w0 2008/129315 A1 |0 00 O 0 O I 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [.

International Bureau

(43) International Publication Date
30 October 2008 (30.10.2008)

) IO O OO OO

(10) International Publication Number

WO 2008/129315 Al

(51) International Patent Classification:
GOGF 9/45 (2006.01)

(21) International Application Number:
PCT/GB2008/050259

(22) International Filing Date: 15 April 2008 (15.04.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0707528.6
11/810,050

19 April 2007 (19.04.2007)
4 June 2007 (04.06.2007)

GB
Us

(71) Applicant (for all designated States except US): TRAN-
SITIVE LIMITED [GB/GB]; 5th Floor Alder Castle, 10
Noble Street, London, Greater London EC2V 7QJ (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KNOWLES, Paul
Thomas [GB/GB]; Apartment 136, Hill Quays, 1 Jordan
Street, Knott Mill, Manchester Greater Manchester M15

(GB). WAN, Kit Man [GB/GB]; Flat 707 Chatsworth
House, 19 Lever Street, Manchester, Greater Manchester
M1 1BY (GB).

Agent: ROBINSON, Ian; Appleyard Lees, 15 Clare
Road, Halifax, Yorkshire HX1 2HY (GB).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: APPARATUS AND METHOD FOR HANDLING EXCEPTION SIGNALS IN A COMPUTING SYSTEM

20

Signal Generator |- 200
Unit
sigNum | sigHandler
#1 (global)
#2 (global)
#3 (global)
#4 (global)
#63 (global)
310
220
.
Global Signal Control Unit
221
N
222
A
Delivery Path Handling Sub-Unit 223a
Selection Unit —
igNi Path
sigNum al . R
Y abed Handling Sub-Unit 223b
[#2 d.c.b
iz 2;,;1 Handling Sub-Unit 73
Handling Sub-Unit
#63 dcba andling Sub-Uni 2234
Fig. 4

(57) Abstract: Method and apparatus for the handling of excep-
tion signals in combination particularly with the dynamic conver-
sion of binary code executable by a one computing platform into bi-
nary code executed instead by another computing platform. In one
exemplary aspect, an exception handling unit (195, 220, 230) selec-
tively handles some exception signals with respect to a target state
(320) and handles other exception signals with respect to a subject
state (330) derived from the target state (320). A plurality of signal
handling sub-units (223) are arranged to selectively process the ex-
ception signal (310) with respect to the target state (320) and output
a request either to return to execution or to pass on the exception
signal (310). A delivery path selection unit (222) is arranged to de-
termine a delivery path of the exception signal (310) to a selected
group of the plurality of signal handling sub-units (223). A signal
control unit (221) is arranged to deliver the exception signal (310)
in turn to each of the selected group of signal handling sub-units
(223) according to the delivery path and (i) where a respective one
of the signal handling sub-units (223) requests the return to execu-
tion then to return to execution according to the target state (320);
and (ii) where the signal handling sub- unit (223) requests to pass
on the exception signal (310) then to pass on the exception signal
(310) to a subsequent one of the selected group of signal handling
sub-units (223) according to the delivery path and, where no further
of the signal handling sub-units are specified in the delivery path,
then to deliver the exception signal (310) to a subject-side excep-
tion handler unit (230).

WO 20087129315 A1 | NI DA 000 000001000 0O 000

FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT,NL, — before the expiration of the time limit for amending the
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, claims and to be republished in the event of receipt of
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). amendments

Published:

— with international search report

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

APPARATUS AND METHOD FOR
HANDLING EXCEPTION SIGNALS IN A COMPUTING SYSTEM

Field of the Invention

The present invention relates generally to the field of computers and computer systems
and, more particularly, to the handling of exception signals in the context of program code
conversion methods and apparatus useful, for example, in code translators, emulators and
accelerators. More particularly, the exemplary embodiments of the present invention relate to a
method and apparatus for the handling of exception signals in combination with the dynamic
conversion of binary code executable by a one computing platform into binary code executable
instead by another computing platform.

Background of the Invention

The central processing unit (CPU) or processor lies at the heart of all modern computing
systems. The processor executes instructions of a computer program and thus enables the
computer perform useful work.. CPUs are prevalent in all forms of digital devices in modern life
and not just dedicated computing machines such as personal computers, laptops and PDAs.
Modern microprocessors appear in everything from automobiles to cellular telephones to
children's toys.

A problem arises in that program code which is executable by one type of processor
often cannot be executed in any other type of processor, because each type of processor has
its own unique Instruction Set Architecture (ISA). Hence, program code conversion has
evolved to automatically convert program code written for one type of processor into code
which is executable by another type of processor, or to optimise an old, inefficient piece of
code into a newer, faster version for the same type of processor. That is, in both embedded
and non-embedded CPUs, there are predominant ISAs for which large bodies of software
already exist that could be “accelerated” for performance or “translated” to other processors
that present better cost/performance benefits. One also finds dominant CPU architectures that
are locked in time to their ISA and cannot evolve in performance or market reach. This
problem applies at all levels of the computing industry, from stand-alone pocket-sized
computing devices right through to massive networks having tens or hundreds of powerful

servers.

As background information in this field of program code conversion, PCT publication
WQ02000/22521 entitled “Program Code Conversion”, W02004/095264 entitled “Method and

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

Apparatus for Performing Interpreter Optimizations during Program Code Conversion”,
WQ02004/097631 entitled “Improved Architecture for Generating Intermediate Representations
for Program Code Conversion”, W02005/006106 entitled “Method and Apparatus for
Performing Adjustable Precision Exception Handling”, and W02006/103395 entitled “Method
and Apparatus for Precise Handling of Exceptions During Program Code Conversion”, which
are all incorporated herein by reference, disclose methods and apparatus to facilitate program
code conversion capabilities as may be employed in the example embodiments discussed

herein.

One particular problem area concerns the handling of exception signals. An exception is
a condition that changes the normal flow of control in a program. An exception signal indicates
that a condition has occurred somewhere within the system that requires the attention of the
processor and usually needs to be handled before processing can continue. Exceptions can
be subdivided into various different types such as interrupts, faults, traps or aborts. The
terminology varies between different architectures, and particular types or categories of
exceptions may be unique to particular architectures.

Exception signals (often simply called “signals”) may be raised by hardware or by
software. Hardware exceptions include such signals as resets, interrupts, or signals from a
memory management unit. As examples, exceptions may be generated by an arithmetic logic
unit or floating-point unit for numerical errors such as divide-by-zero, for overflow or underflow,
or for instruction decoding errors such as privileged, reserved, trap or undefined instructions.
Software exceptions vary greatly across various different software programs but generally are
applied to any kind of error checking which alters the normal behaviour of the program.

A signal handler is special code which is called upon when an exception signal occurs
during the execution of a program. The signal handler then attempts to deal with whatever
circumstances gave rise to the exception and, if possible, continue execution of the program. If
the program does not provide a signal handler for a given signal then a default system signal
handler will be called.

The most common events that trigger exception signals are when a process tries to (i)
access an unmapped memory region or (i) manipulate a memory region for which it does not
have the correct permissions. Other common events that trigger exception signals are (iii)
receipt of a signal sent from another process, (iv) execution of an instruction that the current
process does not have the privilege level to execute, or (v) an Input/Output event in the

hardware.

Some representative exception signals are described in Table 1. From the perspective
of the target computing platform, each type of signal has a corresponding signal number which

WO 2008/129315 PCT/GB2008/050259

10

15

is usually an integer number #1, #2, #3, etc. Also, as shown in the table, it is common for each

signal to have a memorable symbolic name.

SigNum Signal Description

#1 SIGHUP [“Hangup” — commonly used to indicate to a process that its
configuration has changed, and that it should re-read its config file.

#2 SIGINT | “Interrupt” — usually means Ctrl-C has been pressed by the user.

#3 SIGILL “lllegal Instruction” — the processor generates this when an invalid
instruction opcode is encountered.

#4 SIGTRAP | “Breakpoint” — often used by debuggers.

#5 SIGBUS | "Bus Error” — usually generated by the processor to indicate an invalid
memory access. This is usually an access to an unallocated or
unaligned memory address.

#6 SIGSEGV | "Segmentation Violation” — generated by the processor when a user
process has tried to do something not permissible in user mode. For
example, trying to execute a privileged instruction, or trying to write to
part of the kernel memory would both raise this signal.

#7 SIGALRM | “Alarm Clock” — a process can make an alarm() system call, which
requests the delivery of this signal n seconds later.

#8 SIGTERM | “Terminate” — polite request for a program to think about exiting, if it's
not too inconvenient.

#9 SIGQUIT | “Quit” — Firm request for a program to exit, now please!

#10 SIGKILL | “Die” — immediately terminates the process. This signal cannot be
intercepted by a signal handler.

Table 1: Example Exception Signals

Exception signals can come from two sources: (1) directly from an executing program
or (2) from the operating system or another process. Some exception signals are generated
as a direct result of an instruction executed by the program. For example, if a program
executes an illegal opcode, then SIGILL is raised. Similarly, if the program attempts an illegal
memory access then SIGSEGV is raised. These are referred to as in-band signals. Exception
signals can also be generated externally, either by the operating system or by another
process. SIGHUP and SIGALRM are examples of these. These externally generated
exception signals are called out-of-band signals.

From a program’s point of view, an exception signal can occur at any time. When an
exception signal occurs, the operating system interrupts the execution of the signaled program
and invokes a signal handler. The operating system usually defines default signal handlers for
all exceptions which receive the exception signals by default and either take predefined

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

actions or simply ignore the signal. However, the operating system maintains a process-
specific handling table which maps each type of signal to a registered signal handler. For
example, in Unix, a program can override a default signal handler by invoking a sigaction()
system call. Sigaction() allows the program to specify what action the operating system should
take when a particular exception signal is received. The action can be: (1) ignore the
exception signal; (2) call the default signal handler; or (3) call a specialized signal handler
function, whose address is provided by the program. Other options that can be specified when
making the sigaction() call include which other signals are blocked during execution of a signal
handler, in much the same way as a CPU can mask certain interrupts.

A Unix signal handler is typically provided with one of two prototypes. The first signal
handler prototype is “void sigHandler(int sigNum).” The first argument is the number of the
exception signal, so that one function can be registered to handle multiple signals. A program
can request that more information be provided to the signal handler by calling sigaction() with
the SA_SIGINFO flag. In this case, the Unix signal handler prototype becomes “void
sigHandler(int sigNum, siginfo_t siginfo, void *context).”

The second parameter (“siginfo”) is a structure which contains information about the
signal, including some indication of what caused the signal and where it came from. For
example, in the case of a SIGILL signal, the siginfo structure contains the address of the illegal
instruction. This data can be essential to allow the process to handle the signal properly. The
third parameter (“context”) provides access to the processor state (including all registers) at
the time the signal was raised. Again, this data can be essential to allow correct handling of a
signal. The signal handler is allowed to modify this context and, when execution is resumed,
the registers are then restored to the values of the modified context.

Where the original program code (here called "subject code”) has been written
according to a particular type of processor, then that subject code requires a particular type of
execution environment and must be supported by an appropriate mechanism for the handling
of exception signals. However, under program code conversion, the subject code is instead
converted into target code and is executed on a target computing system. When an exception
arises, there is now a difficulty in providing an appropriate mechanism to handle the exception.

In the field of program code conversion, it is apparent that when a target instruction is
executed on a target processor and causes an exception signal to be reported, the target
instruction generally will not fulfil the conditions for reporting an exception to a signal handler
written in subject code. Instructions are almost always performed on the target processor in a
different order to the order of instructions in the corresponding block of subject code, firstly due
to the differences between the instruction set of the subject processor for which the subject
code was written and the target processor on which the target code is run, and secondly

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

because of the optimisations that typically occur during program code conversion. Hence, it is
relatively easy to provide a target state to a signal handler, but it is difficult and costly to obtain
an accurate subject state representing an equivalent point in execution of the original subject
code.

A further problem arises in particularly in the field of dynamic program code conversion
where execution of the translator which performs the program code conversion and execution
of the target code generated by the translator are interleaved and may even share the same
execution process on the target computing platform. In most systems there are only a limited
number of exception signals. For example, there is only one SIGALRM signal which then may
need to be shared between the translator and the target code. As a result, it is difficult for the
target code to accurately emulate the original subject code without adversely affecting
execution of the translator, or conversely it difficult for the translator target code to efficiently
perform program code conversion without adversely affecting execution of the target code.
The available signals in the target computing platform may become exhausted and, in the

worst case, the program code conversion process must be terminated.

A yet further problem arises in that the subject code may have been written to make
extensive use of signals, which cannot now be supported by the number or type of signals
which are available on the target computing platform.

These and other problems of the prior art are addressed by the exemplary embodiments
of the present invention as will be discussed in more detail below.

Summary of the Invention

According to the present invention there is provided a computer system, a computer-
readable storage medium and a method as set forth in the appended claims. Other features of
the invention will be apparent from the dependent claims, and the description which follows.

The following is a summary of various aspects and advantages realizable according to
embodiments of the invention. It is provided as an introduction to assist those skilled in the art
to more rapidly assimilate the detailed discussion that follows and does not and is not intended
in any way to limit the scope of the claims that are appended hereto.

In particular, the inventors have developed methods directed at program code
conversion. These methods are especially useful in connection with a run-time translator that

provides dynamic run-time translation or acceleration of binary program code.

In one exemplary aspect of the present invention there is provided a computing system,
comprising: a translator unit arranged to convert subject code into target code; a processor
unit arranged to execute the target code and provide a target state with respect to execution of

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

the target code in the processor unit; a signal generator unit arranged to generate an
exception signal at least in response to execution of the target code; and an exception
handling unit arranged to handle the exception signal. Here, the exception handling unit
includes a target-side exception handler unit arranged to receive the exception signal from the
signal generator unit and to selectively handle the exception signal with respect to the target
state; and a subject-side exception handler unit arranged to receive the exception signal from
the target-side exception handling unit and to handle the exception signal with respect to a
subject state, wherein the subject state is derived from the target state. The target-side
exception handler unit may comprise a plurality of signal handling sub-units each arranged to
selectively process the exception signal with respect to the target state and output a request to
return to execution or else a request to pass on the exception signal; a delivery path selection
unit arranged to determine a delivery path of the exception signal to a selected group of the
plurality of signal handling sub-units; and a signal control unit arranged to deliver the exception
signal in turn to each of the selected group of signal handling sub-units according to the
delivery path and (i) where a respective one of the signal handling sub-units outputs the
request to return execution then to return execution according to the target state; and (ii)
where the signal handling sub-unit outputs the request to pass on the exception signal then to
pass on the exception signal to a subsequent one of the selected group of signal handling sub-
units according to the delivery path and, where no further of the signal handling sub-units are
specified in the delivery path, then by default to deliver the exception signal to the subject-side
exception handler unit.

In one embodiment, the signal generator unit generates the exception signals as one of
a plurality of different types and the delivery path selection unit determines the delivery path
according to the type of the exception signal. Optionally, the delivery path selection unit
comprises a table which maps a set of different types of the exception signals each to a
respective group of the signal handling sub-units. Optionally, the table maps each type of the
exception signals to a respective group comprising none, one or more of the signal handling
sub-units. Here, the table includes at least one group comprising a plurality of the signal
handling sub-units.

In one embodiment, the delivery path selection unit is arranged to determine the delivery
path to specify an order of delivery of the exception signal to the selected group of signal
handling sub-units, and the signal control unit delivers the exception signal to the selected
group of signal handling sub-units in order according to the order of delivery.

In one embodiment, the signal generator unit is arranged to generate a plurality of
exception signals at least some of which are interceptable and the exception handling unit is
registered with the signal handling unit to receive one or more of the exception signals which
are interceptable.

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

In one embodiment, the processor unit is arranged to execute both the translator unit
and the target code and to provide the target state representing a current state of execution in
the processor unit in relation to the target code and the translator unit, respectively; the signal
generator unit is arranged to generate a plurality of the exception signals in relation to the
execution of the target code and in relation to the translator unit; and at least one of the signal
handling sub-units is arranged to handle a respective one or more of the exception signals with
respect to the target state when the exception signal results from execution of the translator
unit. Optionally, at least one of the signal handling sub-units is arranged to process the same
exception signal, or at least the same type of exception signal, with respect to the target state
when the exception signal results from execution of the target code.

In one embodiment, the subject-side exception handler is arranged to handle the
exception signal with respect to the subject state derived from the target state only when the
exception signal results from execution of the target code. Thus, the subject-side exception
handler does not handle the exception signal when the exception signal results from execution
of the translator unit.

In one embodiment, the delivery path selection unit determines the delivery path for at
least one type of the exception signals specifically to include the subject-side exception
handler unit; and the signal control unit delivers the exception signal to the subject-side
exception handler unit according to the delivery path.

In one embodiment, the signal control unit is arranged to deliver the exception signal to
the subject-side exception handler unit after delivering the exception signal to each of a
selected group of the signal handling sub-units, according to the delivery path.

In one embodiment, the exception handling unit further comprises at least one of a
crash reporter unit arranged to generate and store a crash report data structure concerning the
state of execution of the processor unit relating to a crash following the exception signal, and
return to execution or terminate execution; and a default handler unit arranged to handle the
exception signal according to a predetermined exception handling protocol and return to
execution or terminate execution. Optionally, the delivery path selection unit determines the
delivery path to include the crash reporter unit and/or the default handler unit. The signal
control unit delivers the exception signal to the crash reporter unit and the default handler unit
respectively according to the delivery path. Optionally, the signal control unit is arranged to
deliver the exception signal to the crash reporter unit and/or to the default handler unit after
delivering the exception signal to each of a selected group of the signal handling sub-units and
to the subject-side exception handler unit, according to the delivery path.

In one embodiment, each of the plurality of signal handling sub-units comprises an entry
unit arranged to receive the exception signal and determine whether or not to process this

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

exception signal; a signal processing unit arranged to perform a predetermined signal
processing function on the exception signal with respect to the target state when determined
by the entry unit, including selectively modifying the target state such that execution will
resume differently in response to the exception signal; and an exit unit arranged to output the
request either to return to execution or to pass on the exception signal. Optionally, the target
state includes a signal information data structure containing information relating to the
exception signal. Optionally, the target state includes a signal context data structure containing
information relating to a context of the processor unit with respect to the exception signal.

In one embodiment, the subject-side exception handler comprises a converter unit
arranged to convert the target state into the subject state; a plurality of subject-side signal
handling sub-units each arranged to selectively process the exception signal with respect to
the subject state and determine either t0 pass on the exception signal or request a return to
execution; a subject-side delivery path selection unit arranged to determine a delivery path of
the exception signal where the delivery path specifies a selected group of one or more
amongst the plurality of subject-side signal handling sub-units; and a subject-side signal
control unit arranged to pass the exception signal in turn to each of the selected group of
subject-side signal handling sub-units and return to execution in response to the request from
a respective one of the group of subject-side signal handling sub-units. Optionally, the
converter is further arranged to reconvert the subject state into the target state when the
subject-side signal control unit determines to return to execution.

In one embodiment, each of the plurality of subject-side signal handling sub-units
comprises an entry unit arranged to receive the exception signal and determine whether or not
to process this exception signal; a signal processing unit arranged to perform a predetermined
signal processing function on the exception signal with respect to the subject state when
determined by the entry unit, including selectively modifying the subject state such that
execution will resume differently in response to the exception signal; and an exit unit arranged
to output the request either to return to execution or to pass on the exception signal.
Optionally, the subject state includes a subject signal information data structure containing
information relating to a converted form of the exception signal. Optionally, the subject state
includes a subject signal context data structure containing information relating to a context of

the emulated subject processor with respect to the converted form of the exception signal.

In one embodiment, the signal control unit is arranged to dynamically reconfigure the
delivery path selection unit to determine a different delivery path for the exception signal.
Optionally, the signal control unit is arranged to reconfigure the delivery path selection unit to
add, amend or replace the delivery path for a particular type of the exception signal.
Optionally, the signal control unit is arranged to reconfigure the delivery path selection unit to

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

add, amend or replace one or more of the signal handling sub-units in the selected group
according to the delivery path for a particular type of the exception signal.

In one embodiment, the subject code is binary program code which is directly
executable by a processor of a subject type.

In one embodiment, the target code is binary program code which is directly executable
by the processor unit.

In one embodiment, translator unit is arranged to convert the subject code being binary
program code which is directly executable by a processor of a first type into the target code
being binary program code which is directly executable by the processor unit.

In one embodiment, the translator unit is arranged to translate the subject code written
for execution by a processor of a first type into the target code executed by the processor unit
of a different non-compatible second type.

In one embodiment, the translator unit is arranged to optimise the subject code written
for execution by a processor of a first type into the target code that is executed more efficiently
by the processor unit of the same first type.

In another aspect of the present invention there is provided a method of handling an
exception signal in a computing system having at least one processor, the method comprising
the computer-implemented steps of: converting subject code into target code executable by
the at least one processor; executing the target code on the at least one processor; generating
an exception signal in relation to execution of the target code; determining a signal delivery
path with respect to the exception signal where the signal delivery path specifies a group of
signal handling sub-units selected from amongst a plurality of signal handling sub-units;
delivering the exception signal to a first of the signal handling sub-units in the group according
to the signal delivery path; determining whether to process the signal in the signal handling
sub-unit and if so then processing the signal in the signal handling sub-unit to handle the
exception; and deciding whether to request a return to execution and if so then returning to
execution; or else passing the exception signal to a next signal handling sub-unit of the group
according to the signal delivery path and repeating the determining and deciding steps in
relation to the next signal handling sub-unit.

In yet another aspect of the present invention there is provided a method of handling an
exception signal in a computing system, comprising the computer-implemented steps of:
converting subject code executable by a subject processor type into target code executable by
at least one processor; executing the target code in the at least one processor; generating an
exception signal in relation to execution of the target code; determining whether or not to

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

10

handle the exception signal solely with reference to a target state data structure containing
information representing a state of execution of the computing system in relation to the
exception signal; and if not, then converting the target state data structure into a subject state
data structure containing information representing an emulated state of execution of the
subject code on the subject processor type relating to the exception signal and handling the
exception signal with respect to the subject state data structure.

The exemplary embodiments handle at least some types of exception signals solely with
reference to the target state and thus reduce the number of occasions when the target state
must be converted into the subject state. As a result, the computing system is now able to
execute faster and more efficiently.

Further, the exemplary embodiments of the invention are arranged to deliver certain
types of exception signals to multiple signal handling sub-units, each of which then has the
opportunity to examine and handle the exception. A single exception signal is thus exposed for
multiple different purposes. This mechanism allows a single type of exception signal — such as
an alarm signal — to be shared between the target code and the translator.

Further still in the exemplary embodiments discussed herein, subject code which makes
extensive use of signals is readily supported now when converted to target code and executed
on the target computing platform, even though the target computing platform may have
significantly different numbers or types of exception signals.

The present invention also extends to a computer-readable storage medium having
instructions recorded thereon which when implemented by a computer system perform any of
the methods defined herein.

At least some embodiments of the invention may be constructed, partially or wholly,
using dedicated special-purpose hardware. Terms such as ‘component’, ‘module’ or ‘unit’ used
herein may include, but are not limited to, a hardware device, such as a Field Programmable
Gate Array (FPGA) or Application Specific Integrated Circuit (ASIC), which performs certain
tasks. Alternatively, elements of the invention may be configured to reside on an addressable
storage medium and be configured to execute on one or more processors. Thus, functional
elements of the invention may in some embodiments include, by way of example, components,
such as software components, object-oriented software components, class components and
task components, processes, functions, attributes, procedures, subroutines, segments of
program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables,
arrays, and variables. Further, although the preferred embodiments have been described with
reference to the components, modules and units discussed below, such functional elements
may be combined into fewer elements or separated into additional elements.

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

11

Brief Description of the Drawings

The accompanying drawings, which are incorporated in and constitute a part of the
specification, illustrate presently preferred implementations and are described as follows:

Figure 1 is a block diagram illustrative of apparatus wherein embodiments of the
invention are applied;

Figure 2 is a schematic overview of a program code conversion process as employed by

embodiments of the present invention;

Figure 3 is a schematic diagram illustrating control flow during exception handling in
exemplary embodiments of the present invention;

Figure 4 is a schematic diagram illustrating parts of an exemplary computing system
relating to exception handling;

Figure 5 is a schematic diagram illustrating an exemplary signal handling sub-unit;

Figure 6 is a schematic flow diagram illustrating a method of handling exception signals
according to exemplary embodiments of the present invention;

Figure 7 is a schematic diagram illustrating parts of an exemplary computing system
relating to exception handling;

Figure 8 is a schematic flow diagram illustrating a further method of handling exception
signals according to exemplary embodiments of the present invention;

Figure 9 is a schematic diagram further illustrating parts of an exemplary computing
system relating to exception handling;

Figure 10 is another schematic diagram illustrating parts of an exemplary computing
system relating to exception handling;

Figure 11 is a schematic diagram further illustrating parts of an exemplary computing
system relating to exception handling; and

Figure 12 is another schematic diagram further illustrating parts of an exemplary
computing system relating to exception handling.

Detailed Description

The following description is provided to enable a person skilled in the art to make and
use the invention and sets forth the best modes contemplated by the inventors of carrying out

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

12

their invention. Various modifications and equivalents, however, will be readily apparent to
those skilled in the art, based on the general principles of the present invention as explained

herein.

Figure 1 gives an overview of a system and environment where the example
embodiments of the present invention are applied, in order to introduce the components,
modules and units that will be discussed in more detail below. Referring to Figure 1, a subject
program 17 is intended to execute on a subject computing platform 1 having at least one
subject processor 3. However, a target computing platform 10 is instead used to execute the
subject program 17, through a translator unit 19 which performs program code conversion.
The translator unit 19 performs code conversion from the subject code 17 to target code 21,
such that the target code 21 is executable on the target computing platform 10.

As will be familiar to those skilled in the art, the subject processor 3 has a set of subject
registers 5. A subject memory 8 holds, inter alia, the subject code 17 and a subject operating
system 2. Similarly, the example target computing platform 10 in Figure 1 comprises at least
one target processor 13 having a plurality of target registers 15, and a memory 18 to store a
plurality of operational components including a target operating system 20, the subject code
17, the translator code 19, and the translated target code 21. The target computing platform 10
is typically a microprocessor-based computer or other suitable computer.

In one embodiment, the translator code 19 is an emulator to translate subject code of a
subject instruction set architecture (ISA) into translated target code of another ISA, with or
without optimisations. In another embodiment, the translator 19 functions as an accelerator for
converting the subject code into the target code, each of the same ISA, whilst performing
various optimisations that improve performance of the target computing platform.

The translator code 19 is suitably a compiled version of source code implementing the
translator, and runs in conjunction with the operating system 20 on the target processor 13. It
will be appreciated that the structure illustrated in Figure 1 is exemplary only and that, for
example, software, methods and processes according to embodiments of the invention may be
implemented in code residing within or beneath an operating system 20. The subject code 17,
translator code 19, operating system 20, and storage mechanisms of the memory 18 may be
any of a wide variety of types, as known to those skilled in the art.

In the apparatus according to Figure 1, program code conversion is performed
dynamically, at run-time, to execute on the target architecture 10 while the target code 21 is
running. That is, the translator 19 runs inline with the translated target code 21. Running the
subject program 17 through the translator 19 involves two different types of code that execute
in an interleaved manner: the translator code 19; and the target code 21. Hence, the target

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

13

code 21 is generated by the translator code 19, throughout run-time, based on the stored
subject code 17 of the program being translated.

In one embodiment, the translator unit 19 emulates relevant portions of the subject
architecture 1 such as the subject processor 3 and particularly the subject registers 5, whilst
actually executing the subject program 17 as target code 21 on the target processor 13. In the
preferred embodiment, at least one global register store 27 is provided (also referred to as the
subject register bank 27 or abstract register bank 27). In a multiprocessor environment,
optionally more than one abstract register bank 27 is provided according to the architecture of
the subject processor. A representation of a subject state is provided by components of the
translator 19 and the target code 21. That is, the translator 19 stores the subject state in a
variety of explicit programming language devices such as variables and/or objects. The
translated target code 21, by comparison, provides subject processor state implicitly in the
target registers 15 and in memory locations 18, which are manipulated by the target
instructions of the target code 21. For example, a low-level representation of the global register
store 27 is simply a region of allocated memory. In the source code of the translator 19,
however, the global register store 27 is a data array or an object which can be accessed and
manipulated at a higher level.

Suitably, the translator 19 divides the subject code 17 into a plurality of translation units
or blocks. Commonly, each of these subject code block corresponds to one basic block of the
subject code. The term “basic block” will be familiar to those skilled in the art. That is, each
basic block is a sequential set of instructions between a first instruction at a single entry point
and a last instruction at a single exit point (such as a jump, call or branch instruction). Thus, a
basic block is a section of code with exactly one entry point and exactly one exit point, which
limits the block code to a single control path. For this reason, basic blocks are a useful
fundamental unit of control flow., The translator 19 may select just one of these basic blocks
(block mode) or select a group of the basic blocks (group block mode). A group block suitably
comprises two or more basic blocks which are to be treated together as a single unit. Further,
the translator may form iso-blocks representing the same block of subject code but under
different entry conditions.

In the preferred embodiments, trees of Intermediate Representation (IR) are generated
based on a subject instruction sequence, as part of the process of generating the target code
21 from the original subject program 17. IR trees are abstract representations of the
expressions calculated and operations performed by the subject program. Later, the target
code 21 is generated (“planted”) based on the IR trees. Collections of IR nodes are actually
directed acyclic graphs (DAGS), but are referred to colloquially as “trees”.

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

14

As those skilled in the art may appreciate, in one embodiment the translator 19 is
implemented using an object-oriented programming language such as C++. For example, an
IR node is implemented as a C++ object, and references to other nodes are implemented as
C++ references to the C++ objects corresponding to those other nodes. An IR tree is therefore
implemented as a collection of IR node objects, containing various references to each other.

Further, in the embodiment under discussion, IR generation uses a set of register
definitions which correspond to specific features of the subject architecture upon which the
subject program 17 is intended to run. For example, there is a unique register definition for
each physical register on the subject architecture (i.e., the subject registers 5 of Figure 1). As
such, register definitions in the translator may be implemented as a C++ object which contains
a reference to an IR node object (i.e., an IR tree). The aggregate of all IR trees referred to by
the set of register definitions is referred to as the working IR forest (“forest” because it contains
multiple abstract register roots, each of which refers to an IR tree). These IR trees and other
processes suitably form part of the translator 19.

Figure 1 further shows native code 28 in the memory 18 of the target architecture 10.
There is a distinction between the target code 21, which results from the run-time translation of
the subject code 17, and the native code 28, which is written or compiled directly for the target
architecture. In some embodiments, a native binding is implemented by the translator 19
when it detects that the subject program’s flow of control enters a section of subject code 17,
such as a subject library, for which a native version of the subject code exists. Rather than
translating the subject code, the translator 19 instead causes the equivalent native code 28 to
be executed on the target processor 13. In example embodiments, the translator 19 binds
generated target code 21 to the native code 28 using a defined interface, such as native code
or target code call stubs, as discussed in more detail in published PCT application
WO2005/008478, the disclosure of which is incorporated herein by reference.

Figure 2 illustrates the translator unit 19 in more detail when running on the target
computing platform 10. As discussed above, the front end of the translator 19 includes a
decoder unit 191 which decodes a currently needed section of the subject program 17 to
provide a plurality of subject code blocks 171a, 171b, 171¢ (which usually each contain one
basic block of subject code), and may also provide decoder information 172 in relation to each
subject block and the subject instructions contained therein which will assist the later
operations of the translator 19. In some embodiments, an IR unit in the core 192 of the
translator 19 produces an intermediate representation (IR) from the decoded subject
instructions, and optimisations are opportunely performed in relation to the intermediate
representation. An encoder 193 as part of the back end of the translator 19 generates (plants)
target code 21 executable by the target processor 13. In this simplistic example, three target
code blocks 211a-211¢c are generated to perform work on the target platform 10 equivalent to

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

15

executing the subject code blocks 171a-171¢ on the subject platform 1. Also, the encoder 193
may generate control code 212 for some or all of the target code blocks 211a-211¢ which
performs functions such as setting the environment in which the target block will operate and
passing control back to the translator 19 where appropriate.

As also shown in Figure 2, the translator 19 is arranged to handle exception signals that
are raised during execution of the target code 21. To this end, the translator 19 includes an
exception handling unit 195 which is arranged to handle exception signals which are raised
during execution of the target code 21 by the target processor 13. Further, in the exemplary
embodiments, the same exception handling unit 195 is also arranged to handle exception
signals raised while the translator 19 is executing on the target processor 13.

Figure 3 is a schematic diagram illustrating, in general overview, control flow on the
target computing platform 10 during signal handling using the exception handling unit 195.
Here, the exception handling unit 195 includes a target-side exception handler unit 220 and a
subject-side exception handler unit 230.

When a signal 310 arises, the target operating system 20 invokes the exception
handling unit 195. A target state 320 represents, generally, the state of execution on the target
processor 13. Thus, the target state 320 includes information about the exception signal 310
such as a SIGINFO data structure provided by the operating system 20. Further, the target
state 320 optionally includes more detailed information about in particular the state of the
target registers 15, at the point where the signal was raised, such as a SIGCONTEXT data
structure. Thus, the exception handling unit 195 uses the target state 320 to examine the state
of execution on the target processor 13 at the point where the exception signal 310 occurred.

There are various outcomes which can result from handling of the exception signal 310.
In many cases it is possible to resume execution of the target code 21 and/or the translator 19
as appropriate. In particular, the exception handling unit 195 examines the target state 320 to
determine the nature and cause of the exception and take appropriate responsive action. The
exception handling unit 195 will, if appropriate, modify the target state 320, such as by
changing a condition code flag or modifying stored data representing the contents of one or
more of the target registers 15, before passing execution control back through the operating
system 20 to resume execution according to the original or now-modified target state 320.
Thus, execution may resume at the original point where the exception occurred, or may
resume at a different point in the code, or in a different way, in response to the conditions
which lead to the exception signal 310. In particular, an exception may arise during execution
of the target code 21 but, after handling the exception, result in a return to execution of the
translator 19 because the exception has indicated that the translator 19 now needs to change
or regenerate one or more blocks of the target code 21.

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

16

The exception handling unit 195 handles many such exception signals 310 solely in the
target-side exception handler unit 220 and only with reference to the target state 320.
However, some exception signals are not handled by the target-side exception handler unit
220 alone. Here, a subject state 330 is provided which represents a state of execution on the
emulated subject processor 3, including in particular representative values for the subject
registers 5. Suitably, the subject state 330 makes reference to the one or more abstract
register banks 27 discussed above. This subject state 330 is then employed by the subject-
side exception handler unit 330 to handle the exception signal. However, it is relatively costly
for the exception handler unit 195 to provide the subject state 330 and invoke the subject-side
exception handler unit 230, and thus it is desired to minimise the occasions where the subject-
side exception handler unit 230 in invoked and the subject state 330 constructed.

As with the target state 320, the subject state 330 may remain the same or may be
modified in response to the exception signal 310. This modified subject state 330 typically
then results in a corresponding modified target state 320 which causes the target code 21 or
the translator 19 to restart execution at a different point or in a different manner.

The subject code 17 will often include one or more signal handler functions. That is, a
particular program written in the subject code 17 will often include one or more specific signal
handler functions which are to be invoked when specific exception signals arise. Now, instead,
the exception signals 310 arise on the target platform and, where appropriate, information
representing the subject exception handler is passed to the subject-side exception handler unit
230. The appropriate subject signal handler function is called through the subject-side
exception handler unit 230 and executed (as target code) to handle the exception signal.
Thus, the subject state 330 may include a subject SIGINFO data structure if that data structure
is used by the subject signal handler. Likewise, a subject SIGCONTEXT data structure is
populated from information available on the target system if that data structure is used by the
subject signal handler. More detailed background information concerning the generation of
such a subject state 330 is given in W0O2005/006106 entitled “Method and Apparatus for
Performing Adjustable Precision Exception Handling”, and W02006/103395 entitled “Method
and Apparatus for Precise Handling of Exceptions During Program Code Conversion”
referenced above. Notably, these earlier disclosures consider a mechanism to provide the
subject state at varying levels of precision for different subject instructions or an efficient
mechanism to derive a precise subject state using recovery information, but do not allow for

the handling of some exception signals solely with reference to the target state 320.

Figure 4 is a schematic diagram illustrating specific parts of the target computing
platform in more detail, including in particular the target-side exception handler unit 220.

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

17

As shown in Figure 4, a signal generator unit 200, which is suitably part of the operating
system 20, is arranged to generate exception signals in response to execution of, amongst
other processes, the target code 21 or the translator 19 on the target processor 13. In a multi-
process or multi-threaded computing environment there are many processes executing
simultaneously, and the signal generator is responsible for raising exception signals for each
process and delivering the exception signals to the respective registered handlers.

The target-side exception handler unit 220 comprises a global signal control unit 221, a
delivery path selection unit 222, and a plurality of signal handling sub-units 223.

The global signal control unit 221 is arranged to receive the exception signals raised by
the signal generator unit 200 at least in relation to execution of the target code 21 and most
suitably also in relation to execution of the translator 19. That is, the global signal control unit
221 receives in-band exception signals for these processes. Further, the global signal control
unit 221 is arranged to receive out-of-band exception signals which originate elsewhere in the
system and are delivered to these processes.

The delivery path selection unit 222 determines a delivery path of each exception signal,
where the delivery path specifies one or more of the plurality signal handling sub-units 223 that
will receive the exception signal. The global signal control unit 221 then passes the exception
signal to the or each of specified one or more the signal handling sub-units 223 in turn
according to the particular delivery path for that exception signal.

That is, the signal control unit 221 selects a first one of the signal handling sub-units 223
according to the delivery path and passes the exception signal to that sub-unit. Then, the
signal control unit 221 selects a second one of the signal handling sub-units 223 according to
the delivery path and passes the exception signal to that sub-unit, and so on until the
exception signal has been delivered in turn to each of the specified sub-units. In some multi-
threaded computing environments it is possible that the exception signal is delivered to
multiple units simultaneously or is delivered to a second sub-unit whilst the first is still actively
processing the signal. However, since each of the sub-units will handle the signal and may
take action such as changing the target state 320, it is preferred to treat the sub-units as
following a linear path. In particular, the second sub-unit should not change the target state
320 until handling of the exception signal has been completed by the first sub-unit.

Figure 4 shows an exemplary situation where the target computing system 10 supports
a plurality of different types of exception signals, and each signal has a corresponding signal
number (SIGNUM). The exception handling unit 195 is registered to receive a plurality of
these signal types, and in this example the exception handling unit 195 is registered to receive
each of the available set of signal types. As shown in Figure 4, the signal generation unit 200
may use a signal table which registers the exception handling unit 195 to receive each of the

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

18

available set of signals #1 to #63. Thus, when any of these signals are raised, the exception
signal is passed to the exception handling unit 195.

As an example, let us assume that signal #2 has been raised. The global signal control
unit 221 consults the delivery path selection unit 222 which specifies the particular delivery
path for this signal. Here, the delivery path specifies which one or more of the illustrated signal
handling sub-units 223a to 223d will receive the signal #2 and also specifies the order in which
the selected group of signal handling sub-units 223 will receive the exception signal #2. In this
example, the selected group of signal handling sub-units comprises units 223b, 223¢ and 223d
and the order is specified as “d then ¢ then b”. Thus, the global signal control unit 221 now
passes the exception signal #2 first to the signal handling sub-unit 223d, then 223¢, then 223b

in turn.

Where one of the signal handling sub-units 223 requests a return to execution (in this
case the third sub-unit 223b), the global signal control unit 221 completes handling of the
signal and instigates a return to execution of the target code 21 or the translator 19 as
appropriate.

Figure 5 is a schematic diagram illustrating one of the signal handling sub-units 223 in
more detail.

As shown in Figure 5, each of the signal handling sub-units 223 comprises an entry unit
224, a signal processing unit 225, and an exit unit 226. The entry unit 224 receives the signal
310 and determines whether this signal is to be processed by the signal processing unit 225.
If yes, then the entry unit 224 passes the signal 310 to the signal processing unit 225. If not,
then the entry unit 224 passes the signal 310 directly to the exit unit 226. Here, the entry unit
224 examines to the target state 320 to determine whether or not the exception signal is to be
processed this time. In most cases, the determination is made by referring to the information
provided in relation to the signal 310, such as the signal number or the SIGINFO data
structure. Sometimes, however, the determination refers to more detailed context information
from the target state 320 such as the SIGCONTEXT data structure.

The signal processing unit 225 performs a predetermined signal processing function on
the received exception signal. That is, the signal processing unit 225 processes the signal in
order to, at least in part, handle the exception. Optionally, the signal processing unit 225 will
modify the target state 320 such that execution will resume differently in response to the
handled exception signal.

The exit unit 226 determines whether the signal 310 is now to be passed on to a
subsequent signal handling sub-unit 223 (or other unit as will be discussed in more detail
below), or else that execution should resume according to the target state 320.

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

19

Figure 6 is a schematic flow diagram illustrating a method of handling an exception as
undertaken by the signal handling unit 195 and particularly in the target-side exception handler
unit 220 and the one or more signal handling sub-units 223.

The exception signal is received at step 601 and a signal delivery path is determined.
At step 602, the signal is then passed to a signal handling sub-unit according to the signal
delivery path. At step 603 it is determined whether or not to process the signal. If yes, then
the signal is processed at step 604. A decision is made at step 605 whether or not to request
a return to execution. If no, then the method reverts to step 602 and the signal is passed to
the next signal handling sub-unit. Thus, the signal 310 is passed in turn to the first, second,
third and subsequent signal handling sub-units according to the signal delivery path. Where a
return 10 execution is requested at step 605, then execution control is returned according to
the stored target state 320 at step 606.

Figure 7 is a schematic diagram showing the subject-side exception handler unit 230 in
more detail.

As shown in Figure 7, the subject-side exception handler unit 230 comprises a subject-
side signal control unit 231, a subject-side delivery path selection unit 232, a set of subject-
side signal handling sub-units 233a-233c, and a converter unit 234.

The converter unit 234 is arranged to convert the exception signal into a format
expected on the subject architecture, i.e. into a subject-side exception signal 311. In
particular, fields such as the signal number (SIGNUM) often differ between target and subject
architectures. In this example, signal #2 on the target-side has been translated to signal #S1
on the subject-side. Also the converter unit 234 provides the precise subject state 330 ready
for handling of the subject-side exception signal 311. In particular, the converter unit 234
converts the target state 320 representing the state of execution on the target machine to
provide the subject context data structure SIGCONTEXT ready for handling of the exception in
the subject-side exception handler unit. Conversely, the converter unit 234 later converts the
modified subject state 330 back into the equivalent target state 320 to resume execution in the
modified target state.

The subject-side delivery path selection unit 232 determines a delivery path for the
exception signal amongst one or more of the subject-side signal handling sub-units 233a-¢. In
this case, the signal delivery path specifies that the exception signal #S1 will be delivered to
the second subject-side signal handling sub-unit 233b.

The subject-side signal control unit 231 passes the exception signal in turn to each of
the specified group of signal handling sub-units 233.

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

20

Each of the subject-side signal handling sub-units 233 comprises an entry unit, a signal
processing unit and an exit unit as discussed above for the target-side signal handling sub-
units 223 with reference to Figure 5. Thus, each subject-side signal handling sub-unit 233
receives the exception signal in turn according to the determined subject-side delivery path
and selectively processes the exception signal. The relevant subject-side signal handling sub-
unit 233 then requests either that the exception signal be passed on or that execution now
return according to the (possibly modified) subject state 330.

Figure 8 is a schematic flow diagram illustrating an exemplary method of handling an
exception signal in embodiments of the present invention. This method is performed in the
exception handler unit 195 with respect to the subject-side exception handler unit 230.

Referring to Figure 8, it is determined at step 801 to pass the exception signal to the
subject-side exception handler unit 230.

Steps 802 through 807 are then similar to steps 601 through 606 discussed above for
Figure 6, whereby the subject-side exception handler unit 230 handles the exception in one or
more of the available subject-side signal handling sub-units 233. At step 807 a return to
execution is requested according to the subject state 330 which leads in turn to a
corresponding target state 320 to resume execution of the target code 21 or the translator 19
as appropriate.

Figure 9 is a schematic diagram showing the operations of the exception handling unit
195 in more detail. In particular, Figure 9 provides a first illustrative example to assist those
skilled in the art in gaining a full and detailed understanding of the invention. However, this
illustrative example is just one of many exemplary embodiments which may be accomplished

using the present invention.

In this first illustrative example, the exception handling mechanism discussed herein is
particularly advantageous in relation to timing signals. As will be familiar to those skilled in the
art, a program may set a timer which will cause an exception signal to be raised after a
specified interval has elapsed. On POSIX-compliant platforms, popularly used timing signals
include SIGALRM, SIGPROF and SIGVTALRM.

A problem arises in that many computing architectures provide only one of each such
timing signal, whereas both the subject program (now running as target code 21) and the
translator 19 may each need to make use of the same type of timing signal. For example, both
the target code 21 and the translator 19 wish to use the SIGALRM exception signal. In this
example as illustrated in Figure 9, let us assume that the translator 19 is arranged to profile
performance of the target code 21 at regular intervals of say every one second as illustrated by
the letter X on the timeline. Also, let us assume that the subject program (now converted to

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

21

the target code 21) is arranged uses the same type of timing signal to determine whether a
user has pressed a key on the keyboard within a specified amount of time, such as 5 seconds,
as shown by the letter Y on the timeline. The operating system 20 raises a SIGALRM type
exception signal 310 which is passed initially to the target-side exception handler unit 220, at
time X and at time Y. The delivery path for this type of signal indicates that the timing signal is
delivered to a signal handling sub-unit 223a which now establishes whether the timing signal is
expected by the target-side in this case by the translator 19. That is, the signal processing unit
225 comprises a frequency arbitrator unit that records expected timing signals and the owner
of each expected signal. Thus, where event X gives rise to the signal, the signal handling sub-
unit 223 determines that the signal 310 is owned by the translator 19. The signal is now
handled and execution returns. By contrast, the exception signal at time Y is passed onto the
subject-side exception handler unit 230, i.e. where it is determined that the signal was not
expected by the target-side. The subject-side exception handler unit 230 determines an
appropriate delivery path and routes the exception signal to a respective signal handling sub-
unit 233a. Thus, an exception signal 310 arising from event Y now is received by the subject-
side exception handler unit 230 and is handled as appropriate for the subject program.

From this example of Figure 9 it will be appreciated that there are a number of
advantages in the exception handling mechanism discussed herein. Firstly, a single type of
exception signal - such as SIGALRM - is shared between code which relies on the target state
320 such as the translator 19 or the portions of control code 212 generated by the translator
19 and code which relies on the subject state 330 such as the main blocks 211 of the target
code 21 which emulate the behaviour expected by the original subject program 17. Secondly,
only those signals which are not needed by the target-side are passed on to the subject-side,
thereby significantly reducing the number of occasions where the subject state 330 is precisely
obtained.

Figure 10 is a schematic diagram showing operations of the exception handling unit 195
in more detail. As shown in Figure 10, the exception handling unit 195 further comprises a
default handler unit 240 and a crash reporter unit 250.

The default handler unit 240 is arranged to handle the exception signals according to
the exception handling protocol of the target system. That is, the default handler unit 240
provides exception handling behaviour equivalent to the behaviour expected of the target
operating system 20. Most commonly, the default behaviour is either to ignore the signal and
return, or to terminate execution. An example of default behaviour is that a parent process
receives a SIGCHLD exception signal for information when a child process is terminated, but
in most cases the signal is ignored and execution continues.

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

22

The crash reporter unit 250 is provided as part of the translator code 19 and manages
crashes of execution in an orderly manner, in particular to assist with debugging. Here, the
crash reporter 250 is arranged to store state information, including for example the target state
320 and the subject state 330, in order to create a crash report data structure 350 containing
detailed information concerning the state of execution relating to the crash. In example
embodiments, the crash report data structure 350 is stored as a text file (.txt) in the memory
system 18 of the target system.

Figure 10 shows four main exception handling routes through the exception handling
unit 195, here labelled “A” though “D”.

In route A, the exception is handled in one of the target-side exception handling sub-
units 223 and returns to execution. In route B, the exception is handled in one of the subject-
side exception handling sub-units 233 and returns to execution. In route C, the exception is
handled in the default handling unit 240 and returns or terminates. In route D, the exception is
handled in the crash reporter 250 and returns or terminates.

As shown in Figure 10, the exemplary exception handling unit 195 is particularly
advantageous in relation to the handling of floating point exceptions. Some computing
architectures, for example those based on the IBM Power PC (TM) processor, do not raise an
exception signal when a “divide by zero” illegal mathematical operation is attempted in the
processor but instead set the result to zero and continue execution. By contrast, other
computing architectures, such as those based on the Intel (TM) x86 processor, will raise an
exception signal when the processor performs an illegal “divide by zero” operation. In Figure
10, the target hardware is based on an x86 processor and therefore will produce such a
floating point exception when an illegal divide by zero mathematical operation is encountered.

The exception will follow route A when this floating point exception arises through
execution of the target code 21 generated by the translator 19 to perform the work of the
subject program 17. That is, one of the signal handling sub-units 223b in the target-side
exception handler unit 220 is arranged to receive the exception signal 310 and determine,
such as by examining a program counter (PC) field in the SIGINFO data structure, that the
exception arose from execution of the target code 21. The exception signal is now handled by
resetting the result to zero, i.e. by modifying the content of one of the target registers as
represented in the target state 320. Execution may now return to the target code 21 and
continue. By resetting the result to zero, the target system will now correctly emulate the
expected behaviour of this program according to the subject architecture. Also, the exception
has been handled cheaply and, in particular, it has not been necessary to undergo the costly
process of providing the subject state 330.

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

23

When the same type of floating-point exception signal arises from execution of the
translator code 19, then this signal is now likely to represent a serious programming or
execution error. Hence, the exception signal 310 now follows route C to the default handler
unit 240 or route D to the crash reporter unit 250.

A further example of a frequently encountered exception signal is a segmentation fault
(segfault) which indicates that an error has occurred where a program attempts to access
memory in a way that is not allowed (e.g. attempting to write into a read-only protected
memory area). On POSIX-type systems the symbolic constant for this type of fault is normally
SIGSEGV. Such segmentation faults can arise for one of several different reasons and the
same type of exception signal will, in different circumstances, make use of the different routes
A-D through the exception handling unit 195.

Firstly, segmentation faults can be introduced on purpose as a trap to detect when the
target code 21 is attempting to access a protected area of memory, such as an attempt to write
into self-modifying code. The signal follows route A and the relevant target-side handling sub-
unit 223 changes the target state 320 so that execution returns to the translator 19 to deal with
this self-modifying code event. Thus, the translator 19 is able to rely on the exception handling
unit to trap certain exception signals.

Secondly, the original subject code 17 has been written to use a segmentation fault as a
trap. In this case the signal follows route B and is handled by one of the subject-side signal
handling sub-units 233 to invoke a subject signal handling function with reference to the
subject state 330.

Thirdly, the segmentation fault is passed to the exception handler unit 195 from another
external process. Examining the field SI_CODE in the SIGINFO data structure determines
whether the signal is external. In this case the signal follows route C where the default handler
unit 240 performs the default behaviour which in this case is to ignore the signal.

Fourthly, a segmentation fault which was not expected and has not been captured by
preceding units is passed to the crash reporter 250 following route D - on the basis that this
signal has arisen from an unexpected error or bug in the translator.

Thus the same type of exception signal (in this case a segmentation fault) will follow any
one of the available routes through the exception handling unit 195 according to the particular
circumstances of that signal.

Figure 11 is a schematic diagram showing the exception signal hander unit 195 in more
detail in relation to the mechanism which directs the passing of exception signals.

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

24

As will be familiar to those skilled in the art, some types of exception signals (e.qg.
SIGKILL) are not capable of being intercepted and are always handled by the operating
system 20. In Figure 11, the signal type #63 is shown as an example of such a non-
interceptable exception signal.

However, there are many types of exception signal in the target architecture that are
interceptable and, in the exemplary embodiments, the exception handler unit 195 is registered
to receive all types of signals on the target architecture which are capable of being intercepted.
Here, at least signal types #1, #2 and #3, etc. are capable of being intercepted and the
exception signal handling unit 195 is thus registered to receive such signals. In Figure 11, the
signal generator unit 200 in the operating system 20 records the notation “(global)” to show
that such signals are to be delivered not to the signal handling elements of the operating
system 20 but instead to the exception handler unit 195 of the exemplary embodiments
discussed herein.

The delivery path selection unit 222 of the target-side exception handler unit 220
determines that some types of exception signals are passed to the default handler unit 240, as
marked with the letters “DF”, or the crash reporter “CR” either directly or after first passing the
exception signal through one or more of the target-side signal handling sub-units 223 (see
Figure 4). In Figure 11 the letters “a”, “b” or “¢” refer to selected ones of the target-side signal
handling sub-units 223. Further, some types of exception signal are passed to the subject-side
exception handler unit 230 as marked with the letters “SS”, again either directly or after first
passing the exception signal through one or more of the target-side signal handling sub-units
“a”, “b”, “c”, etc. This determination is conveniently recorded in a table as illustrated in Figure
11. However, some types of signal such as the segmentation fault discussed above require
additional processing to make an appropriate determination, such as examining the SIGINFO
or SIGCONTEXT data structures.

Similarly, the delivery path selection unit 232 of the subject-side exception handler unit
230 is configured to selectively pass certain exception signals to the default handler unit 240
as shown with the letters “DF” or the crash reporter unit 250 shown as “CR”, either with or
without first passing the exception signal through one or more subject-side signal handling
sub-units 233 as shown here by the letters “Sa”, Sb” or “Sc¢”.

Thus, the delivery path selection units 222,232 provide a simple and convenient
mechanism to route each particular type of exception signal along a respective predetermined
delivery path.

Figure 12 is a schematic diagram illustrating the exemplary exception handling
mechanism in more detail in relation to dynamic reconfiguration of signal delivery paths.

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

35

25

As shown in Figure 12, the global signal control unit 221 is configured to dynamically
control the target-side delivery path selection unit 222 and the subject-side delivery path
selection unit 232. That is, the global signal control unit 221 is arranged to add, amend or
replace the specified delivery path for one or more of the types of exception signals. In this
way, the global signal control unit 221 will add, amend or replace the set of signal handling
sub-units 223, 233 which are to receive a particular type of exception signal and the specified
order of the delivery path.

Further, the crash reporter unit 250 is arranged to work in combination with the global
signal control unit 221 to dynamically reconfigure the delivery paths. As an example, the crash
reporter unit 250 is arranged to introduce an additional bus error signal handling sub-unit
where an exception signal has been raised indicating that a particular area of memory is not
mapped. This newly introduced bus error sub-unit performs a memory mapping function and
returns to execution. If the fault occurs again, the bus error sub-unit will now help to recover
more detailed information concerning the target state 320 and/or the subject state 330 and
then continue to a subsequent part of the crash reporting process. Thus, the crash reporter
unit maintains control of execution and can introduce a bespoke set of signal handling sub-
units to handle exception signals.

In these embodiments, the signal table held by the signal generator unit 200 of the
target operating system 20 is not updated, even though new exception signal handling
behaviour has been introduced within the exception handling unit 195. That is, the set of signal
handling sub-units is added to, amended or replaced, without requiring a system call to
register the newly set of signal handling sub-units. Thus, the exception handling unit 195 is
both flexible and powerful whilst being cheap and efficient to operate.

As discussed above, the exemplary exception handling mechanism of the present
invention has many advantages. The mechanism reduces the amount of work which must be
done in response to each exception signal, not least because many signals are successfully
handled by the target-side exception handling sub-units quickly and cheaply. In many cases
the exception signal is handled without the cost of obtaining a subject state representing an
equivalent point in execution of the original subject code. Further, the mechanism is able to
share one exception signal amongst both target code execution and translator code execution
and thereby improve efficiency of operation on the target computing architecture. The
mechanism alleviates the sometimes substantial differences that arise between exception
handling on a subject computing architecture against exception handling on the target
architecture and thus assists the target architecture to better support execution of the subject
code. This is vitally important in the field of dynamic translation and especially dynamic binary
translation where it is desired to automatically convert program code without any human

intervention. Providing multiple subject-side exception handling sub-units allows for easy and

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

26

efficient mapping of the available exception signals from the target system to the set of subject
exception signals required by the subject code. Even where the subject code makes extensive
use of signals, the required number or type of signals are now readily supported on the target
computing platform. Finally, the exemplary mechanism provides dynamic flexibility and control
over the handling of exception signals including especially the ability to provide multiple signal
handling sub-units that each receive the same exception signal and the ability to add, amend

or replace those units with minimal overhead.

Although a few preferred embodiments have been shown and described, it will be
appreciated by those skilled in the art that various changes and modifications might be made
without departing from the scope of the invention, as defined in the appended claims.

Attention is directed to all papers and documents which are filed concurrently with or
previous to this specification in connection with this application and which are open to public
inspection with this specification, and the contents of all such papers and documents are
incorporated herein by reference.

All of the features disclosed in this specification (including any accompanying claims,
abstract and drawings), and/or all of the steps of any method or process so disclosed, may be
combined in any combination, except combinations where at least some of such features

and/or steps are mutually exclusive.

Each feature disclosed in this specification (including any accompanying claims,
abstract and drawings) may be replaced by alternative features serving the same, equivalent
or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated
otherwise, each feature disclosed is one example only of a generic series of equivalent or

similar features.

The invention is not restricted to the details of the foregoing embodiment(s). The
invention extends to any novel one, or any novel combination, of the features disclosed in this
specification (including any accompanying claims, abstract and drawings), or to any novel one,
or any novel combination, of the steps of any method or process so disclosed.

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

27
CLAIMS

1. A computing system, comprising:

a translator unit arranged to convert a subject code into a target code;

a processor unit arranged to execute the target code and provide a target state with
respect to execution of the target code in the processor unit;

a signal generator unit arranged to generate an exceptional signal at least in response
to execution of the target code in the processor unit; and

an exception handling unit arranged to handle the exception signal;

characterised in that the exception handling unit comprises:

a subject-side exception handler unit arranged to handle the exception signal with
respect to a subject state derived from the target state, wherein the subject state provides a
state of execution of the subject code on a subject processor unit; and

a target-side exception handler unit arranged to receive the exception signal from the
signal generator unit and to selectively handle the exception signal with respect to the target
state, wherein the target-side exception handler unit comprises:

a plurality of signal handling sub-units each arranged to selectively process the
exception signal with respect to the target state and output a request to return to execution or
else a request to pass on the exception signal;

a delivery path selection unit arranged to determine a delivery path of the exception
signal to a selected group of the plurality of signal handling sub-units; and

a signal control unit arranged to deliver the exception signal in turn to each of the
selected group of signal handling sub-units according to the delivery path and (i) where a
respective one of the signal handling sub-units outputs the request to return execution then to
return execution according to the target state; and (ii) where the signal handling sub-unit
outputs the request to pass on the exception signal then to pass on the exception signal to a
subsequent one of the selected group of signal handling sub-units according to the delivery
path and, where no further of the signal handling sub-units are specified in the delivery path,
then by default to deliver the exception signal to the subject-side exception handler unit.

2. The computing system of claim 1, wherein the signal generator unit generates the
exception signal as one of a plurality of different types and the delivery path selection unit

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

28

determines the delivery path to include a respective group of the signal handling sub-units
according to the type of the exception signal.

3. The computing system of claim 1, wherein the delivery path selection unit is
arranged to determine the delivery path to specify an order of delivery of the exception signal
to the selected group of signal handling sub-units, and the signal control unit delivers the
exception signal to the selected group of signal handling sub-units in order according to the
order of delivery.

4, The computing system of claim 1, wherein:

the processor unit is arranged to execute the translator unit and the target code and to
provide the target state representing a current state of execution in the processor unit in
relation to the target code and the translator unit, respectively;

the signal generator unit is arranged to generate a plurality of the exception signals in
relation to the target code and in relation to the translator unit; and

at least one of the signal handling sub-units is arranged to handle a respective one or
more of the exception signals with respect to the target state when the exception signal results
from execution of the translator unit.

5. The computing system of claim 1, wherein each of the plurality of signal handling
Sub-units comprises:

an entry unit arranged to receive the exception signal and determine whether or not to
process this exception signal;

a signal processing unit arranged to perform a predetermined signal processing function
on the exception signal with respect to the target state when determined by the entry unit,
including selectively modifying the target state such that execution will resume differently in
response to the exception signal; and

an exit unit arranged to output the request either to return to execution or to pass on the
exception signal.

6. The computing system of claim 1, wherein the subject-side exception handler
comprises:

a converter unit arranged to convert the target state into the subject state;

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

29

a plurality of subject-side signal handling sub-units each arranged to selectively process
the exception signal with respect to the subject state and determine either to pass on the

exception signal or request a return to execution;

a subject-side delivery path selection unit arranged to determine a delivery path of the
exception signal where the delivery path specifies a selected group of one or more amongst
the plurality of subject-side signal handling sub-units; and

a subject-side signal control unit arranged to pass the exception signal in turn to each of
the selected group of subject-side signal handling sub-units and return to execution in
response to the request from a respective one of the group of subject-side signal handling sub-

units.

7. The computing system of claim 6, wherein the converter is further arranged to
reconvert the subject state into the target state when the subject-side signal control unit

determines to return to execution.

8. The computing system of claim 6, wherein each of the plurality of subject-side
signal handling sub-units comprises:

an entry unit arranged to receive the exception signal and determine whether or not to
process this exception signal;

a signal processing unit arranged to perform a predetermined signal processing function
on the exception signal with respect to the subject state when determined by the entry unit,
including selectively modifying the subject state such that execution will resume differently in
response to the exception signal; and

an exit unit arranged to output the request either to return to execution or to pass on the
exception signal.

9. The computing system of claim 1, wherein the signal control unit is arranged to
dynamically reconfigure the delivery path selection unit to determine a different delivery path
for the exception signal.

10. A method of handling an exception signal in a computing system having at least
one processor, the method comprising the computer-implemented steps of:

converting a subject code into target code executable by the at least one processor;

executing the target code on the at least one processor;

generating an exception signal in relation to execution of the target code;

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

30

determining a signal delivery path with respect to the exception signal where the signal
delivery path specifies a group of signal handling sub-units selected from amongst a plurality
of signal handling sub-units;

delivering the exception signal to a first of the signal handling sub-units in the group
according to the signal delivery path;

determining whether to process the signal in the signal handling sub-unit and if so then
processing the signal in the signal handling sub-unit to handle the exception; and

deciding whether to request a return to execution and if so then returning to execution,
or else passing the exception signal to a next signal handling sub-unit of the group according
to the signal delivery path; and

repeating the determining and deciding steps in relation to a next signal handling sub-
unit in the group.

11. The method of claim 10, further comprising:

providing a target state data structure containing information relating to a state of
execution of the computing system concerning the exception signal;

processing the exception signal in the signal handling sub-unit with reference to the
target state data structure signal including selectively modifying the target state data structure;
and

where the deciding step decides to request a return to execution then returning to
execution according to the target state data structure.

12. The method of claim 11, further comprising:

selectively passing the exception signal to a subject-side exception handling unit;

converting the target state data structure into a subject state data structure; and

handling the exception signal with respect to the subject state data structure in the
subject-side exception handling unit.

13. A computer readable recording medium having instructions recorded thereon
which when executed by a computing system having at least one processor cause the
computing system to perform at least the steps of:

WO 2008/129315 PCT/GB2008/050259

10

15

20

25

31

converting subject code executable into target code executable by the at least one
processor;

executing the target code on the at least one processor;

generating an exception signal in relation to execution of the target code;

determining a signal delivery path with respect to the exception signal where the signal
delivery path specifies a group of signal handling sub-units selected from amongst a plurality
of signal handling sub-units;

delivering the exception signal to a first of the signal handling sub-units in the group
according to the signal delivery path;

determining whether to process the signal in the signal handling sub-unit and if so then
processing the signal in the signal handling sub-unit to handle the exception signal; and

deciding whether to request a return to execution and if so then returning to execution
from handling of the exception signal, or else passing the exception signal to a next signal
handling sub-unit of the group according to the signal delivery path and repeating the
determining and deciding steps in relation to the next signal handling sub-unit.

14. The computer readable recording medium of claim 13, wherein said instructions
further cause the computing system to perform the steps of:

providing a target state data structure containing information relating to a state of
execution of the computing system concerning the exception signal;

processing the exception signal in the signal handling sub-unit with reference to the
target state data structure signal including selectively modifying the target state data structure;
and

where the deciding step decides to request a return to execution then returning to
execution according to the target state data structure.

15. The computer readable recording medium of claim 14, wherein said instructions
further cause the computing system to perform the steps of:

selectively passing the exception signal to a subject-side exception handling unit;

converting the target state data structure into a subject state data structure; and

WO 2008/129315 PCT/GB2008/050259

32

handling the exception signal with respect to the subject state data structure in the
subject-side exception handling unit.

WO 2008/129315 PCT/GB2008/050259
1/12
Subject Code
-2
g / Subject Operating System “
Subject Processor
-3
-5
\ 1
P 28 P 17 19 P 21
Native | Subject Translator Translated Code
Code Code 27 (Target Code)
18 / Operating System 420
Target Processor
P 13

B

=4

o

Fig. 1

WO 2008/129315 PCT/GB2008/050259

2/12
sC
///17
: 191
Decoder L
A 171a
172~ [_scsb1 -
sc BB2 |7 171b
172 .
171¢c
172 4 SC_BB3 -~
A 192
Core
¢ ////193
Encoder
212
s Y= ol
TC_BBl
195~
Exception Signal | Tc B2}~ 211b
Handling Unit
- 211c
TC_BB3
N\
RN \ 212
Target OS

Fig. 2

WO 2008/129315 PCT/GB2008/050259
3/12
Subject-side Exception Handler Unit
A
230"
Subject Return
6 D
330
Target-side Exception Handler Unit
A
20"
Return
Target
(D
320
- Operating System
20 d X
Return 310 Return

@nal @gnal
310

A

Target Code Translator

21/ 19/

Fig. 3

WO 2008/129315

PCT/GB2008/050259
4/12
- 20
Signal Generator | 200
Unit “
sigNum | sigHandler
#1 (global)
#2 (global)
#3 (global)
#4 (global)
#63 (global)
A
310
P 220
Global Signal Control Unit 1
™~ 201
I
222
Delivery Path Handling Sub-Unit 273
Selection Unit
1
sigNum | Path . it
prl abed Handling Sub-Unit 293b
#2 deb [T
#3 ad Handling Sub-Unit
| sSS 5 ™ 223c
#63 d,c,b,a Handling Sub-Unit 23d

Fig. 4

WO 2008/129315

PCT/GB2008/050259
5/12
310
P 223
Entry Unit N
™ 224
A
Signal
Processing 1
Unit ™ 225
A
Exit Unit 3
™~ 226
Pass On Return
v y

Fig. 5

WO 2008/129315

6/12

PCT/GB2008/050259

RECEIVE SIGNAL & DETERMINE L~ 601
SIGNAL DELIVERY PATH

A

HANDLING SUB-UNIT

PASS SIGNAL TO NEXT - 602

PROCESS
SIGNAL?

603

604
PROCESS SIGNALIN [~
HANDLING SUB-UNIT
Y
No 605
RETURN?
Yes
RETURN |~ 006

Fig. 6

WO 2008/129315 PCT/GB2008/050259

7/12

- 20
Signal Generator Unit |~ 200
sigNum | sigHandler
#1 (global)
#63 (global)
A
. 310
@@ Return
A _~220
Target-side Exception Handling Unit
A
P 230
234
Converter Unit d
311 Return
Subject .
Signal #S1
330
. . .] |~ 231
Subject-side Signal Control Unit 1
)
vy 232
Subject-side : - -
Delivery Path Subject-Side Signal [\ 533,
Selection Unit Handling Sub-Unit
sigNum | Path]
OL_#ST Sb |—|_' Subiect.Side S
ject-Side Signal N
#32 | Sc.Sb Handling Sub-Unit | ~ 2>°0
#53 Sb
#3564 Sa Subjec't—Slde Slgn'fﬂ N 233c
Handling Sub-Unit

Fig. 7

WO 2008/129315

PCT/GB2008/050259
8/12
PASS EXCEPTION SIGNAL - 801
TO SUBJECT SIDE
RECEIVE SIGNAL & DETERMINE |~ 802
SUBJECT-SIDE SIGNAL DELIVERY PATH
A 4
PASS SIGNAL TO NEXT - 803

HANDLING SUB-UNIT

804
PROCESS
SIGNAL?
805
PROCESS SIGNALIN |~
HANDLING SUB-UNIT
A 4
No 806
RETURN?
Yes

RETURN |~ 807

Fig. 8

WO 2008/129315

9/12

|

PCT/GB2008/050259

310

Target-side

Exception Handler Unit

Handling Sub-Unit

_-223a

|- 220

Return - A

Y
v

Subject-side

Exception Handler Unit

Handling Sub-Unit

_-233a

230

Return - B

Fig. 9

WO 2008/129315 PCT/GB2008/050259

10/12

s 21 P 19
Target Code Translator Code

310
CSignal #15

A 4

Target-side - 220
Exception Handler Unit
- 1~ 223b
Return [« A Handling Sub-Unit
Subject-side | 230
Exception Handler Unit
233b
Return |« B Handling Sub-Unit |~
C D
240 N _~250 350
Default Crash Reporter
Handler Unit Unit

Fig. 10

WO 2008/129315 PCT/GB2008/050259

11/12

21 19
Target Code Translator Code

/20

Signal Generator Unit |~ 200

sigNum | sigHandler
#1 (global)

#63 OS —f— to OS handler

; 310
Signal #3

Target-side Exception Handler Unit | _~220

Delivery Path 4~ 222
sigNum Path

#1 SS
#2 a,b,DF
#3 ¢,CR

Subject-side Exception Handler Unit 230

Delivery Path A 232
sigNum Path

#51 DF
#S2 |Sc,Sb, CR
#53 CR

#3564 Sa, DF

240 ~_ _250

Default Crash Reporter
Handler Unit Unit

Fig. 11

WO 2008/129315 PCT/GB2008/050259

12/12

21 19
Target Code Translator Code

/20

Signal Generator Unit |~ 200

sigNum | sigHandler
#1 (global)

- 310
Signal #3

A 4

Target-side Exception Handler Unit

- 220

Global Signal Control Unit
221
Delivery Path ™ 202

sigNum | Path
#1 CR
#2 d,c,CR

A

Subject-side Exception Handler Unit 230

Delivery Path 232

sigNum| Path
#51 CR
#352 | Sc,Sb
#53 Sb

#564 Sa

A
Crash Reporter Unit

|- 250

A
Default Handler Unit

240

Fig. 12

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2008/050259

CLASSIFICATION OF SUBJECT MATTER

A,
INV. GO6F9/45°

According 1o International Patent Classification (IPC) ot to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation o the extent that such documenis are included in the fields searched -

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | .Citation of document, with indication, where'appropriate, of the relevant passages Relevant to claim No.
Y US 6 247 172 B1 (DUNN DAVID A [US] ET AL) 1,2,10,
12 June 2001 (2001-06-12) o 13
A the whole document ' 3-9,11,
' 12,14,15
Y US 2003/182484 Al (GAUR DANIEL R [US] ET 1,2,10,
' AL) 25 September 2003 (2003-09-25) 13
A paragraph [0020] - paragraph [0022] - 3-9,11,
12,14,15
paragraph [0031]
figure 2 '
A US 2006/253271 Al (DAVIS MARK'[US] ET/AL) 1-15

9 November 2006 (2006-11-09)
the whole document

Further doctiments are listed in the continuation of Box C. - See patent family annex.

* Special categories of cited documenis :) .
P 9 *T* later document published after the international flling date

*A' document defining the general state of the art which is not or priority date and not in conflict with the application but

considered o be of particular relevance maéin}% :]mderslandl the principle or theory underlying the
."E" eatlier document but published on or after the international *x* document of particular relevance; the claimed invention
filing date : cannot be considerad novel or cannot be considered to
L document which may throw doubis on priotity claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another "y* document of particular relevance; the claimed Invention
citatlon or other special reason (as specffied) cannot be considered 1o involve an Inventive step when the
0O document referring to an oral disclosure, use, exhibition or : document is combined with one or more other such docu~
other means ments, such combination belng obvious to a person skilled
P document published prior to the international filing date but In the art. :
later than the priorily date claimed '&" document member of the same patent family
Dale of the actual completion of the international search Date of mailing of the intemational search report
5 September 2008 24/09/2008
Name and malling address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo n, 2 A
Fae BTy B4 5010 : Beltran-Escavy, José

Form PCT/ISA/210 (second sheet) (April 2008)

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2008/050259

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

KNOWLES PAUL [6GB1)
20 January 2005 (2005-01-20)
the whole dqcument

Category* | Citation of document, with indication, where appropriate, of the relevgnt passages Relevant to claim No.
A US 2004/268370 Al (MOSIER SCOTT D [US] ET 1-15
AL) 30 December 2004 (2004-12-30)
the whole document
-1A WO 2005/006106 A (TRANSITIVE LTD [GBI; 1-15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International abpllcatlon No

PCT/GB2008/050259
Patent document. Publication Patent family Publication
cited in search report date member(s) , date)
US 6247172 B1 12-06-2001 US 6314560 B1 06-11-2001
US 2003182484 Al 25-09-2003 NONE
US 2006253271 Al 09-11-2006 NONE
US 2004268370 Al 30-12-2004 NONE
‘WO 2005006106 A 20-01-2005 EP 1644829 A2 ' 12-04-2006
© JdP 2007525737 T 06~-09-2007
KR 20060029178 A 04-04-2006
Us 2005005265 Al 06-01-2005

Form PCT/ISA/210 (patent famity annex) (April 2005}

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - wo-search-report
	Page 48 - wo-search-report
	Page 49 - wo-search-report

