United States Patent Office

1

3,705,058 SOFT-NITRIDING PROCEDURE FOR STEEL AND CAST IRON

Zoltan Kolozsvari and Endre Gal, Targu-Mures, Rumania, assignors to Fabrica de Utilaje si Piese de Schimb "Metalotehnica," Targu-Mures, Rumania No Drawing. Filed July 7, 1971, Ser. No. 160,523 Claims priority, application Rumania, July 9, 1970,

63,864 Int. Cl. C23c 11/16, 11/18

U.S. Cl. 148-16.6

1 Claim

ABSTRACT OF THE DISCLOSURE

A method of increasing the nitrogen content of steel 15 and cast iron wherein the body is maintained in an atmosphere of ammonia, methane and oxygen in a molar ratio of $CH_4:NH_3=1$ and $(CH_4+NH_3):O_2=25-30$ while maintaining the dissociation rate of the ammonia between 38 and 40%. The treatment time is 1 to 10 hours at a 20 temperature of 570° C. ±10° C.

SUMMARY

The invention refers to a soft-nitriding procedure of steel and cast iron in a controlled atmosphere, in order to increase the resistance of machine parts to scuffing, wear and fatigue.

The treatment has to be performed in a gaseous media 30 composed of methane, ammonia and oxygen at a temperature of $570 \pm 10^{\circ}$ C. The atmosphere has a high nitriding capacity and it is easy to control by common methods. The ratio of gas components is as follows:

$$NH_3/CH_4=1$$
 and $NH_3+CH_4/O_2=25-30$

As a result of the treatment a compound layer of a thickness of 10-15 μ m. is obtained, supported by a diffusion layer with a case depth depending on treating time and material composition.

The invention refers to a soft nitriding (low temperature carbonitriding) procedure of steel and cast iron in a controlled atmosphere.

Soft-nitriding of steel and cast iron machine parts is generally performed in a salt bath containing alcaline 45 cyanides and cyanates. The active carbon and nitrogen appears as a result of decomposition of the above salts. The working temperature of the salt baths is of $570\pm10^{\circ}$ C. (below of critical temperatures in Fe-N system). As result of the treatment a surface layer is to be obtained, composed of a compound (white) layer and a diffusion layer. The compound layer is responsible for the high resistance to wear and scuffing, the diffusion layer forms a support.

The above procedure presents disadvantages, because 55 applying a salt bath with heavy toxic effect and by the other hand no continuous inspection and control of the bath characteristics is possible, the only inspection is by performing chemical analyses.

A soft-nitriding procedure in a gaseous media is also 60 known, using Endo-gas and ammonia. Backdraw of this procedure is the use of gas generator and a low nitriding

The procedure in conformity with the invention eliminates the above disadvantages, performing the nitriding 65 CHARLES N. LOVELL, Primary Examiner in order to realize a controlled and uniform treatment, at 570 $\pm 10^{\circ}$ C., in an atmopshere composed of ammonia, methane and oxygen. The ratio of gas components is as

follows: $CH_4/NH_3=1$ and $(CH_4+NH_3)/O_2=25-30$, with an ammonia dissociation rate of 38-40%, and a treating time of 1-10 hours.

An example of realizing the invention is given below, in order to soft-nitride pieces of OLC 35 (plain carbon steel with 0.35% C).

The treatment has been performed in a gaseous media of the following composition: NH₃/CH₄=1, adding oxygen in a ratio of $CH_4+NH_3/O_2=25-30$, at a treating temperature of 570 $\pm 10^{\circ}$ C. The ammonia flow-rate has to be adjusted for a dissociation degree of 35-40%.

A three hours treatment assures the following results:

	Hardness						
Sample	нв	HV1	HV3	HV5	HV1º	HV3	
Untreated	. .	510	440 430	407 400	370 380	320 340	

Metallographic examination has shown the following

case depth (of diffusion layer): 0.35-0.40 mm. depth of compound layer: 10-15/μm. microhardness of compound layer: 870-920 MHV.

On the basis of experiments the parameters of the above treatment, in conformity with the invention, have been established, as follows:

(a) temperature: $570 \pm 10^{\circ}$ C.

(b) ratio of the components: NH₃/CH₄=1 and

$$(CH_4+NH_3)/O_2=25-30$$

(c) ammonia dissociation rate: 35-40%

(d) treating time can vary between 60 min. and 10 hours depending on parts to be treated and material.

Advantages of the procedure in conformity with the invention are:

a clean metal surface can be obtained all the parameters of the procedure can be precisely checked and controlled.

What is claimed is:

1. A soft-nitriding procedure for increasing the nitrogen content of steel and cast iron articles, comprising heat treating said articles for 1 to 10 hours at a temperature of 570° C. ±10° C. in an atmosphere of ammonia, methane and oxygen while maintaining the dissociation rate of the ammonia between 38 and 40%, said atmosphere being characterized by having molar ratios of CH4 to NH₃ of 1 and CH₄+NH₃ to O₂ of 25 to 30.

References Cited

		UNITED	STATES PATENTS	
	3,228,807 3,519,257 3,620,518 3,399,085	3/1968 11/1971	Mitchell et al 148—16.5 X Winter et al 148—16.5 X Winter et al 148—16 Knechtel et al 148—16.6	
)	FOREIGN PATENTS 125,006 Czechoslovakia.			
	123,000	Ozotiosiovania.		

48,847 Germany.

U.S. Cl. X.R.

148--16.5