April 14, 1936.

A. F. FOW

SOCKET FOR COVE SILVAY LAMPS

Filed May 24, 1933

INVENTOR

Ambrose F. Fow

BY

Augustus B. Stoughton

ATTORNEY.
UNITED STATES PATENT OFFICE

2,037,653

SOCKET FOR COVE SILVAY LAMPS

Ambrose F. Fow, Philadelphia, Pa., assignor to Pennsylvania Globe Company, Philadelphia, Pa., a corporation of Pennsylvania

Application May 24, 1933, Serial No. 672,554

1 Claim. (Cl. 173—344)

So called cove silvay lights include electric lamp bulbs having permanently attached to a portion of their surface an adherent coating which acts as a reflector and, in use, it is important that such lamps not only make contact with the supply circuit, but also that they have sufficient threaded engagement with the socket and occupy a correct position for reflecting light in the proper direction for illuminating a desired object or objects.

When ordinary screw lamp sockets having leaf-spring or fixed point contacts were employed for such lamps, the latter often were not properly connected in the circuits, or did not have proper threaded engagement with the sockets, or if properly included in the circuits and engaged with the sockets, faced in the wrong or in an undesired direction. In the case of sockets having leaf-spring contacts, efforts were made to correct these difficulties or defects by bending up the leaf-spring contacts, and while this might do with one lamp, it failed with renewal lamps, because of the weakening of the leaf-springs.

It is one object of the present invention to provide for properly connecting cove lamps in circuit and in good threaded engagement with the supports or sockets, while facing them in any desired direction.

Another object of the present invention is to provide simple, reliable and efficient means for accomplishing this result.

Other objects of the present invention will appear from the following description at the end of which the invention will be claimed.

Generally stated, the invention consists in a cylindrical threaded shell adapted to constitute one side of a circuit and having at one end a spring pressed telescopic housing adapted to constitute the other side of the circuit and of which one section is fixedly mounted through and insulated from the other end of the shell.

The invention also comprises the improvements to be presently described and finally claimed.

In the following description reference will be made to the accompanying drawing forming part hereof and in which,

Figure 1 is a view principally in central section of a thimble embodying features of the invention and showing in application to a cove lamp and to an ordinary lamp socket, and Fig. 2 is a similar view drawn to an enlarged scale and illustrating the details of construction of the thimble.

In the drawing, 1 is a cylindrical shell having a closed end and an open end and threaded at the open end for the reception of a cove lamp 2 and threaded at the closed end for insertion into the lamp socket 3. The cove lamp 2, has permanently applied to a portion of its surface, approximately one half of its surface, a coating 4 which acts as a reflector. The lamp socket shown, is one type of the lamp sockets commonly employed and it is provided with a contact point 5. 6 is a disc of insulating material and it is mounted in the closed end of the shell. There is a spring pressed telescopic or sliding housing 7, and one section 8 of it is fixedly mounted in the disc 6. A contact, shown as a screw 9, and a button 10, extends from the section 8 of the housing through the closed end of the shell 1, and is insulated from it by insulating material 11. The section 12 of the telescopic housing is movable and is pressed by the spring 13, arranged within and confined by the two sections 20 of the telescopic housing. 14 is a sleeve of insulating material applied to the exterior of the shell 1.

In use the lamp 2 is screwed into one end of the shell 1 and the shell 1 is screwed into the lamp socket 3. The shell is included in one side of the circuit, and the movable spring pressed section 12 of the telescopic housing is included in the other side of the circuit. The range of spring movement of the section 12 of the telescopic housing is sufficient to ensure electrical connection of the lamp 2 to the circuit in any position into which the lamp 2 is placed or turned, no matter how far the lamp is screwed into the shell, while at the same time good electrical connection is secured between the contact 5 and the button 10. With the button 10 against the contact 8 the movable section 12 of the telescopic housing will follow and bear upon the contact 15 of the lamp 2 no matter into what angular position it may be turned about its axis in the open end of the shell 1. If the lamp 2 is screwed home into the shell 1 it only requires one complete backward turn of the lamp to bring the reflector 4 into any possible angular position and the spring pressed telescopic housing ensures electrical contact in all positions of the lamp. This is true although the shell 1 is screwed home in the socket 3. It therefore follows that the parts can be screwed far enough home to ensure proper mechanical support and connection while at the same time the lamp can be circularly turned or adjusted as desired without interruption of its proper inclusion in the circuit.

It will be obvious to those skilled in the art to
which the invention relates that modifications may be made in details of procedure without departing from the spirit of the invention which is not limited to such matters or otherwise than the prior art and the appended claim may require.

I claim:

In combination, a cylindrical sleeve having closed and open ends and threaded at the closed end for insertion into a lamp socket and threaded at the open end for the reception of a lamp, a disk of insulating material located in the closed end of said sleeve, a tubular element of sheet metal having open ends and a flange on its outer surface embedded in said disk, a contact having a closed end and having telescopic engagement with said element, a spring enclosed by said element and said contact, a metal terminal on the end of said disk and insulated from said sleeve, and a screw connecting said terminal and said element and having screw-threaded engagement with said element axially thereof to adjust and retain said element in position.

AMBROSE F. POW.