
C. B. KING. STEAM OR PNEUMATIC ENGINE.

United States Patent OFFICE 10W s. 10

port is opened, as sho. 5 engine will be started a

CHARLES B. KING, OF DETROIT, MICHIGAN SUBSCICLOR OF OBTAIN

or chisel in the well-kn What I claim as my

against the air-pressu

STEAM OR PNEUMATIC ENGINE.

1. The combination re piston and the supply

SPECIFICATION forming part of Letters Patent No. 550,324, dated November 26, 1895 finds as Criginal application filed May 22, 1894, Serial No. 512,037. Divided and this application filed February 20, 1895. Serial No. 612,037. 539,099. (No model.) port, working in a cyl-

15 of the cylinder or head

To all whom it may concern:

Be it known that I, CHARLES B. KING, a citizen of the United States, residing at Detroit, in the county of Wayne and State of Michigan, have invented certain new and useful Improvements in Impact-Engines, of which the following is a specification, reference being had therein to the accompanying drawings.

The invention consists in the construction of a steam or pneumatic engine, usually known commercially as a "pneumatic tool."

The invention herein described is divided out of my application, Serial No. 512,037, filed May 22, 1894; and it consists in the construction of the controlling-valve for the motive agent, particularly in the construction of that valve and its combination with a handle for the engine, so that in forcing the engine to 20 its work the valve is opened, and when the engine is withdrawn from its work the engine is stopped. This valve is shown applied to the exhaust of the engine, to which it can be applied as well as to the supply. 25 The valve may be applied to any form of engine of this type—such, for instance, as the construction shown in my previous patent, No. 513,941, of January 30, 1894—or to a socalled "valveless engine," as shown in my previously-mentioned application.

As the engine itself or the hammer and its ports and passages is no part of my present invention, I do not deem it necessary to illus-

trate the same.

In the drawings, Figure 1 is a side elevation of an impact-engine embodying my invention and showing in dotted lines the piston or hammer. Fig. 2 is a longitudinal section through the top of the tool, illustrating 40 the construction of the controlling - valve. Fig. 3 is a cross-section on line $x \ \tilde{x}$, Fig. 5. Fig. 4 is a section on line zz, Fig. 5. Figs. 5 and 6 are sections similar to Fig. 2, but upon different planes, showing the parts in 45 different positions.

A is the cylinder, within which is the piston or hammer B, preferably having the nose or hammer-block C, adapted to strike upon the end of the bit or chisel D, which slidingly 50 engages in an aperture of the nose-piece E

on the cylinder.

g is an exhaust-passage from the cylinder, these ports being so combined and arranged 155 (with or without a valve) and with osuitables os ports or passages as to reciprocate the pistono when the air is supplied to the scylinder through the supply-ports e when the exhausts Count we rebuilty colle 2060

valve is open.

The end cap or head of the tool E, have shown provided with a contral bore or chamse ber G, in which slidingly engages the stem Gui the end motion of which is limited by a screwii G2, secured in the enditcap and apassing i65 through a groove or cut-away portion H. of the stem, as shown in Figs 2 and 6.9 Thisi stem is preferably formed integral with the shaft I, on the end of which is an armore knee-plate I'. This shaft forms a handle by 1070 means of which the tool may be held up to its s work. Through this stem is formed the port J, adapted to be registered with the exit-port J' in the body or head and the exhaustpassage J² from the cylinder in its inner po- 75 sition. The end of this stem forms a piston under which air is admitted from the supplypassage through the port K, Fig. 2, and thus acts when the pressure is on to normally hold the stem in its outermost position, as shown 80 in Fig. 6, to close the exhaust and thus stop the piston.

To prevent leakage around the stem through the exhaust, I preferably form a check-valve for this port by fitting in a notch in the stem 85 a complementary block L, fitting across the port J'. A groove J's around the stem at this point admits the air under pressure from the exhaust-passage J² to the flat rear face of the block, and thus seats the valve by press- 90 ure when the stem is moved to its outer position. (Shown in Fig. 6.) The exhaust-passage J² is connected with the cylinder by the

port g.

The parts being thus constructed and ar- 95 ranged, the operation is as follows: The stem G' will be held out in the position shown in Fig. 6 by the air-pressure entering through the port K when the tool is not in use. In this position of the parts the exhaust-passage 100 will be closed by the valve L, as described. To start the device, the bit D is held against

the work and pressure applied to the handle or shaft I, which will force in the stem G' against the air-pressure until the exhaustport is opened, as shown in Fig. 5, when the engine will be started and the piston will continue to reciprocate, striking upon the bit

or chisel in the well-known manner.

What I claim as my invention is-1. The combination with the cylinder, the 10 piston and the supply and exhaust ports, of a shaft for holding the tool to its work, a stem on the end of the shaft having a port therethrough, adapted to register with the exhaust port, working in a cylinder or bore in the end 15 of the cylinder or head, and a port connecting the inner end of this bore or cylinder with

the air supply.

2. The combination with the cylinder, the piston and the supply and exhaust ports, of 20 a shaft for holding the tool to its work, a stem on the end of the shaft having a port therethrough, adapted to register with the exhaust port, working in a cylinder or bore in the end of the cylinder or head, a port connecting the 25 inner end of this bore or cylinder with the air supply, a flattened portion on the stem having shoulders at the ends and a screw passing through such flattened portion and act-

ing as a stop to limit the motion of the stem.

3. The combination with the cylinder having an exhaust port, a stem working in a bore across the exhaust-port and having a port adapted to register with the port in the shell or body, and having an imperforate portion 35 adapted to be moved across said port, of a

valve block L formed of a complementary section of the stem and the groove J2 around the stem behind the valve-block.

4. The combination with the cylinder, the exhaust port, a stem working in a bore across 40 the exhaust port and having an exhaust opening adapted to register with the port in the shell or body, and an imperforate portion adapted to close the exhaust port, substantially as described,

5. The combination of the body, the exhaust port, the stem G', the block L and the groove J² around the stem behind the block,

ubstantially as described.

6. In a pneumatic tool, the combination 50 with the cylinder piston and the supply and exhaust ports therefor, of a tool support at one end, a tool therein, a movable shaft for holding the tool to its work and a valve controlling the piston actuated by the holding 55 means, substantially as described.

7. In a pneumatic tool, a valve controlling the motive agent, a cylinder in which said valve works, a port for supplying the motive agent to said cylinder to hold said valve nor- 60 mally closed, and means for opening said valve which means is adapted to be controlled by the pressure applied to hold the tool to its work, substantially as described.

In testimony whereof I affix my signature 65

in presence of two witnesses.

CHARLES B. KING.

Witnesses:

JAMES WHITTEMORE, L. J. WHITTEMORE.