ile Asp Asn Met Leu
 275 280 285

Val Ser His Gly Arg Asp Pro Phe Glu Gly Ser Arg Arg Val Leu Val
 290 295 300

Cys Met Ala Glu Pro Tyr Ser Glu Val Gln Arg Arg Gly Phe Ala Gly
 305 310 315 320

Ala Thr Asn Ser Gly Arg Ser
 325

<210> SEQ ID NO 50
 <211> LENGTH: 4545
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(4140)
 <223> OTHER INFORMATION: CysK
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(4545)
 <223> OTHER INFORMATION: CysK

<400> SEQUENCE: 50

Met Leu Leu Glu Gly Glu Leu Glu Gly Tyr Glu Asp Gly Leu Glu Leu
 1 5 10 15

Pro Tyr Asp Phe Pro Arg Thr Ser Asn Arg Ala Trp Arg Ala Ala Thr
 20 25 30

Phe Gln His Ser Tyr Pro Pro Glu Leu Ala Arg Lys Val Ala Glu Leu
 35 40 45

Ser Arg Glu Gln Gln Ser Thr Leu Phe Met Ser Leu Val Ala Ser Leu
 50 55 60

Ala Val Val Leu Asn Arg Tyr Thr Gly Arg Glu Asp Val Cys Ile Gly
 65 70 75 80

Thr Thr Val Ala Gly Arg Ala Gln Val Gly Ala Leu Gly Asp Leu Ser
 85 90 95

Gly Ser Thr Val Asp Ile Leu Pro Leu Arg Leu Asp Leu Ser Gly Ala
 100 105 110

Pro Ser Leu His Glu Val Leu Arg Arg Thr Lys Ala Val Val Leu Glu
 115 120 125

Gly Phe Glu His Glu Ala Leu Pro Cys Gln Ile Pro Leu Val Pro Val
 130 135 140

-continued

Val Val Arg His Gln Asn Phe Pro Met Ala Arg Leu Glu Gly Trp Ser
 145 150 155 160

Glu Gly Val Glu Leu Lys Lys Phe Glu Leu Ala Gly Glu Arg Thr Thr
 165 170 175

Ala Ser Glu Gln Asp Trp Gln Phe Phe Gly Asp Gly Ser Ser Leu Glu
 180 185 190

Leu Ser Leu Glu Tyr Ala Ala Glu Leu Phe Ser Glu Lys Thr Val Lys
 195 200 205

Arg Met Val Glu His His Gln Arg Val Leu Glu Ala Leu Val Glu Gly
 210 215 220

Leu Glu Glu Val Arg Leu His Glu Val Arg Leu Leu Thr Glu Glu Glu
 225 230 235 240

Glu Gly Leu His Gly Arg Leu Asn Asp Thr Ala Arg Glu Leu Glu Glu
 245 250 255

Arg Trp Ser Leu Ala Glu Thr Phe Glu Arg Gln Val Arg Glu Thr Pro
 260 265 270

Glu Ala Val Ala Cys Val Gly Val Glu Val Ala Thr Gly Gly His Ser
 275 280 285

Arg Pro Thr Tyr Arg Gln Leu Thr Tyr Arg Gln Leu Asn Ala Arg Ala
 290 295 300

Asn Gln Val Ala Arg Arg Leu Arg Ala Leu Gly Val Gly Ala Glu Thr
 305 310 315 320

Arg Val Ala Val Leu Ser Asp Arg Ser Pro Glu Leu Leu Val Ala Met
 325 330 335

Leu Ala Ile Phe Lys Ala Gly Gly Cys Tyr Val Pro Val Asp Pro Gln
 340 345 350

Tyr Pro Gly Ser Tyr Ile Glu Gln Ile Leu Glu Asp Ala Ala Pro Gln
 355 360 365

Val Val Leu Gly Lys Arg Gly Arg Ala Asp Gly Val Arg Val Asp Val
 370 375 380

Trp Leu Glu Leu Asp Gly Ala Gln Arg Leu Thr Asp Glu Ala Leu Ala
 385 390 395 400

Ala Gln Glu Glu Gly Glu Leu Glu Gly Ala Glu Arg Pro Glu Ser Gln
 405 410 415

Gln Leu Ala Cys Leu Met Tyr Thr Ser Gly Ser Thr Gly Arg Pro Lys
 420 425 430

Gly Val Met Val Pro Tyr Ser Gln Leu His Asn Trp Leu Glu Ala Gly
 435 440 445

Lys Glu Arg Ser Pro Leu Glu Arg Gly Glu Val Met Leu Gln Lys Thr
 450 455 460

Ala Ile Ala Phe Ala Val Ser Val Lys Glu Leu Leu Ser Gly Leu Leu
 465 470 475 480

Ala Gly Val Ala Gln Val Met Val Pro Glu Thr Leu Val Lys Asp Ser
 485 490 495

Val Ala Leu Ala Gln Glu Ile Glu Arg Trp Arg Val Thr Arg Ile His
 500 505 510

Leu Val Pro Ser His Leu Gly Ala Leu Leu Glu Gly Ala Gly Glu Glu
 515 520 525

Ala Lys Gly Leu Arg Ser Leu Lys Tyr Val Ile Thr Ala Gly Glu Ala
 530 535 540

Leu Ala Gln Gly Val Arg Glu Glu Ala Arg Arg Lys Leu Pro Gly Ala

-continued

545	550	555	560
Gln Leu Trp Asn Asn Tyr Gly Cys Thr Glu Leu Asn Asp Val Thr Tyr			
565	570	575	
His Pro Ala Ser Glu Gly Gly Asp Thr Val Phe Val Pro Ile Gly			
580	585	590	
Arg Pro Ile Ala Asn Thr Arg Val Tyr Val Leu Asp Glu Gln Leu Arg			
595	600	605	
Arg Val Pro Val Gly Val Met Gly Glu Leu Tyr Val Asp Ser Val Gly			
610	615	620	
Met Ala Arg Gly Tyr Trp Gly Gln Pro Ala Leu Thr Ala Glu Arg Phe			
625	630	635	640
Ile Ala Asn Pro Tyr Ala Ser Gln Pro Gly Ala Arg Leu Tyr Arg Thr			
645	650	655	
Gly Asp Met Val Arg Val Leu Ala Asp Gly Ser Leu Glu Tyr Leu Gly			
660	665	670	
Arg Arg Asp Tyr Glu Ile Lys Val Arg Gly His Arg Val Asp Val Arg			
675	680	685	
Gln Val Glu Lys Val Ala Asn Ala His Pro Ala Ile Arg Gln Ala Val			
690	695	700	
Val Ser Gly Trp Pro Leu Gly Ser Ser Asn Ala Gln Leu Val Ala Tyr			
705	710	715	720
Leu Val Pro Gln Ala Gly Ala Thr Val Gly Pro Arg Gln Val Arg Asp			
725	730	735	
Tyr Leu Ala Glu Ser Leu Pro Ala Tyr Met Val Pro Thr Leu Tyr Thr			
740	745	750	
Val Leu Glu Glu Leu Pro Arg Leu Pro Asn Gly Lys Leu Asp Arg Leu			
755	760	765	
Ser Leu Pro Glu Pro Asp Leu Ser Ser Ser Arg Glu Glu Tyr Val Ala			
770	775	780	
Pro His Gly Glu Val Glu Arg Lys Leu Ala Glu Ile Phe Gly Asn Leu			
785	790	795	800
Leu Gly Leu Glu His Val Gly Val His Asp Asn Phe Phe Ser Leu Gly			
805	810	815	
Gly His Ser Leu Leu Ala Ala Gln Leu Ile Ser Arg Ile Arg Ala Thr			
820	825	830	
Phe Arg Val Glu Val Ala Met Ala Thr Val Phe Glu Ser Pro Thr Val			
835	840	845	
Glu Pro Leu Ala Arg His Ile Glu Glu Lys Leu Lys Asp Glu Ser Arg			
850	855	860	
Val Gln Leu Ser Asn Val Val Pro Val Glu Arg Thr Gln Glu Ile Pro			
865	870	875	880
Leu Ser Tyr Leu Gln Glu Arg Leu Trp Phe Val His Glu His Met Lys			
885	890	895	
Glu Gln Arg Thr Ser Tyr Asn Ile Thr Trp Thr Leu His Phe Ala Gly			
900	905	910	
Lys Gly Phe Ser Val Glu Ala Leu Arg Thr Ala Phe Asp Glu Leu Val			
915	920	925	
Ala Arg His Glu Thr Leu Arg Thr Trp Phe Gln Val Gly Glu Gly Thr			
930	935	940	
Glu Gln Ala Val Gln Val Ile Gly Glu Pro Trp Ser Met Glu Leu Pro			
945	950	955	960

-continued

Leu Arg Glu Val Ala Gly Thr Glu Val Thr Ala Ala Ile Asn Glu Met
 965 970 975
 Ser Arg Gln Val Phe Asp Leu Arg Ala Gly Arg Leu Leu Thr Ala Ala
 980 985 990
 Val Leu Arg Val Ala Glu Asp Glu His Ile Leu Val Ser Asn Ile His
 995 1000 1005
 His Ile Ile Thr Asp Gly Trp Ser Phe Gly Val Met Leu Arg Glu
 1010 1015 1020
 Leu Arg Glu Leu Tyr Glu Ala Ala Val Arg Gly Lys Arg Ala Glu
 1025 1030 1035
 Leu Pro Pro Leu Thr Val Gln Tyr Gly Asp Tyr Ala Val Trp Gln
 1040 1045 1050
 Arg Lys Gln Asp Leu Ser Glu His Leu Ala Tyr Trp Lys Gly Lys
 1055 1060 1065
 Val Glu Glu Tyr Glu Asp Gly Leu Glu Leu Pro Tyr Asp Phe Pro
 1070 1075 1080
 Arg Thr Ser Asn Arg Ala Trp Arg Ala Ala Thr Phe Gln Tyr Ser
 1085 1090 1095
 Tyr Pro Pro Glu Leu Ala Arg Lys Val Ala Glu Leu Ser Arg Glu
 1100 1105 1110
 Gln Gln Ser Thr Leu Phe Met Ser Leu Val Ala Ser Leu Ala Val
 1115 1120 1125
 Val Leu Asn Arg Tyr Thr Gly Arg Gln Asp Val Cys Ile Gly Thr
 1130 1135 1140
 Thr Val Ala Gly Arg Ala Gln Val Glu Leu Glu Ser Leu Ile Gly
 1145 1150 1155
 Phe Phe Ile Asn Ile Leu Pro Leu Arg Leu Asp Leu Ser Gly Ala
 1160 1165 1170
 Pro Ser Leu His Glu Val Leu Arg Arg Thr Lys Ala Val Val Leu
 1175 1180 1185
 Glu Gly Phe Glu His Gln Glu Leu Pro Phe Glu His Leu Leu Lys
 1190 1195 1200
 Ala Leu Arg Arg Gln Arg Asp Ser Ser Gln Ile Pro Leu Val Pro
 1205 1210 1215
 Val Val Val Arg His Gln Asn Phe Pro Met Ala Arg Leu Glu Gly
 1220 1225 1230
 Trp Ser Glu Gly Val Glu Leu Lys Lys Phe Glu Leu Ala Gly Glu
 1235 1240 1245
 Arg Thr Thr Ala Ser Glu Gln Asp Trp Gln Phe Phe Gly Asp Gly
 1250 1255 1260
 Ser Ser Leu Glu Leu Ser Leu Glu Tyr Ala Ala Glu Leu Phe Ser
 1265 1270 1275
 Glu Lys Thr Val Arg Arg Met Val Glu His His Gln Arg Val Leu
 1280 1285 1290
 Glu Ala Leu Val Glu Gly Leu Glu Glu Gly Leu His Glu Val Arg
 1295 1300 1305
 Leu Leu Thr Glu Glu Glu Gly Leu His Gly Arg Leu Asn Asp
 1310 1315 1320
 Thr Ala Arg Glu Leu Glu Glu Arg Trp Ser Leu Ala Glu Thr Phe
 1325 1330 1335

-continued

Glu Arg Gln Val Arg Glu Thr Pro Glu Ala Val Ala Cys Val Gly
 1340 1345 1350
 Val Glu Val Ala Thr Gly Gly His Ser Arg Pro Thr Tyr Arg Gln
 1355 1360 1365
 Leu Thr Tyr Arg Gln Leu Asn Ala Arg Ala Asn Gln Val Ala Arg
 1370 1375 1380
 Arg Leu Arg Ala Leu Gly Val Gly Ala Glu Thr Arg Val Ala Val
 1385 1390 1395
 Leu Ser Asp Arg Ser Pro Glu Leu Leu Val Ala Met Leu Ala Ile
 1400 1405 1410
 Phe Lys Ala Gly Gly Cys Tyr Val Pro Val Asp Pro Gln Tyr Pro
 1415 1420 1425
 Gly His Tyr Ile Glu Gln Ile Leu Glu Asp Ala Ala Pro Gln Val
 1430 1435 1440
 Val Leu Gly Lys Arg Gly Arg Ala Asp Gly Val Arg Val Asp Val
 1445 1450 1455
 Trp Leu Glu Leu Asp Gly Ala Gln Arg Leu Thr Asp Glu Ala Leu
 1460 1465 1470
 Ala Ala Gln Glu Glu Gly Glu Leu Glu Gly Ala Glu Arg Pro Glu
 1475 1480 1485
 Ser Gln Gln Leu Ala Cys Leu Met Tyr Thr Ser Gly Ser Thr Gly
 1490 1495 1500
 Arg Pro Lys Gly Val Met Val Pro Tyr Ser Gln Leu His Asn Trp
 1505 1510 1515
 Leu Glu Ala Gly Lys Glu Arg Ser Pro Leu Glu Arg Gly Glu Val
 1520 1525 1530
 Met Leu Gln Lys Thr Ala Ile Ala Phe Ala Val Ser Val Lys Glu
 1535 1540 1545
 Leu Leu Ser Gly Leu Leu Ala Gly Val Ala Gln Val Met Val Pro
 1550 1555 1560
 Glu Thr Leu Val Lys Asp Ser Val Ala Leu Ala Gln Glu Ile Glu
 1565 1570 1575
 Arg Trp Arg Val Thr Arg Ile His Leu Val Pro Ser His Leu Gly
 1580 1585 1590
 Ala Leu Leu Glu Gly Ala Gly Glu Glu Ala Lys Gly Leu Arg Ser
 1595 1600 1605
 Leu Lys Tyr Val Ile Thr Ala Gly Glu Ala Leu Ala Gln Gly Val
 1610 1615 1620
 Arg Glu Glu Ala Arg Arg Lys Leu Pro Gly Ala Gln Leu Trp Asn
 1625 1630 1635
 Asn Tyr Gly Cys Thr Glu Leu Asn Asp Val Thr Tyr His Pro Ala
 1640 1645 1650
 Ser Glu Gly Gly Asp Thr Val Phe Val Pro Ile Gly Arg Pro
 1655 1660 1665
 Ile Ala Asn Thr Arg Val Tyr Val Leu Asp Glu Gln Leu Arg Arg
 1670 1675 1680
 Val Pro Val Gly Val Met Gly Glu Leu Tyr Val Asp Ser Val Gly
 1685 1690 1695
 Met Ala Arg Gly Tyr Trp Gly Gln Pro Ala Leu Thr Ala Glu Arg
 1700 1705 1710
 Phe Ile Ala Asn Pro Tyr Ala Ser Gln Pro Gly Ala Arg Leu Tyr

-continued

1715	1720	1725
Arg Thr Gly Asp Met Val Arg Val Leu Ala Asp Gly Ser Leu Glu		
1730	1735	1740
Tyr Leu Gly Arg Arg Asp Tyr Glu Ile Lys Val Arg Gly His Arg		
1745	1750	1755
Val Asp Val Arg Gln Val Glu Lys Val Ala Asn Ala His Pro Ala		
1760	1765	1770
Ile Arg Gln Ala Val Val Ser Gly Trp Pro Leu Gly Ser Ser Asn		
1775	1780	1785
Ala Gln Leu Val Ala Tyr Leu Val Pro Gln Ala Gly Ala Thr Val		
1790	1795	1800
Gly Pro Arg Gln Val Arg Asp Tyr Leu Ala Glu Ser Leu Pro Ala		
1805	1810	1815
Tyr Met Val Pro Thr Leu Tyr Thr Val Leu Glu Glu Leu Pro Arg		
1820	1825	1830
Leu Pro Asn Gly Lys Leu Asp Arg Leu Ser Leu Pro Glu Pro Asp		
1835	1840	1845
Leu Ser Ser Ser Arg Glu Glu Tyr Val Ala Pro His Gly Glu Val		
1850	1855	1860
Glu Arg Lys Leu Ala Glu Ile Phe Gly Asn Leu Leu Gly Leu Glu		
1865	1870	1875
His Val Gly Val His Asp Asn Phe Phe Ser Leu Gly Gly His Ser		
1880	1885	1890
Leu Leu Ala Ala Gln Val Val Ser Arg Ile Gly Lys Glu Leu Gly		
1895	1900	1905
Thr Gln Ile Ser Ile Ala Asp Leu Phe Gln Arg Pro Thr Ile Glu		
1910	1915	1920
Gln Leu Cys Glu Leu Ile Gly Gly Leu Asp Asp Gln Thr Gln Arg		
1925	1930	1935
Glu Leu Ala Leu Ala Pro Ser Gly Asn Thr Glu Ala Val Leu Ser		
1940	1945	1950
Phe Ala Gln Glu Arg Met Trp Phe Leu His Asn Phe Val Lys Gly		
1955	1960	1965
Met Pro Tyr Asn Thr Pro Gly Leu Asp His Leu Thr Gly Glu Leu		
1970	1975	1980
Asp Val Ala Ala Leu Glu Lys Ala Ile Arg Ala Val Ile Arg Arg		
1985	1990	1995
His Glu Pro Leu Arg Thr Asn Phe Val Glu Lys Asp Gly Val Leu		
2000	2005	2010
Ser Gln Leu Val Gly Thr Glu Glu Arg Phe Arg Leu Thr Val Thr		
2015	2020	2025
Pro Ile Arg Asp Glu Ser Glu Val Ala Arg Leu Met Glu Ala Val		
2030	2035	2040
Ile Gln Thr Pro Val Asp Leu Glu Arg Glu Leu Met Ile Arg Ala		
2045	2050	2055
Tyr Leu Tyr Arg Val Asp Pro Arg Asn His Tyr Leu Phe Thr Thr		
2060	2065	2070
Ile His His Ile Ala Phe Asp Gly Trp Ser Thr Ser Ile Phe Tyr		
2075	2080	2085
Arg Glu Leu Ala Ala Tyr Tyr Ala Ala Phe Leu Arg Arg Glu Asp		
2090	2095	2100

-continued

Ser Pro Leu Pro Ala Leu Glu Ile Ser Tyr Gln Asp Tyr Ala Arg
 2105 2110 2115
 Trp Glu Arg Ala His Phe Gln Asp Glu Val Leu Ala Glu Lys Leu
 2120 2125 2130
 Arg Tyr Trp Arg Gln Arg Leu Ser Gly Ala Arg Pro Leu Val Leu
 2135 2140 2145
 Pro Thr Thr Tyr His Arg Pro Pro Ile Gln Ser Phe Ala Gly Ala
 2150 2155 2160
 Val Val Asn Phe Glu Ile Asp Arg Ser Ile Thr Glu Arg Leu Lys
 2165 2170 2175
 Thr Leu Phe Ala Glu Ser Gly Thr Thr Met Tyr Met Val Leu Leu
 2180 2185 2190
 Gly Ala Phe Ser Val Val Leu Gln Arg Tyr Ser Gly Gln Asp Asp
 2195 2200 2205
 Ile Cys Ile Gly Ser Pro Val Ala Asn Arg Gly His Ile Gln Thr
 2210 2215 2220
 Glu Gly Leu Ile Gly Leu Phe Val Asn Thr Leu Val Met Arg Val
 2225 2230 2235
 Asp Ala Ala Gly Asn Pro Arg Phe Ile Asp Leu Leu Ala Arg Ile
 2240 2245 2250
 Gln Arg Thr Ala Ile Asp Ala Tyr Ala Asn Gln Glu Val Pro Phe
 2255 2260 2265
 Glu Lys Ile Val Asp Asp Leu Gln Val Ala Arg Asp Thr Ala Arg
 2270 2275 2280
 Ser Pro Leu Val Gln Val Ile Leu Asn Phe His Asn Thr Pro Pro
 2285 2290 2295
 Gln Ser Glu Leu Glu Leu Gln Gly Val Thr Leu Thr Arg Met Pro
 2300 2305 2310
 Val His Asn Gly Thr Ala Lys Phe Glu Leu Ser Ile Asp Val Ala
 2315 2320 2325
 Glu Thr Ser Ala Gly Leu Thr Gly Phe Val Glu Tyr Ala Thr Asp
 2330 2335 2340
 Leu Phe Ser Glu Asn Phe Ile Arg Arg Met Ile Gly His Leu Glu
 2345 2350 2355
 Val Val Leu Asp Ala Val Gly Arg Asp Pro Arg Ala Pro Ile His
 2360 2365 2370
 Glu Leu Pro Leu Leu Thr Arg Gln Asp Gln Leu Asp Leu Leu Ser
 2375 2380 2385
 Arg Ser Gly His Thr Ala Pro Ala Val Glu His Val Glu Leu Ile
 2390 2395 2400
 Pro His Thr Phe Glu Arg Arg Val Gln Glu Ser Pro Gln Ala Ile
 2405 2410 2415
 Ala Leu Val Cys Gly Asp Glu Arg Val Thr Tyr Ser Ala Leu Asn
 2420 2425 2430
 Arg Arg Ala Ser Gln Ile Ala Arg Arg Leu Arg Ala Ala Gly Ile
 2435 2440 2445
 Gly Pro Asp Thr Leu Val Gly Leu Cys Ala Gly Arg Ser Ile Glu
 2450 2455 2460
 Leu Val Cys Gly Val Leu Gly Ile Leu Lys Ala Gly Gly Ala Tyr
 2465 2470 2475

-continued

Val	Pro	Ile	Asp	Pro	Thr	Ser	Ser	Pro	Glu	Val	Ile	Tyr	Asp	Val
2480														
														2490
Leu	Tyr	Glu	Ser	Lys	Val	Arg	His	Leu	Leu	Thr	Glu	Ser	Arg	Leu
2495														
														2505
Val	Gly	Gly	Leu	Pro	Val	Asp	Asp	Gln	Glu	Ile	Leu	Leu	Leu	Asp
2510														
														2520
Thr	Pro	Ala	Asp	Gly	Glu	Gly	Asp	Lys	Ala	Val	Ala	Asp	Arg	Glu
2525														
														2535
Glu	Pro	Pro	Asp	Leu	Gly	Glu	Val	Ser	Leu	Thr	Pro	Glu	Cys	Leu
2540														
														2550
Ala	Tyr	Val	Asn	Phe	Thr	Ser	Asp	Ser	Gly	Gly	Ala	Pro	Arg	Gly
2555														
														2565
Ile	Ala	Val	Arg	His	Gly	Ala	Leu	Ala	Arg	Arg	Met	Ala	Ala	Gly
2570														
														2580
His	Ala	Gln	Tyr	Leu	Ala	Asn	Ser	Ala	Val	Arg	Phe	Leu	Leu	Lys
2585														
														2595
Ala	Pro	Leu	Thr	Phe	Asp	Leu	Ala	Val	Ala	Glu	Leu	Phe	Gln	Trp
2600														
														2610
Ile	Val	Ser	Gly	Gly	Ser	Leu	Ser	Ile	Leu	Asp	Pro	Asn	Ala	Asp
2615														
														2625
Arg	Asp	Ala	Ser	Ala	Phe	Leu	Ala	Gln	Val	Arg	Arg	Asp	Ser	Ile
2630														
														2640
Gly	Val	Leu	Tyr	Cys	Val	Pro	Ser	Glu	Leu	Ser	Thr	Leu	Val	Ser
2645														
														2655
His	Leu	Glu	Arg	Glu	Arg	Glu	Arg	Val	His	Glu	Leu	Asn	Thr	Leu
2660														
														2670
Arg	Phe	Ile	Phe	Cys	Gly	Gly	Asp	Thr	Leu	Ala	Val	Thr	Val	Val
2675														
														2685
Glu	Arg	Leu	Gly	Val	Leu	Val	Arg	Ala	Gly	Gln	Leu	Pro	Leu	Arg
2690														
														2700
Leu	Val	Asn	Val	Tyr	Gly	Thr	Lys	Glu	Thr	Gly	Ile	Gly	Ala	Gly
2705														
														2715
Cys	Phe	Glu	Cys	Ala	Leu	Asp	Ala	Asn	Asp	Pro	Ser	Ala	Glu	Leu
2720														
														2730
Pro	Pro	Gly	Arg	Leu	Ser	His	Glu	Arg	Met	Pro	Ile	Gly	Gly	Pro
2735														
														2745
Ala	Gln	Asn	Leu	Trp	Phe	Tyr	Val	Val	Gln	Pro	Asn	Gly	Gly	Leu
2750														
														2760
Ala	Pro	Leu	Gly	Ile	Pro	Gly	Glu	Leu	Tyr	Val	Gly	Gly	Ala	Gln
2765														
														2775
Leu	Ala	Asp	Ala	Arg	Phe	Gly	Asp	Glu	Pro	Thr	Ala	Thr	His	Pro
2780														
														2790
Gly	Phe	Val	Pro	Asn	Pro	Phe	Arg	Ser	Gly	Ala	Glu	Lys	Asp	Trp
2795														
														2805
Leu	Tyr	Lys	Thr	Gly	Asp	Leu	Val	Arg	Trp	Leu	Pro	Gln	Gly	Pro
2810														
														2820
Leu	Glu	Leu	Val	Ser	Ala	Ala	Arg	Glu	Arg	Asp	Gly	Gly	Gly	Asp
2825														
														2835
His	Arg	Leu	Asp	Arg	Gly	Phe	Ile	Glu	Ala	Arg	Met	Arg	Arg	Val
2840														
														2850
Ala	Ile	Val	Arg	Asp	Ala	Val	Val	Ala	Tyr	Val	Pro	Asp	Arg	Gln

-continued

2855	2860	2865
Asp Arg Ala Arg Leu Val Ala Tyr Val Val Leu Lys Glu Ser Pro		
2870	2875	2880
Ala Ala Asp Val Glu Pro Arg Glu Gly Arg Glu Thr Leu Lys Ala		
2885	2890	2895
Arg Ile Ser Ala Glu Leu Gly Ser Thr Leu Pro Glu Tyr Met Leu		
2900	2905	2910
Pro Ala Ala Tyr Val Phe Met Asp Ser Leu Pro Leu Thr Ala Tyr		
2915	2920	2925
Gly Arg Ile Asp Arg Lys Ala Leu Pro Glu Pro Glu Asp Asp Arg		
2930	2935	2940
His Gly Gly Ser Ala Ile Ala Tyr Val Ala Pro Arg Gly Pro Thr		
2945	2950	2955
Glu Lys Ala Leu Ala His Ile Trp Gln Gln Val Leu Lys Arg Pro		
2960	2965	2970
Gln Val Gly Leu Arg Asp Asn Phe Phe Glu Leu Gly Gly His Ser		
2975	2980	2985
Val Ala Ala Ile Gln Leu Val Ser Val Ser Arg Lys His Leu Glu		
2990	2995	3000
Val Glu Val Pro Leu Ser Leu Ile Phe Glu Ser Pro Val Leu Glu		
3005	3010	3015
Ala Met Ala Arg Gly Ile Glu Ala Leu Gln Gln Gly Arg Ser		
3020	3025	3030
Gly Ala Val Ser Ser Ile His Arg Val Glu Arg Thr Gly Pro Leu		
3035	3040	3045
Pro Leu Ala Tyr Val Gln Glu Arg Leu Trp Phe Val His Glu His		
3050	3055	3060
Met Lys Glu Gln Arg Thr Ser Tyr Asn Ile Thr Trp Thr Leu His		
3065	3070	3075
Phe Ala Gly Lys Gly Phe Ser Val Glu Ala Leu Arg Thr Ala Phe		
3080	3085	3090
Asp Glu Leu Val Ala Arg His Glu Thr Leu Arg Thr Trp Phe Gln		
3095	3100	3105
Val Gly Glu Gly Thr Glu Gln Ala Val Gln Val Ile Gly Glu Pro		
3110	3115	3120
Trp Ser Met Glu Leu Pro Leu Arg Glu Val Ala Gly Thr Glu Val		
3125	3130	3135
Thr Ala Ala Ile Asn Glu Met Ser Arg Gln Val Phe Asp Leu Arg		
3140	3145	3150
Ala Gly Arg Leu Leu Thr Ala Ala Val Leu Arg Val Ala Glu Asp		
3155	3160	3165
Glu His Ile Leu Val Ser Asn Ile His His Ile Ile Thr Asp Gly		
3170	3175	3180
Trp Ser Phe Gly Val Met Leu Arg Glu Leu Arg Glu Leu Tyr Glu		
3185	3190	3195
Ala Ala Val Arg Gly Glu Arg Ala Glu Leu Pro Pro Leu Thr Val		
3200	3205	3210
Gln Tyr Gly Asp Tyr Ala Val Trp Gln Arg Lys Gln Asp Leu Ser		
3215	3220	3225
Glu His Leu Ala Tyr Trp Lys Gly Lys Val Glu Gly Asp Glu Asp		
3230	3235	3240

-continued

Gly Leu Glu Leu Pro Tyr Asp Phe Pro Arg Thr Ser Asn Arg Ala
 3245 3250 3255
 Trp Arg Ala Ala Thr Phe Gln Tyr Ser Tyr His Pro Glu Leu Ala
 3260 3265 3270
 Arg Lys Val Ala Glu Leu Ser Arg Glu Gln Gln Ser Thr Leu Phe
 3275 3280 3285
 Met Ser Leu Val Ala Ser Leu Ala Val Val Leu Asn Arg Tyr Thr
 3290 3295 3300
 Gly Arg Glu Asp Leu Cys Ile Gly Thr Thr Val Ala Gly Arg Ala
 3305 3310 3315
 Gln Val Glu Leu Glu Ser Leu Ile Gly Phe Phe Ile Asn Ile Leu
 3320 3325 3330
 Pro Leu Arg Leu Asp Leu Ser Gly Ala Pro Ser Leu His Glu Val
 3335 3340 3345
 Leu Arg Arg Thr Lys Val Val Val Leu Glu Gly Phe Glu His Gln
 3350 3355 3360
 Glu Leu Pro Phe Glu His Leu Leu Lys Ala Leu Arg Arg Gln Arg
 3365 3370 3375
 Asp Ser Ser Gln Ile Pro Leu Val Pro Val Val Val Arg His Gln
 3380 3385 3390
 Asn Phe Pro Met Ala Arg Leu Glu Gly Trp Ser Glu Gly Val Glu
 3395 3400 3405
 Leu Lys Lys Phe Glu Leu Ala Gly Glu Arg Thr Thr Ala Ser Glu
 3410 3415 3420
 Gln Asp Trp Gln Phe Phe Gly Asp Gly Ser Ser Leu Glu Leu Ser
 3425 3430 3435
 Leu Glu Tyr Ala Ala Glu Leu Phe Ser Glu Lys Thr Val Arg Arg
 3440 3445 3450
 Met Val Glu His His Gln Arg Val Leu Glu Ala Leu Val Glu Gly
 3455 3460 3465
 Leu Glu Glu Gly Leu His Glu Val Arg Leu Leu Thr Glu Glu Glu
 3470 3475 3480
 Glu Gly Leu His Gly Arg Leu Asn Asp Thr Ala Arg Glu Leu Glu
 3485 3490 3495
 Glu Arg Trp Ser Leu Ala Glu Thr Phe Glu Arg Gln Val Arg Glu
 3500 3505 3510
 Thr Pro Glu Ala Val Ala Cys Val Gly Val Glu Val Ala Thr Gly
 3515 3520 3525
 Gly His Ser Arg Pro Thr Tyr Arg Gln Leu Thr Tyr Arg Gln Leu
 3530 3535 3540
 Asn Ala Arg Ala Asn Gln Val Ala Arg Arg Leu Arg Ala Leu Gly
 3545 3550 3555
 Val Gly Ala Glu Thr Arg Val Ala Val Leu Ser Asp Arg Ser Pro
 3560 3565 3570
 Glu Leu Leu Val Ala Met Leu Ala Ile Phe Lys Ala Gly Gly Cys
 3575 3580 3585
 Tyr Val Pro Val Asp Pro Gln Tyr Pro Gly Ser Tyr Ile Glu Gln
 3590 3595 3600
 Ile Leu Glu Asp Ala Ala Pro Gln Val Val Leu Gly Lys Arg Gly
 3605 3610 3615

-continued

Arg	Ala	Asp	Gly	Val	Arg	Val	Asp	Val	Trp	Leu	Glu	Leu	Asp	Gly
3620				3625						3630				
Ala	Gln	Arg	Leu	Thr	Asp	Glu	Ala	Leu	Ala	Ala	Gln	Glu	Glu	Gly
3635				3640						3645				
Glu	Leu	Glu	Gly	Ala	Glu	Arg	Pro	Glu	Ser	Gln	Gln	Leu	Ala	Cys
3650				3655						3660				
Leu	Met	Tyr	Thr	Ser	Gly	Ser	Thr	Gly	Arg	Pro	Lys	Gly	Val	Met
3665				3670						3675				
Val	Pro	Tyr	Ser	Gln	Leu	His	Asn	Trp	Leu	Glu	Ala	Gly	Lys	Glu
3680				3685						3690				
Arg	Ser	Pro	Leu	Glu	Arg	Gly	Glu	Val	Met	Leu	Gln	Lys	Thr	Ala
3695				3700						3705				
Ile	Ala	Phe	Ala	Val	Ser	Val	Lys	Glu	Leu	Leu	Ser	Gly	Leu	Leu
3710				3715						3720				
Ala	Gly	Val	Ala	Gln	Val	Met	Val	Pro	Glu	Thr	Leu	Val	Lys	Asp
3725				3730						3735				
Ser	Val	Ala	Leu	Ala	Gln	Glu	Ile	Glu	Arg	Trp	Arg	Val	Thr	Arg
3740				3745						3750				
Ile	His	Leu	Val	Pro	Ser	His	Leu	Gly	Ala	Leu	Leu	Glu	Gly	Ala
3755				3760						3765				
Gly	Glu	Glu	Ala	Lys	Gly	Leu	Arg	Ser	Leu	Lys	Tyr	Val	Ile	Thr
3770				3775						3780				
Ala	Gly	Glu	Ala	Leu	Ala	Gln	Gly	Val	Arg	Glu	Glu	Ala	Arg	Arg
3785				3790						3795				
Lys	Leu	Pro	Gly	Ala	Gln	Leu	Trp	Asn	Asn	Tyr	Gly	Cys	Thr	Glu
3800				3805						3810				
Leu	Asn	Asp	Val	Thr	Tyr	His	Pro	Ala	Ser	Glu	Gly	Gly	Gly	Asp
3815				3820						3825				
Thr	Val	Phe	Val	Pro	Ile	Gly	Arg	Pro	Ile	Ala	Asn	Thr	Arg	Val
3830				3835						3840				
Tyr	Val	Leu	Asp	Glu	Gln	Leu	Arg	Arg	Val	Pro	Val	Gly	Val	Met
3845				3850						3855				
Gly	Glu	Leu	Tyr	Val	Asp	Ser	Val	Gly	Met	Ala	Arg	Gly	Tyr	Trp
3860				3865						3870				
Gly	Gln	Pro	Ala	Leu	Thr	Ala	Glu	Arg	Phe	Ile	Ala	Asn	Pro	Tyr
3875				3880						3885				
Ala	Ser	Gln	Pro	Gly	Ala	Arg	Leu	Tyr	Arg	Thr	Gly	Asp	Met	Val
3890				3895						3900				
Arg	Val	Leu	Ala	Asp	Gly	Ser	Leu	Glu	Tyr	Leu	Gly	Arg	Arg	Asp
3905				3910						3915				
Tyr	Glu	Ile	Lys	Val	Arg	Gly	His	Arg	Val	Asp	Val	Arg	Gln	Val
3920				3925						3930				
Glu	Lys	Val	Ala	Asn	Ala	His	Pro	Ala	Ile	Arg	Gln	Ala	Val	Val
3935				3940						3945				
Ser	Gly	Trp	Pro	Leu	Gly	Ser	Ser	Asn	Ala	Gln	Leu	Val	Ala	Tyr
3950				3955						3960				
Leu	Val	Pro	Gln	Ala	Gly	Ala	Thr	Val	Gly	Pro	Arg	Gln	Val	Arg
3965				3970						3975				
Asp	Tyr	Leu	Ala	Glu	Ser	Leu	Pro	Ala	Tyr	Met	Val	Pro	Thr	Leu
3980				3985						3990				
Tyr	Thr	Val	Leu	Glu	Glu	Leu	Pro	Arg	Leu	Pro	Asn	Gly	Lys	Leu

-continued

3995	4000	4005
Asp Arg Leu Ser Leu Pro Glu Pro Asp Leu Ser Ser Ser Arg Glu		
4010	4015	4020
Glu Tyr Val Ala Pro His Gly Glu Val Glu Arg Lys Leu Ala Glu		
4025	4030	4035
Ile Phe Gly Asn Leu Leu Gly Leu Glu His Val Gly Val His Asp		
4040	4045	4050
Asn Phe Phe Asn Leu Gly Gly His Ser Leu Leu Ala Ser Gln Leu		
4055	4060	4065
Ile Ser Arg Ile Arg Ala Thr Phe Arg Val Glu Val Ala Met Ala		
4070	4075	4080
Thr Val Phe Glu Ser Pro Thr Val Glu Pro Leu Ala Arg His Ile		
4085	4090	4095
Glu Glu Lys Leu Lys Asp Glu Ser Arg Val Gln Leu Ser Asn Val		
4100	4105	4110
Val Pro Val Glu Arg Thr Gln Glu Leu Pro Leu Ser Tyr Leu Gln		
4115	4120	4125
Glu Arg Leu Trp Phe Val His Glu His Met Lys Glu Gln Arg Thr		
4130	4135	4140
Ser Tyr Asn Gly Thr Ile Gly Leu Arg Leu Arg Gly Pro Leu Ser		
4145	4150	4155
Ile Pro Ala Leu Arg Ala Thr Phe His Asp Leu Val Ala Arg His		
4160	4165	4170
Glu Ser Leu Arg Thr Val Phe Arg Val Pro Glu Gly Arg Thr Thr		
4175	4180	4185
Pro Val Gln Val Ile Leu Asp Ser Met Asp Leu Asp Ile Pro Val		
4190	4195	4200
Arg Asp Ala Thr Glu Ala Asp Ile Ile Pro Gly Met Asp Glu Leu		
4205	4210	4215
Ala Gly His Ile Tyr Asp Met Glu Lys Gly Pro Leu Phe Met Val		
4220	4225	4230
Arg Leu Leu Arg Leu Ala Glu Asp Ser His Val Leu Leu Met Gly		
4235	4240	4245
Met His His Ile Val Tyr Asp Ala Trp Ser Gln Phe Asn Val Met		
4250	4255	4260
Ser Arg Asp Ile Asn Leu Leu Tyr Ser Ala His Val Thr Gly Ile		
4265	4270	4275
Glu Ala Arg Leu Pro Ala Leu Pro Ile Gln Tyr Ala Asp Phe Ser		
4280	4285	4290
Val Trp Gln Arg Gln Gln Asp Phe Arg His His Leu Asp Tyr Trp		
4295	4300	4305
Lys Ser Thr Leu Gly Asp Tyr Arg Asp Asp Leu Glu Leu Pro Tyr		
4310	4315	4320
Asp Tyr Pro Arg Pro Pro Ser Arg Thr Trp His Ala Thr Arg Phe		
4325	4330	4335
Thr Phe Arg Tyr Pro Asp Ala Leu Ala Arg Ala Phe Ala Arg Phe		
4340	4345	4350
Asn Gln Ser His Gln Ser Thr Leu Phe Met Gly Leu Leu Thr Ser		
4355	4360	4365
Phe Ala Ile Val Leu Arg His Tyr Thr Gly Arg Asn Asp Ile Cys		
4370	4375	4380

-continued

Ile Gly Thr Thr Thr Ala Gly Arg Ala Gln Leu Glu Leu Glu Asn
 4385 4390 4395

Leu Val Gly Phe Phe Ile Asn Ile Leu Pro Leu Arg Ile Asn Leu
 4400 4405 4410

Ala Gly Asp Pro Asp Ile Ser Glu Leu Met Asn Arg Ala Lys Lys
 4415 4420 4425

Ser Val Leu Gly Ala Phe Glu His Gln Ala Leu Pro Phe Glu Arg
 4430 4435 4440

Leu Leu Ser Ala Leu Asn Lys Gln Arg Asp Ser Ser His Ile Pro
 4445 4450 4455

Leu Val Pro Val Met Leu Arg His Gln Asn Phe Pro Thr Ala Met
 4460 4465 4470

Thr Gly Lys Trp Ala Asp Gly Val Asp Met Glu Val Ile Glu Arg
 4475 4480 4485

Asp Glu Arg Thr Thr Pro Asn Glu Leu Asp Leu Gln Phe Phe Gly
 4490 4495 4500

Asp Asp Thr Tyr Leu His Ala Val Val Glu Phe Pro Ala Gln Leu
 4505 4510 4515

Phe Ser Glu Val Thr Val Arg Arg Leu Met Gln Arg His Gln Lys
 4520 4525 4530

Val Ile Glu Phe Met Cys Ala Thr Leu Gly Ala Arg
 4535 4540 4545

<210> SEQ ID NO 51
 <211> LENGTH: 1023
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(1023)
 <223> OTHER INFORMATION: CysL

<400> SEQUENCE: 51

Val Asn Val Leu Ala Arg His Ser Thr Gly Ser His Asp Glu Pro Val
 1 5 10 15

Ala Gly Asp Val Glu Leu Arg Val Gly Gly Pro Gly Val Pro Asp Ala
 20 25 30

His Ser Ser Glu Ser Val Glu Val Leu Ala Arg Trp Leu Arg Thr Ala
 35 40 45

Glu Glu Lys Tyr Pro Gly Val Met Gly Pro Ile Arg Gln Glu Gly Pro
 50 55 60

Trp Phe Ala Ile Pro Leu Thr Cys Pro Arg Gly Ala Arg Ser Ala Arg
 65 70 75 80

Phe Gly Leu Trp Leu Gly Glu Leu Asp Arg Gln Gly Gln Leu Leu His
 85 90 95

Met Val Ala Ser Tyr Leu Ala Ala Val His His Val Leu Val Ser Val
 100 105 110

Arg Glu Pro Ser Ala Asn Val Leu Glu Val Leu Val Ser Asp Ser Thr
 115 120 125

Thr Pro Ser Gly Leu Asn Arg Phe Leu Asn Gly Leu Asp Ser Val Leu
 130 135 140

Glu Ile Leu Ala His Gly Arg Ser Asp Leu Leu Gln His Leu Thr
 145 150 155 160

-continued

Gly Arg Leu Pro Pro Asp Glu Met Pro Phe Val Glu Asp Arg Glu Glu
 165 170 175
 Arg Glu Glu His Pro Ala Thr Asp Val Glu Ala Asp Ala Val Val Ser
 180 185 190
 Val Leu Phe Gln Pro Val Asp Phe Pro Ser Leu Ala Arg Leu Asp Ala
 195 200 205
 Ser Leu Leu Ala Tyr Asp Asp Glu Asp Ala Gly Ala Val Gly Arg Val
 210 215 220
 Leu Gly Glu Leu Leu Gln Pro Phe Leu Leu Asp Ser Ala Arg Met Thr
 225 230 235 240
 Val Gly Arg Lys Ala Val Arg Val Asp His Ile Cys Leu Pro Gly Leu
 245 250 255
 Leu Arg Ala Asp Ser Arg Ala Ala Glu Glu Ser Val Leu Ala Pro Ala
 260 265 270
 Leu Arg Leu Ala Thr Lys Pro Gly Arg His Phe Val Ala Leu Cys Arg
 275 280 285
 Asn Thr Ala Leu Arg Leu Gly Asp Arg Leu Pro His Leu Leu Ala Gln
 290 295 300
 Gly Pro Leu Cys Asp Gly Ala Ser Thr Ala Leu Leu Leu Gln Arg
 305 310 315 320
 Val Leu Asp Thr Leu Ile Gly Ser Gly Gly Leu Lys Asp His Arg Leu
 325 330 335
 Thr Leu Glu Leu Val Gly Ala Asp Pro Arg Thr Glu Ala Ala Phe Arg
 340 345 350
 Ala Arg Thr Pro Trp Leu Val Ala Glu Arg Ala Ala Ser Ala Ala Ser
 355 360 365
 Thr Asp Ala Pro Arg Val Asp Val Val Leu Phe Pro Ala Ala Arg
 370 375 380
 Pro Ser Ala Leu Glu Leu Arg Pro Asp Ser Val Val Ile Asp Leu Phe
 385 390 395 400
 Gly Thr Trp Ser Leu Arg Pro Arg Pro Glu Val Leu Ala Lys Asn Ile
 405 410 415
 Val Tyr Val Arg Gly Ala Ser Val Arg Leu Ala Gly Glu Ala Val Val
 420 425 430
 Ser Thr Pro Ser Phe Ala Pro Asp Arg Val Glu Pro Ala Leu Leu Glu
 435 440 445
 Ala Leu Leu Arg Glu Leu Asp Ala Glu Ala Ser Ser Asp Gly Leu Ala
 450 455 460
 His Glu His Arg Leu Glu Ile Gly Gly Ile Arg Gly Phe Trp Gly Glu
 465 470 475 480
 Ile Arg Arg Ala Glu Trp Asp Ala Phe His Ser Arg Arg Arg Gly Glu
 485 490 495
 Leu Ala Arg Phe Gln Val Ser Gly Gln Val Thr Ala Ala Asn Pro Gly
 500 505 510
 Leu Ala Ser Leu Pro Asp Gly Ala Thr Asn Ile Cys Glu Tyr Ile Phe
 515 520 525
 Arg Glu Ala His Leu Arg Ser Gly Ser Cys Leu Val Asp Pro Gln Ser
 530 535 540
 Gly Gln Ser Ala Thr Tyr Ala Glu Leu Arg Arg Leu Ala Ala Tyr
 545 550 555 560
 Ala Arg Arg Phe Arg Ala Leu Gly Leu Arg Gln Gly Asp Val Val Ala

-continued

565	570	575	
Leu Ala Ala Pro Asp Gly Ile Ser Ser Val Ala Val Met	Leu Gly Cys		
580 585	590		
Phe Leu Gly Gly Trp Val Phe Ala Pro Leu Asn His Thr	Ala Ser Ala		
595	600	605	
Val Asn Phe Glu Ala Met Leu Ser Ser Ala Ser Pro Arg	Leu Val Leu		
610	615	620	
His Ala Ala Ser Thr Val Ala Arg His Leu Pro Val Leu Ser	Thr Arg		
625	630	640	
Arg Cys Ala Glu Leu Ala Ser Phe Leu Pro Pro Asp Ala	Leu Asp Gly		
645	650	655	
Val Glu Gly Asp Val Thr Pro Leu Pro Val Ser Pro Glu	Ala Pro Ala		
660	665	670	
Val Met Leu Phe Thr Ser Gly Ser Thr Gly Gly Pro Lys	Ala Val Thr		
675	680	685	
His Thr His Ala Asp Phe Ile Thr Cys Ser Arg Asn Tyr	Ala Pro Tyr		
690	695	700	
Val Val Glu Leu Arg Pro Asp Asp Arg Val Tyr Thr Pro	Ser Pro Thr		
705	710	715	720
Phe Phe Ala Tyr Gly Leu Asn Asn Leu Leu Leu Ser	Leu Ser Ala Gly		
725	730	735	
Ala Thr His Val Ile Ser Val Pro Arg Asn Gly Gly	Met Gly Val Ala		
740	745	750	
Glu Ile Leu Ala Arg Asn Glu Val Thr Val Leu Phe	Ala Val Pro Ala		
755	760	765	
Val Tyr Lys Leu Ile Ile Ser Lys Asn Asp Arg Gly	Leu Arg Leu Pro		
770	775	780	
Lys Leu Arg Leu Cys Ile Ser Ala Gly Glu Lys Leu Pro	Leu Lys Leu		
785	790	795	800
Tyr Arg Glu Ala Arg Ser Phe Phe Ser Val Asn Val Leu	Asp Gly Ile		
805	810	815	
Gly Cys Thr Glu Ala Ile Ser Thr Phe Ile Ser Asn Arg	Glu Ser Tyr		
820	825	830	
Val Ala Pro Gly Cys Thr Gly Val Val Val Pro Gly	Phe Glu Val Lys		
835	840	845	
Leu Val Asn Pro Arg Gly Glu Leu Cys Arg Val Gly	Glu Val Gly Val		
850	855	860	
Leu Trp Val Arg Gly Gly Ala Leu Thr Arg Gly Tyr	Val Asn Ala Pro		
865	870	875	880
Asp Leu Thr Glu Lys His Phe Val Asp Gly Trp Phe	Asn Thr Gln Asp		
885	890	895	
Met Phe Phe Met Asp Ala Glu Tyr Arg Leu Tyr Asn	Val Gly Arg Ala		
900	905	910	
Gly Ser Val Ile Lys Ile Asn Ser Cys Trp Phe Ser	Pro Glu Met Met		
915	920	925	
Glu Ser Val Leu Gln Ser His Pro Ala Val Lys Glu	Cys Ala Val Cys		
930	935	940	
Val Val Ile Asp Asp Tyr Gly Leu Pro Arg Pro Lys	Ala Phe Ile Val		
945	950	955	960
Thr Gly Glu His Glu Arg Ser Glu Pro Glu Leu Glu	His Leu Trp Ala		
965	970	975	

-continued

Glu Leu Arg Val Leu Ser Lys Glu Lys Leu Gly Lys Asp His Tyr Pro
 980 985 990
 His Leu Phe Ala Thr Ile Lys Thr Leu Pro Arg Thr Ser Ser Gly Lys
 995 1000 1005
 Leu Met Arg Ser Glu Leu Ala Lys Leu Leu Thr Ser Gly Pro Pro
 1010 1015 1020

<210> SEQ ID NO 52
 <211> LENGTH: 38
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(38)
 <223> OTHER INFORMATION: CysM

<400> SEQUENCE: 52
 Met Asn Pro Lys Phe Leu Gly Gly Leu Gly Ala Gly Val Cys Ile Ala
 1 5 10 15
 Ser Leu Phe Gln Thr Val Met Arg Thr Val Pro Leu Lys Asp Ala Gly
 20 25 30
 Ser Gly Asp Arg Ala Cys
 35

<210> SEQ ID NO 53
 <211> LENGTH: 357
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(357)
 <223> OTHER INFORMATION: CysN

<400> SEQUENCE: 53
 Met Ser Thr Arg Thr Lys Asn Phe Asn Val Met Gly Ile Asp Trp Met
 1 5 10 15
 Pro Ser Ser Ala Glu Phe Lys Arg Arg Val Pro Arg Thr Gln Arg Ala
 20 25 30
 Ala Glu Ala Val Leu Ala Gly Arg Arg Cys Leu Met Asp Ile Leu Asp
 35 40 45
 Arg Gly Asp Pro Arg Leu Phe Val Ile Val Gly Pro Cys Ser Ile His
 50 55 60
 Asp Pro Val Ala Gly Leu Asp Tyr Ala Lys Arg Leu Arg Lys Leu Ala
 65 70 75 80
 Asp Glu Val Arg Glu Thr Leu Phe Val Val Met Arg Val Tyr Phe Glu
 85 90 95
 Lys Pro Arg Thr Thr Thr Gly Trp Lys Gly Phe Ile Asn Asp Pro Arg
 100 105 110
 Met Asp Gly Ser Phe His Ile Glu Glu Gly Met Glu Arg Gly Arg Arg
 115 120 125
 Phe Leu Leu Asp Val Ala Glu Glu Gly Leu Pro Ala Ala Thr Glu Ala
 130 135 140
 Leu Asp Pro Ile Ala Ser Gln Tyr Tyr Gly Asp Leu Ile Ser Trp Thr
 145 150 155 160
 Ala Ile Gly Ala Arg Thr Ala Glu Ser Gln Thr His Arg Glu Met Ala
 165 170 175

-continued

Ser Gly Leu Ser Thr Pro Val Gly Phe Lys Asn Gly Thr Asp Gly Ser
 180 185 190
 Leu Asp Ala Ala Val Asn Gly Ile Ile Ser Ala Ser His Pro His Ser
 195 200 205
 Phe Leu Gly Val Ser Glu Asn Gly Ala Cys Ala Ile Ile Arg Thr Arg
 210 215 220
 Gly Asn Thr Tyr Gly His Leu Val Leu Arg Gly Gly Gly Arg Pro
 225 230 235 240
 Asn Tyr Asp Ala Val Ser Val Ala Leu Ala Glu Lys Ala Leu Ala Lys
 245 250 255
 Ala Arg Leu Pro Thr Asn Ile Val Val Asp Cys Ser His Ala Asn Ser
 260 265 270
 Trp Lys Asn Pro Glu Leu Gln Pro Leu Val Met Arg Asp Val Val His
 275 280 285
 Gln Ile Arg Glu Gly Asn Arg Ser Val Val Gly Leu Met Ile Glu Ser
 290 295 300
 Phe Ile Glu Ala Gly Asn Gln Pro Ile Pro Ala Asp Leu Ser Gln Leu
 305 310 315 320
 Arg Tyr Gly Cys Ser Val Thr Asp Ala Cys Val Asp Trp Lys Thr Thr
 325 330 335
 Glu Lys Met Leu Tyr Ser Ala His Glu Glu Leu Leu His Ile Leu Pro
 340 345 350
 Arg Ser Lys Val Ala
 355

<210> SEQ_ID NO 54
 <211> LENGTH: 203
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(203)
 <223> OTHER INFORMATION: CysO

<400> SEQUENCE: 54

Met Pro Ala Arg Ser Thr Pro Ser Leu Glu Ser Gly Asp Phe Phe Ala
 1 5 10 15
 Asp Val Thr Phe Ser Asp Leu Ser Ile Glu Ser Ala Asp Leu Ser Gly
 20 25 30
 Lys Glu Phe Glu Arg Cys Thr Phe Arg Arg Cys Lys Leu Pro Glu Ser
 35 40 45
 Arg Trp Val Arg Ser Arg Leu Glu Asp Cys Val Phe Glu Gly Cys Asp
 50 55 60
 Leu Leu Arg Met Val Pro Glu Lys Leu Ala Leu Arg Ser Val Thr Phe
 65 70 75 80
 Lys Asp Thr Arg Leu Met Gly Val Asp Trp Ser Gly Leu Gly Thr Met
 85 90 95
 Pro Asp Val Gln Phe Glu Gln Cys Asp Leu Arg Tyr Ser Ser Phe Leu
 100 105 110
 Lys Leu Asn Leu Arg Lys Thr Arg Phe Val Gly Cys Ser Ala Arg Glu
 115 120 125
 Ala Asn Phe Ile Asp Val Asp Leu Ala Glu Ser Asp Phe Thr Gly Thr
 130 135 140
 Asp Met Pro Gly Cys Thr Met Gln Gly Cys Val Leu Thr Lys Thr Asn

-continued

145	150	155	160												
Phe	Ala	Arg	Ser	Thr	Asn	Phe	Ile	Phe	Asp	Pro	Lys	Ala	Asn	Gln	Val
			165			170					175				
Lys	Gly	Thr	Arg	Val	Gly	Val	Glu	Thr	Ala	Val	Ala	Leu	Ala	Gln	Ala
			180			185				190					
Leu	Gly	Met	Val	Val	Asp	Gly	Tyr	Gln	Thr	Pro					
			195			200									

<210> SEQ ID NO 55
 <211> LENGTH: 233
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(233)
 <223> OTHER INFORMATION: CysP

<400> SEQUENCE: 55

1	5	10	15														
Met	Lys	Arg	Phe	Phe	Lys	Leu	Gln	Leu	Arg	Thr	Thr	Asn	Val	Pro	Ala		
Ala	Arg	Ala	Phe	Tyr	Thr	Ala	Leu	Phe	Gly	Glu	Gly	Ala	Ala	Asn	Ala		
													20	25	30		
Asp	Ile	Val	Pro	Leu	Pro	Glu	Gln	Ala	Ile	Ala	Arg	Gly	Ala	Pro	Ala		
														35	40	45	
His	Trp	Leu	Gly	Tyr	Val	Gly	Val	Glu	Asp	Val	Asp	Glu	Ala	Val	Arg		
														50	55	60	
Ser	Phe	Val	Gly	Arg	Gly	Ala	Thr	Gln	Leu	Gly	Pro	Thr	His	Pro	Thr		
														65	70	75	80
Asn	Asp	Gly	Gly	Arg	Val	Ala	Ile	Leu	Arg	Asp	Pro	Gly	Gly	Ala	Thr		
														85	90	95	
Phe	Ala	Val	Ala	Thr	Ala	Pro	Ala	Thr	Thr	Arg	Ala	Leu	Gln	Pro	Glu		
														100	105	110	
Val	Val	Trp	Gln	Gln	Leu	Tyr	Ala	Ala	Asn	Val	Gln	Gln	Thr	Ala	Ala		
														115	120	125	
Ser	Tyr	Cys	Asp	Leu	Phe	Gly	Trp	Arg	Leu	Ser	Asp	Arg	Arg	Asp	Leu		
														130	135	140	
Gly	Ala	Leu	Gly	Val	His	Gln	Glu	Phe	Thr	Trp	Arg	Ser	Asp	Glu	Pro		
														145	150	155	160
Ser	Ala	Gly	Ser	Val	Val	Asp	Val	Ala	Gly	Leu	Lys	Gly	Val	His	Ser		
														165	170	175	
His	Trp	Leu	Phe	His	Phe	Arg	Val	Ala	Ala	Leu	Asp	Pro	Ala	Met	Glu		
														180	185	190	
Val	Val	Arg	Lys	Ala	Gly	Gly	Val	Val	Ile	Gly	Pro	Met	Glu	Leu	Pro		
														195	200	205	
Asn	Gly	Asp	Arg	Ile	Ala	Val	Cys	Glu	Asp	Pro	Gln	Arg	Ala	Ala	Phe		
														210	215	220	
Ala	Leu	Arg	Glu	Ser	Ser	His	Gly	Arg							225	230	

<210> SEQ ID NO 56
 <211> LENGTH: 264
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(264)

-continued

<223> OTHER INFORMATION: CysQ

<400> SEQUENCE: 56

Met Gln Glu Ile Gly Gln Thr Ala Leu Trp Val Ala Gly Met Arg Ala
 1 5 10 15

Leu Glu Thr Glu Arg Ser Asn Pro Leu Phe Arg Asp Pro Phe Ala Arg
 20 25 30

Arg Leu Ala Gly Asp Thr Leu Val Glu Glu Leu Arg Arg Arg Asn Ala
 35 40 45

Gly Glu Gly Ala Met Pro Pro Ala Ile Glu Val Arg Thr Arg Trp Leu
 50 55 60

Asp Asp Gln Ile Thr Leu Gly Leu Gly Arg Gly Ile Arg Gln Ile Val
 65 70 75 80

Ile Leu Ala Ala Gly Met Asp Ala Arg Ala Tyr Arg Leu Ala Trp Pro
 85 90 95

Gly Asp Thr Arg Leu Phe Glu Leu Asp His Asp Ala Val Leu Gln Asp
 100 105 110

Lys Glu Ala Lys Leu Thr Gly Val Ala Pro Lys Cys Glu Arg His Ala
 115 120 125

Val Ser Val Asp Leu Ala Asp Asp Trp Pro Ala Ala Leu Lys Lys Ser
 130 135 140

Gly Phe Asp Pro Gly Val Pro Thr Leu Trp Leu Ile Glu Gly Leu Leu
 145 150 155 160

Val Tyr Leu Thr Glu Ala Gln Val Thr Leu Leu Met Ala Arg Val Asn
 165 170 175

Ala Leu Ser Val Pro Glu Ser Ile Val Leu Ile Asp Val Val Gly Arg
 180 185 190

Ser Ile Leu Asp Ser Ser Arg Val Lys Leu Met His Asp Leu Ala Arg
 195 200 205

Gln Phe Gly Thr Asp Glu Pro Glu Val Ile Leu Arg Pro Ile Gly Trp
 210 215 220

Asp Pro His Val Tyr Thr Thr Ala Ala Ile Gly Lys Gln Leu Gly Arg
 225 230 235 240

Trp Pro Phe Pro Val Ala Pro Arg Gly Thr Pro Gly Val Pro Gln Gly
 245 250 255

Tyr Leu Val His Gly Val Lys Arg
 260

<210> SEQ ID NO 57

<211> LENGTH: 333

<212> TYPE: PRT

<213> ORGANISM: Cystobacter velatus

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (1)..(333)

<223> OTHER INFORMATION: CysR

<400> SEQUENCE: 57

Val Asn Gly Thr Thr Gly Lys Thr Gly Leu Val Ala Glu Arg Ser Gly
 1 5 10 15

Ala Ile Ser Pro Arg Asp Tyr Lys Ser Lys Glu Leu Val Trp Asp Ser
 20 25 30

Leu Ala Ala Thr Arg Ser Lys Pro Arg Arg Val Leu Pro Glu Gly Asp
 35 40 45

-continued

Val Val Gly His Leu Tyr Pro Pro Ala Lys Ala Ala Leu Leu Thr His
 50 55 60

Pro Leu Met Lys Asn Leu Pro Pro Glu Thr Leu Arg Leu Phe Phe Ile
 65 70 75 80

His Ser Ala Tyr Lys Phe Met Gly Asp Ile Ala Ile Phe Glu Thr Glu
 85 90 95

Thr Val Asn Glu Val Ala Met Lys Ile Ala Asn Gly His Thr Pro Ile
 100 105 110

Thr Phe Pro Asp Asp Ile Arg His Asp Ala Leu Thr Val Ile Ile Asp
 115 120 125

Glu Ala Tyr His Ala Tyr Val Ala Arg Asp Phe Met Arg Gln Ile Glu
 130 135 140

Gln Arg Thr Gly Val Lys Pro Leu Pro Leu Gly Thr Glu Thr Asp Leu
 145 150 155 160

Ser Arg Ala Met Ala Phe Gly Lys His Arg Leu Pro Glu Thr Leu His
 165 170 175

Gly Leu Trp Glu Ile Ile Ala Val Cys Ile Gly Glu Asn Thr Leu Thr
 180 185 190

Lys Asp Leu Leu Asn Leu Thr Gly Glu Lys Ser Phe Asn Glu Val Leu
 195 200 205

His Gln Val Met Glu Asp His Val Arg Asp Glu Gly Arg His Ala Val
 210 215 220

Leu Phe Met Asn Val Leu Lys Leu Val Trp Ser Glu Met Glu Glu Ser
 225 230 235 240

Ala Arg Leu Ala Ile Gly Gln Leu Leu Pro Glu Phe Ile Arg Glu Tyr
 245 250 255

Leu Ser Pro Lys Met Met Ala Glu Tyr Glu Arg Val Val Leu Glu Gln
 260 265 270

Leu Gly Leu Ala Ala Glu His Ile Glu Arg Ile Leu Ser Glu Thr Tyr
 275 280 285

Ser Glu Pro Pro Leu Glu Asp Phe Arg Ala Arg Tyr Pro Leu Ser Gly
 290 295 300

Tyr Leu Val Tyr Val Leu Met Gln Cys Asp Val Leu Ser His Ala Pro
 305 310 315 320

Thr Arg Glu Ala Phe Arg Arg Phe Lys Leu Leu Ala His
 325 330

<210> SEQ ID NO 58
 <211> LENGTH: 642
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(642)
 <223> OTHER INFORMATION: CysS

<400> SEQUENCE: 58

Met Ala Asn Gln Arg Val Ala Phe Ile Glu Leu Thr Val Phe Ser Gly
 1 5 10 15

Val Tyr Pro Leu Ala Ser Gly Tyr Met Arg Gly Val Ala Glu Gln Asn
 20 25 30

Pro Leu Ile Arg Glu Ser Cys Ser Phe Glu Ile His Ser Ile Cys Ile
 35 40 45

Asn Asp Asp Arg Phe Glu Asp Lys Leu Asn Lys Ile Asp Ala Asp Val

-continued

50	55	60
Tyr Ala Ile Ser Cys Tyr Val Trp Asn Met Gly Phe Val Lys Arg Trp		
65	70	75
Leu Pro Thr Leu Thr Ala Arg Lys Pro Asn Ala His Ile Ile Leu Gly		
85	90	95
Gly Pro Gln Val Met Asn His Gly Ala Gln Tyr Leu Asp Pro Gly Asn		
100	105	110
Glu Arg Val Val Leu Cys Asn Gly Glu Gly Glu Tyr Thr Phe Ala Asn		
115	120	125
Tyr Leu Ala Glu Leu Cys Ser Pro Gln Pro Asp Leu Gly Lys Val Lys		
130	135	140
Gly Leu Ser Phe Tyr Arg Asn Gly Glu Leu Ile Thr Thr Glu Pro Gln		
145	150	155
160		
Ala Arg Ile Gln Asp Leu Asn Thr Val Pro Ser Pro Tyr Leu Glu Gly		
165	170	175
Tyr Phe Asp Ser Glu Lys Tyr Val Trp Ala Pro Leu Glu Thr Asn Arg		
180	185	190
Gly Cys Pro Tyr Gln Cys Thr Tyr Cys Phe Trp Gly Ala Ala Thr Asn		
195	200	205
Ser Arg Val Phe Lys Ser Asp Met Asp Arg Val Lys Ala Glu Ile Thr		
210	215	220
Trp Leu Ser Gln His Arg Ala Phe Tyr Ile Phe Ile Thr Asp Ala Asn		
225	230	235
240		
Phe Gly Met Leu Thr Arg Asp Ile Glu Ile Ala Gln His Ile Ala Glu		
245	250	255
Cys Lys Arg Lys Tyr Gly Tyr Pro Leu Thr Ile Trp Leu Ser Ala Ala		
260	265	270
Lys Asn Ser Pro Asp Arg Val Thr Gln Ile Thr Arg Ile Leu Ser Gln		
275	280	285
Glu Gly Leu Ile Ser Thr Gln Pro Val Ser Leu Gln Thr Met Asp Ala		
290	295	300
Asn Thr Leu Lys Ser Val Lys Arg Gly Asn Ile Lys Glu Ser Ala Tyr		
305	310	315
320		
Leu Ser Leu Gln Glu Leu His Arg Ser Lys Leu Ser Ser Phe Val		
325	330	335
Glu Met Ile Trp Pro Leu Pro Gly Glu Thr Leu Glu Thr Phe Arg Glu		
340	345	350
Gly Ile Gly Lys Leu Cys Ser Tyr Asp Ala Asp Ala Ile Leu Ile His		
355	360	365
His Leu Leu Leu Ile Asn Asn Val Pro Met Asn Ser Gln Arg Glu Glu		
370	375	380
Phe Lys Leu Glu Val Ser Asn Asp Glu Asp Pro Asn Ser Glu Ala Gln		
385	390	395
400		
Val Val Val Ala Thr Lys Asp Val Thr Arg Glu Glu Tyr Lys Glu Gly		
405	410	415
Val Arg Phe Gly Tyr His Leu Thr Ser Leu Tyr Ser Leu Arg Ala Leu		
420	425	430
Arg Phe Val Gly Arg Tyr Leu Asp Lys Gln Gly Arg Leu Ala Phe Lys		
435	440	445
Asp Leu Ile Ser Ser Phe Ser Glu Tyr Cys Lys Arg Asn Pro Asp His		
450	455	460

-continued

Pro Tyr Thr Gln Tyr Ile Thr Ser Val Ile Asp Gly Thr Ser Gln Ser
 465 470 475 480

Lys Phe Ser Ala Asn Gly Gly Ile Phe His Val Thr Leu His Glu Phe
 485 490 495

Arg Arg Glu Phe Asp Gln Leu Leu Phe Gly Phe Ile Gln Thr Leu Gly
 500 505 510

Met Met Asn Asp Glu Leu Leu Glu Phe Leu Phe Glu Met Asp Leu Leu
 515 520 525

Asn Arg Pro His Val Tyr Ser Asn Thr Pro Ile Asn Asn Gly Glu Gly
 530 535 540

Leu Leu Lys His Val Thr Val Val Ser Lys Glu Lys Asp Ala Ile Val
 545 550 555 560

Leu Arg Val Pro Glu Lys Tyr Ala Gln Leu Thr Ser Glu Leu Leu Gly
 565 570 575

Leu Glu Gly Ala Pro Ser Thr Ser Leu Arg Val Lys Tyr Arg Gly Thr
 580 585 590

Gln Met Pro Phe Met Ala Asn Lys Pro Tyr Glu Asp Asn Leu Ser Tyr
 595 600 605

Cys Glu Ala Lys Leu His Lys Met Gly Ser Ile Leu Pro Val Trp Glu
 610 615 620

Ser Ala Val Pro Ser Arg Thr Pro Val Arg Arg Pro Gln Val Ala Val
 625 630 635 640

Ala Gly

<210> SEQ_ID NO 59
 <211> LENGTH: 1267
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(1267)
 <223> OTHER INFORMATION: CysT

<400> SEQUENCE: 59

Met His Arg Val Lys Pro Leu Ile Gly Pro Val Leu Ser Ala Leu Leu
 1 5 10 15

Leu Cys Ala Leu Pro Ala Arg Ala Gln Ile Ala Ala Ala His Val Tyr
 20 25 30

His Asn His Met Pro Asn Phe Trp Ala Tyr Tyr Asp Leu Gly Gln Tyr
 35 40 45

Ala Ser Thr Pro Thr Gly Gly Pro Ile Arg Tyr Met Tyr Asp Ala Gln
 50 55 60

Val Ile Asn Leu Lys Lys Asn Pro Pro Ser Asn Tyr Thr Tyr Tyr Leu
 65 70 75 80

Pro Ser Gly Ala Pro Met Pro His Asp Asp Leu Val Thr Tyr Tyr Ser
 85 90 95

His Asn Ala Lys Thr Gly Ala Tyr Leu Tyr Trp Pro Pro Ser Val Ala
 100 105 110

Ser Asp Met Lys Thr Asn Ala Pro Thr Gly Gln Val His Val Thr Met
 115 120 125

Ser Gly Ala Val Val Asn Asn Val Gln Asp Leu Val Thr Leu Lys Asn
 130 135 140

Val Pro Gly Tyr Asp Asn Pro Asn Trp Gly Ala Ser Trp Lys Asp Arg

-continued

145	150	155	160
Tyr Ser Ala Leu Leu Thr Pro Ala Gly Asn Arg Thr Leu Asp Leu Ile			
165	170	175	
His Phe Thr Gly His His Ser Met Gly Pro Leu Val Gly Pro Asp Tyr			
180	185	190	
Phe Leu Lys Asp Leu Ile Tyr Gln Ser Ala Thr Leu Ala Gln Pro Tyr			
195	200	205	
Phe Leu Gly Gly Ser Phe Gln Ser Ser Lys Gly Phe Phe Pro Thr Glu			
210	215	220	
Leu Gly Phe Ser Glu Arg Leu Ile Pro Thr Leu Ser Lys Leu Gly Val			
225	230	235	240
Gln Trp Ala Val Ile Gly Asp Asn His Phe Ser Arg Thr Leu Lys Asp			
245	250	255	
Tyr Pro Tyr Leu Asn Asp Pro Gly Ser Asp Thr Leu Val Ser Pro Pro			
260	265	270	
Asn Arg Ala Asp Leu Gln Asn Thr Ser Ser Val Gly Ser Trp Val Ser			
275	280	285	
Ala Gln Met Ala His Glu Gln Gln Val Ile Lys Asn Lys Tyr Pro Phe			
290	295	300	
Ala Ser Thr Pro His Trp Val Arg Tyr Val Asp Pro Ala Thr Gly Ala			
305	310	315	320
Glu Ser Arg Val Val Gly Ile Pro Val Asn Gln Asn Gly Ser Trp Leu			
325	330	335	
Glu Gly Trp Glu Gly Glu Ala Thr Val Asp Val Val Asn Leu Lys Ser			
340	345	350	
Phe Glu Gly Leu Val Pro Gln Arg Gln Phe Phe Val Ile Ala His Asp			
355	360	365	
Gly Asp Asn Ser Ser Gly Arg Ala Gly Ser Asp Ser Thr Trp Tyr Asn			
370	375	380	
Gly Arg Ser Val Thr Cys Ala Asn Gly Val Gln Cys Val Gly Ile Ser			
385	390	395	400
Glu Tyr Leu Val His His Thr Pro Ala Ser Thr Asp Val Val His Val			
405	410	415	
Gln Asp Gly Ser Trp Val Asp Thr Arg Asp Ser Ser Asp Pro Gln			
420	425	430	
Trp His His Trp Lys Leu Pro Phe Gly Ile Trp Lys Gly Gln Phe Pro			
435	440	445	
Ala Phe Asn Ala Ala Thr Gly Leu Asn Leu Ser Pro Lys Thr Asn Leu			
450	455	460	
Ser Gly Val Gln Glu Gly Met Thr Val Ser Leu Glu His Gly Trp His			
465	470	475	480
Tyr Leu Glu Arg Asn Phe Ala Leu Leu Gln Ala Ala Leu Asn Tyr Ala			
485	490	495	
Lys Thr Ala Glu Gln Ile Trp Leu Asp Ala His Pro Asn His Trp Ser			
500	505	510	
Pro Thr Thr Ala Ile Asp Lys Gln Ile Thr His Thr Gly Asn Gln Leu			
515	520	525	
Asn Pro Trp Met Met Ser Phe Pro Val Lys Gly Asp Val Asn Asn Asp			
530	535	540	
Trp Ala Gly Gly Ala Asn Pro Ala Glu Leu Ala Trp Tyr Phe Leu Leu			
545	550	555	560

-continued

Pro Ala Met Asp Ser Gly Phe Gly Tyr Tyr Asp Glu Asn Gln Asp Asp
 565 570 575

 Asn Val Lys Pro Thr Leu Ser Phe Asn Gln Ser Leu Tyr Phe Ser Lys
 580 585 590

 Pro Tyr Val Gln Gln Arg Ile Ala Gln Asp Lys Thr Gly Pro Ser Val
 595 600 605

 Trp Trp Ala Gln Arg Trp Pro Tyr Asn Pro Gly Ser Ala Asn Thr Asp
 610 615 620

 Lys Ser Glu Gly Trp Thr Leu His Phe Phe Asn Asn His Phe Ala Leu
 625 630 635 640

 Tyr Thr Tyr Ala Tyr Asp Ala Ser Gly Ile Ser Ser Ile Lys Ala Arg
 645 650 655

 Val Arg Val His Thr His Lys Ser Ile Asp Pro Leu Asp Asn Thr His
 660 665 670

 Lys Val Tyr Asp Pro Ala Ala Arg Lys Ala Ala Gly Val Pro Asn Ile
 675 680 685

 Asp Pro Ala Arg Val Gly Ala Trp Val Asp Tyr Pro Leu Thr Arg Arg
 690 695 700

 Asp Leu Lys Pro Val Met Asn Gly Val Ser Trp Gln Pro Ala Tyr Leu
 705 710 715 720

 Pro Val Met Ala Lys Val Pro Ala Gln Glu Ile Gly Asp Leu Tyr Tyr
 725 730 735

 Val Tyr Leu Gly Asn Tyr Arg Asp Gln Leu Leu Asp Tyr Tyr Ile Glu
 740 745 750

 Ala Thr Asp Ser Arg Gly Asn Ile Thr Arg Gly Glu Ile Gln Ser Val
 755 760 765

 Tyr Val Gly Ser Gly Arg Tyr Asn Leu Val Gly Gly Lys Tyr Ile Glu
 770 775 780

 Asp Pro Asn Gly Thr Val Gln Gly Thr His Pro Phe Leu Val Val Asp
 785 790 795 800

 Thr Thr Ala Pro Ser Val Pro Ser Gly Leu Thr Ala Lys Ala Lys Thr
 805 810 815

 Asp Arg Ser Val Thr Leu Ser Trp Ser Ala Ala Ser Asp Asn Val Ala
 820 825 830

 Val Ser Gly Tyr Asp Val Phe Arg Asp Gly Thr Gln Val Gly Ser Ser
 835 840 845

 Thr Ser Thr Ala Tyr Thr Asp Ser Gly Leu Ser Pro Ser Thr Gln Tyr
 850 855 860

 Ser Tyr Thr Val Arg Ala Arg Asp Ala Ala Gly Asn Ala Ser Ala Gln
 865 870 875 880

 Ser Thr Ala Leu Ser Val Ala Thr Leu Thr Pro Asp Thr Thr Pro Pro
 885 890 895

 Ser Val Pro Ser Gly Leu Thr Ala Ser Gly Thr Thr Ser Ser Val
 900 905 910

 Ala Leu Ala Trp Thr Ala Ser Thr Asp Asn Tyr Gly Val Ala Asn Tyr
 915 920 925

 Glu Val Leu Arg Asn Gly Thr Gln Val Ala Ser Val Thr Gly Thr Thr
 930 935 940

 Tyr Ser Asp Thr Gly Leu Ser Pro Ser Thr Thr Tyr Ser Tyr Thr Val
 945 950 955 960

-continued

Arg Ala Arg Asp Ala Ala Gly Asn Val Ser Ser Pro Ser Thr Ala Leu
 965 970 975

Ser Val Thr Thr Gln Thr Gly Asn Ser Ala Thr Val Tyr Tyr Phe Asn
 980 985 990

Asn Asn Phe Ala Leu Lys Tyr Ile His Phe Arg Ile Gly Gly Gly Thr
 995 1000 1005

Trp Thr Thr Val Pro Gly Asn Val Met Ala Thr Ser Glu Val Pro
 1010 1015 1020

Gly Tyr Ala Lys Tyr Thr Val Asn Leu Gly Ala Ala Thr Gln Leu
 1025 1030 1035

Glu Cys Val Phe Asn Asp Gly Lys Gly Thr Trp Asp Asn Asn Lys
 1040 1045 1050

Gly Asn Asn Tyr Leu Leu Pro Ala Gly Thr Ser Thr Val Lys Asp
 1055 1060 1065

Gly Val Val Ser Ser Gly Ala Pro Ala Leu Asp Thr Thr Ala Pro
 1070 1075 1080

Ser Val Pro Ser Gly Leu Thr Ala Ala Ser Lys Thr Ser Ser Ser
 1085 1090 1095

Val Ser Leu Ser Trp Ser Ala Ser Thr Asp Ala Ser Gly Ile Ala
 1100 1105 1110

Gly Tyr Asp Val Tyr Arg Asp Gly Ser Leu Val Gly Ser Pro Val
 1115 1120 1125

Ser Thr Ser Tyr Thr Asp Ser Asp Leu Ser Ala Gly Thr Thr Tyr
 1130 1135 1140

Arg Tyr Thr Val Arg Ala Arg Asp Thr Ala Gly Asn Ala Ser Ala
 1145 1150 1155

Gln Ser Thr Ala Leu Ser Val Thr Thr Ser Thr Ser Ser Ala Thr
 1160 1165 1170

Ser Val Thr Phe Asn Val Thr Ala Ser Thr Val Val Gly Gln Asn
 1175 1180 1185

Val Tyr Leu Val Gly Asn His Ala Ala Leu Gly Asn Trp Asn Thr
 1190 1195 1200

Gly Ala Ala Ile Leu Leu Ser Pro Ala Ser Tyr Pro Lys Trp Ser
 1205 1210 1215

Val Thr Leu Ser Leu Pro Gly Ser Thr Ala Leu Glu Tyr Lys Tyr
 1220 1225 1230

Ile Lys Lys Asp Gly Ser Gly Asn Val Thr Trp Glu Ser Gly Ala
 1235 1240 1245

Asn Arg Ser Thr Thr Ile Pro Ala Ser Gly Thr Ala Thr Leu Asn
 1250 1255 1260

Asp Thr Trp Lys
 1265

<210> SEQ ID NO 60
 <211> LENGTH: 276
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(276)
 <223> OTHER INFORMATION: ORF1

<400> SEQUENCE: 60

Val Pro His Pro Ser Glu Gln Ser Ala Pro Ser Gly Leu Arg Ala Arg

-continued

1	5	10	15
Leu His Glu Ile Ile Phe Glu Ser Asp Thr Pro Ala Gly Arg Ala Phe			
20	25	30	
Asp Val Ala Leu Leu Trp Ala Ile Val Leu Ser Val Leu Ala Val Met			
35	40	45	
Leu Glu Ser Val Glu Ser Ile Ser Val Gln His Gly Gln Thr Ile Arg			
50	55	60	
Val Leu Glu Trp Cys Phe Thr Gly Leu Phe Thr Leu Glu Tyr Val Leu			
65	70	75	80
Arg Leu Leu Ser Val Lys Arg Pro Leu Arg Tyr Ala Leu Ser Phe Phe			
85	90	95	
Gly Leu Val Asp Leu Leu Ala Ile Leu Pro Ser Val Leu Ser Leu Met			
100	105	110	
Leu Pro Gly Met Gln Ser Leu Leu Val Val Arg Val Phe Arg Leu Leu			
115	120	125	
Arg Val Phe Arg Val Leu Lys Leu Ala Ser Phe Leu Gly Glu Ala Asp			
130	135	140	
Val Leu Leu Thr Ala Leu Arg Ala Ser Arg Arg Lys Ile Ile Val Phe			
145	150	155	160
Leu Gly Ala Val Leu Ser Thr Val Val Ile Met Gly Ala Val Met Tyr			
165	170	175	
Met Val Glu Gly Arg Ala Asn Gly Phe Asp Ser Ile Pro Arg Gly Met			
180	185	190	
Tyr Trp Ala Ile Val Thr Met Thr Thr Val Gly Tyr Gly Asp Leu Ser			
195	200	205	
Pro Lys Thr Val Pro Gly Gln Phe Ile Ala Ser Val Leu Met Ile Met			
210	215	220	
Gly Tyr Gly Ile Leu Ala Val Pro Thr Gly Ile Val Ser Val Glu Leu			
225	230	235	240
Ala Gln Ala Thr Arg Gln His Ala Ile Asp Pro Arg Ala Cys Pro Gly			
245	250	255	
Cys Gly Leu Gln Gly His Asp Leu Asp Ala His His Cys Lys His Cys			
260	265	270	
Gly Thr Ala Leu			
275			

```

<210> SEQ ID NO: 61
<211> LENGTH: 78
<212> TYPE: PRT
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(78)
<223> OTHER INFORMATION: ORF2

<400> SEQUENCE: 61

Met Ala Gln Asp Gln Asp Arg Glu Lys Leu His Ser Asp Ala Asp Lys
1 5 10 15

Glu Arg Leu His Pro Lys Val Asp Ser Gly Asp Val Ser Gly Arg Gly
20 25 30

Arg Glu Arg Arg Pro Asp Glu Glu Tyr Pro Lys Gln Arg Asn Ala Gly
35 40 45

Glu Phe Gly Thr His Gly Gly Pro Asn Lys Gly Gly Lys Glu Asp Arg
50 55 60

```

-continued

Arg Gln Leu His Ala Pro Gly Ser Ser Lys Ala Gly Ser Gln
 65 70 75

<210> SEQ ID NO 62
 <211> LENGTH: 162
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(162)
 <223> OTHER INFORMATION: ORF3

<400> SEQUENCE: 62

Met Gly Arg Thr Tyr Ser Phe Glu Pro Phe Leu Ser Gln Gln Pro Ala
 1 5 10 15

Gln Thr Tyr Lys Gly Ser Gly Pro Arg Leu Gly Asn Glu Glu His Lys
 20 25 30

Ile Ala Leu Thr Lys Glu Glu Lys Ala Ala Leu Pro Asp Thr Pro
 35 40 45

Thr Gly Tyr Gly Gln Ala His Ala Glu Thr Val Lys Arg Tyr Arg Ala
 50 55 60

Arg Ala Glu Lys Lys Arg Thr Glu Pro Lys Thr Pro Ala Thr Arg Ala
 65 70 75 80

Lys Lys Ala Ala Pro Lys Ala Lys Pro Thr Arg Lys Val Ala Thr Gln
 85 90 95

Glu Ala Thr Ala Lys Ala Pro Thr Arg Gln Ala Arg Glu Glu Thr Glu
 100 105 110

Pro Lys Ala Pro Ala Arg Lys Lys Leu Ser Ala Thr Gly Leu Val Gly
 115 120 125

Ser Ile Gly Arg Lys Val Val Thr Arg Ala Ala Val Ala Ala Lys Lys
 130 135 140

Thr Val Ala Arg Ala Val Lys Thr Ala Ala Arg Lys Ser Ala Lys
 145 150 155 160

Lys Arg

<210> SEQ ID NO 63
 <211> LENGTH: 87
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(87)
 <223> OTHER INFORMATION: ORF4

<400> SEQUENCE: 63

Met Ser Pro Ala Arg Arg Lys Glu Ser Lys Gln His Glu Val Gly Ser
 1 5 10 15

Ala Thr His Ala Arg Arg Val Ile Val Ala Thr Asp Gly Arg Gly Trp
 20 25 30

Tyr Val Arg Phe Glu Gly Asn Arg Gln Leu Gly Arg Tyr Ser Asn Val
 35 40 45

Thr Gln Ala Ile His Gly Gly Arg Arg Leu Ala Arg Gln His Lys Pro
 50 55 60

Ala Gly Leu Val Val Arg Tyr Leu Asp Gly Glu Glu Glu Ser Trp
 65 70 75 80

Tyr Gly Asp Arg Glu Ala Pro

-continued

85

```

<210> SEQ ID NO 64
<211> LENGTH: 149
<212> TYPE: PRT
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(149)
<223> OTHER INFORMATION: ORF5

<400> SEQUENCE: 64

Met Lys His Ile Lys Ala Val Val Val Gly Ala Leu Ser Ala Ala Leu
1 5 10 15

Leu Phe Gly Val Gly Cys Gln Thr Thr Gly Gly Ala Gly Asn Gln Gly
20 25 30

Thr Gly Gly Ser Asp Thr Ser Gln Gly Gly Thr Met Thr Gly Ser Glu
35 40 45

Thr Thr Gly Thr Gly Thr Thr Gly Gly Thr Thr Glu Gly Gly Asp Thr
50 55 60

Thr Gly Gly Thr Gly Gly Thr Gly Ala Gly Asp Ile Asp Gly Ser
65 70 75 80

Ser Ser Gly Ser Thr Gly Ser Gly Ser Asp Val Gly Gly Ser Gly Gly
85 90 95

Ser Gly Val Ser Ser Glu Pro Gly Gly Phe Ser Pro Asp Ala Ser Gly
100 105 110

Val Asp Ser Asp Leu Gly Gly Ser Gly Thr Gly Ser Asp Val Asp Gly
115 120 125

Ser Gly Ser Thr Asp Ser Ser Gly Asn Met Ser Gly Thr Gly Ser Glu
130 135 140

Asp Asp Thr Ser Arg
145

```

```

<210> SEQ ID NO 65
<211> LENGTH: 525
<212> TYPE: PRT
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(525)
<223> OTHER INFORMATION: ORF6

<400> SEQUENCE: 65

Met Ser Thr Arg Thr Ser Leu Ala Leu Ala Ala Ser Leu Ala Ala Leu
1 5 10 15

Pro Ala Leu Ala Gln Glu Arg Pro Ser Glu Gly Asp Leu Phe Gly Gly
20 25 30

Asp Thr Pro Glu Thr Lys Pro Ala Pro Ala Asp Ala Pro Arg Pro Asp
35 40 45

Glu Ser Ser Leu Phe Gly Asp Thr Pro Ala Ser Thr Pro Ala Ala Gln
50 55 60

Ser Ala Ala Ala Thr Ala Ala Pro Asp Lys Pro Ser Ala Thr Pro Gln
65 70 75 80

Asp Arg Asp Ala Gln Ala Leu Gly Gly Pro Ser Ala Thr Asn Ala Phe
85 90 95

Asp Thr Glu Glu Ala Val Glu Asp Pro Leu Lys Ile Gly Gly Arg Phe
100 105 110

```

-continued

Tyr Leu Arg Ala Tyr Ser Gln Ala Asn Glu Gly Val Ser Phe Ser Asn
 115 120 125
 Thr Thr Phe Ser Ala Pro Met Leu Val Asp Gly Tyr Phe Asp Ala Arg
 130 135 140
 Pro Thr Glu Arg Leu Arg Gly Phe Val Leu Gly Arg Leu Thr Phe Asp
 145 150 155 160
 Pro Thr Arg Lys Ala Gly Ser Leu Gly Ile Val Pro Thr Ser Thr Ser
 165 170 175
 Thr Ser Asn Val Ala Ala Asp Pro Val Val Leu Leu Asp Gln Ala Trp
 180 185 190
 Leu Arg Phe Asp Leu Asp His Lys Leu Phe Ile Thr Val Gly Lys Gln
 195 200 205
 His Val Lys Trp Gly Thr Ser Arg Phe Trp Asn Pro Thr Asp Phe Leu
 210 215 220
 Ser Pro Gln Arg Arg Asp Pro Leu Ala Leu Asp Thr Arg Thr Gly
 225 230 235 240
 Ala Thr Met Leu Lys Met His Met Pro Trp Glu Ala Lys Gly Trp Asn
 245 250 255
 Phe Tyr Val Leu Gly Leu Leu Asp Asn Ala Gly Pro Ala Asn Thr Leu
 260 265 270
 Gly Arg Val Gly Gly Ala Ala Arg Ala Glu Val Val Leu Gly His Thr
 275 280 285
 Glu Leu Gly Val Asp Ala Val Leu Gln His Gly Arg Lys Pro Arg Phe
 290 295 300
 Gly Leu Asp Leu Ser Ser Gly Leu Gly Pro Ile Asp Ile Tyr Gly Glu
 305 310 315 320
 Leu Ala Leu Lys Lys Gly Ser Asp Ala Pro Met Phe Arg Met Pro Gln
 325 330 335
 Gly Val Ser Leu Gly Asp Leu Leu Gly Gln Phe Gln Gly Asn Gly Gly
 340 345 350
 Met Pro Pro Asp Leu Gly Ala Leu Pro Ile Glu Ala Tyr Tyr Pro Glu
 355 360 365
 Gly Tyr Thr Pro Gln Val Ser Gly Gly Ala Thr Trp Thr Phe Ala Tyr
 370 375 380
 Ser Glu Ser Asp Thr Ala Thr Val Gly Val Glu Tyr Phe Tyr Asn Ser
 385 390 395 400
 Met Gly Tyr Pro Gly Ser Leu Ala Tyr Pro Tyr Leu Ile Leu Gln Gly
 405 410 415
 Gln Tyr Gln Pro Phe Tyr Leu Gly Arg His Tyr Ala Ala Val Tyr Ala
 420 425 430
 Phe Leu Ser Gly Pro Gly Ser Trp Asp Asn Thr Asn Phe Ile Leu Ser
 435 440 445
 Asn Leu Gly Asn Leu Ser Asp Arg Ser Phe Ile Thr Arg Leu Asp Val
 450 455 460
 Thr His Arg Ala Leu Arg Tyr Leu Ser Ile Glu Ala Phe Ile Ala Ala
 465 470 475 480
 Asn Tyr Gly Gln Arg Gly Gly Glu Phe Arg Phe Ala Leu Asn Leu Pro
 485 490 495
 Ala Leu Arg Met Gly Glu Gln Val Thr Pro Pro Ile Ala Val Ala Pro
 500 505 510

-continued

Pro Thr Ile Gln Ala Gly Val Gly Leu Arg Ile Asp Leu
 515 520 525

<210> SEQ ID NO 66
 <211> LENGTH: 261
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(261)
 <223> OTHER INFORMATION: ORF7

<400> SEQUENCE: 66

Met Thr Leu Arg Asn Leu Leu Gly Ala Leu Phe Ala Ala Leu Leu Leu
 1 5 10 15

Ala Ala Pro Thr Ala Arg Ala Asp Leu Thr Asp Pro Ala Glu Ile Lys
 20 25 30

Lys Leu Leu Glu Thr Leu Asp Asn Arg Gln Arg Asn Gly Gly Asp Tyr
 35 40 45

Lys Ser Leu Val Tyr Ile Glu Gln Lys Glu Lys Asp Lys Thr Asp Val
 50 55 60

Val Arg Glu Ala Val Val Tyr Arg Arg Asp Glu Lys Asp Gln Leu Met
 65 70 75 80

Ile Leu Met Thr Lys Pro Lys Gly Glu Ala Gly Lys Gly Tyr Leu Arg
 85 90 95

Leu Asp Lys Asn Leu Trp Ser Tyr Asp Pro Asn Thr Gly Lys Trp Asp
 100 105 110

Arg Arg Thr Glu Arg Glu Arg Ile Ala Gly Thr Asp Ser Arg Arg Ala
 115 120 125

Asp Phe Asp Glu Ser Arg Leu Ala Glu Glu Leu Asp Gly Lys Phe Glu
 130 135 140

Gly Glu Glu Lys Leu Gly Lys Phe Thr Thr Trp Lys Leu Val Leu Thr
 145 150 155 160

Ala Lys Pro Asn Val Asp Val Ala Tyr Pro Val Val His Leu Trp Val
 165 170 175

Glu Lys Asp Thr Asn Asn Ile Leu Lys Arg Gln Glu Phe Ala Leu Ser
 180 185 190

Gly Arg Leu Met Arg Thr Ser Tyr Phe Pro Lys Trp Met Lys Leu Phe
 195 200 205

Ser Glu Ser Lys Lys Ala Asp Val Trp Tyr Pro Gln Glu Met Arg Phe
 210 215 220

Tyr Asp Glu Val Glu Lys Thr Asn Ser Thr Val Ile Val Val Lys Ser
 225 230 235 240

Val Asp Leu Arg Ser Leu Glu Asn Ile Phe Thr Lys Ala Trp Phe
 245 250 255

Glu Ser Lys Ser Arg
 260

<210> SEQ ID NO 67
 <211> LENGTH: 433
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(433)
 <223> OTHER INFORMATION: ORF8

-continued

<400> SEQUENCE: 67

Met Gln Gln Leu Leu Leu Ile Ala Val Arg Asn Leu Gly Thr His Lys
 1 5 10 15

Arg Arg Thr Leu Leu Leu Gly Gly Ala Ile Ala Gly Val Thr Ala Leu
 20 25 30

Leu Val Ile Leu Met Gly Leu Ser Asn Gly Met Lys Asp Thr Met Leu
 35 40 45

Arg Ser Ala Thr Thr Leu Val Thr Gly His Val Asn Val Ala Gly Phe
 50 55 60

Tyr Lys Val Thr Ala Gly Gln Ser Ala Pro Val Val Thr Ser Tyr Pro
 65 70 75 80

Lys Leu Leu Glu Gln Leu Arg Lys Glu Val Pro Glu Leu Asp Phe Ser
 85 90 95

Val Gln Arg Thr Arg Gly Trp Val Lys Leu Val Ser Glu Ser Gly Ser
 100 105 110

Val Gln Thr Gly Ile Gly Gly Ile Asp Val Ala Ala Glu Thr Gly Ile
 115 120 125

Arg Lys Val Leu Gln Leu Arg Glu Gly Arg Leu Glu Asp Leu Ala Gln
 130 135 140

Pro Asn Thr Leu Leu Leu Phe Asp Glu Gln Ala Lys Arg Leu Glu Val
 145 150 155 160

Lys Val Gly Asp Ser Val Thr Leu Ser Ala Ser Thr Met Arg Gly Ile
 165 170 175

Ser Asn Thr Val Asp Val Arg Val Val Ala Ile Ala Ala Asn Val Gly
 180 185 190

Met Leu Ser Ser Phe Asn Val Leu Val Pro Asn Ala Thr Leu Arg Ala
 195 200 205

Leu Tyr Gln Leu Arg Glu Asp Ser Thr Gly Ala Leu Met Leu His Leu
 210 215 220

Lys Asp Met Ser Ala Ile Pro Ser Val Gln Ala Arg Leu Tyr Lys Arg
 225 230 235 240

Leu Pro Glu Leu Gly Tyr Gln Val Leu Glu His Asp Pro Arg Ala Phe
 245 250 255

Phe Met Lys Phe Gln Thr Val Asn Arg Glu Ala Trp Thr Gly Gln Lys
 260 265 270

Leu Asp Ile Thr Asn Trp Glu Asp Glu Ile Ser Phe Ile Lys Trp Thr
 275 280 285

Val Ser Ala Met Asp Ala Leu Thr Gly Val Leu Ile Phe Val Leu Leu
 290 295 300

Ile Ile Ile Ala Val Gly Ile Met Asn Thr Leu Trp Ile Ala Ile Arg
 305 310 315 320

Glu Arg Thr Arg Glu Ile Gly Thr Leu Arg Ala Ile Gly Met Gln Arg
 325 330 335

Trp Tyr Val Leu Val Met Phe Leu Leu Glu Ala Leu Val Leu Gly Leu
 340 345 350

Leu Gly Thr Thr Val Gly Ala Leu Val Gly Met Gly Val Cys Leu Leu
 355 360 365

Ile Asn Ala Val Asp Pro Ser Val Pro Val Pro Val Gln Leu Phe Ile
 370 375 380

Leu Ser Asp Lys Leu His Leu Ile Val Lys Pro Gly Ser Val Met Arg
 385 390 395 400

-continued

Ala Ile Ala Phe Ile Thr Leu Cys Thr Thr Phe Ile Ser Leu Ile Pro
405 410 415

Ser Phe Leu Ala Ala Arg Met Lys Pro Ile Thr Ala Met His His Ile
420 425 430

Gly

<210> SEQ_ID NO 68
<211> LENGTH: 701
<212> TYPE: PRT
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(701)
<223> OTHER INFORMATION: ORF9

<400> SEQUENCE: 68

Met Gly Gln Leu Lys Leu Leu Leu Gln Val Ala Leu Arg Asn Leu Phe
1 5 10 15

Val Ser Arg Ile Asn Leu Leu Ile Gly Gly Ile Ile Phe Phe Gly Thr
20 25 30

Val Leu Val Val Gly Gly Ser Leu Val Asp Ser Val Asp Glu Ala
35 40 45

Met Ser Arg Ser Ile Ile Gly Ser Val Ala Gly His Leu Gln Val Tyr
50 55 60

Ser Ala His Ser Lys Asp Glu Leu Ser Leu Phe Gly Gln Met Gly Arg
65 70 75 80

Glu Pro Asp Leu Ser Ala Leu Asp Asp Phe Ser Arg Ile Lys Gln Leu
85 90 95

Val Gln Gln His Pro Asn Val Lys Thr Val Val Pro Met Gly Thr Gly
100 105 110

Ala Thr Phe Ile Asn Ser Gly Asn Thr Ile Asp Leu Thr Leu Ala Arg
115 120 125

Leu Arg Asp Leu Tyr Lys Lys Ala Ala Gln Gly Asp Thr Pro Glu Leu
130 135 140

Arg Gly Gln Ile His Ser Leu Gln Ala His Val Arg His Ile Ile Thr
145 150 155 160

Leu Leu Glu Glu Asp Met Lys Arg Arg Glu Ile Ile Asp Asp Lys
165 170 175

Thr Thr Asp Pro Ala Asp Ala Glu Ala Met Ala Arg Ala Arg Ser Glu
180 185 190

Ala Phe Trp Ala Asp Phe Asp Glu Lys Pro Phe Asp Ser Leu Glu Phe
195 200 205

Leu Glu Asn Arg Ile Ala Pro Tyr Met Thr Asp Gly Asp Met Leu Ser
210 215 220

Leu Arg Tyr Val Gly Thr Asp Leu Val Asn Phe Gln Lys Thr Phe Asp
225 230 235 240

Arg Met Arg Ile Val Glu Gly Thr Pro Val Pro Pro Gly His Arg Gly
245 250 255

Met Met Leu Ser Lys Phe Thr Tyr Glu Asn Asp Phe Lys Leu Lys Thr
260 265 270

Ala His Arg Leu Asp Leu Ile Lys Glu Ala Arg Asp Thr Asn His Lys
275 280 285

Thr Ile Ala Met Asp Pro Gln Leu Gln Arg Trp Val Lys Glu Asn Gln

-continued

290	295	300
Thr Gln Thr Arg Glu Ile Leu Phe Gln Leu Asp Asp Leu Lys Thr Lys		
305	310	315
Gln Ala Val Glu Arg Leu Gln Arg Val Leu Gly Ser Gln Glu Thr Asp		
325	330	335
Leu Gly Lys Leu Leu Pro Ala Phe Phe Thr Met Asp Asp Ala Asn Phe		
340	345	350
Asp Thr Arg Tyr Gln Gln Phe Tyr Ser Glu Leu Ala Thr Leu Leu Asp		
355	360	365
Leu Tyr Arg Ile Arg Ile Gly Asp Asp Leu Thr Ile Thr Ala Phe Ser		
370	375	380
Arg Thr Gly Tyr Val Gln Ser Val Asn Val Lys Ile Tyr Gly Thr Tyr		
385	390	395
400		
Gln Phe Asp Gly Leu Glu Lys Ser Ala Val Ala Gly Ala Leu Asn Leu		
405	410	415
Leu Asp Leu Met Ser Phe Arg Glu Leu Tyr Gly Tyr Leu Thr Ala Glu		
420	425	430
Lys Lys Ala Glu Leu Ala Gly Leu Gln Lys Ala Ser Gly Val Gln Gln		
435	440	445
Val Lys Arg Glu Asp Ala Glu Thr Ala Leu Phe Gly Glu Gln Gly Ser		
450	455	460
Ala Ser Leu Val Ala Glu Gly Thr Ala Gly Gln Ile Asp Glu Asp Lys		
465	470	475
480		
Gln Leu Asp Gly Leu Ala Gln Lys Leu His Arg Glu Glu Leu Ala Ser		
485	490	495
Arg Val Tyr Thr Gln Gln Glu Ile Glu Ser Gly Val Val Leu Ser Thr		
500	505	510
Ala Val Leu Leu Lys His Pro Glu Lys Leu Glu Gln Thr Leu Ala Glu		
515	520	525
Leu Arg Lys Ser Ala Asp Asp Ala Lys Leu Pro Leu Arg Ile Ile Ser		
530	535	540
Trp Gln Lys Ala Ser Gly Thr Ile Gly Gln Phe Val Leu Val Ala Lys		
545	550	555
560		
Leu Val Leu Tyr Phe Ala Val Phe Ile Ile Phe Val Val Ala Leu Val		
565	570	575
Ile Ile Asn Asn Ala Met Met Met Ala Thr Leu Gln Arg Val Arg Glu		
580	585	590
Val Gly Thr Leu Arg Ala Ile Gly Ala Gln Arg Ser Phe Val Leu Ser		
595	600	605
Met Val Leu Val Glu Thr Val Val Leu Gly Leu Val Phe Gly Val Leu		
610	615	620
Gly Ala Ala Met Gly Gly Ala Ile Met Asn Met Leu Gly His Val Gly		
625	630	635
640		
Ile Pro Ala Gly Asn Glu Ala Leu Tyr Phe Phe Ser Gly Pro Arg		
645	650	655
Leu Phe Pro Ser Leu His Leu Ser Asn Leu Val Ala Ala Phe Val Ile		
660	665	670
Val Leu Val Val Ser Ala Leu Ser Thr Phe Tyr Pro Ala Tyr Leu Ala		
675	680	685
Thr Arg Val Ser Pro Leu Gln Ala Met Gln Thr Asp Glu		
690	695	700

-continued

```

<210> SEQ ID NO 69
<211> LENGTH: 253
<212> TYPE: PRT
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(253)
<223> OTHER INFORMATION: ORF10

<400> SEQUENCE: 69

Met Ser Gln Val Thr Ala Leu Pro Gly Ser Thr Gln Pro Ile Val Ser
1 5 10 15

Leu Thr Glu Val Thr Lys Thr Tyr Ser Leu Gly Lys Val Gln Val Pro
20 25 30

Ala Leu Arg Gly Val Thr Leu Glu Val Tyr Pro Gly Glu Phe Ile Ser
35 40 45

Ile Ala Gly Pro Ser Gly Ser Gly Lys Thr Ala Leu Asn Leu Ile
50 55 60

Gly Cys Val Asp Thr Ala Ser Ser Gly Val Val Ser Val Asp Gly Gln
65 70 75 80

Asp Thr Lys Lys Leu Thr Glu Arg Gln Leu Thr His Leu Arg Leu His
85 90 95

Thr Ile Gly Phe Ile Phe Gln Ser Phe Asn Leu Val Ser Val Leu Ser
100 105 110

Val Phe Gln Asn Val Glu Phe Pro Leu Leu Leu Gln Arg Lys Leu Asn
115 120 125

Ala Ser Glu Arg Arg Thr Arg Val Met Thr Leu Leu Glu Gln Val Gly
130 135 140

Leu Glu Lys His Ala Lys His Arg Pro Asn Glu Leu Ser Gly Gly Gln
145 150 155 160

Arg Gln Arg Val Ala Val Ala Arg Ala Leu Val Thr Arg Pro Lys Leu
165 170 175

Val Leu Ala Asp Glu Pro Thr Ala Asn Leu Asp Ser Val Thr Gly Gln
180 185 190

Asn Ile Ile Asp Leu Met Lys Glu Leu Asn Arg Lys Glu Gly Thr Thr
195 200 205

Phe Ile Phe Ser Thr His Asp Ala Lys Val Met Thr His Ala Asn Ala
210 215 220

Val Val Arg Leu Ala Asp Gly Lys Ile Leu Asp Arg Ile Thr Pro Ala
225 230 235 240

Glu Ala Gln Lys Val Met Ala Val Ser Glu Gly Gly His
245 250

<210> SEQ ID NO 70
<211> LENGTH: 397
<212> TYPE: PRT
<213> ORGANISM: Cystobacter velatus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(397)
<223> OTHER INFORMATION: ORF11

<400> SEQUENCE: 70

Met Pro Gln Lys Phe Val Gly Lys Trp Lys Gly Gly Arg Val Lys Leu
1 5 10 15

```

-continued

Val Asp Gly Arg Lys Val Trp Leu Leu Glu Lys Met Val Ser Gly Ala
 20 25 30
 Arg Phe Ser Val Ser Leu Ala Val Ser Asn Glu Glu Asp Ala Leu Ala
 35 40 45
 Glu Leu Ala Leu Phe Arg Arg Asp Arg Asp Ala Tyr Leu Ala Lys Val
 50 55 60
 Lys Ala Asp Arg Ser Glu Glu Val Gln Ala Ser Thr Val Ala Gly Ala
 65 70 75 80
 Val Pro Leu Ser Gly Asp Val Gly Pro Arg Leu Asp Ala Asp Ser Val
 85 90 95
 Arg Glu Phe Leu Arg His Leu Thr Gln Arg Gly Arg Thr Glu Gly Tyr
 100 105 110
 Arg Arg Asp Ala Arg Thr Tyr Leu Ser Gln Trp Ala Glu Val Leu Ala
 115 120 125
 Gly Arg Asp Leu Ser Thr Val Ser Leu Leu Glu Leu Arg Arg Ala Leu
 130 135 140
 Ser Gln Trp Pro Thr Ala Arg Lys Met Arg Ile Ile Thr Leu Lys Ser
 145 150 155 160
 Phe Phe Ser Trp Leu Arg Glu Glu Asp Arg Leu Lys Ala Ala Glu Asp
 165 170 175
 Pro Thr Leu Ser Leu Lys Val Pro Pro Ala Val Ala Glu Lys Gly Arg
 180 185 190
 Arg Ala Lys Gly Tyr Ser Met Ala Gln Val Glu Lys Leu Tyr Ala Ala
 195 200 205
 Ile Gly Ser Gln Thr Val Arg Asp Val Leu Cys Leu Arg Ala Lys Thr
 210 215 220
 Gly Met His Asp Ser Glu Ile Ala Arg Leu Ala Ser Gly Lys Gly Glu
 225 230 235 240
 Leu Arg Val Val Asn Asp Pro Ser Gly Ile Ala Gly Thr Ala Arg Phe
 245 250 255
 Leu His Lys Asn Gly Arg Val His Ile Leu Ser Leu Asp Ala Gln Ala
 260 265 270
 Leu Ala Ala Ala Gln Arg Leu Gln Val Arg Gly Arg Ala Pro Ile Arg
 275 280 285
 Asn Thr Val Arg Glu Ser Ile Gly Tyr Ala Ser Ala Arg Ile Gly Gln
 290 295 300
 Ser Pro Ile His Pro Ser Glu Leu Arg His Ser Phe Thr Thr Trp Ala
 305 310 315 320
 Thr Asn Glu Gly Gln Val Val Arg Ala Thr Arg Gly Gly Val Pro Leu
 325 330 335
 Asp Val Val Ala Ser Val Leu Gly His Gln Ser Thr Arg Ala Thr Lys
 340 345 350
 Lys Phe Tyr Asp Gly Thr Glu Ile Pro Pro Met Ile Thr Val Pro Leu
 355 360 365
 Lys Leu His His Pro Gln Asp Pro Ala Val Met Gln Leu Arg Arg Asn
 370 375 380
 Cys Ser Pro Asp Pro Val Val Thr Arg Glu Ala Glu Ala
 385 390 395

<210> SEQ ID NO 71
 <211> LENGTH: 124
 <212> TYPE: PRT

-continued

<213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(124)
 <223> OTHER INFORMATION: ORF12

<400> SEQUENCE: 71

Val	Leu	Leu	Ala	Phe	Pro	Ser	Gly	Leu	Leu	Ser	Leu	Ala	Leu	Leu	Ser
1				5				10				15			

Thr Thr Thr Glu Ile Ser Ala Ala Leu Pro Val Asp Glu Cys Glu Ser
 20 25 30

Ala Ser Leu Arg Ile Glu Leu Pro Ala Thr Pro Gly Gly Lys Pro Pro
 35 40 45

Val Val Cys Leu Gly Pro Gly Leu Pro Ile His Phe Arg Phe Asp Ser
 50 55 60

Ala Leu Gln Gln Lys Ser Leu Arg Ile Gln Asp Arg Gly Trp Phe Glu
 65 70 75 80

Asp Trp Ala Leu Gly Gln Gln Thr Leu Val Leu Thr Pro His Asp Asn
 85 90 95

Leu Val Ala Gly Lys Arg Ser Glu Val Glu Val Cys Phe Ala Asp Gly
 100 105 110

Ala Ala Pro Ala Cys Ala Ser Phe Val Leu Arg Arg
 115 120

<210> SEQ ID NO 72
 <211> LENGTH: 112
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(112)
 <223> OTHER INFORMATION: ORF13

<400> SEQUENCE: 72

Met	His	Thr	Lys	Val	Pro	Ser	Val	Phe	Glu	Ala	Thr	Pro	Glu	Ser	Leu
1				5				10				15			

Ser Asp Val Asp Tyr Gln Phe Trp His Glu Asp Phe Pro Arg Val Phe
 20 25 30

Glu Arg Gln His Ile Asp Ala His Ala Val Pro Ala Ile Gly Ala Tyr
 35 40 45

Leu Gly Glu Val Leu Val Arg Asn Leu Gly Gly Lys Trp Ile Pro Arg
 50 55 60

Gln Lys Leu Asp Glu Ala Gln Val Leu Val Gly Asn Arg Val Trp Leu
 65 70 75 80

Pro Phe Ala Arg Ala His His Tyr Met Arg Ser Cys Glu Ser Leu Leu
 85 90 95

Asp Tyr Ser Leu Thr Gln Leu Tyr Arg Val Ala Glu Arg Tyr Arg Gly
 100 105 110

<210> SEQ ID NO 73
 <211> LENGTH: 304
 <212> TYPE: PRT
 <213> ORGANISM: Cystobacter velatus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(304)
 <223> OTHER INFORMATION: ORF 14

<400> SEQUENCE: 73

-continued

Met Lys Val Leu Gly Leu Gly Asp Val Lys Ser Glu Asp Ser Leu Arg
 1 5 10 15

Leu Thr Phe Glu Gly Ala Leu Asp Pro Gln Ala Ala Leu Glu Lys Val
 20 25 30

Leu Glu Pro Phe Phe Gln Ala Leu Glu Glu Tyr Ala Gly Asp Trp Met
 35 40 45

Pro Glu Val Val Ser Gly Arg Arg Arg Leu Lys Tyr Ser Arg Ala Asn
 50 55 60

Ile Trp Lys Ala Leu Glu Arg Arg Asp Glu Arg Ser Thr Asp Thr
 65 70 75 80

Trp Leu Tyr Arg Thr Gln Arg Pro Thr Leu Glu Met Ser Leu His Leu
 85 90 95

Trp Phe Pro Pro Leu Pro Pro Ala Leu Asp Val Met Thr Thr Val Gln
 100 105 110

Pro Leu Thr Arg Phe Ala Glu Lys Glu Arg Cys Arg Gln Phe Val Glu
 115 120 125

Met Val Arg Thr Trp Ala Ser Cys Tyr Pro Val Thr His Ala Ala Ala
 130 135 140

His Ser Val Ala Asp Arg Ala Leu Ala Gly Ala Pro Asp Phe Gly Arg
 145 150 155 160

Asp Ala Arg Thr Ala Arg Arg Asp Gly Phe Asp Arg Ile Tyr Glu Ile
 165 170 175

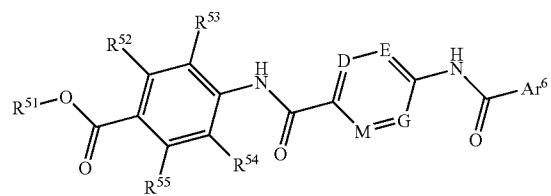
Phe Trp Leu Asn Val Phe Gly Pro Lys Leu Val Glu Ala Val Gly Arg
 180 185 190

Glu Arg Met Leu Ser Thr Pro Ala His Arg Val Glu Glu Leu Pro Asn
 195 200 205

Gly Ser Ile Leu Leu Val Thr Trp Pro Thr Ala Ala Asp Phe Ala Gly
 210 215 220

Ala Glu Ala Arg His Ala Gln Ala Arg Ala His Val His Leu Arg Pro
 225 230 235 240

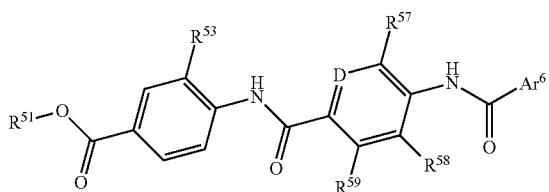
Asp Leu Arg Phe Asp Thr Val Leu Arg Thr Leu His Glu Arg Ser Ala
 245 250 255


Ala Leu Ala Pro Val Glu Pro Cys Phe His Pro Asp Val Ala Pro Leu
 260 265 270

Leu Ser His Val Val Asp Ser Val Ala Ile Arg Met Trp Lys Thr Trp
 275 280 285

Ser Ala Leu Thr Ser Ile Thr Glu Leu Trp Leu Ser Thr Ser Trp Arg
 290 295 300

1. A compound of formula (V)

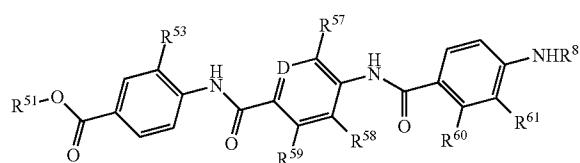

wherein

R^{51} is a hydrogen atom, or a C_{1-6} alkyl group;
 R^{52} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{53} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{54} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{55} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 D is N or CR^{56} ;
 E is N or CR^{57} ;
 G is N or CR^{58} ;
 M is N or CR^{59} ;

R^{56} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{57} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{58} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{59} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl; and
 Ar^5 is an optionally substituted phenyl group or an optionally substituted heteroaryl group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;
or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

2. A compound according to claim 1 of formula (VI)

(VI)

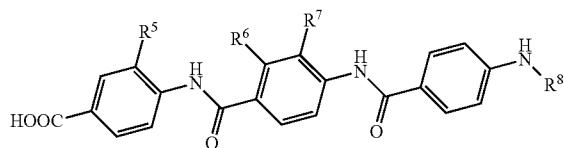


wherein

R^{51} is a hydrogen atom, or a C_{1-6} alkyl group;
 R^{53} is F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
D is N or CR^{56} ;
 R^{56} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{57} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{58} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{59} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl; and
 Ar^5 is an optionally substituted phenyl group or an optionally substituted heteroaryl group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;
or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

3. A compound according to claim 1 of formula (VII)

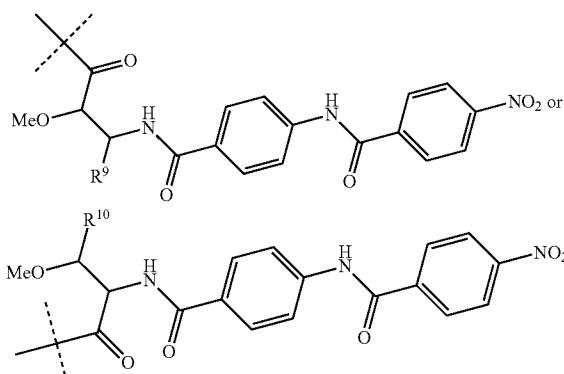
(VII)


wherein

R^{51} is a hydrogen atom, or a C_{1-6} alkyl group;
 R^{53} is F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
D is N or CR^{56} ;

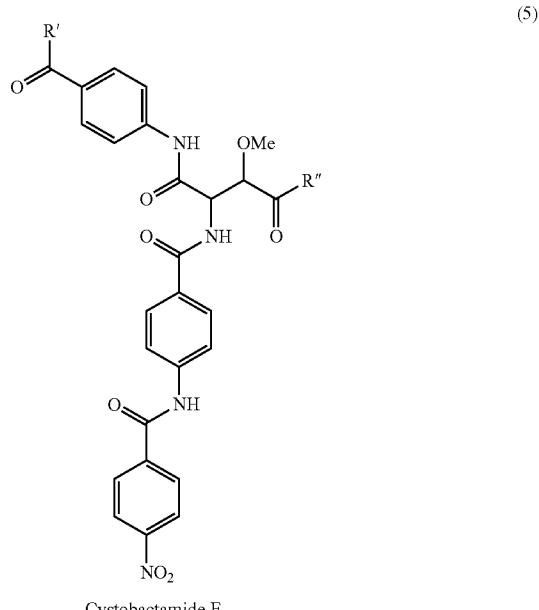
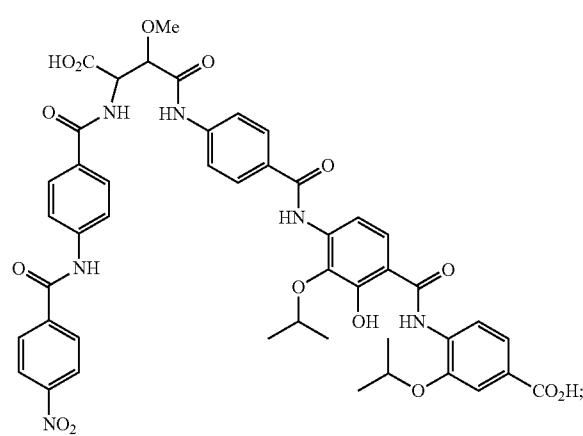
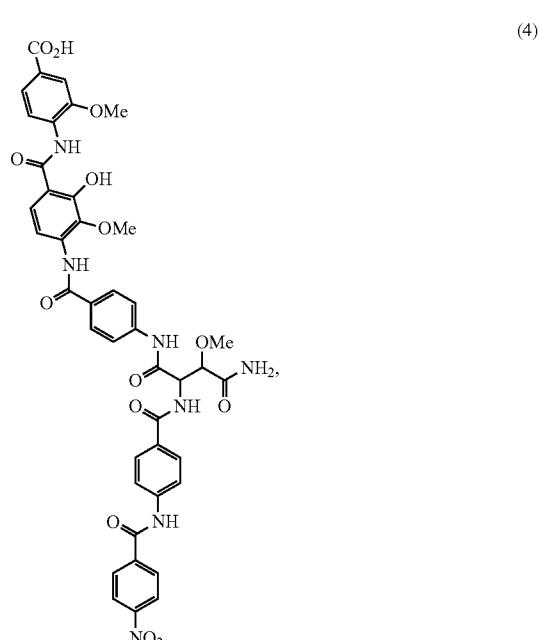
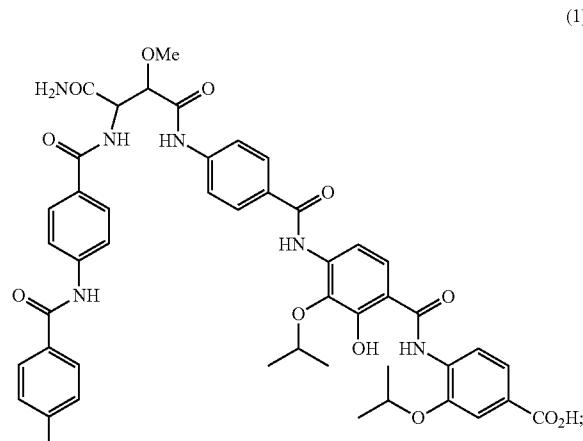
R^{56} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{57} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{58} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{59} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{60} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl;
 R^{61} is a hydrogen atom, F, Cl, a hydroxy group, a C_{1-6} alkyl group or a group of formula $—O—C_{1-6}$ alkyl; and
 R^8 is a hydrogen atom, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group;
or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

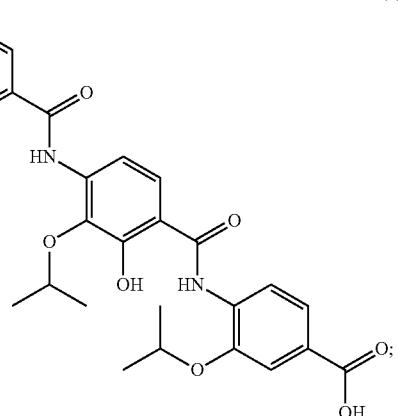
4. A compound according to claim 1 of formula (IV)


(IV)

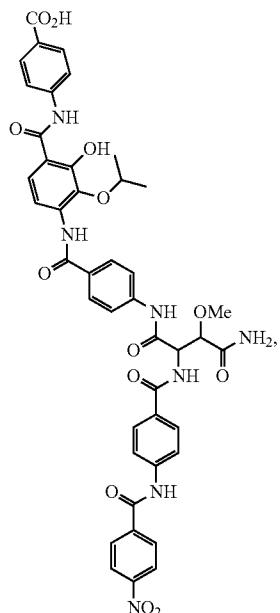
wherein

R^5 is a group of formula $—O—C_{1-6}$ alkyl;
 R^6 is a hydroxy group;
 R^7 is a group of formula $—O—C_{1-6}$ alkyl; and
 R^8 is a hydrogen atom, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group;
or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.





5. A compound according to claim 3, wherein R^8 is a hydrogen atom or a group of the following formula:

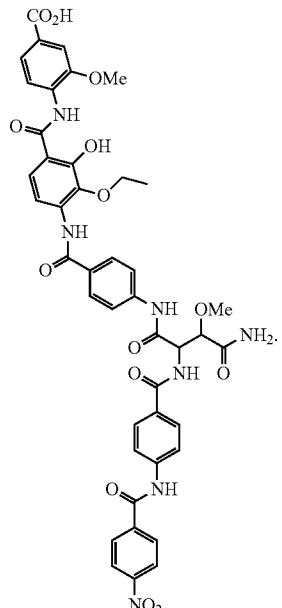

wherein R^9 is COOH or CONH₂ and R^{10} is COOH or CONH₂.

6. A compound selected from:


-continued

(R' is NH₂ or OH and R'' is NH₂ or OH)

Cystobactamide C



-continued

(6)

-continued

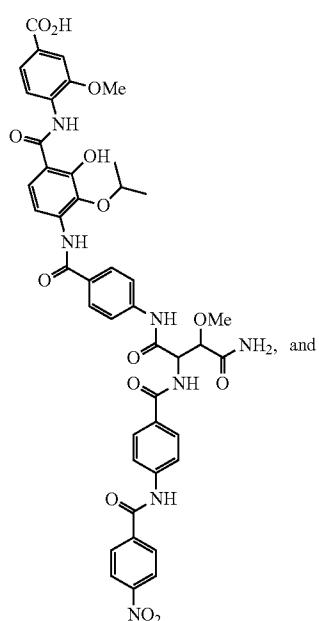
(8)

7. A compound of formula (I)

(7)

wherein

Ar^1 is an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;


Ar^2 is an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

Ar^3 is an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

Ar^4 is absent or an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

Ar^5 is absent or an optionally substituted phenylene group or an optionally substituted heteroarylene group having 5 or 6 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen;

L^1 is a bond, an oxygen atom, a sulphur atom or a group of formula NH , $CONH$, $NHCO$, COO , OCO , $CONR^3$, NR^3CO , $OCONH$, $NHCOO$, $NHCONH$, $OCONR^3$, NR^3COO , NR^3CONR^4 , NR^3 , $-CNR^3-$, $-CO-$, $-SO-$, $-SO_2-$, $-SO_2NH-$, $-NHSO_2-$, $-SO_2NR^3-$, $-NR^3SO_2-$, $-COCH_2-$, $-CH_2CO-$, $-COCR^3R^4-$, $-CR^3R^4CO-$, $-NHCSNH-$, $-NR^3CSNR^4$, $-CH=CH-$, $-CR^3=CR^4-$, or a heteroarylene group having 5 or 6

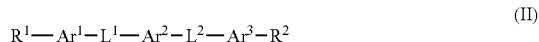
ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group;

L^2 is a bond, an oxygen atom, a sulphur atom or a group of formula NH , CONH , NHCO , COO , OCO , CONR^3 , NR^3CO , OCONH , NHCOO , NHCONH , OCONR^3 , NR^3COO , NR^3CONR^4 , NR^3 , $-\text{CNR}^3-$, $-\text{CO}-$, $-\text{SO}-$, $-\text{SO}_2-$, $-\text{SO}_2\text{NH}-$, $-\text{NHSO}_2-$, $-\text{SO}_2\text{NR}^3-$, $-\text{NR}^3\text{SO}_2-$, $-\text{COCH}_2-$, $-\text{CH}_2\text{CO}-$, $-\text{COCR}^3\text{R}^4-$, $-\text{CR}^3\text{R}^4\text{CO}-$, $-\text{NHCSNH}-$, $-\text{NR}^3\text{CSNR}^4$, $-\text{CH}=\text{CH}-$, $-\text{CR}^3=\text{CR}^4-$, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group;

L^3 is absent or a bond, an oxygen atom, a sulphur atom or a group of formula NH , CONH , NHCO , COO , OCO , CONR^3 , NR^3CO , OCONH , NHCOO , NHCONH , OCONR^3 , NR^3COO , NR^3CONR^4 , NR^3 , $-\text{CNR}^3-$, $-\text{CO}-$, $-\text{SO}-$, $-\text{SO}_2-$, $-\text{SO}_2\text{NH}-$, $-\text{NHSO}_2-$, $-\text{SO}_2\text{NR}^3-$, $-\text{NR}^3\text{SO}_2-$, $-\text{COCH}_2-$, $-\text{CH}_2\text{CO}-$, $-\text{COCR}^3\text{R}^4-$, $-\text{CR}^3\text{R}^4\text{CO}-$, $-\text{NHCSNH}-$, $-\text{NR}^3\text{CSNR}^4$, $-\text{CH}=\text{CH}-$, $-\text{CR}^3=\text{CR}^4-$, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group;

L^4 is absent or a bond, an oxygen atom, a sulphur atom or a group of formula NH , CONH , NHCO , COO , OCO , CONR^3 , NR^3CO , OCONH , NHCOO , NHCONH , OCONR^3 , NR^3COO , NR^3CONR^4 , NR^3 , $-\text{CNR}^3-$, $-\text{CO}-$, $-\text{SO}-$, $-\text{SO}_2-$, $-\text{SO}_2\text{NH}-$, $-\text{NHSO}_2-$, $-\text{SO}_2\text{NR}^3-$, $-\text{NR}^3\text{SO}_2-$, $-\text{COCH}_2-$, $-\text{CH}_2\text{CO}-$, $-\text{COCR}^3\text{R}^4-$, $-\text{CR}^3\text{R}^4\text{CO}-$, $-\text{NHCSNH}-$, $-\text{NR}^3\text{CSNR}^4$, $-\text{CH}=\text{CH}-$, $-\text{CR}^3=\text{CR}^4-$, or a heteroarylene group having 5 or 6 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, or a heteroalkylene group;

R^1 is a hydrogen atom, a halogen atom, a hydroxy group, an amino group, a thiol group, a nitro group, a group of formula $-\text{COOH}$, $-\text{SO}_2\text{NH}_2$, $-\text{CONH}_2$, $-\text{NO}_2$ or $-\text{CN}$, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group;


R^2 is a hydrogen atom, a halogen atom, a hydroxy group, an amino group, a thiol group, a nitro group, a group of formula $-\text{COOH}$, $-\text{SO}_2\text{NH}_2$, $-\text{CONH}_2$, $-\text{NO}_2$ or $-\text{CN}$, an alkyl, an alkenyl, an alkynyl, a heteroalkyl, a cycloalkyl, a heterocycloalkyl, an alkylcycloalkyl, a heteroalkylcycloalkyl, an aryl, a heteroaryl, an aralkyl or a heteroaralkyl group;

the groups R^3 are independently from each other a hydrogen atom or a C_{1-6} alkyl group; and

the groups R^4 are independently from each other a hydrogen atom or a C_{1-6} alkyl group;

or a pharmaceutically acceptable salt, solvate or hydrate or a pharmaceutically acceptable formulation thereof.

8. A compound according to claim 7 of formula (II)

wherein

Ar^1 , Ar^2 , Ar^3 , L^1 , L^2 , R^1 and R^2 are as defined in claim 7.

9. A compound according to claim 7, wherein

Ar^1 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen;

Ar^2 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen;

Ar^3 is an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen;

Ar^4 is absent or an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen; and

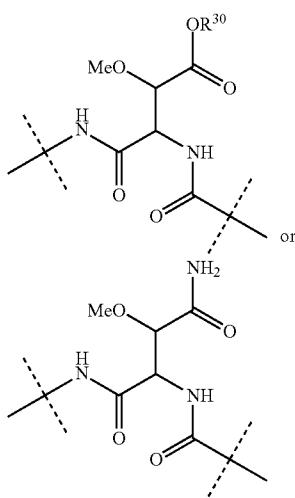
Ar^5 is absent or an optionally substituted 1,4-phenylene group or an optionally substituted 1,3-heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen.

10. A compound according to claim 7, wherein

L^1 is a group of formula $-\text{CONH}-$, $-\text{NHCO}-$, $-\text{SO}_2\text{NH}-$, $-\text{NHSO}_2-$, $-\text{CH}=\text{CH}-$, $-\text{CR}^3=\text{CR}^4-$ or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R^3 and R^4 are independently from each other a C_{1-6} alkyl group;

L^2 is a group of formula $-\text{CONH}-$, $-\text{NHCO}-$, $-\text{SO}_2\text{NH}-$, $-\text{NHSO}_2-$, $-\text{CH}=\text{CH}-$, $-\text{CR}^3=\text{CR}^4-$ or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R^3 and R^4 are independently from each other a C_{1-6} alkyl group;

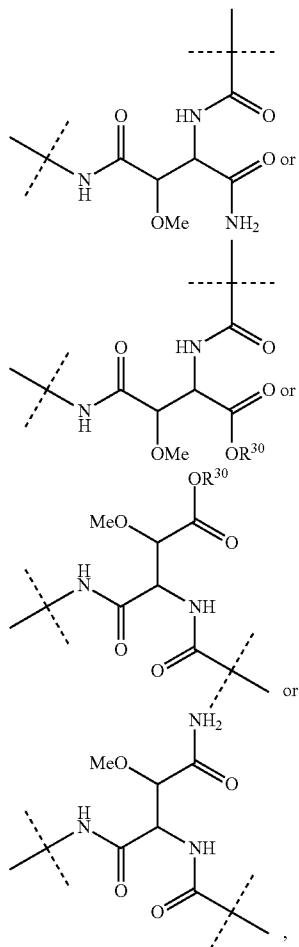
L^3 is absent or a group of formula $-\text{CONH}-$, $-\text{NHCO}-$, $-\text{SO}_2\text{NH}-$, $-\text{NHSO}_2-$, $-\text{CH}=\text{CH}-$, $-\text{CR}^3=\text{CR}^4-$ or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R^3 and R^4 are independently from each other a C_{1-6} alkyl group; and


L^4 is absent or a group of formula $-\text{CONH}-$, $-\text{NHCO}-$, $-\text{SO}_2\text{NH}-$, $-\text{NHSO}_2-$, $-\text{CH}=\text{CH}-$, $-\text{CR}^3=\text{CR}^4-$ or an optionally substituted heteroarylene group having 5 ring atoms including 1, 2, or 3 heteroatoms selected from oxygen, sulphur and nitrogen, wherein R^3 and R^4 are independently from each other a C_{1-6} alkyl group.

11. A compound according to claim 7, wherein R^1 is a hydrogen atom, a halogen atom or a group of formula $-\text{OH}$, $-\text{NH}_2$, $-\text{COOH}$, $-\text{SO}_2\text{NH}_2$, $-\text{CONH}_2$, $-\text{NO}_2$, $-\text{CN}$, $-\text{alkyl}$ (e.g., $-\text{CF}_3$), $-\text{O-alkyl}$, $-\text{O-CO-alkyl}$, $-\text{NH-alkyl}$, $-\text{NH-CO-alkyl}$, or an optionally substituted heteroaryl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen, or

an optionally substituted heterocycloalkyl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen.

12. A compound according to claim 7, wherein R² is a hydrogen atom, a halogen atom or a group of formula —OH, —NH₂, —COOH, —SO₂NH₂, —CONH₂, —NO₂, —CN, -alkyl (e.g. —CF₃), —O-alkyl, —O—CO-alkyl, —NH-alkyl, —NH—CO-alkyl, or an optionally substituted heteroaryl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen, or an optionally substituted heterocycloalkyl group having 5 ring atoms including 1, 2, 3 or 4 heteroatoms selected from oxygen, sulphur and nitrogen.


13. A compound according to claim 7, wherein L¹ is NHCO (wherein the nitrogen atom is bound to Ar¹) or a group of the following formula:

(wherein the NH group is bound to Ar¹), wherein R³⁰ is a hydrogen atom or a C₁₋₃ alkyl group; and/or L² is NHCO (wherein the nitrogen atom is bound to Ar²) or a group of the following formula:

(wherein the NH group is bound to Ar²), wherein R³⁰ is a hydrogen atom or a C₁₋₃ alkyl group; and/or wherein L³ is absent or a group of the following formula:

(wherein the NH group is bound to Ar³), wherein R³⁰ is a hydrogen atom or a C₁₋₃ alkyl group; and/or wherein L⁴ is absent or NHCO (wherein the nitrogen atom is bound to Ar⁴).

14. Pharmaceutical composition comprising a compound according to claim 7, and optionally one or more carrier substances and/or one or more adjuvants.

15. Compound or pharmaceutical composition according to claim 7, for use in the treatment or prophylaxis of bacterial infections.

16. A recombinant biosynthesis cluster capable of synthesizing a cystobactamide selected from the group consisting of cystobactamide A, B, C, D, E, F, G and H, wherein the cluster comprises all of the polypeptides, or a functional variant thereof, according to SEQ ID NOs. 40 to 73.

17. An isolated, synthetic or recombinant nucleic acid comprising:

(i) a sequence encoding a cystobactamide biosynthesis cluster, wherein the sequence has a sequence identity to the full-length sequence of SEQ ID NO. 1 from at least 85%, 90%, 95%, 96%, 97%, 98%, 98.5%, 99%, or 99.5% to 100%;

- (ii) a sequence encoding a NRPS, wherein the sequence has a sequence identity to the full-length sequence of any of SEQ ID NOs. 8, 9, 12 or 13 from at least 85%, 90%, 95%, 96%, 97%, 98%, 98.5%, 99%, or 99.5% to 100%;
- (iii) a sequence completely complementary to the full length sequence of any nucleic acid sequence of (i) or (ii); or
- (iv) a sequence encoding a polypeptide according to any of SEQ ID NOs. 46, 47, 50 or 51.

18. A vector comprising at least one nucleic acid according to claim 17.

19. A recombinant host cell comprising at least one nucleic acid according to claim 17.

20. A method for the preparation of a compound according to claim 6, the method comprising the steps of:

- (a) culturing *Cystobacter velatus* strain MCy8071 (DSM27004) or a recombinant host cell of claim 19; and
- (b) separating and retaining the compound from the culture broth.

21. A method for treating a subject suffering from or susceptible to a bacterial infection, comprising administering to the subject an effective amount of a compound of claim 7.

22. The method of claim 21 wherein the subject is identified as suffering from a bacterial infection and the compound is administered to the identified subject.

23. The method of claim 21 wherein the subject is a human.

24. A method for treating a subject suffering from or susceptible to a bacterial infection, comprising administering to the subject an effective amount of a compound of claim 1.

* * * * *