Title: HIV PROTEASE INHIBITORS, COMPOSITIONS CONTAINING THE SAME, THEIR PHARMACEUTICAL USES AND MATERIALS FOR THEIR SYNTHESIS

Abstract: Compounds of Formula (I), where the formula variables are as defined herein, are disclosed that advantageously inhibit or block the biological activity of the HIV protease. These compounds, as well as pharmaceutical compositions containing these compounds, are useful for treating patients or hosts infected with the HIV virus. Intermediates and synthetic methods for preparing such compounds are also described.
HIV PROTEASE INHIBITORS, COMPOSITIONS CONTAINING THE SAME, THEIR PHARMACEUTICAL USES AND MATERIALS FOR THEIR SYNTHESIS

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to novel compounds useful as HIV protease inhibitors and to the use of such compounds as antiviral agents for treatment of HIV infected individuals. This invention also relates to methods of preparation of these compounds and to intermediates that are useful in the preparation thereof.

Related Background Art

Acquired Immune Deficiency Syndrome (AIDS) causes a gradual breakdown of the body's immune system as well as progressive deterioration of the central and peripheral nervous systems. Since its initial recognition in the early 1980's, AIDS has spread rapidly and has now reached epidemic proportions within a relatively limited segment of the population. Intensive research has led to the discovery of the responsible agent, human T-lymphotropic retrovirus III (HTLV-III), now more commonly referred to as the human immunodeficiency virus or HIV.
HIV is a member of the class of viruses known as retroviruses. The retroviral genome is composed of RNA which is converted to DNA by reverse transcription. This retroviral DNA is then stably integrated into a host cell's chromosome and, employing the replicative processes of the host cells, produces new retroviral particles and advances the infection to other cells. HIV appears to have a particular affinity for the human T-4 lymphocyte cell which plays a vital role in the body's immune system. HIV infection of these white blood cells depletes this white cell population. Eventually, the immune system is rendered inoperative and ineffective against various opportunistic diseases such as, among others, pneumocystic carini pneumonia, Kaposi's sarcoma, and cancer of the lymph system.

Although the exact mechanism of the formation and working of the HIV virus is not understood, identification of the virus has led to some progress in controlling the disease. For example, the drug azidothymidine (AZT) has been found effective for inhibiting the reverse transcription of the retroviral genome of the HIV virus, thus giving a measure of control, though not a cure, for patients afflicted with AIDS. The search continues for drugs that can cure or at least provide an improved measure of control of the deadly HIV virus.

Retroviral replication routinely features post-translational processing of polyproteins. This processing is accomplished by virally encoded HIV protease enzyme. This yields mature polypeptides that will subsequently aid in the formation and function of infectious virus. If this molecular processing is stifled, then the normal production of HIV is terminated. Therefore, inhibitors of HIV protease may function as anti-HIV viral agents.

HIV protease is one of the translated products from the HIV structural protein pol gene. This retroviral protease specifically cleaves other structural polypeptides at discrete sites to release these newly activated structural proteins and enzymes, thereby rendering the virion replication-competent. As such, inhibition of the HIV protease by potent compounds may prevent proviral integration of infected T-lymphocytes during the early phase of the HIV-1 life cycle, as well as inhibit viral proteolytic processing during its late stage. Additionally, the protease inhibitors may have the advantages of being more readily available, longer lived in virus, and less toxic than currently available drugs, possibly due to their specificity for the retroviral protease.

Related inhibitors of HIV proteases have been described in, e.g., U.S. Patent No. 5,962,640, U.S. Patent No. 5,932,550, Australian Patent No. 705193, Canadian Patent

On-going treatment of HIV-infected individuals with compounds that inhibit HIV protease has led to the development of mutant viruses that possess proteases that are resistant to the inhibitory effect of these compounds. Thus, to be effective, new HIV protease inhibitors must be effective not only against wild-type strains of HIV, but must also demonstrate efficacy against the newly emerging mutant strains that are resistant to the commercially available protease inhibitors. Accordingly, there continues to be a need for new inhibitors targeting the HIV protease in both wild type and mutant strains of HIV.

SUMMARY OF THE INVENTION

This invention relates to compounds useful for inhibiting the activity of HIV-protease of Formula I:

![Chemical Structure](Image)

I

wherein:

- R^1 is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR$^{1''}$, SR$^{1''}$, NHR$^{1''}$, N(R$^{1''}$)R$^{1'''}$ or C(O)R$^{1''}$, wherein $R^{1''}$ is an aliphatic, carbocyclic or heterocyclic group, and $R^{1'''}$ is H or a C$_1$-C$_6$ aliphatic group or $R^{1''}$ and $R^{1'''}$ together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

- V is C=O, C=S or SO$_2$;

- R^2 is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, a heterocyclic-aliphatic group or N(R2a)R2b, wherein R^{2a} is an aliphatic, carbocyclic or heterocyclic group, and R^{2b} is H or a C$_1$-C$_6$ aliphatic group;

- W is N, O, C or CH;
when W is N, C or CH, R^2 is H or a C$_1$-C$_6$ aliphatic group or R^2 and R''' taken together with the atom W to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;

when W is O, R^2 is absent;

where Y' and Y'' are independently selected from H, halo, or a C$_1$-C$_6$ aliphatic group;

n is 0, 1 or 2;

R^x is H or one or more substituents independently selected from C$_1$-C$_6$ alkyl, nitro, amino, cyano, halogen, C$_1$-C$_6$ haloalkyl, hydroxyl, C$_1$-C$_6$ alkoxy, alkylenedioxy, C$_1$-C$_6$ alkylcarbonyl, C$_1$-C$_6$ alkoxy carbonyl, C$_1$-C$_6$ alkylcarboxyloxy, carboxyl, carbamoyl, formyl, C$_1$-C$_6$ alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, di-C$_1$-C$_6$-alkylaminothiocarbonyl, C$_1$-C$_6$ alkylsulfonyl, C$_1$-C$_6$ alkylsulfonyl, C$_1$-C$_6$ alkylsulfonyloxy, C$_1$-C$_6$ alkylthiocarbonylamino, mercapto, and C$_1$-C$_6$ alkylthio;

R^8 and R^8' are each independently H, halo or a C$_1$-C$_4$ aliphatic group;

A is CH$_2$, CH(RA) or is absent;

Z is S, O, SO, SO$_2$, CH$_2$, CHF, CF$_2$, CH(OH), CH(O-RZ), CH(N-RZ), CH(S-RZ), C(=O), or CH(RZ), where R^Z is a C$_1$-C$_6$ aliphatic group or a carbocyclic or heterocyclic group and R''' is H or a C$_1$-C$_6$ aliphatic group;

or R^A and R^Z, taken together with A and Z form an unsubstituted or substituted 5 or 6 membered carbocyclic or heterocyclic ring;

R^3 is H or a C$_1$-C$_6$ aliphatic group;

R^4 and R^5 are independently selected from H, halo, a C$_1$-C$_6$ aliphatic group or a group having the formula C(O)R4, wherein R4 is an aliphatic, carbocyclic or heterocyclic group;

or R^4 and R^5, taken together with the atom to which they are bound, form an unsubstituted or substituted carbocyclic ring;

or R^4 and R^6 or R^7, together with the atoms to which they are bound, form an unsubstituted or substituted carbocyclic ring;

R^6 and R^7 are independently selected from H, halo or a C$_1$-C$_6$ aliphatic group;
or R\(^6\) and R\(^7\), taken together with the atom to which they are bound, form an
unsubstituted or substituted carbocyclic or heterocyclic group;

wherein any of said aliphatic groups are saturated, partially unsaturated or fully
unsaturated and unsubstituted or substituted by one or more suitable substituents; and

wherein any of said carbocyclic or heterocyclic groups are unsubstituted or
substituted by one or more suitable substituents; saturated, partially unsaturated or fully
unsaturated; or mono-, bi- or tri-cyclic;

provided that R\(^2\) is not an aliphatic group, a phenyl group or a phenyl-substituted
aliphatic group when A is absent; Z is S, SO, SO\(_2\), CHF, O or CH\(_2\); V is C=O; W is N; R\(^2\),
R\(^3\), R\(^4\) and R\(^6\) are H; R\(^4\), R\(^5\), R\(^6\) and R\(^7\) are H or a C\(_1\)-C\(_6\) alkyl groups.

\[
\begin{align*}
X & \text{ is } \quad \text{wherein } R^5 \text{ is } H; \text{ and } R^1 \text{ is a substituted or unsubstituted 5 or 6-} \\
\text{membered mono-cyclic carbocyclic or heterocyclic group;} \nonumber
\end{align*}
\]

or provided that R\(^2\) is not t-butyl when R\(^1\) is substituted or unsubstituted
phenyloxymethylene, or quinolylmethylenecarbonylaminomethylene; A is absent; Z is S;
V is C=O; W is N; R\(^2\), R\(^3\), R\(^4\), R\(^5\), R\(^8\) and R\(^8\) are H; R\(^6\) and R\(^7\) are H, methyl, ethyl or

propyl; and X is \[
\begin{align*}
\text{wherein } R^5 \text{ is H or methoxy.}
\end{align*}
\]

The present invention relates to compounds of Formula I below, and prodrugs,
pharmacologically active metabolites, and pharmacologically acceptable salts and solvates
thereof that inhibit the protease encoded by human immunodeficiency virus (HIV) type 1
(HIV-1) or type 2 (HIV-2), as well as mutant strains thereof. These compounds are useful
in the treatment of infection by HIV and the treatment of the acquired immune deficiency
syndrome (AIDS). The compounds, their pharmacologically acceptable salts, and the
pharmaceutical compositions of the present invention can be used alone or in combination
with other antivirals, immunomodulators, antibiotics or vaccines. Compounds of the
present invention can also be converted to prodrugs, by derivatization, according to
conventional techniques. Methods of treating AIDS, methods of treating HIV infection
and methods of inhibiting HIV protease are disclosed.

DETAILED DESCRIPTION OF INVENTION
AND PREFERRED EMBODIMENTS

In the compounds of this invention, the aliphatic groups are optionally substituted by one or more suitable substituents selected from aryl, cycloalkyl, heterocycloalkyl, heteroaryl, nitro, amino, cyano, halogen, hydroxyl, alkoxy, alkylenedioxy, aryloxy, cycloalkoxy, heterocycloalkoxy, heteroaryloxy, alkylcarbonyl, alkylloxy carbonyl, alkylcarbonyloxy, arylcarbonyl, arylcarbonyloxy, aryloxycarbonyl, cycloalkylcarbonyl, cycloalkyloxy carbonyl, heteroarylcarbonyl, heteroarylcarbonyloxy, heterocycloalkylcarbonyl, heterocycloalkyloxy carbonyl, heterocycloalkyloxy carbonyl, carbonyl, carboxyl, carboxyl, formyl, keto (oxo), thioketo, sulfo, alkylamino, cycloalkylamino, arylamino, heterocycloalkylamino, heteroarylamino, dialkylamino, alkylaminocarbonyl, cycloalkylaminocarbonyl, arylaminocarbonyl, heterocycloalkylaminocarbonyl, heteroarylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, cycloalkylaminothiocarbonyl, arylaminothiocarbonyl, heterocycloalkylaminothiocarbonyl, heteroarylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, arylsulfonyl, alkylsulfenyl, arylsulfenyl, alkylcarbonylamino, cycloalkylcarbonylamino, arylcarbonylamino, heterocycloalkylcarbonylamino, heteroarylcarbonylamino, alkylthiocarbonylamino, cycloalkylthiocarbonylamino, arylthiocarbonylamino, heterocycloalkylthiocarbonylamino, heteroarylythiocarbonylamino, alkylsulfonylamino, arylsulfonylamino, heterocycloalkylsulfonylamino, heteroarylthiocarbonylamino, mercapto, alkylthio, haloalkylthio, arythio, heteroaryltio, wherein any of the alkyl, alkylene, aryl, cycloalkyl, heterocycloalkyl, heteroaryl moieties present in the above substituents may be further substituted. The alkyl, alkylene, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl moieties of any of the above substituents may be optionally substituted by one or more of alkyl (except for alkyl), haloalkyl, aryl, nitro, amino, alkylamino, dialkylamino, halogen, hydroxyl, alkoxy, haloalkoxy, aryloxy, mercapto, alkylthio or arythio groups.

In the compounds of this invention the substituted carbocyclic or heterocyclic groups may be optionally substituted by one or more of the following: alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, heteroaryl, nitro, amino, cyano, halogen, hydroxyl, alkoxy, alkenyloxy, alkynyl, alkylenedioxy, aryloxy, cycloalkoxy, cycloalkenyloxy, heterocycloalkoxy, heterocycloalkenyl, heteroaryloxy, alkylcarbonyl, alkylloxy carbonyl, alkylcarbonyloxy, arylcarbonyl, arylcarbonyloxy, aryloxycarbonyl, cycloalkylcarbonyl, cycloalkylcarbonyloxy, cycloalkyloxy carbonyl, heteroarylcarbonyl, heteroarylcarbonyloxy, heteroaryloxy carbonyl,
heterocycloalkylcarbonyl, heterocycloalkylcarbonyloxy, heterocycloalkyloxycarbonyl, carboxyl, carbamoyl, formyl, keto (oxo), thioketo, sulfo, alkylamino, cycloalkylamino, arylamino, heterocycloalkylamino, heteroarylamino, dialkylamino, alkylaminocarbonyl, cycloalkylaminocarbonyl, arylaminocarbonyl, heterocycloalkylaminocarbonyl, heteroarylamino, dialkylaminocarbonyl, alkylaminothiocarbonyl, cycloalkylaminothiocarbonyl, arylaminothiocarbonyl, heterocycloalkylaminothiocarbonyl, heteroarylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, arylsulfonyl, alkylsulfenyl, arylsulfenyl, alkylcarboxylamino, cycloalkylcarboxylamino, arylcarboxylamino, heterocycloalkylcarboxylamino, heteroarylcroboxylamino, alkylthiocarbonylamino, cycloalkylthiocarbonylamino, arylthiocarbonylamino, heterocycloalkylthiocarbonylamino, heteroaryltiocarbonylamino, alkylsulfonfylamino, arylsulfonfylamino, mercapto, alkylthio, haloalkylthio, arylthio, heteroaryltio, wherein any of the alkyl, alkenyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl moieties present in the above substituents may be further substituted. Preferred "suitable substituents" include alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, halogen, hydroxyl, alkoxy, alkylendioxy, aryloxy, cycloalkoxy, heteroaryloxy, alkylthio, haloalkylthio and carbonyl. The alkyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl moieties of any of the above substituents may be optionally substituted by one or more of: alkyl, haloalkyl, nitro, amino, alkylamino, dialkylamino, halogen, hydroxyl, alkoxy, haloalkoxy, mercapto, alkylthio.

In accordance with a convention used in the art, \(\equiv \) is used in structural formulas herein to depict the bond that is the point of attachment of the moiety or substituent to the core or backbone structure.

As used herein, the term "aliphatic" represents a saturated or unsaturated, straight- or branched-chain hydrocarbon, containing 1 to 10 carbon atoms which may be unsubstituted or substituted by one or more of the substituents described below. The term "aliphatic" is intended to encompass alkyl, alkenyl and alkynyl groups.

As used herein, the term "alkyl" represents a straight- or branched-chain saturated or unsaturated hydrocarbon, containing 1 to 10 carbon atoms which may be unsubstituted or substituted by one or more of the substituents described below. Exemplary alkyl substituents include, but are not limited to methyl (Me), ethyl (Et), propyl, isopropyl.
butyl, isobutyl, t-butyl, and the like. The term "lower alkyl" refers to an alkyl group containing from 1 to 6 carbon atoms.

The term "alkenyl" represents a straight- or branched-chain hydrocarbon, containing one or more carbon-carbon double bonds and having 2 to 10 carbon atoms which may be unsubstituted or substituted by one or more of the substituents described below. Exemplary alkenyl substituents include, but are not limited to ethenyl, propenyl, butenyl, allyl, pentenyl and the like.

The term "alkynyl" represents a straight- or branched-chain hydrocarbon, containing one or more carbon-carbon triple bonds and having 2 to 10 carbon atoms which may be unsubstituted or substituted by one or more of the substituents described below. An alkynyl moiety may also contain one or more carbon-carbon double bonds. Exemplary alkynyl substituents include, but are not limited to ethynyl, butynyl, propynyl (propargyl), isopropynyl, pentynyl, hexynyl and the like.

The term "carbocyclic" represents a saturated, partially saturated, or fully unsaturated (aromatic) cyclic hydrocarbon group containing from 3 to 14 carbon atoms which may be unsubstituted or substituted by one or more of the substituents described herein below. The term "carbocyclic" is intended to encompass mono-, bi- and tri-cyclic saturated, partially saturated, or fully unsaturated hydrocarbon groups; for example, cycloalkyl, cycloalkenyl and aryl groups. The term "carbocyclic" is also intended to encompass bi- and tri-cyclic hydrocarbon groups which contain any combination of ring moieties that are saturated, partially saturated, or fully unsaturated (aromatic). Partially saturated carbocycles include, for example, dihydroarenes (e.g., indanyl) or tetra-hydroarenes (e.g. tetrahydroanthracene), wherein any one or more points of saturation may occur in any ring moiety of the carbocycle. In addition, it is understood that bonding between any bi- or tri-cyclic carbocyclic group and any other substituent or variable group may be made at any suitable position of the carbocycle. The term "carbocyclic-aliphatic" group is intended to encompass aliphatic groups having a carbocyclic substituent (e.g., phenylmethyl- (benzyl), phenylethyl-, cyclopropylmethyl-, etc.), wherein the carbocyclic moiety and the aliphatic moiety thereof may be independently substituted by one or more suitable substituents.
"Cycloalkyl" represents a group comprising a non-aromatic monocyclic, bicyclic, or tricyclic hydrocarbon containing from 3 to 14 carbon atoms which may be unsubstituted or substituted by one or more of the substituents described below. Exemplary cycloalkyls include monocyclic rings having from 3-8 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. Illustrative examples of cycloalkyl groups include the following:

and

"Cycloalkenyl" represents a group comprising a non-aromatic monocyclic, bicyclic, or tricyclic hydrocarbon containing from 4 to 14 carbon atoms which may be unsubstituted or substituted by one or more of the substituents described below and contains at least one carbon-carbon double bond. Exemplary monocyclic cycloalkenyls include groups having from 4-8, preferably 5-6, carbon atoms, such as cyclopentenyl, cyclopentadienyl, cyclohexenyl, cycloheptenyl and the like. Illustrative examples of cycloalkenyl groups include the following:

and

"Aryl" represents a group comprising an aromatic, monovalent monocyclic, bicyclic, or tricyclic radical containing from 6 to 18 carbon ring atoms, which may be unsubstituted or substituted by one or more of the substituents described below.
Illustrative examples of aryl groups include the following:

The term "carbocyclic" also encompasses mixed bi- and tri-cyclic cycloalkyl/cycloalkenyl/aryl groups, which may be unsubstituted or substituted by one or more of the substituents described below. Illustrative examples of such mixed bi-and tri-cyclic groups include the following:

It is understood that bonding or substitution of any bi-cyclic or tri-cyclic carbocyclic or heterocyclic group described herein may be at any suitable position on any ring. Illustrative examples of such bonding in mixed bi-and tri-cyclic carbocyclic groups include the following:

, wherein R' is any suitable substituent.
The term "heterocyclic" represents a saturated, partially saturated, or fully unsaturated (aromatic) cyclic group containing from 3 to 18 ring atoms, which includes 1 to 5 heteroatoms selected from nitrogen, oxygen and sulfur, and which may be unsubstituted or substituted by one or more of the substituents described herein below. The term "heterocyclic" is intended to encompass mono-, bi- and tri-cyclic saturated, partially saturated, or fully unsaturated heteroatom-containing cyclic groups; for example, heterocycloalkyl, heterocycloalkenyl and heteroaryl groups. The term "heterocyclic" is also intended to encompass bi- and tri-cyclic groups which contain any combination of ring moieties that are saturated, partially saturated, or fully unsaturated (aromatic). Partially saturated heterocycles include, for example, dihydroheteroarenes (e.g., dihydroindole) or tetrahydro-heteroarenes (e.g. tetrahydroquinoline), wherein any one or more points of saturation may occur in any ring moiety of the heterocycle. In addition, it is understood that bonding between any bi- or tri-cyclic heterocyclic group and any other substituent or variable group may be made at any suitable position of the heterocycle (i.e., there is no restriction that a substituent or variable group must be bonded to the heteroatom-containing moiety of a bi- or tri-cyclic heterocyclic group). The term "heterocyclic-aliphatic" group is intended to encompass aliphatic groups having a heterocyclic substituent (e.g., pyridylmethyl-, thiazolylmethyl-, tetrahydrofuranylmethyl-, etc.) wherein the heterocyclic moiety and the aliphatic moiety thereof may be independently substituted by one or more suitable substituents.

"Heterocycloalkyl" represents a group comprising a saturated monovalent monocyclic, bicyclic, or tricyclic radical, containing 3 to 18 ring atoms, which includes 1 to 5 heteroatoms selected from nitrogen, oxygen and sulfur, and which may be unsubstituted or substituted by one or more of the substituents described below. Illustrative examples of heterocycloalkyl groups include, but are not limited to, azetidinyl, pyrrolidyl, piperidyl, piperazinyl, morpholiny1, tetrahydro-2H-1,4-thiazinyl, tetrahydrofuryl, tetrahydropyranyl, 1,3-dioxolanyl, 1,3-dioxany1, 1,4-dioxany1, 1,3-oxathiolenyl, 1,3-oxathianyl, 1,3-dithianyl, azabiclylo[3.2.1]octyl, azabiclylo[3.3.1]nonyl, azabiclylo[4.3.0]nonyl, oxabiclylo[2.2.1]heptyl, 1,5,9-triazacyclododecy1, and the like. Illustrative examples of heterocycloalkyl groups include the following:
wherein R is H, alkyl, hydroxyl or represents a compound according to Formula I, and the bond depicted as “\[\sim\]”, represents bonding to either face of the bi-cyclic moiety (i.e., endo or exo).

The term "heterocycloalkenyl" is used herein to represent a non-aromatic, monovalent monocyclic, bicyclic, or tricyclic radical, containing 4 to 18 ring atoms, which may include from 1 to 5 heteroatoms selected from nitrogen, oxygen and sulfur, and which may be unsubstituted or substituted by one or more of the substituents described below and which contains at least one carbon-carbon or carbon-heteroatom double bond.

Exemplary monocyclic heterocycloalkenyls include groups having from 4-8, preferably 5-6, ring atoms. Illustrative examples of heterocycloalkenyl groups include, but are not
limited to, dihydrofuryl, dihydropyranyl, isoxazolinyl, dihydropyridyl, tetrahydropyridyl, and the like. Illustrative examples of heterocycloalkenyl groups include the following:

\[
\begin{align*}
&\text{\includegraphics[width=0.5\textwidth]{heterocycloalkenyl}} \\
\end{align*}
\]

wherein R is H, alkyl, hydroxyl or represents a compound according to Formula I.

"Heteroaryl" represents a group comprising an aromatic monovalent monocyclic, bicyclic, or tricyclic radical, containing 5 to 18 ring atoms, including 1 to 5 heteroatoms selected from nitrogen, oxygen and sulfur, which may be unsubstituted or substituted by one or more of the substituents described below. As used herein, the term "heteroaryl" is also intended to encompass the N-oxide derivative (or N-oxide derivatives, if the heteroaryl group contains more than one nitrogen such that more than one N-oxide derivative may be formed) of the nitrogen-containing heteroaryl groups described herein. Illustrative examples of heteroaryl groups include, but are not limited to, thiienyl, pyrrolyl, imidazolyl, pyrazolyl, furyl, isothiazolyl, furazanyl, isoxazolyl, thiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, benzo[b]thienyl, naphtho[2,3-b]thianthrenyl, isobenzofuranyl, chromenyl, xanthenyl, phenoanthiienyl, indolizinyln, isoindolyl, indolyl, indazolyl, purinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyln, quinazolinyln. benzothiazolyl, benzimidazolyl, tetrahydroquinolinyl, cinnolinyln, pteridinyl, carbazolyl, beta-carbolinyln, phenantridinyl. acridinyl, perimidinyl, phenanthrolinyln, phenazinyl, isothiazolyl, phenothiazinyl, and phenoxazinyl. Illustrative examples of N-
oxide derivatives of heteroaryl groups include, but are not limited to, pyridyl N-oxide, pyrazinyl N-oxide, pyrimidinyl N-oxide, pyridazinyl N-oxide, triazinyl N-oxide, isoquinolyl N-oxide, and quinolyl N-oxide. Further examples of heteroaryl groups include the following moieties:

![Chemical Structures]

wherein R is H, alkyl, hydroxyl or represents a compound according to Formula I.

The term "heterocyclic" also to encompasses mixed bi- and tri-cyclic heterocycloalkyl/heterocycloalkenyl/heteroaryl groups, which may be unsubstituted or substituted by one or more of the substituents described below. Illustrative examples of such mixed bi- and tri-cyclic heterocyclic groups include the following:
Illustrative examples of such bonding in mixed bi- and tri-cyclic heterocyclic groups include the following:

Unless otherwise stated, exemplary “suitable substituents” that may be present on any of the above aliphatic, carbocyclic, heterocyclic, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl or heteroaryl groups, described herein, include alkyl (except for alkyl), aryl, cycloalkyl, heterocycloalkyl, heteroaryl, nitro, amino, cyano, halogen, hydroxyl, alkoxy, alkylenedioxy, aryloxy, cycloalkoxy, heterocycloalkoxy, heteroaryloxy, alkylcarbonyl, alkylxoycarbonyl, alkylcarbonyloxy, arylcarbonyl, arylcarbonyloxy, aryloxycarbonyl, cycloalkylcarbonyl,
cycloalkylcarbonyloxy, cycloalkyoxycarbonyl, heteroarylcarbonyl, heteroarylcarbonyloxy, heteroaryloxycarbonyl, heterocycloalkylcarbonyl, heterocycloalkylcarbonyloxy, heterocycloalkyoxycarbonyl, carboxyl, carbamoyl, formyl, keto (oxo), thioketo, sulfo, alkylamino, cycloalkylamino, arylamino, heterocycloalkylamino, heteroarylamino, dialkylamino, alkyminocarbonyl, cycloalkylaminocarbonyl, arylaminocarbonyl, heterocycloalkylaminocarbonyl, heteroarylaminocarbonyl, dialkylaminocarbonyl, alkylaminocarbonyl, cycloalkylaminocarbonyl, arylaminocarbonyl, heterocycloalkylaminocarbonyl, heteroarylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyle, arylsulfonyle, alkylsulfenyl, arylsulfenyl, alkylcarbonylamino, cycloalkylcarbonylamino, arylcarbonylamino, heterocycloalkylcarbonylamino, heteroarylcarbonylamino, alkylthiocarbonylamino, cycloalkylthiocarbonylamino, arylthiocarbonylamino, heterocycloalkylthiocarbonylamino, heteroaryltiocarbonylamino, alkylsulfonyle, arylsulfonyle, alkylsulfenyl, arylsulfenyl, mercapto, alkylthio, arylthio, heteroaryltio, wherein any of the alkyl, alkylene, aryl, cycloalkyl, heterocycloalkyl, heteroaryl moieties present in the above substituents may be further substituted. The alkyl, alkylene, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl moieties of any of the above substituents may be optionally substituted by one or more of alkyl (except for alkyl), haloalkyl, aryl, nitro, amino, alkylamino, dialkylamino, halogen, hydroxyl, alkoxy, haloalkoxy, arloxy, mercapto, alkylthio or arylthio groups.

If the substituents themselves are not compatible with the synthetic methods of this invention, the substituent may be protected with a suitable protecting group that is stable to the reaction conditions used in these methods. The protecting group may be removed at a suitable point in the reaction sequence of the method to provide a desired intermediate or target compound. Suitable protecting groups and the methods for protecting and de-protecting different substituents using such suitable protecting groups are well known to those skilled in the art; examples of which may be found in T. Greene and P. Wuts, *Protecting Groups in Chemical Synthesis* (3rd ed.), John Wiley & Sons, NY (1999), which is incorporated herein by reference in its entirety. In some instances, a substituent may be specifically selected to be reactive under the reaction conditions used in the methods of this invention. Under these circumstances, the reaction conditions convert the selected substituent into another substituent that is either useful in an intermediate compound in the methods of this invention or is a desired substituent in a target compound.
In the compounds of this invention, \(R^2 \) and \(R^{2'} \), independently or taken together, may be a suitable nitrogen protecting group. As indicated above, nitrogen protecting groups are well known in the art and any nitrogen protecting group that is useful in the methods of preparing the compounds of this invention or may be useful in the HIV protease inhibitory compounds of this invention may be used. Exemplary nitrogen protecting groups include alkyl, substituted alkyl, carbamate, urea, amide, imide, enamine, sulfonyl, sulfonyl, nitro, nitroso, oxide, phosphinyl, phosphoryl, silyl, organometallic, borinic acid and boronic acid groups. Examples of each of these groups, methods for protecting nitrogen moieties using these groups and methods for removing these groups from nitrogen moieties are disclosed in T. Greene and P. Wuts, *supra*. Preferably, when \(R^2 \) and/or \(R^{2'} \) are independently suitable nitrogen protecting groups, suitable \(R^2 \) and \(R^{2'} \) substituents include, but are not limited to, carbamate protecting groups such as alkylxycarbonyl (e.g., Boc: t-butyloxycarbonyl) and aryloxycarbonyl (e.g., Cbz: benzyloxycarbonyl, or FMOC: fluorene-9-methyloxycarbonyl), alkylxycarbonyls (e.g., methyloxycarbonyl), alkyl or arylcarbonyl, substituted alkyl, especially arylalkyl (e.g., trityl (triphenylmethyl), benzyl and substituted benzyl), and the like. When \(R^2 \) and \(R^{2'} \) taken together are a suitable nitrogen protecting group, suitable \(R^2/R^{2'} \) substituents include phthalimido and a stabase (1,2-bis (dialkylsilyl)ethylene).

The terms "halogen" and "halo" represent chloro, fluoro, bromo or iodo substituents. "Heterocycle" is intended to mean a heteroaryl or heterocycloalkyl group. "Acyl" is intended to mean a -C(O)-R radical, where R is a substituted or unsubstituted alkyl, cycloalkyl, aryl, heterocycloalkyl or heteroaryl group. "Acyloxy" is intended to mean an -OC(O)-R radical, where R is a substituted or unsubstituted alkyl, cycloalkyl, aryl, heterocycloalkyl or heteroaryl group. "Thioacyl" is intended to mean a -C(S)-R radical, where R is a substituted or unsubstituted alkyl, cycloalkyl, aryl, heterocycloalkyl or heteroaryl group. "Sulfonyl" is intended to mean an -SO\(_2\)- biradical. "Sulfenyl" is intended to mean an -SO- biradical. "Sulfo" is intended to mean an -SO\(_3\)H radical. "Hydroxy" is intended to mean the radical -OH. "Amine" or "amino" is intended to mean the radical -NH\(_2\). "Alkylamino" is intended to mean the radical -NHR\(_a\), where R\(_a\) is an alkyl group. "Dialkylamino" is intended to mean the radical -NR\(_a\)R\(_b\), where R\(_a\) and R\(_b\) are each independently an alkyl group, and is intended to include heterocycloalkyl groups, wherein R\(_a\) and R\(_b\), taken together, form a heterocyclic ring that includes the amine nitrogen. "Alkoxo" is intended to mean the radical -OR\(_a\), where R\(_a\) is an alkyl group. Exemplary alkoxy groups include methoxy, ethoxy, propoxy, and the like. "Lower
alkoxy" groups have alkyl moieties having from 1 to 4 carbons. "Alkoxy carbonyl" is intended to mean the radical -C(O)ORₐ, where Rₐ is an alkyl group. "Alkylsulfonyl" is intended to mean the radical -SO₂Rₐ, where Rₐ is an alkyl group. "Alkylenedioxy" is intended to mean the divalent radical -ORₐO- which is bonded to adjacent atoms (e.g., adjacent atoms on a phenyl or naphtyl ring), wherein Rₐ is a lower alkyl group.

"Alkylaminocarbonyl" is intended to mean the radical -C(O)NHRₐ, where Rₐ is an alkyl group. "Dialkylaminocarbonyl" is intended to mean the radical -C(O)NRₐRₐ, where Rₐ and Rₐ are each independently an alkyl group. "Mercapto" is intended to mean the radical -SH. "Alkylthio" is intended to mean the radical -SRₐ, where Rₐ is an alkyl group.

"Carboxy" is intended to mean the radical -C(O)OH. "Keto" or "oxo" is intended to mean the diradical =O. "Thioketo" is intended to mean the diradical =S. "Carbamoyl" is intended to mean the radical -C(O)NH₂. "Cycloalkylalkyl" is intended to mean the radical -alkyl-cycloalkyl, wherein alkyl and cycloalkyl are defined as above, and is represented by the bonding arrangement present in the groups -CH₂-cyclohexane or

-CH₂-cyclohexene. "Arylalkyl" is intended to mean the radical -alkylaryl, wherein alkyl and aryl are defined as above, and is represented by the bonding arrangement present in a benzyl group. "Aminocarbonylalkyl" is intended to mean the radical -alkylC(O)NH₂ and is represented by the bonding arrangement present in the group -CH₂CH₂C(O)NH₂.

"Alkylaminocarbonylalkyl" is intended to mean the radical -alkylC(O)NHRₐ, where Rₐ is an alkyl group and is represented by the bonding arrangement present in the group -CH₂CH₂C(O)NHCH₃. "Alkylecarbonylaminalkyl" is intended to mean the radical -alkylNHC(O)-alkyl and is represented by the bonding arrangement present in the group -CH₂NHC(O)CH₃. "Dialkylaminocarbonylalkyl" is intended to mean the radical -alkylC(O)NRₐRₐ, where Rₐ and Rₐ are each independently an alkyl group. "Aryloxy" is intended to mean the radical -ORₐ, where Rₐ is an aryl group. "Heteroarylxy" is intended to mean the radical -ORₐ, where Rₐ is a heteroaryl group. "Arylthio" is intended to mean the radical -SRₐ, where Rₐ is an aryl group. "Heteroarylthio" is intended to mean the radical -SRₐ, where Rₐ is a heteroaryl group.

One embodiment of this invention comprises the compounds depicted by

Formula I-A:
wherein:

R^1 is an aliphatic group, a bi- or tri-cyclic carbocyclic or heterocyclic group or a group having the formula: OR $^{1'}$, SR $^{1'}$, NHR $^{1'}$, N(R $^{1'}$)R $^{1''}$ or C(O)R $^{1'}$, wherein R $^{1'}$ is an aliphatic, carbocyclic or heterocyclic group, and R $^{1''}$ is H or a C$_1$-C$_6$ aliphatic group or R $^{1'}$ and R $^{1''}$ together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

R^2 is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

R^2 is H or a C$_1$-C$_6$ alkyl group;
or R^2 and R^2 taken together with the nitrogen atom to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;

X is

wherein Y $^{1'}$ and Y $^{1''}$ are independently selected from H, halo, or a C$_1$-C$_6$ aliphatic group, wherein R $^{1'}$ is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylendioxy, alkylcarbonyl, alkoxyacarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkyaminocarbonyl, dialkyaminocarboxyl, alkylaminothiocarbonyl, dialkyaminothiocarbonyl, alkylsulfonyl, alkylsulfenyl, alkylcarbonylamino,
aalkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, and alkylthio; n is 1 or 2;

R^8 and R^8 are each independently H, halo or a C$_1$-C$_4$ aliphatic group;

Z is S, O, SO, SO$_2$, CH$_2$, CHF, CF$_2$, CH(OH), CH(O-R $^{2'}$), CH(N-R $^{2'}$ R $^{2''}$), CH(S-R $^{2'}$), C(=O), or CH(R $^{2'}$), where R $^{2'}$ is a C$_1$-C$_6$ aliphatic group or a carbocyclic or heterocyclic group and R $^{2''}$ is H or a C$_1$-C$_6$ aliphatic group;

R^3 is H or a C$_1$-C$_6$ aliphatic group;
R^4 and R^5 are independently selected from H, halo, a C$_1$-C$_6$ aliphatic group or a group having the formula C(O)R^4, wherein R^4 is an aliphatic, carbocyclic or heterocyclic group; R^6 and R^7 are independently selected from H, halo or a C$_1$-C$_6$ aliphatic group; wherein any of said aliphatic groups are unsubstituted or substituted by one or more suitable substituents and saturated, partially unsaturated or fully unsaturated; and wherein any of said carbocyclic or heterocyclic groups are mono-, bi- or tri-cyclic; saturated, partially unsaturated or fully unsaturated; or unsubstituted or substituted by one or more suitable substituents.

provided that R^2 is not an aliphatic group, a phenyl group or a phenyl-substituted aliphatic group, when A is absent; Z is S, SO, SO$_2$, CHF, O, or CH$_2$; V is C=O; W is N; R^2', R^3, R^5 and R^8 are H or a C$_1$-C$_4$ alkyl group; R^4, R^5, R^6 and R^7 are H or a C$_1$-C$_6$ alkyl group; X is R^1 is a substituted or unsubstituted 5 or 6-membered mono-cyclic carbocyclic or heterocyclic group;

Another embodiment of this invention comprises the compounds depicted by Formula I-A, wherein:

R^1 is a 3-, 4-, or 7-membered mono-cyclic carbocyclic or heterocyclic group.

In another embodiment, the compounds of this invention are depicted by Formula I-A, wherein:

R^1 is a 5- or 6-membered monocyclic carbocyclic or heterocyclic group; and R^2 is cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, a bi- or tri-cyclic carbocyclic group, a bi- or tri-cyclic carbocyclic-alkyl group, a bi- or tri-cyclic carbocyclic-alkenyl group, a heterocyclic group, a heterocyclic-alkenyl group, a heterocyclic-alkenyl group or a heterocyclic-alkynyl group;

Another embodiment of this invention relates to compounds useful for inhibiting the activity of HIV-protease having Formula I-A, wherein:

R^1 is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR1, SR1, NHR1, N(R1)R$^{1'}$ or C(O)R1, wherein R1 is an aliphatic, carbocyclic or heterocyclic group, and R$^{1''}$ is H or a C$_1$-C$_6$ aliphatic group or R$^{1''}$ and R$^{1'''}$ together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;
where \(Y' \) and \(Y'' \) are independently selected from H, halo, or a \(C_1-C_6 \) aliphatic group, \(n \) is 0, 1 or 2 and \(R^5 \) is H or one or more suitable substituents independently selected from \(C_1-C_6 \) alkyl, nitro, amino, cyano, halogen, \(C_1-C_6 \) haloalkyl, hydroxyl, \(C_1-C_6 \) alkoxy, alkylenedioxy, \(C_1-C_6 \) alkylcarbonyl, \(C_1-C_6 \) alkoxy carbonyl, \(C_1-C_6 \) alkylcarbonyloxy, carboxyl, carbamoyl, formyl, \(C_1-C_6 \) alkylamino, \(C_1-C_6 \) alkylamino carbonyl, di- \(C_1-C_4 \) alkylamino carbonyl, \(C_1-C_6 \) alkylamino thiocarbonyl, di- \(C_1-C_6 \)-alkylamino thiocarbonyl, \(C_1-C_6 \) alkylsulfonyl, \(C_1-C_6 \) alkylsulfenyl, \(C_1-C_6 \) alkyl carboxy lamino, \(C_1-C_6 \) alkyl thiocarbony lamino, \(C_1-C_6 \) alkyl sulfonyloxy, \(C_1-C_6 \) alkyl sulfonylamino, mercapto, \(C_1-C_6 \) alkylthio and halo- \(C_1-C_6 \) alkylthio; and

\(R^8 \) and \(R^{8*} \) are each independently H, halo or a \(C_1-C_4 \) aliphatic group

provided that \(R^8 \) and \(R^{8*} \) are not both H when \(X \) is.

Another embodiment of this invention relates to compounds depicted by Formula I-A, wherein:

\(R^1 \) is a bi- or tri-cyclic carbocyclic or heterocyclic group, wherein said carbocyclic or heterocyclic group is saturated, partially unsaturated or fully unsaturated; and unsubstituted or substituted by one or more suitable substituents.

A specific embodiment of a compound of Formula I-A of this invention, wherein \(Z \) is S and \(R^2 \), \(R^8 \) and \(R^{8*} \) are each H, may be represented as follows:

wherein the formula variables are as defined in Formula I-A, above.

Another embodiment of this invention comprises the compounds depicted by Formula I-B:
wherein

R^1 is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR1, SR1, NHR1, N(R1)R$^{1''}$ or C(O)R1, wherein R$^{1''}$ is an aliphatic, carbocyclic or heterocyclic group, and R$^{1''}$ is H or a C$_1$-C$_6$ aliphatic group or R1 and R$^{1''}$ together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

R^2 is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

R^2 is H or a C$_1$-C$_6$ aliphatic group;

X is

wherein Y$'$ and Y$''$ are independently selected from H, halo, or a C$_1$-C$_6$ aliphatic group; n is 1 or 2; and Rx is H or one or more suitable substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alkylcarbonyloxy, alkylcarbonyloxy, alkylcarbonyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, alkylaminothiocarbonyl, alkylsulfonyl, alkylsulfonyl, alkylcarbonylamino, alkylamino, alkylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, and alkythio;

R^8 and $R^{8'}$ are each independently H, halo or a C$_1$-C$_4$ aliphatic group;

Z is S, O, SO, SO$_2$, CH$_2$, CHF, CF$_2$, CH(OH), CH(O-R2), CH(N-RZ RZ), CH(S-RZ), C(=O), or CH(R2), where RZ is a C$_1$-C$_6$ aliphatic group or a carbocyclic or heterocyclic group and R$^{2'}$ is H or a C$_1$-C$_6$ aliphatic group;

R^3 is H or a C$_1$-C$_6$ aliphatic group;

R^4 and R^5 are independently selected from H, halo, a C$_1$-C$_6$ aliphatic group or a group having the formula C(O)R4, wherein R4 is an aliphatic, carbocyclic or heterocyclic group;
R^6 and R^7 are independently selected from H, halo or a C$_1$-C$_6$ aliphatic group; where any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and where any of said carbocyclic or heterocyclic groups are optionally unsubstituted, substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic.

A specific embodiment of a compound of Formula I-B of this invention, wherein Z is S and R^7, R^8 and R^8' are each H, may be represented as follows:

![Chemical Structure](image)

wherein the formula variables are as defined in Formula I-B, above.

In yet another embodiment, the compounds of this invention useful for inhibiting the activity of HIV-protease have the Formula I-C:

![Chemical Structure](image)

wherein

R^1 is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR1, SR1, NHR1, N(R1)R1 or C(O)R1, wherein R$^{1'}$ is an aliphatic, carbocyclic or heterocyclic group, and R$^{1''}$ is H or a C$_1$-C$_6$ aliphatic group or R$^{1'}$ and R$^{1''}$ together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

R^2 is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

W is N, O or C;

when W is N or C, R^2 is H or a C$_1$-C$_6$ alkyl group or R^2 and R^2' taken together with the atom W to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;
when \(W \) is O, \(R^2 \) is absent;

\[
X \text{ is }
\]

wherein \(Y' \) and \(Y'' \) are independently selected from H, halo, or a C\(_1\)-C\(_6\) aliphatic group; \(n \) is 1 or 2; and \(R^x \) is H or one or more substituents independently selected from alkyl, nitro,

amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alkylxycarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfenyl, alkylcarbonylamino,

alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonlamino, mercapto, and alkylthio;

\(R^8 \) and \(R^9 \) are each independently H, halo or a C\(_1\)-C\(_4\) aliphatic group;

\(Z \) is CF\(_2\), CH(OH), CH(O-R\(^Z\)) or CH(R\(^Z\)), where \(R^Z \) is a C\(_1\)-C\(_6\) aliphatic group or a carbocyclic or heterocyclic group;

\(R^3 \) is H or a C\(_1\)-C\(_6\) aliphatic group;

\(R^4 \) and \(R^5 \) are independently selected from H, halo, a C\(_1\)-C\(_6\) aliphatic group or a group having the formula C(O)R\(^4\), wherein \(R^4 \) is an aliphatic, carbocyclic or heterocyclic group;

\(R^6 \) and \(R^7 \) are independently selected from H, halo or a C\(_1\)-C\(_6\) aliphatic group;

where any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and

where any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic.

A specific embodiment of a compound of Formula I-C of this invention, wherein \(Z \) is CF\(_2\) and \(R^8 \) and \(R^9 \) are each H, may be represented as follows:

\[
\]

wherein the formula variables are as defined in Formula I-C, above.
Another embodiment of this invention comprises the compounds depicted by the Formula I-D, as follows:

wherein

R^1 is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR', SR', NHR', N(R')R' or C(O)R', wherein R' is an aliphatic, carbocyclic or heterocyclic group, and R'' is H or a C$_1$-C$_6$ aliphatic group or R' and R'' together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

R^2 is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

W is N, O or C;

when W is N or C, R^2 is H or a C$_1$-C$_6$ alkyl group or R^2 and R^2' taken together with the atom W to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;

when W is O, R^2' is absent;

X is

wherein Y' and Y'' are independently selected from H, halo, or a C$_1$-C$_6$ aliphatic group; n is 1 or 2; and R^5 is H or one or more suitable substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylendioxy, alkylcarbonyl, alkylloxy carbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyle, alkylsulfenyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonyleoxy, alkylsulfonlamino, mercapto, and alkylthio;

R^8 and R^8' are each independently H, halo or a C$_1$-C$_4$ aliphatic group;
Z is S, O, SO, SO₂, CHF, CH₂, CF₂, CH(OH), CH(O-R²), CH(N-R² R²'), CH(S-R²'), C(=O), or CH(R²'), where R²' is a C₁-C₆ aliphatic group or a carbocyclic or heterocyclic group and R² is H or a C₁-C₆ aliphatic group;

R³' is H or a C₁-C₆ aliphatic group;

R⁴ and R⁵ are independently selected from H, halo, a C₁-C₆ aliphatic group or a group having the formula C(O)R⁴', wherein R⁴' is an aliphatic, carbocyclic or heterocyclic group;

R⁶ and R⁷ are independently selected from H, halo or a C₁-C₆ aliphatic group; where any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and where any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic.

Another embodiment of this invention comprises the compounds depicted by the Formula I-E, as follows:

\[
\begin{align*}
\text{I-E} & \\
\text{wherein} & \\
R¹ & \text{is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR¹', SR¹', NHR¹', N(R²')R¹' or C(O)R¹', wherein R¹' is an aliphatic, carbocyclic or heterocyclic group, and R¹' is H or a C₁-C₆ aliphatic group or R¹' and R¹'' together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;}
\end{align*}
\]

R² is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

W is N, O or C;

when W is N or C, R²' is H or a C₁-C₆ alkyl group or R²' and R²'' taken together with the atom W to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;

when W is O, R²' is absent:
X is

wherein \(Y^1 \) and \(Y^2 \) are independently selected from H, halo, or a \(C_1-C_6 \) aliphatic group, wherein \(R^1 \) is H or one or more suitable substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alkylxycarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfonyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, alkylthio;

\(R^8 \) and \(R^8' \) are each independently H, halo or a \(C_1-C_4 \) aliphatic group;

\(Z \) is S, O, SO, SO_2, CH_2, CHF, CF_2, CH(OH), CH(O-R^2), CH(N-R^2 R^3), CH(S-R^2), C(=O), or CH(R^2), where \(R^2 \) is a \(C_1-C_6 \) aliphatic group or a carbocyclic or heterocyclic group and \(R^2' \) is H or a \(C_1-C_6 \) aliphatic group;

\(n \) is 1 or 2;

\(R^3 \) is H or a \(C_1-C_6 \) aliphatic group;

\(R^4 \) is selected from H, halo, a \(C_1-C_6 \) aliphatic group or a group having the formula C(O)R^4, wherein \(R^4 \) is an aliphatic, carbocyclic or heterocyclic group;

\(R^7 \) is H, halo or a \(C_1-C_6 \) aliphatic group;

where any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and

where any of said carbocyclic or heterocyclic groups are unsubstituted, substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic.

A specific embodiment of s compound of Formula I-E, wherein \(n \) is 2 and \(R^8 \) and \(R^8' \) are each H., may be represented as follows:

wherein the formula variables are as defined above.
Another embodiment of this invention comprises the compounds of Formula I, wherein A is CH(R^A), Z is CH(R^Z) and R^A and R^Z taken together form a 5 or 6-membered carbocyclic ring, depicted by the Formula I-F, as follows:

\[
\begin{array}{c}
\text{O} \\
\text{R}^1 \text{N} \\
\text{O} \\
\text{R}^2 \\
\text{R}^3 \\
\text{R}^4 \\
\text{R}^5 \\
\text{R}^6 \\
\end{array}
\]

wherein

1. R^1 is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR^{1''}, SR^{1''}, NHR^{1''}, N(R^{1''})R^{1''} or C(O)R^{1''}, wherein R^{1''} is an aliphatic, carbocyclic or heterocyclic group, and R^{1''} is H or a C_1-C_6 aliphatic group or R^{1''} and R^{1''} together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

2. R^2 is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

3. W is N, O or C;

when W is N or C, R^2 is H or a C_1-C_6 alkyl group or R^2 and R^2 taken together with the atom W to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;

4. when W is O, R^2 is absent;

\[
\begin{array}{c}
\text{X is} \\
\end{array}
\]

wherein Y' and Y'' are independently selected from H, halo, or a C_1-C_6 aliphatic group, wherein R^3 is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alkylxoycarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfonyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, and alkylthio;

5. n is 1 or 2;

6. R^3 is H or a C_1-C_6 aliphatic group;
R^4 and R^5 are independently selected from H, halo, a C_1-C_6 aliphatic group or a group having the formula C(O)R^4', wherein R^4' is an aliphatic, carbocyclic or heterocyclic group;

R^6 and R^7 are independently selected from H, halo or a C_1-C_6 aliphatic group;

R^8 and R^8' are each independently H, halo or a C_1-C_4 aliphatic group;

where any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and

where any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic.

A specific embodiment of a compound of Formula I-F, wherein n is 2 and R^8 and R^8' are each H, may be represented as follows:

![Chemical Structure](image)

wherein the formula variables are as defined above.

In one embodiment, the compounds of Formula I-A of this invention, wherein R^6 and R^7, taken together with the atom to which they are bound, form a carbocyclic group, comprise spiro-fused bi-cyclic compounds having the Formula I-G:

![Chemical Structure](image)

wherein

R^1 is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR^1', SR^1', NHR^1', N(R^1')R^1'' or C(O)R^1'', wherein R^1' is an aliphatic, carbocyclic or heterocyclic group, and R^1'' is H or a C_1-C_6 aliphatic group or R^1' and R^1'' together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;
R^2 is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

W is N, O or C;

when W is N or C, R^2 is H or a C$_1$-C$_6$ alkyl group or R^2 and R^2 taken together with the atom W to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring.

when W is O, R^2 is absent;

\[
\begin{array}{c}
\text{X is} \\
\text{Y', Y'' are independently selected from H, halo, or a C}_1\text{-C}_6 \text{ aliphatic group,}
\end{array}
\]

wherein R^x is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylendioxy, alkylcarbonyl, alkylxycarbonyl, alkylcarboxyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfanyl, alkylsulfonyl, alkylcarbamoylamino, alkylthiocarbamoylamino, alkylsulfonxyloxy, alkylsulfonylamino, mercapto, alkylthio;

R^8 and R^8' are each independently H, halo or a C$_1$-C$_4$ aliphatic group;

Z is S, O, SO, SO$_2$, CHF, CH$_2$, CF$_2$, CH(OH), CH(O-RZ), CH(N-RZ RZ), CH(S-RZ), C(=O), or CH(RZ), where R^Z is a C$_1$-C$_6$ aliphatic group or a carbocyclic or heterocyclic group and R^Z is H or a C$_1$-C$_6$ aliphatic group;

n is 1, 2, 3 or 4;

R^3 is H or a C$_1$-C$_6$ aliphatic group;

R^4 and R^5 are independently selected from H, halo, a C$_1$-C$_6$ aliphatic group or a group having the formula C(O)R^4, wherein R^4 is an aliphatic, carbocyclic or heterocyclic group;

where any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and

where any of said carbocyclic or heterocyclic groups are unsubstituted, substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic.

In the compounds of this inventions, R^2 may consist of a substituted aliphatic group; wherein R^2 may be represented as -CH$_2$-B, -CH$_2$CH$_2$-B, -CH(CH$_3$)B, and the like,
wherein B is a carbocyclic or heterocyclic group as described herein, and wherein the B group may be unsubstituted or substituted with one or more substituents selected from C\textsubscript{1}-C\textsubscript{4} alkyl, halo, haloalkyl, hydroxy, alkoxy, halo alkoxy, alkylthio, haloalkylthio, amino, dialkylamino, alkyl-SO\textsubscript{2}, cyano, alkylcarbonylamino and cycloalkylalkyloxy.

Specific embodiments of the compounds of this invention comprise the compounds depicted by Formula I-A':

\[
\text{I-A'}
\]

wherein:

R1 is an alkyl, alkenyl, or alkynyl group, a bi- or tri-cyclic cycloalkyl,

cycloalkenyl, aryl, heterocycloalkyl, heterocycloalkenyl or heteroaryl group or a group having the formula: OR1, SR1, NHR1, N(R1)R11 or C(O)R1, wherein R11 is an alkyl, alkenyl, or alkynyl group, a bi- or tri-cyclic cycloalkyl, cycloalkenyl, aryl, heterocycloalkyl, heterocycloalkenyl or heteroaryl group, or a cycloalkylalkyl, cycloalkenylalkyl, arylalkyl, heterocycloalkylalkyl, heterocycloalkenylalkyl,

heteroarylalkyl, cycloalkylalkenyl, cycloalkenylalkenyl, arylalkenyl,

heterocycloalkylalkenyl, heterocycloalkenylalkenyl, heteroarylalkenyl, cycloalkylalkynyl, cycloalkenylalkenyl, arylalkenyl, heterocycloalkylalkynyl, heterocycloalkenylalkynyl, or heteroarylalkynyl group; and R11 is H or a C\textsubscript{1}-C\textsubscript{6} alkyl, alkenyl or alkynyl group or R1' and R11 together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

R2 is a cycloalkyl, cycloalkylalkyl, cycloalkenyl, or cycloalkenylalkyl group, a bi- or tri-cyclic aryl group, a bi- or tri-cyclic arylalkyl group, a bi- or tri-cyclic arylalkenyl group, a bi- or tri-cyclic arylalkynyl group, or a heterocycloalkyl, heterocycloalkylalkyl, heterocycloalkenyl, heterocycloalkenylalkyl, heteroaryl or heteroarylalkyl group;

R2' is H or a C\textsubscript{1}-C\textsubscript{6} alkyl group;

or R2 and R2' taken together with the nitrogen atom to which they are attached form a heterocycloalkyl or heterocycloalkenyl ring;
wherein Y' and Y" are independently selected from H, halo, or a C1-C6 aliphatic group, wherein R5 is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alkxyoxycarbonyl, alkylcarboxyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonfyl, alkylsulfenyl, alkylcarbonylamino, alkylthiocarboxyloxy, alkylsulfonfylamino, mercapto, and alkylthio;

Z is S, O, SO2, CH2, CHF, CF2, CH(OH), CH(O-R2), CH(N-R2 R2),

CH(S-R2), C(=O), or CH(R2), where R2 is a C1-C6 aliphatic group or a carbocyclic or heterocyclic group and R2 is H or a C1-C6 aliphatic group;

R3 is H or a C1-C6 aliphatic group;

R4 and R5 are independently selected from H, halo, and a C1-C6 aliphatic group;

R6 and R7 are independently selected from H, halo and a C1-C6 aliphatic group;

where any of the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heterocycloalkyl, heterocycloalkenyl or heteroaryl groups or the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heterocycloalkyl, heterocycloalkenyl or heteroaryl moieties of the cycloalkylalkyl, cycloalkenylalkyl, arylalkyl, heterocycloalkylalkyl, heterocycloalkenylalkyl, heteroarylalkyl, cycloalkylalkenyl, cycloalkenylalkyl, aryalkenyl, heterocycloalkylalkenyl, heterocycloalkenylalkenyl, heteroarylalkenyl, cycloalkylalkynyl, cycloalkenylalkynyl, arylalkynyl, heterocycloalkylalkynyl, and heterocycloalkenylalkynyl, heteroarylalkynyl groups are unsubstituted or substituted by one or more suitable substituents; and

where any of said carbocyclic or heterocyclic groups are optionally mono-, bi- or tri-cyclic; saturated, partially unsaturated or fully unsaturated; and unsubstituted or substituted by one or more suitable substituents.

provided that R2 is not an aliphatic group, a phenyl group or a phenyl-substituted aliphatic group, when Z is S, SO2, CHF, O, or CH2; R2, R3, R8 and R8 are H or a C1-C4 alkyl group; R4, R5, R6 and R7 are H or a C1-C6 alkyl group; X is a
substituted or unsubstituted 5 or 6-membered mono-cyclic carbocyclic or heterocyclic group;

or provided that R^2 is not t-butyl when R^1 is substituted or unsubstituted
phenyloxymethylene, or quinolylmethylenecarbonylaminomethylene; A is absent; Z is S;

5 R^2, R^3, R^4, and R^5, are H; R^6 and R^7 are H, methyl, ethyl or propyl; and X is
wherein R^x is H or methoxy,

In another embodiment, the compounds of this invention are depicted by Formula
I-A; wherein:

Z is CF_2, $CH(OH)$, $CH(O-R^2)$, $CH(NR^2R^4)$, $CH(S-R^2)$, $C=O$ or $CH(R^2)$, where R^2
10 is a C_1-C_6 aliphatic group or a carbocyclic or heterocyclic group and R^x is H or a C_1-C_6
aliphatic group.

Specific examples of the compounds of Formula I-B comprise compounds having
the formula I-B'

15 wherein
R^1 is an aliphatic, carbocyclic or heterocyclic group,
R^2 is an aliphatic group, a carbocyclic-aliphatic group, or a heterocyclic-aliphatic
group;

R^2 is H or a C_1-C_6 alkyl group;
20 or R^2 and R^2 taken together with the carbon atom to which they are both attached
form an unsubstituted or substituted carbocyclic ring;

wherein R^x is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl,
alkoxy, alkylendioxy, alkylcarbonyl, alklyloxy carbonyl, alkylcarbonyloxy, carboxyl,
carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfenyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonlamino, mercapto, and alkylthio;

\[Z = \text{S, O, SO, SO}_2, \text{CHF, CH}_2, \text{CF}_2, \text{C}(-\text{O}), \text{or CH}(R^2), \text{where } R^2 \text{ is a C}_1-\text{C}_6 \]

aliphatic group or a carbocyclic or heterocyclic group;

\[R^3 \text{ is H or a C}_1-\text{C}_6 \text{ aliphatic group}; \]

\[R^4 \text{ and } R^5 \text{ are independently selected from H, halo, or a C}_1-\text{C}_6 \text{ aliphatic group}; \]

\[R^6 \text{ and } R^7 \text{ are independently selected from H, halo or a C}_1-\text{C}_6 \text{ aliphatic group}; \]

wherein any of said aliphatic groups are saturated, partially saturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and wherein any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic.

More specific examples of the compounds of Formula I-B’ comprise compounds wherein

\[R^1 \text{ is a carbocyclic group}, \]

\[R^2 \text{ is a C}_1-\text{C}_6 \text{ aliphatic group or a carbocyclic- C}_1-\text{C}_6 -\text{aliphatic group}; \]

\[Z = \text{S, O, CH}_2, \text{CF}_2; \]

\[R^3, R^4 \text{ and } R^5 \text{ are each H; and \}

\[R^6 \text{ and } R^7 \text{ are each a C}_1-\text{C}_6 \text{ aliphatic group}; \]

where any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and where any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic.

Specific examples of the compounds of Formula I-B’ comprise compounds wherein

\[R^1 \text{ is a phenyl group, unsubstituted or substituted with one or more substituents selected from alkyl, hydroxyl, halo, halo alkyl, haloalkoxy, methylene dioxy, and difluoromethylene dioxy}; \]

\[R^2 \text{ is an alkenyl group, an aralkyl group or a straight or branched chain saturated alkyl}; \]
X is where R^x is H;

Z is S;

R^3, R^4 and R^5 are each H; and

R^6 and R^7 are each methyl;

wherein any of said alkenyl, aralkyl, or alkyl groups are unsubstituted or substituted with one or more substituents, independently selected from methyl, halo, trifluoromethyl or methoxy.

Another specific embodiment of the compounds of Formula I-B' comprise compounds wherein

R^1 is a phenyl group, unsubstituted or substituted with one or more substituents selected from alkyl, hydroxyl, halo, halo alkyl, haloalkoxy, methylene dioxy, and difluoromethylene dioxy;

R^2 is an alkenyl group, an aralkyl group or a straight or branched chain saturated alkyl;

X is where R^x is H;

Z is CF$_2$;

R^3, R^4 and R^5 are each H; and

R^6 and R^7 are each methyl;

Wherein any of said alkenyl, aralkyl, or alkyl groups are unsubstituted or substituted with one or more substituents, independently selected from methyl, halo, trifluoromethyl or methoxy.

Other specific examples of this invention, comprise the compounds having the Formula I-C:

wherein
R^1 is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR'', wherein R'' is a carbocyclic or heterocyclic group;

R^2 is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

W is N;

R'' is H or a C_1-C_6 alkyl group;

X is , wherein R^x is H; dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfenyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, or alkylthio;

Z is CF_2, CH(OH) or C(=O);

R^3, R^4 and R^5 are each H; and

R^6 and R^7 are each methyl.

More specific examples of this invention, comprise the compounds having the

Formula I-C', wherein:

R^1 is an aryl group, an aryloxyalkyl group, an alkynyloxy group, a heterocycloalkyloxy group or heteroaryl group;

R^2 is an alkyl, alkenyl, or alkynyl group, an arylalkyl group; a heteroarylalkyl group, an indanyl group, a chromanyl group, a tetrahydronaphthalene group, an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group; and

R^2' is H;

wherein the alkyl, alkenyl, alkynyl, arylalkyl; heteroarylalkyl, indanyl, chromanyl or tetrahydronaphthalene group is optionally unsubstituted or substituted with one or more substituents independently selected from alkyl, hydroxy, halo, haloalkyl, cyano, alkoxy or methylenedioxy.

Specific examples of this invention, comprise the compounds having the Formula I-C', wherein:

R^1 is a phenyl group, a phenoxytrimethyl group, a tetrahydrofuranyloxy group, a C_1-C_4 alkynyloxy group, or a isoxazolyl group, where the phenyl group, phenoxymethyl group or isoxazolyl group is unsubstituted or substituted by hydroxyl or methyl;
R\(^2\) is an C\(_{1-5}\) alkyl, C\(_{1-6}\) alkenyl, or C\(_{1-4}\) alkynyl group, a benzyl group; a furanylethyl group, a thiophenylethyl group, an indanyl group, a chromanyl group, a tetrahydronaphthalene group, or a cyclohexenyl group, where the alkyl groups is unsubstituted or substituted with one or more halogen; and the phenyl group is unsubstituted or substituted with halogen, hydroxyl, methoxy, methylenedioxy or methyl;

\[R^2 = H; \]

\[X, \text{ wherein } R^x = H; \text{ and } \]

\[Z = CF_2; \]

Other specific embodiments of this invention comprise the compounds depicted by the Formula I-D' or I-E', as follows:

\[
\begin{align*}
\text{I-D'} & : \\
\text{I-E'} & :
\end{align*}
\]

wherein

\[R^1 \text{ is a carbocyclic or heterocyclic group,} \]
\[R^2 \text{ is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;} \]
\[W \text{ is } N; \]
\[R^2 \text{ is } H \text{ or a } C_{1-6} \text{ alkyl group;} \]
X is \[\text{[structure]}\] wherein R\(^x\) is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alkylxycarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfenyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, and alkylthio;

Z is O, CH\(_2\), CHF, CF\(_2\), or CH(R\(^2\)), where R\(^z\) is a C\(_1\)-C\(_6\) aliphatic group;

R\(^3\), R\(^4\), R\(^5\), R\(^6\) and R\(^7\) are each H; and

wherein any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and wherein any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic.

More specifically, embodiments of this invention, comprise compounds according to Formula I-D' or I-E' wherein

R\(^1\) is a carbocyclic group;

R\(^2\) is an arylalkyl group;

R\(^2\) is H;

\[\text{[structure]}\] wherein R\(^x\) is H; and

Z is CH\(_2\);

wherein said carbocyclic group and arylalkyl group are unsubstituted or substituted with one or more substituents selected from methyl, halo, or hydroxy.

Another specific embodiment of this invention comprises compounds of Formula I-F', as follows:
wherein

R¹ is a carbocyclic or heterocyclic group,
R² is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;
W is N;
R²' is H or a C₁-C₆ alkyl group;

X is , wherein R³ is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylendioxy, alkylcarbonyl, alkylcarbonyloxy, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfinyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, and alkylthio;
n is 1 or 2;
R³, R⁴ and R⁵ are each H; and
R⁷ is H;

wherein any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and

wherein any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic.

More specifically, embodiments of this invention, comprise compounds according to Formula I-F', wherein

R¹ is a carbocyclic group;
R² is an arylalkyl group;
R² is H;

\[
\begin{array}{c}
\text{X is } \\
\text{wherein } R^\text{x} \text{ is H;}
\end{array}
\]

wherein said carbocyclic group, and arylalkyl group unsubstituted or substituted with one or more substituents selected from methyl, halo, or hydroxy.

In one embodiment, the compounds of Formula I-A of this invention, wherein R⁶ and R⁷, taken together with the atom to which they are bound, form a carbocyclic group, comprise spiro-fused bi-cyclic compounds having the Formula I-G¹:

\[
\begin{array}{c}
\text{I-G¹}
\end{array}
\]

wherein

R¹ is a carbocyclic or heterocyclic group;
R² is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;
W is N, C or CH;
R² is H

X is \[
\begin{array}{c}
\text{wherein } R^\text{x} \text{ is H or one or more suitable substituents}
\end{array}
\]

independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkynedioxy, alkylcarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarboxyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfenyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, and alkythio;
Z is S, O, CH₂, CHF, CF₂, or CH(R²), where R² is a C₁-C₆ aliphatic group;
n is 2, 3 or 4;
R³, R⁴ and R⁵ are each H;
wherein any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and wherein any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic.

More specific embodiments comprise the compounds of Formula I-G' wherein:
R^1 is a carbocyclic group;
R^2 is an arylalkyl group;
W is N;
R^2' is H;

X is , wherein R^5 is H; and
Z is CH_{2};
R^3, R^4, R^5 and R^7 are each H;
wherein said carbocyclic group and arylalkyl group unsubstituted or substituted with one or more substituents selected from methyl, halo, or hydroxy.

More specific embodiments comprise the compounds of Formula I-G' wherein:
R^1 is a carbocyclic group;
R^2 is an arylalkyl group;
W is N;
R^2' is H;

X is , wherein R^5 is H; and
Z is CF_{2};
R^3, R^4, R^5 and R^7 are each H;
wherein said carbocyclic group and arylalkyl group unsubstituted or substituted with one or more substituents selected from methyl, halo, or hydroxy.

More specific embodiments comprise the compounds of Formula I-G' wherein:
R^1 is a carbocyclic group;
R^2 is an arylalkyl group;
W is N;
R² is H;

\[\text{\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{diagram.png}
\end{figure}} \]

X is \(R^x \), wherein \(R^x \) is H; and

Z is S;

\(R^3, R^4, R^5 \text{ and } R^7 \) are each H;

wherein said carbocyclic group and arylalkyl group unsubstituted or substituted with one or more substituents selected from methyl, halo, or hydroxy.

If an inventive compound is a base, a desired salt may be prepared by any suitable method known in the art, including treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like, or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, salicylic acid, pyranosidyl acid, such as glucuronic acid or galacturonic acid, alpha-hydroxy acid, such as citric acid or tartaric acid, amino acid, such as aspartic acid or glutamic acid, aromatic acid, such as benzoic acid or cinnamic acid, sulfonic acid, such as p-toluenesulfonic acid or ethanesulfonic acid, or the like.

If an inventive compound is an acid, a desired salt may be prepared by any suitable method known to the art, including treatment of the free acid with an inorganic or organic base, such as an amine (primary, secondary, or tertiary); an alkali metal or alkaline earth metal hydroxide; or the like. Illustrative examples of suitable salts include organic salts derived from amino acids such as glycine and arginine; ammonia; primary, secondary, and tertiary amines; and cyclic amines, such as piperidine, morpholine, and piperazine; as well as inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum, and lithium.

All compounds of this invention contain at least one chiral center and may exist as single stereoisomers (e.g., single enantiomers or single diastereomers), any mixture of stereoisomers (e.g., any mixture of enantiomers or diastereomers) or racemic mixtures thereof. All such single stereoisomers, mixtures and racemates are intended to be encompassed within the broad scope of the present invention. Compounds identified herein as single stereoisomers are meant to describe compounds that are present in a form that contains at least 90% of a single stereoisomer of each chiral center present in the compounds. Where the stereochemistry of the chiral carbons present in the chemical
structures illustrated herein is not specified, the chemical structure is intended to encompass compounds containing either stereoisomer of each chiral center present in the compound. Preferably, however, the inventive compounds are used in optically pure, that is, stereoisomerically pure, form or substantially optically pure (substantially stereoisomerically pure) form. As used herein, the term "stereoisomeric" purity (or "optical" purity) refers to the "enantiomeric" purity and/or "diastereomeric" purity of a compound. Compounds that are substantially enantiomerically pure contain at least 90% of a single isomer and preferably contain at least 95% of a single isomer of each chiral center present in the enantiomer. Compounds that are substantially diastereomerically pure contain at least 90% of a single isomer of each chiral center present in the diastereomer, and preferably contain at least 95% of a single isomer of each chiral center. More preferably, the substantially enantiomerically and diastereomerically pure compounds in this invention contain at least 97.5% of a single isomer and most preferably contain at least 99% of a single isomer of each chiral center in the compound. The term "racemic" or "racemic mixture" refers to a mixture of equal amounts of enantiomeric compounds, which encompasses mixtures of enantiomers and mixtures of enantiomeric diastereomers. The compounds of this invention may be obtained in stereoisomerically pure (i.e., enantiomerically and/or diastereomerically pure) or substantially stereoisomerically pure (i.e., substantially enantiomerically and/or diastereomerically pure) form. Such compounds may be obtained synthetically, according to the procedures described herein using optically pure or substantially optically pure materials. Alternatively, these compounds may be obtained by resolution/separation of a mixture of stereoisomers, including racemic mixtures, using conventional procedures. Exemplary methods that may be useful for the resolution/separation of stereoisomeric mixtures include chromatography and crystallization/re-crystallization. Other useful methods may be found in "Enantiomers, Racemates, and Resolutions," J. Jacques et al., 1981, John Wiley and Sons, New York, NY, the disclosure of which is incorporated herein by reference. Preferred stereoisomers of the compounds of this invention are described herein.

Especially preferred embodiments of this invention comprise compounds, wherein the stereogenic centers (chiral carbons) have the following designated stereochemistry:
More preferably, at least two of the stereogenic centers have the following
designated stereochemistry:

Even more preferably, at least three of the stereogenic centers have the following
designated stereochemistry:

Exemplary compounds of this invention may be represented as follows:
Exemplary compounds of this invention include the following. The abbreviation "Bn" in some of the following structures indicates a "benzyl" substituent.
and the prodrugs, pharmaceutically active metabolites, and pharmaceutically acceptable salts and solvates thereof.

The invention is also directed to the intermediates of Formula II, which are useful in the synthesis of certain compounds of Formula I:
The HIV protease inhibitor compounds of this invention include prodrugs, the pharmaceutically active metabolites, and the pharmaceutically acceptable salts and solvates thereof. In preferred embodiments, the compounds of Formula I, prodrugs, pharmaceutically acceptable salts, and pharmaceutically active metabolites and solvates thereof demonstrate an HIV-protease inhibitory activity, corresponding to K_i of at least 100 nM, an EC$_{50}$ of at least 10 mM or an IC$_{50}$ of at least 10 mM. Preferably, the compounds of this invention demonstrate an HIV-protease inhibitory activity, corresponding to a K_i of at least 10 nM, an EC$_{50}$ of at least 1 mM or an IC$_{50}$ of at least 1 mM. More preferably, the compounds of this invention demonstrate an HIV-protease inhibitory activity against mutant strains of HIV, corresponding to a K_i of at least 100 nM, an EC$_{50}$ of at least 10 mM or an IC$_{50}$ of at least 10 mM. Even more preferably, the compounds of this invention demonstrate protease inhibitory activity against mutant strains corresponding to a K_i of at least 10 nM, an EC$_{50}$ of at least 1 mM or an IC$_{50}$ of at least 1 mM.

A "prodrug" is intended to mean a compound that is converted under physiological conditions or by solvolysis or metabolically to a specified compound that is pharmaceutically active. A prodrug may be a derivative of one of the compounds of this invention that contains a moiety, such as for example -CO$_2$R, -PO(OR)$_2$ or -C=NR, that may be cleaved under physiological conditions or by solvolysis. Any suitable R substituent may be used that provides a pharmaceutically acceptable solvolysis or cleavage
product. A prodrug containing such a moiety may be prepared according to conventional procedures by treatment of a compound of this invention containing, for example, an amido, carboxylic acid, or hydroxyl moiety with a suitable reagent. A "pharmacologically active metabolite" is intended to mean a pharmacologically active compound produced through metabolism in the body of a specified compound. Prodrugs and active metabolites of compounds of this invention of the above-described formulas may be determined using techniques known in the art, for example, through metabolic studies. See, e.g., "Design of Prodrugs," (Bundgaard, ed.), 1985, Elsevier Publishers B.V., Amsterdam, The Netherlands. The following are examples of prodrugs that can be converted to the compounds of this invention under physiological conditions, by solvolysis or metabolically:

![Chemical Structures]

A "pharmacologically acceptable salt" is intended to mean a salt that retains the biological effectiveness of the free acids and bases of a specified compound and that is not biologically or otherwise undesirable. Examples of pharmacologically acceptable salts include sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, phosphates, monohydrogen phosphates, dihydrogen phosphates, metaphosphates, pyrophosphates, chlorides, bromides, iodides, acetates, propionates, decanoates, caprylates, acrylates, formates, isobutyrate, caproates, heptanoates, propiolates, oxalates, malonates, succinates, suberates, sebacates, fumarates, maleates, butyse-1,4-dioates, hexyse-1,6-dioates, benzoates, chlorobenzoates, methylbenzoates, dinitrobenzoates, hydroxybenzoates, methoxybenzoates, phthalates, sulfonates, xylenesulfonates, phenylacetates, phenylpropionates, phenylbutyrate, citrates, lactates, 3-hydroxybutyrate, glycollates, tartrates, methane-sulfonates (mesylates), propanesulfonates, naphthalene-1-sulfonates, naphthalene-2-sulfonates, and mandelates. A "solvate" is intended to mean a pharmaceutically acceptable solvate form of a specified compound that retains the biological effectiveness of such compound. Examples of solvates include compounds of the invention in combination with water, isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, or ethanolamine. In the case of compounds, salts, or solvates that are solids, it is understood by those skilled in the art that the inventive
compounds, salts, and solvates may exist in different crystal forms, all of which are intended to be within the scope of the present invention and specified formulas.

The present invention is also directed to a method of inhibiting HIV protease activity, comprising contacting the protease with an effective amount of a compound of Formula I, or a pharmaceutically acceptable salt, prodrug, pharmaceutically active metabolite, or solvate thereof. For example, HIV protease activity may be inhibited in mammalian tissue by administering a compound of Formula I or a pharmaceutically acceptable salt, prodrug, pharmaceutically active metabolite, or solvate thereof. More preferably, the present method is directed at inhibiting HIV-protease activity. "Treating" or "treatment" is intended to mean at least the mitigation of a disease condition in a mammal, such as a human, that is alleviated by the inhibition of the activity of HIV proteases. The methods of treatment for mitigation of a disease condition include the use of the compounds in this invention in any conventionally acceptable manner, for example, as a prophylactic. The activity of the inventive compounds as inhibitors of HIV protease activity may be measured by any of the suitable methods known to those skilled in the art, including in vivo and in vitro assays. Examples of suitable assays for activity measurements are escribed herein. Administration of the compounds of the Formula I and their pharmaceutically acceptable prodrugs, salts, active metabolites, and solvates may be performed according to any of the generally accepted modes of administration available to those skilled in the art. Illustrative examples of suitable modes of administration include oral, nasal, parenteral, topical, transdermal, and rectal.

An inventive compound of Formula I or a pharmaceutically acceptable salt, prodrug, active metabolite, or solvate thereof may be administered as a pharmaceutical composition in any pharmaceutical form recognizable to the skilled artisan as being suitable. Suitable pharmaceutical forms include solid, semisolid, liquid, or lyophilized formulations, such as tablets, powders, capsules, suppositories, suspensions, liposomes, and aerosols. Pharmaceutical compositions of the invention may also include suitable excipients, diluents, vehicles, and carriers, as well as other pharmacologically active agents, depending upon the intended use or mode of administration. Acceptable methods of preparing suitable pharmaceutical forms of the pharmaceutical compositions may be routinely determined by those skilled in the art. For example, pharmaceutical preparations may be prepared following conventional techniques of the pharmaceutical chemist involving steps such as mixing, granulating, and compressing when necessary for tablet forms, or mixing, filling, and dissolving the ingredients as appropriate, to give the desired
products for oral, parenteral, topical, intravaginal, intranasal, intrabronchial, intraocular, intraaural, and/or rectal administration.

The present invention includes pharmaceutical compositions useful for inhibiting HIV protease, comprising an effective amount of a compound of this invention, and a pharmaceutically acceptable carrier. Pharmaceutical compositions useful for treating infection by HIV, or for treating AIDS or ARC, are also encompassed by the present invention, as well as a method of inhibiting HIV protease, and a method of treating infection by HIV, or of treating AIDS or ARC. Additionally, the present invention is directed to a pharmaceutical composition comprising a therapeutically effective amount of a compound of the present invention in combination with a therapeutically effective amount of an HIV infection/AIDS treatment agent selected from:

1) an HIV/AIDS antiviral agent,
2) an anti-infective agent, and
3) an immunomodulator.

The present invention also includes the use of a compound of the present invention as described above in the preparation of a medicament for (a) inhibiting HIV protease, (b) preventing or treating infection by HIV, or (c) treating AIDS or ARC.

The present invention further includes the use of any of the HIV protease inhibiting compounds of the present invention as described above in combination with one or more HIV infection/AIDS treatment agents selected from an HIV/AIDS antiviral agent, an anti-infective agent, and an immunomodulator for the manufacture of a medicament for (a) inhibiting HIV protease, (b) preventing or treating infection by HIV, or (c) treating AIDS or ARC, said medicament comprising an effective amount of the HIV protease inhibitor compound and an effective amount of the one or more treatment agents.

Solid or liquid pharmaceutically acceptable carriers, diluents, vehicles, or excipients may be employed in the pharmaceutical compositions. Illustrative solid carriers include starch, lactose, calcium sulfate dihydrate, terra alba, sucrose, t alc, gelatin, pectin, acacia, magnesium stearate, and stearic acid. Illustrative liquid carriers include syrup, peanut oil, olive oil, saline solution, and water. The carrier or diluent may include a suitable prolonged-release material, such as glycercyl monostearate or glycercyl distearate, alone or with a wax. When a liquid carrier is used, the preparation may be in the form of a syrup, elixir, emulsion, soft gelatin capsule, sterile injectable liquid (e.g., solution), or a nonaqueous or aqueous liquid suspension. A dose of the pharmaceutical composition contains at least a therapeutically effective amount of the active compound (i.e., a
compound of Formula I or a pharmaceutically acceptable salt, prodrug, active metabolite, or solvate thereof), and preferably is made up of one or more pharmaceutical dosage units. The selected dose may be administered to a mammal, for example, a human patient, in need of treatment mediated by inhibition of HIV protease activity, by any known or suitable method of administering the dose, including: topically, for example, as an ointment or cream; orally; rectally, for example, as a suppository; parenterally by injection; or continuously by intravaginal, intranasal, intrabronchial, intraaural, or intraocular infusion. A "therapeutically effective amount" is intended to mean the amount of an inventive agent that, when administered to a mammal in need thereof, is sufficient to effect treatment for disease conditions alleviated by the inhibition of the activity of one or more variant of the HIV protease. The amount of a given compound of the invention that will be therapeutically effective will vary depending upon factors such as the particular compound, the disease condition and the severity thereof, the identity of the mammal in need thereof, which amount may be routinely determined by artisans.
The compounds of this invention are also useful in the preparation and execution of screening assays for antiviral compounds. For example, the compounds of this invention are useful for isolating enzyme mutants that are excellent screening tools for more powerful antiviral compounds. Furthermore, the compounds of this invention are useful in establishing or determining the binding site of other antivirals to HIV protease, e.g., by competitive inhibition. Thus the compounds of this invention are commercial products to be sold for these purposes.
GENERAL SYNTHETIC METHODS

Preferably, the inventive compounds are prepared by the methods of the present invention, including the General Methods shown below. When stereochemistry is not specified in chemical structures, either stereocenter may be utilized. The following abbreviations also apply: Boc (tert-butoxycarbonyl), Ac (acetyl), Cbz (benzyloxy carbonyl), DMB (2,4-dimethoxybenzyl), TBS (tert-butyldimethylsilyl), TBDPS (tert-butyldiphenylsilyl), Ms (methanesulfonate), Ts (toluenesulfonate), Bn (benzyl), and Tr (triphenylmethyl).

All reactions were performed in septum-sealed flasks under a slight positive pressure of argon unless otherwise noted. All commercial reagents and solvents were used as received from their respective suppliers with the following exceptions: Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl prior to use. Dichloromethane (CH₂Cl₂) was distilled from calcium hydride prior to use. Flash chromatography was performed using silica gel 60 (Merck art. 9385). ¹H NMR spectra were recorded at 300 MHz utilizing a Varian UNITYplus 300 spectrometer. Chemical shifts are reported in ppm (δ) downfield relative to internal tetramethylsilane, and coupling constants are given in Hertz. Infrared absorption spectra were recorded using a Perkin-Elmer 1600 series FTIR spectrometer. Elemental analyses were performed by Atlantic Microlab, Inc., Norcross, GA. Melting points are uncorrected.

All P2' amine variants mentioned in General Methods A-E described hereinbelow were either purchased and used directly or synthesized as follows.

METHOD A: REPRESENTATIVE PROCEDURE FOR REDUCTION OF KETONES TO ALCOHOLS.

![Chemical structure](image1)

6,7-Dihydro-4-(5H)-benzofuranone (1) (1.00 g 7.34 mmol) was dissolved in methanol (55 mL). The mixture was cooled to 0 °C and NaBH₄ (0.31 g, 8.08 mmol) was added in portions. The reaction was stirred for 2 h at 0 °C at which time the methanol was evaporated. The residue was dissolved in EtOAc and poured into NaHCO₃ (saturated
aqueous) and extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with brine (10 mL), passed over a short plug of Na₂SO₄, and concentrated in vacuo to give 2 (1.01 g, 99%, as a mixture of isomers) as a pale yellow, thick oil, which was of sufficient quality to be advanced to the next step without further purification. Rf (50% EtOAc/hexanes): 0.53.

METHOD B: REPRESENTATIVE PROCEDURE FOR REDUCTION OF ACIDS TO ALCOHOLS.

\[
\begin{align*}
1 & \quad \rightarrow \quad 2
\end{align*}
\]

Tiglic acid (1) (20.0 g, 0.200 mol) was dissolved in ether (80 ml) and added dropwise over 30 min to a suspension of LiAlH₄ (15.0 g, 0.417 mol) in ether (80 ml) at 0 °C and the reaction mixture was allowed to warm to room temperature. After 3 h the mixture was re-cooled to 0 °C and quenched slowly by the addition of H₂O (15 ml), 15% NaOH (15 ml) and H₂O (15 ml). The reaction mixture was filtered to remove the granular precipitate and washed thoroughly with ether. The filtrate was washed successively with 1N HCl, NaHCO₃ (saturated aqueous), and brine. The combined organic layers were dried over MgSO₄ and concentrated in vacuo to give (E)-2-methyl-but-2-en-1-ol (2) as a clear oil (12.8 g, 74%).

METHOD C: REPRESENTATIVE PROCEDURE FOR ALKYLATION OF PHENOLS ALCOHOLS.

\[
\begin{align*}
1 & \quad \rightarrow \quad 2
\end{align*}
\]

3-Hydroxybenzyl alcohol (1) (0.500 g 4.03 mmol) was dissolved in DMF (2 mL) at ambient temperature. Ethyl bromide (0.900 mL, 12.1 mmol) and finely crushed K₂CO₃ (2.78 g, 20.1 mmol) were added and the reaction mixture was stirred for 5 h. The DMF was then removed in vacuo and the residue was partitioned between EtOAc and H₂O, and extracted with EtOAc (3 x 10 mL). The organic layers were washed with brine (10 mL) and passed over a short plug of Na₂SO₄. The solvents were removed in vacuo to give
alcohol 2 (0.55 g, 90%) as a pale yellow, thick oil, which was of sufficient quality to be advanced to the next step without further purification. \(\text{Rf (40\% \text{EtOAC/hexanes): 0.69.}}\)

METHOD D: REPRESENTATIVE PROCEDURE FOR CONVERSION OF ALCOHOLS TO AMINES.

\[\text{HO} \quad \text{O} \quad \text{N>C} \quad \text{O} \quad \text{H}_2\text{N} \quad \text{O}\]

3-Ethoxy-phenyl-methanol (1) (1.23 g, 8.08 mmol) was dissolved in CH\(_2\)Cl\(_2\) (10 mL) at ambient temperature and diphenylphosphoryl azide (2.67 g, 9.70 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (1.45 mL, 9.70 mmol) were added. The mixture was stirred for 5 h at which time the CH\(_2\)Cl\(_2\) was removed in vacuo and the crude residue was partitioned between EtOAc and H\(_2\)O and extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with brine (10 mL), passed over a short plug of Na\(_2\)SO\(_4\), and concentrated in vacuo to give a yellow oil that was loaded directly onto a flash silica gel column and was quickly eluted with 10% EtOAc/hexanes. The solvents were removed in vacuo to give azide 2 (1.43 g, 84%) as a colorless oil. \(\text{Rf (30\% EtOAc/hexanes): 0.79.}}\)

1-Azidomethyl-3-ethoxy-benzene (2) (1.19 g, 6.71 mmol) was dissolved in MeOH (15 mL) and palladium 10\% on activated carbon, wet (20\% in weight) was added. The reaction was hydrogenated for 30 min at 40 PSI in a Parr Hydrogenator. The black suspension was then filtered through compacted celite and the methanol was removed in vacuo to give amine 3 (0.88 g, 88\%) as a pale yellow, thick oil, which was of sufficient quality to be advanced to the coupling reactions without further purification.

METHOD E: REPRESENTATIVE PROCEDURE FOR CONVERSION OF ALCOHOLS TO BROMIDES.

\[\text{HO} \quad \text{Br}\]

Cis-2-penten-1-ol (1) (1.00 g, 11.6 mmol) and carbon tetrabromide (3.85 g, 13.9 mmol) were dissolved in CH\(_2\)Cl\(_2\) (75 mL). The mixture was cooled to 0 °C and
triphenylphosphine (3.65 mL, 13.9 mmol) dissolved in CH₂Cl₂ (50 mL) was added dropwise. The mixture was allowed to warm to room temperature and was stirred overnight. The CH₂Cl₂ was removed in vacuo and the crude residue was loaded directly onto a flash silica gel column and eluted quickly with 20% EtOAc/hexanes. The solvents were removed in vacuo to give bromide 2 (1.53 g, 88%) as a colorless volatile oil. Rf (30% EtOAc/hexanes): 0.89.

METHOD F: REPRESENTATIVE PROCEDURE FOR CONVERSION OF BROMIDES TO AMINES.

\[
\begin{align*}
\text{Br} & \quad \rightarrow \quad \text{(BOC)₂N} \\
1 & \quad \rightarrow \quad 2 \\
\text{TFA.H₂N} & \quad \rightarrow \quad 3
\end{align*}
\]

A mixture of bromide 1 (3.00 g, 20.1 mmol), di-tert-butyl-iminodicarboxylate (4.8 g, 22 mmol), and K₂CO₃ (3.10 g, 80.4 mmol) in DMF (30 ml) was stirred at ambient temperature overnight. The mixture was partitioned between 1N HCl and EtOAc. The organic layer was washed with H₂O and brine, then dried over NaSO₄. Concentration in vacuo afforded a yellow oil which upon purification by flash column chromatography (hexanes to 5% EtOAc/Hexane gradient) yielded protected amine 2 as a clear oil (2.0 g, 35%).

A mixture of the diBOC amine 2 (2.0 g, 7.0 mmol), trifluoroacetic acid (2.7 ml, 35 mmol) and CH₂Cl₂ (40 ml) was stirred at ambient temperature overnight. The reaction mixture was concentrated in vacuo to give the TFA salt of (E)-2-methyl-but-2-enylamine (3).

METHOD G: REPRESENTATIVE PROCEDURE FOR REDUCTION OF AROMATIC NITRO GROUPS BY HYDROGENATION.

\[
\begin{align*}
\text{(BOC)₂N} & \quad \rightarrow \quad \text{(BOC)₂N} \\
\text{NO₂} & \quad \rightarrow \quad \text{NH₂}
\end{align*}
\]

Compound 1 (2.04, 5.79 mmol) was dissolved in EtOAc (20 mL) and palladium 10% on activated carbon, wet (20% in weight) was added. The reaction was hydrogenated for 4h at 45 PSI in a Parr Hydrogenator. The black suspension was then filtered through compacted celite and the methanol was removed in vacuo to give aniline 2 (1.65 g, 88%)
as a pale yellow, thick oil, which was of sufficient quality to be advanced to the
acetylation reaction without further purification.

**METHOD H: REPRESENTATIVE PROCEDURE FOR ACETYLCATION OF
ANILINES.**

\[
\begin{align*}
(BOC)_2N & \quad (BOC)_2N \\
\text{NH}_2 & \quad \text{NHAc} \\
1 & \quad 2
\end{align*}
\]

Aniline 1 (1.65 g, 5.12 mmol) was dissolved in CH\(_2\)Cl\(_2\) (25 mL) at ambient
temperature. Acetyl chloride (0.48 g, 6.14 mmol) and \(N,N\)-Diisopropylethylamine (0.79 g,
6.14 mmol) were added, and the reaction was stirred overnight. The CH\(_2\)Cl\(_2\) was removed
\textit{in vacuo} and the crude residue was partitioned between EtOAc and 5% KHSO\(_4\) and
extracted with EtOAc (3 x 10 mL). The combined organic extracts were washed with
NaHCO\(_3\) (saturated aqueous, 10 mL), brine (10 mL), and dried over Na\(_2\)SO\(_4\). The
solvents were removed \textit{in vacuo} to give an orange oil which was of sufficient quality to be
advanced to the next step without further purification. Rf (50% EtOAC/hexanes): 0.42.

**METHOD I: REPRESENTATIVE PROCEDURE FOR REDUCTION OF
ALDEHYDES TO AMINES.**

\[
\begin{align*}
\text{} & \quad \text{} \\
\text{HO} & \quad \text{N} \\
\text{} & \quad \text{} \\
1 & \quad 2 & \quad 3
\end{align*}
\]

Hydroxyl amine hydrochloride (758 mg, 10.7 mmol) and pyridine (2.16 mL) was
added to a solution of 2,2-difluoro-5-formyl benzodioxole (1) (2.00 g, 10.7 mmol) in
MeOH (10 mL). After 18 hours the MeOH was removed \textit{in vacuo}. The reaction mixture
was diluted with EtOAc and was washed sequentially with H\(_2\)O, 10% w/v CuSO\(_4\), and
brine and then dried over MgSO\(_4\). The solution was concentrated \textit{in vacuo}. The hydroxy
imine was purified by column chromatography using 20% EtOAc/Hexanes to give 1.37 g
(64% yield) of a white solid. Imine was then subjected to LAH reduction as described
above to provide amine 3.
Method J: REPRESENTATIVE PROCEDURE FOR THE HYDROXYLATION OF
A SUBSTITUTED BENZOIC ACID

\[
\begin{array}{c}
\text{COOH} \\
\text{1} \\
\text{\longrightarrow} \\
\text{HO-COOH} \\
\text{2}
\end{array}
\]

2,5-dimethyl-benzoic acid (1) (20 g, 133 mmol) was dissolved in concentrated
H₂SO₄ (30 mL) and fuming H₂SO₄ (20% SO₃, 70 mL). The reaction mixture was heated
to 110 °C for 2 hours. After cooling, the solution was poured carefully into a beaker of ice
H₂O (400 mL) and was then neutralized with 20% aqueous NaOH (400 mL). The H₂O
was partially removed in vacuo until a white salt mixture started to form. The solid was
collected on a sintered-glass funnel and was then dried in a vacuum oven. The dried salt
mixture was placed in a ceramic crucible with KOH (160 g) and was melted together using
a butane torch for 0.5 h. After cooling, the fused solid was dissolved in H₂O (300 mL) and
acidified with concentrated HCl (300 mL). The product was extracted from the aqueous
solution with EtOAc (3 x 200 mL). The combined organic layers were washed with brine
(100 mL) and dried over MgSO₄. The solvents were removed in vacuo and the solid
residue was recrystallized with 20% EtOAc/CHCl₃ four times to afford 3-hydroxy-2, 5-
dimethyl-benzoic acid (2) as a light brown solid (9.8 g, 44%)

\(^1\)H NMR (Acetone-d₆) δ 10.93 (br s, 1H), 8.34 (br s, 1H), 7.20 (s, 1H), 6.86 (s, 1H), 2.37
(s, 3H), 2.24 (s, 3H).

The following amines were synthesized for the corresponding example numbers:

Example A35 and Example A36

![Chemical structures of Example A35 and Example A36]

Amines were generated from reducing the corresponding ketone as described in method A above followed by conversion to the azide and reduction as described in method D above. The mixture of isomers was coupled to the chiral thiazolidine core and separated.

Example A37 and Example A38

![Chemical structures of Example A37 and Example A38]

Amines were generated as described for Examples A35 and A36, separating the diastereomers at the thiazolidine stage.

Example A84 and Example A85

![Chemical structures of Example A84 and Example A85]

Amines were generated as described for Examples A35 and A36, separating the diastereomers at the thiazolidine stage.
Example A86 and Example A87

Amines were generated as described for Example A35 and A36, separating the diastereomers at the thiazolidine stage.

Example A43

Amine was generated by alkylation of 3-hydroxybenzyl alcohol with ethyl bromide as describe in method C above followed by conversion of the alcohol to the amine as described in method D above provided desired amine.

Example A44

Amine was generated as described above for Example A43 using the cyclopropyl alkylation agent.

Example A93

Amine was generated as described above for Example A43 using propylbromide as the alkylation agent.

Example A67

Amine was generated from displacement of bromide in 3-nitrobenzylbromide with di BOC amine as described in method F above. Reduction of the nitro moiety to the aniline (method G above) followed by acetylation (method H above) and BOC removal (method F above) provided desired amine.
Example A72, Example A73 and Example A80

Amines were generated from conversion of the corresponding primary alcohols as described in method E above. Displacement of the bromide with di BOC amine and deprotection with TFA (method F above) provided the desired amines.

Example A77

Amine was generated from 3-dimethylaminobenzyl alcohol as described in method D above.

Example A48

Amine was generated by bromination of the corresponding methyl compound (Nussbaumer, P., et. al. J. Med Chem., 1991, 34, 65-73.). Conversion of the bromide to the amine was accomplished by azide displacement of the bromide followed by reduction as described in method D above.

Example A69

Amine was generated by reduction of the corresponding methyl ester to the primary alcohol (Wipf, J. Org. Chem. 1994, 59, 4875-86.). Conversion to the bromide (method E above) followed by displacement with diBOC amine and deprotection (method F above) provided desired amine.
Example A70 and Example A71

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{H}_2\text{N} \\
& \quad \text{H}_2\text{N}
\end{align*}
\]

Amines were generated from the corresponding carboxylic acids. Reduction of the acid as described in method B above followed by bromide displacement as described in method E above gave the primary bromide. Conversion of the bromide to the primary amine followed the procedure described in method F above.

Example A74

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{H}_2\text{N} \\
& \quad \text{H}_2\text{N}
\end{align*}
\]

Amine was generated from the primary alcohol as described in method D above.

Example A76

Amine was generated by first reduction of the corresponding aldehyde with sodium borohydride to the primary alcohol (Dondoni, *J. Org. Chem.* 1995, 60, 4749-54.). The alcohol was then converted to the amine as described in method D above.

Example A82 and Example A83

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{H}_2\text{N} \\
& \quad \text{H}_2\text{N}
\end{align*}
\]

Amines were generated by conversion of the primary alcohol as described in method D above. Tetrahydrofuran amine (Example A83) was the byproduct of over-reduction of A82.

Example A91

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{H}_2\text{N} \\
& \quad \text{H}_2\text{N}
\end{align*}
\]

Amine was generated from the corresponding carboxylic acid. Reduction of the acid as described in method B above gave the primary alcohol. The alcohol was then converted to the amine using the procedure described in method D above.

Example A92
Amine was generated from 3-benzyloxybenzyl alcohol. Conversion to the azide and reduction of both the azide and benzyl protecting group were accomplished using method D as described above with longer hydrogenation time.

Example A94

Amine was generated by LiAlH₄ reduction of 2-cyanophenol (Ludeman, S.M., et. al. *J. Med. Chem.* 1975, 18, 1252-3.).

Example A88 and Example A89

Amines were generated from the corresponding achiral ketone prepared by the method of Haunz (Haunz, et. al. *Synth. Commun.* 1998, 28, 1197-1200.). The ketone was reduced to the alcohol as a mixture of isomers using method A as described above. The mixture was converted to a mixture of amines by the procedure described in method D above. The amines were coupled to the thiazolidine core as a mixture and were then separated to provide Examples A88 and A89.

Example A78 and Example A79

Amines were generated from the corresponding achiral ketone prepared by the method of Bell (Bell, et. al. *J. Med. Chem.* 1998, 41, 2146-63.). The ketone was reduced to the alcohol as a mixture of isomers using method A as described above. The mixture was converted to a mixture of amines by the procedure described in method D above. The amines were coupled to the thiazolidine core as a mixture and were then separated to provide Examples A78 and A79.
Example A81

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{N} = \text{N} \\
\end{align*}
\]

Amine was generated from the corresponding carboxylic acid. Reduction of the acid using the procedure described in method A above provided the primary alcohol which was converted to the bromide using the method of Onda (Onda, M. et. al. Chem. Pharm. Bull. 1971, 10, 2013-19.). The bromide was then converted to the amine using the procedure described in method F above.

Example A110

\[
\begin{align*}
\text{HN} & \quad \text{OH} \\
\end{align*}
\]

Amine was generated from the condensation of o-tolualdehyde with 2-aminoethanol followed by reduction with sodium borohydride (Tetrahedron Assym. 1997, 8, 2367-74.).

Example A103

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{O} \quad \text{O} \quad \text{F} \\
\end{align*}
\]

Amine was generated from the corresponding aldehyde by the reductive amination procedure described in method I above.
Example A105

Amine was generated by reduction of the corresponding methyl ester to the primary alcohol (Wipf, *J. Org. Chem.* **1994**, *59*, 4875-86.). The alcohol was converted to the amine by the procedure described in method D above.

Example A107

Amine was generated from reduction of the corresponding carboxylic acid to the primary alcohol as described in method A above. The alcohol was converted to the amine using the procedure described in method D above.

Example A106 and Example A97

Amines were generated by the borane reduction of the corresponding carboxylic acids to the primary alcohols. The alcohols were converted to the amines using the procedure described in method D above.

Example A46

Amine was generated by the condensation of ethylacetoacetate with cyanoacetamide followed by reaction with phosphorus oxychloride to provide 3-cyano-2,5-dihydroxy-4-methylpyridine. Hydrogenation with palladium dichloride gave the 3-cyano-4-methylpyridine which was hydrogenated with Raney nickel in ammonia and ethanol to afford the desired amine (*J. Org. Chem.* **1959**, *25*, 560.).
Example A10

Amine was generated by a reductive amination with the corresponding aldehyde (Arch. Pharm. 1987, 320, 647-54.).

Example A109

Amine was generated on the thiazolidine core as follows:

Diphenylchlorophosphosphate (1.0 ml, 4.2 mmol) followed by triethylamine (0.59 ml, 4.2 mmol) were added to a cooled 0 °C solution of BOC-DMTA 1 (1.0 g, 3.8 mmol) in EtOAc (10 ml). The mixture was stirred for 1 h and at which time triethylamine (0.59 ml, 4.2 mmol) and ethanolamine (0.25 ml, 4.2 mmol) were added. The reaction was left to stir overnight at ambient temperature and then partitioned between 1N HCl and EtOAc. The organic layer was washed with NaHCO₃ (saturated aqueous) and brine. The organic layer was dried over Na₂SO₄ and concentrated in vacuo to a pale yellow oil 2. The oil was stirred with thionyl chloride (2 ml) for 45 min at room temperature. The mixture was concentrated in vacuo and the residual oil was partitioned between 1N NaOH and EtOAc. The organic layer was extracted with 1N HCl (2 x 20 ml). The combined aqueous layers were made basic with 1N NaOH and then extracted with EtOAc (3 x 60 ml). The organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo to give (R)-5,5-Dimethyl-thiazolidine-4-carboxylic acid (2-chloro-ethyl)-amide 3 as a clear oil (0.39 g, 55%).
The following amines were prepared as described:

Example A65

Example A66

Example A75

The above amines were prepared according to Carlsen, H. J., *J. Heterocycle Chem.* 1997, 34, 797-806.

Example A90

The above amine was prepared according to O'Brien, P. M., *J. Med. Chem.* 1994, 37, 1810-1822.

Example A10

The above amine was prepared according to Weinheim, G. *Arch. Pharm.* 1987, 320, 647-654.
General Method A

The synthesis of compounds with the general structure 5 is as follows. The boc-protected thiazolidine carboxylic acid 1 is coupled to the requisite amines 2 to yield amino amides 3 using a two step process. The process includes treatment of 1 with 2 in the presence of either diphenylchlorophosphosphate or HATU, followed by exposure to methane sulfonic acid. Final compounds 5 are obtained by a DCC-mediated coupling of 3 and 4 followed by deprotection of the P2 phenol. Final compounds were purified either by flash chromatography or preparative HPLC.
An alternative approach to the general structure 5 is as follows. The thiazolidine ester 6 is coupled to acid 7 under carbodiimide reaction conditions, resulting in product 8 which is converted to acid 9 by mild base hydrolysis. Acid 9 is combined with various amines, using diphenylphosphoryl azide, followed by cleavage of the P2 acetate to yield final compounds 5. The products were purified by either flash chromatography or preparative HPLC.

Specific Method A.

Example A1: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoalamino)-4-phenylbutyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (1,2,3,4-tetrahydro-naphthalen-1-yl)-amide

The title compound was prepared as follows. (R)-5,5-Dimethyl-thiazolidine-3,4-dicarboxylic acid 3-tert-butyl ester 1 (0.3 g, 1.15 mmol) was dissolved in EtOAc (3 mL) and cooled to 0 °C. Diphenyl chlorophosphate (0.26 mL, 1.26 mmol) was added followed by TEA (0.18 mL, 1.26 mmol). The reaction was stirred at 0 °C for 1h, and treated with (S)-1,2,3,4-Tetrahydro-1-naphthylamine (0.19 g, 1.26 mmol). The reaction mixture was stirred at room temperature overnight, then partitioned between 1N HCl (5 mL) and EtOAc (10 mL). The organic layer was washed with saturated NaHCO₃, brine, dried over Na₂SO₄ and concentrated to a light yellow oil. The resulting crude oil was dissolved in EtOAc (5 mL) and the cooled to 0 °C. Methanesulfonic acid (0.36 mL, 5.32 mmol) was added and the solution was stirred at 0 °C for 15 minutes, then at room temperature for 1h. The mixture was re-cooled to 0 °C and quenched with 5% Na₂CO₃ (5 mL) then extracted with EtOAc (10 mL). The organic layer was washed with brine, dried over Na₂SO₄ and concentrated in vacuo to give 3 as a yellow oil. The yellow oil 3 (0.34 g, 1.15 mmol) was dissolved in EtOAc (12 mL). AMB-AHPBA 4 (0.40 g, 1.09 mmol) was added followed
by HOBr (0.15 g, 1.09 mmol). The mixture was stirred at room temperature 1 h, then cooled to 0 °C. DCC (0.24 g, 1.15 mmol) was slowly added as solution in EtOAc (6 mL). The mixture was warmed to room temperature and stirred overnight. The mixture was filtered and the filtrate was washed with 1N HCl (10 mL), saturated NaHCO₃ (10 mL), brine (10 mL), dried over Na₂SO₄ and concentrated to give a crude white solid (contaminated with DCU). The DCU was removed by flash chromatography (30% to 50% EtOAc in hexanes) to provide a white solid, which was dissolved in MeOH (2 mL) and treated with 4N HCl in 1,4-dioxane (0.26 mL, 1.1 mmol). The reaction was stirred at room temperature overnight then partitioned between 1N HCl (10 mL) and EtOAc (10 mL). The organic layer was washed with saturated NaHCO₃, dried over Na₂SO₄ and concentrated to a residue which was purified by flash chromatography (60% EtOAc in hexanes) to provide the title compound as a white solid: mp = 125-126 °C; IR (cm⁻¹) 3320, 2932, 1704, 1644, 1530, 1454, 1361, 1284; ¹H NMR (DMSO-d₆) δ 9.36 (s, 1H), 8.28 (d, J = 8.6, 1H), 8.21 (d, J = 8.8, 1H), 7.35-6.91 (m, 10H), 6.76 (d, J = 8.0, 1H), 6.54 (d, J = 7.5, 1H), 5.34 (d, J = 6.0, 1H), 5.13 (d, J = 9.0, 1H), 5.02 (d, J = 9.0, 1H), 4.60-4.30 (m, 4H), 2.81-2.68 (m, 4H), 1.81 (s, 3H), 1.78-1.60 (m, 4H), 1.48 (s, 3H), 1.45 (s, 3H); Anal. Calcd for C₃₄H₃₉N₃O₅S·1.5 H₂O: C, 64.95; H, 6.73; N, 6.68. Found: C, 64.88; H, 6.31; N, 6.18.

Example A2: (R)-3-((2S,3R)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid 3-methoxy-benzylamide

![Chemical Structure](image)

White solid: mp 108-110 °C; IR (neat, cm⁻¹) 3310, 2965, 1644, 1586, 1531, 1455, 1359, 1284; ¹H NMR (DMSO-d₆) δ 9.37 (s, 1H), 8.40 (t, J = 6.0, 1H), 8.09 (d, J = 8.1, 1H), 7.31-6.52 (m, 12H), 5.49 (d, J = 6.0, 1H), 5.12 (d, J = 9.3, 1H), 5.00 (d, J = 9.3, 1H), 4.44-4.35 (m, 3H), 4.42 (s, 1H), 4.09 (dd, J = 15.0, 6.0, 1H), 3.69 (s, 3H), 2.87-2.67 (m, 2H),
1.82 (s, 3H), 1.49 (s, 3H), 1.34 (s, 3H); Anal. Calcd for C₃₂H₃₇N₃O₆S•0.75 H₂O: C, 63.50; H, 6.41; N, 6.94. Found: C, 63.60; H, 6.23; N, 6.80.

The following examples were prepared by the specific method outlined above using the requisite amine 2.

Example A3: (R)-3-[(2S,3S)-2-Hydroxy-3-{1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino}-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (pyridin-2-ylmethyl)-amide

IR (neat cm⁻¹) 3315, 1642, 1529, 1437, 1372, 1284;

¹H NMR (DMSO-d₆) δ 9.38 (s, 1H), 8.59 (t, J = 5.0, 1H), 8.45 (d, J = 4.0, 1H), 8.15 (d, J = 8.2, 1H), 7.65 (td, J = 7.5, 1.8, 1H), 7.39 (d, J = 7.9, 1H), 7.29-7.11 (m, 7H), 6.93 (t, J = 7.7, 1H), 6.77 (d, J = 8.1, 1H), 6.54 (d, J = 7.0, 1H), 5.51 (d, J = 6.6, 1H), 5.15 (d, J = 9.2, 1H), 5.03 (d, J = 9.2, 1H), 4.50-4.26 (m, 5H), 2.87-2.68 (m, 2H), 1.82 (s, 3H), 1.52 (s, 3H), 1.35 (s, 3H); HRMS (ESI) m/z calcd for C₃₀H₃₄N₄O₅SNa (M + Na)⁺ 585.2148, found 585.2141.

Example A4: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamo)-4-phenylbutyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (1,2,3,4-tetrahydro-naphthalen-1-yl)-amide

White solid: mp = 123-125 °C; IR (cm\(^{-1}\)) 3314, 2932, 1704, 1644, 1584, 1530, 1454, 1360, 1284; \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 9.36 (s, 1H), 8.42 (d, \(J = 8.6\), 1H), 8.23 (d, \(J = 8.0\), 1H), 7.38-6.90 (m, 10H), 6.77 (d, \(J = 8.0\), 1H), 6.45 (d, \(J = 6.0\), 1H), 5.45 (d, \(J = 6.0\), 1H), 5.02 (d, \(J = 9.0\), 1H), 4.99 (d, \(J = 9.0\), 1H), 5.11-4.40 (m, 4H), 2.90-2.69 (m, 4H), 1.81 (s, 3H), 1.77-1.58 (m, 4H), 1.49 (s, 3H), 1.42 (s, 3H); Anal. Calcd for C\(_{34}\)H\(_{39}\)N\(_3\)O\(_3\)S•1.25 H\(_2\)O: C, 65.42; H, 6.70; N, 6.73. Found: C, 65.41; H, 6.46; N, 6.60.

Example A5: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (pyridin-3-ylmethyl)-amide

![Chemical Structure](image)

IR (neat cm\(^{-1}\)) 3310, 2931, 1642, 1537, 1455, 1373, 1279; \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 9.39 (s, 1H), 8.55-8.50 (m, 2H), 8.38 (s, 1H), 8.15 (d, \(J = 8.2\), 1H), 7.68 (d, \(J = 8.1\), 1H), 7.30-7.14 (m, 6H), 6.94 (t, \(J = 7.5\), 1H), 6.77 (d, \(J = 8.1\), 1H), 6.54 (d, \(J = 7.7\), 1H), 5.51 (d, \(J = 6.6\), 1H), 5.14 (d, \(J = 9.2\), 1H), 5.03 (d, \(J = 9.2\), 1H), 4.49-4.41 (m, 4H), 4.18 (dd, \(J = 15.4\), 5.5, 1H), 2.85-2.67 (m, 2H), 1.81 (s, 3H), 1.49 (s, 3H), 1.31 (s, 3H); HRMS (ESI) \(m/z\) calcd for C\(_{30}\)H\(_{35}\)N\(_4\)O\(_5\)S (M + H\(^+\)) \(=\) 563.2323, found 563.2337.

Example A6: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid methyl-(3-methyl-thiophen-2-ylmethyl)-amide

![Chemical Structure](image)
IR (neat cm$^{-1}$) 3150, 3000, 2942, 2187, 1712, 1600, 1567, 1505; 1H NMR (DMSO-d$_6$) δ 9.36 (s, 1H), 8.44 (t, $J = 7.9$, 1H), 8.13-8.07 (m, 2H), 7.34-7.13 (m, 5H), 6.93 (t, $J = 7.9$, 1H), 6.78 (d, $J = 7.7$, 1H), 6.53 (d, $J = 7.1$, 1H), 5.45 (d, $J = 7.0$, 1H), 5.12 (dd, $J = 7.8, 8.2$ 1H), 4.51-4.31 (m, 4H), 2.86-2.67 (m, 2H), 2.19 (s, 3H), 1.81 (s, 3H), 1.51 (s, 3H), 1.34 (s, 3H); Anal. Calcd for C$_{30}$H$_{35}$N$_3$O$_5$S$_2$: calculated C, 61.94 H, 6.06 N, 7.22. Found C, 62.38 H, 6.23, N, 7.17.

Example A7: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl) methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (benzo[b]thiophen-3-ylmethyl)-amide

\[
\begin{align*}
\text{HO} & \quad \text{O} \\
\text{N} & \quad \text{O} \\
\text{NH} & \quad \text{O} \\
\text{S} & \quad \text{N} \\
\text{S} & \quad \text{S} \\
\text{Ph} & \quad \text{Ph}
\end{align*}
\]

IR (neat cm$^{-1}$) 3401, 2931, 1637, 1531, 1455, 1367, 1284, 1108; 1H NMR (DMSO-d$_6$) δ 9.39 (s, 1H), 8.52 (t, $J = 5.7$, 1H), 8.17 (d, $J = 8.2$, 1H), 7.93 (d, $J = 6.4$, 1H), 7.86 (d, $J = 6.9$, 1H), 7.57 (s, 1H), 7.35-7.11 (m, 7H), 6.94 (t, $J = 7.9$, 1H), 6.78 (d, $J = 7.9$, 1H), 6.56 (d, $J = 7.5$, 1H), 5.47 (d, $J = 5.0$, 1H), 5.16 (d, $J = 9.2$, 1H), 5.02 (d, $J = 9.2$, 1H), 4.67 (dd, $J = 15.2, 5.9$, 1H), 4.47-4.34 (m, 4H), 2.89-2.70 (m, 2H), 1.83 (s, 3H), 1.49 (s, 3H), 1.34 (s, 3H); HRMS (ESI) m/z calcd for C$_{33}$H$_{35}$N$_3$O$_5$S$_2$Na (M + Na)$^+$ 640.1910, found 640.1919; Anal. Calcd for C$_{33}$H$_{35}$N$_3$O$_5$S$_2$$\cdotH_2$O: C, 62.34; H, 5.87; N, 6.61. Found: C, 62.93; H, 5.80; N, 6.57.
Example A8: (R)-3-((2S,3S)-2-Hydroxy-3-[(1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (pyridin-4-ylmethyl)-amide

\[
\text{HO} \quad \text{N} \quad \text{O} \quad \text{N} \quad \text{O} \quad \text{N} \quad \text{O} \\
\text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \\
\text{HO} \quad \text{N} \quad \text{O} \quad \text{N} \quad \text{O} \quad \text{N} \quad \text{O} \\
\text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C}
\]

\(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 9.38 (s, 1H), 8.55 (t, \(J = 6.2\), 1H), 8.42 (m, 1H), 8.13 (d, \(J = 8.2\), 1H), 7.30-7.19 (m, 7H), 6.94 (t, \(J = 7.7\), 1H), 6.77 (d, \(J = 7.7\), 1H), 6.54 (d, \(J = 7.1\), 1H), 5.54 (d, \(J = 6.8\), 1H), 5.15 (d, \(J = 9.1\), 1H), 5.02 (d, \(J = 9.1\), 1H), 4.48-4.13 (m, 5H), 2.87-2.68 (m, 2H), 1.81 (s, 3H), 1.52 (s, 3H), 1.35 (s, 3 H); HRMS (ESI) \(m/z\) calcd for C\(_{30}\)H\(_{34}\)N\(_4\)O\(_5\)SNa (M + Na\(^+\)) 585.2142, found 585.2153.

Example A9: (R)-3-((2S,3S)-2-Hydroxy-3-[(1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (2,3-dihydro-benzofuran-5-ylmethyl)-amide

IR (neat, cm\(^{-1}\)) 3330, 2919, 1643, 1490, 1443, 1367, 1284, \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 9.37 (s, 1H), 8.35 (m, 1H), 8.12 (d, \(J = 7.9\), 1H), 7.32-7.09 (m, 6H), 6.99-6.91 (m, 2H), 6.77 (d, \(J = 8.1\), 1H), 6.68-6.53 (m, 2H), 5.45 (d, \(J = 6.2\), 1H), 5.12 (d, \(J = 8.8\), 1H), 5.00 (d, \(J = 8.9\), 1H), 4.50-4.39 (m, 6H), 4.29 (dd, \(J = 14.5\), 6.2, 1H), 4.14-4.04 (m, 2H), 3.15-2.99 (m, 2H), 1.81 (s, 3H), 1.48 (s, 3H), 1.33 (s, 3H); HRMS (ESI) \(m/z\) calcd for C\(_{33}\)H\(_{37}\)N\(_3\)O\(_6\)SNa (M + Na\(^+\)) 626.2295, found 626.2283.
Example A10: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenylbutyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (3-methyl-pyridin-4-ylmethyl)-amide

\[\text{Structure Image} \]

1H NMR (DMSO-d$_6$) δ 9.34 (s, 1H), 8.47 (t, J = 6.0, 1H), 8.29 (m, 2H), 8.11 (d, J = 8.3, 1H), 7.32-7.14 (m, 6H), 6.94 (t, J = 7.7, 1H), 6.78 (dd, J = 7.7, 1.0, 1H), 6.55 (dd, J = 7.7, 1.0, 1H), 5.49 (d, J = 6.7, 1H), 5.16 (d, J = 9.1, 1H), 5.03 (d, J = 9.1, 1H), 4.51-4.38 (m, 3H), 4.49 (s, 1H), 4.13 (dd, J = 16.4, 5.1, 1H), 2.88-2.69 (m, 2H), 2.25 (s, 3H), 1.83 (s, 3H), 1.53 (s, 3H), 1.37 (s, 3H); HRMS (ESI) m/z calc'd for C$_{31}$H$_{37}$N$_4$O$_5$S (M + H)$^+$ 577.2485, found 577.2463; Anal. Calc'd for C$_{31}$H$_{36}$N$_4$O$_5$S·0.3 H$_2$O: C, 63.96; H, 6.34; N, 9.63; S, 5.51. Found: C, 63.95; H, 6.42; N, 9.51; S, 5.22.

Example A11: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)methanoyl]amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (naphthalen-1-ylmethyl)-amide

\[\text{Structure Image} \]

IR (neat, cm$^{-1}$) 3425, 1643, 1531, 1455, 1378, 1290, 1108, 1H NMR (DMSO-d$_6$) δ 9.39 (s, 1H), 8.50 (t, J = 5.9, 1H), 8.15 (d, J = 8.0, 2H), 8.07 (d, J = 9.0, 1H), 7.90 (d, J = 7.1, 1H), 7.81 (d, J = 8.1, 1H), 7.54-7.12 (m, 9H), 6.95 (d, J = 7.0, 1H), 6.78 (d, J = 8.1, 1H), 6.56 (d, J = 7.0, 1H), 5.15 (d, J = 9.2, 1H), 5.01 (d, J = 9.2, 1H), 4.95-4.86 (m, 1H), 4.76-4.48 (m, 4H), 2.90-2.71 (m, 2H), 1.84 (s, 3H), 1.47 (s, 3H), 1.34 (s, 3H); HRMS (ESI) m/z calc'd for C$_{35}$H$_{37}$N$_3$O$_5$SNa (M + Na)$^+$ 634.2346, found 634.2332.
Example A12: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid [(R)-1-(tetrahydro-furan-2-yl)methyl]-amide

White solid: mp = 105-107 °C; IR (cm\(^{-1}\)) 3339, 1644, 1537, 1454, 1372, 1285, 1079; \(^1\)H NMR (DMSO-d\(_6\)) δ 9.37 (s, 1H), 8.12 (d, J = 8.8, 1H), 8.01 (t, J = 5.0, 1H), 7.34-7.15 (m, 5H), 6.93 (t, J = 7.5, 1H), 6.76 (d, J = 7.5, 1H), 6.53 (d, J = 7.5, 1H), 5.45 (d, J = 5.5, 1H), 5.07 (d, J = 9.3, 1H), 4.99 (d, J = 9.3, 1H), 4.50-4.10 (m, 3H), 3.83-3.55 (m, 5H), 3.20-3.00 (m, 2H); 2.90-2.60 (m, 2H), 1.90-1.70 (m, 2H), 1.79 (s, 3H), 1.48 (s, 3H), 1.34 (s, 3H); Anal. Calcd for C\(_{29}\)H\(_{37}\)N\(_3\)O\(_6\)S\(\cdot\)0.5 H\(_2\)O: C, 61.68; H, 6.78; N, 7.44. Found: C, 61.46; H, 6.74; N, 7.47.

Example A13: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid cyclohexylmethyl-amide

IR (neat or KBr cm\(^{-1}\)) 3743, 2924, 2360, 1868, 1844, 1771, 1699, 1646; \(^1\)H NMR (DMSO-d\(_6\)) δ 9.36 (s, 1H), 8.13 (d, J = 7.9 1H), 7.85 (t, J = 7.2, 1H), 7.34-7.13 (m, 5H), 6.93 (t, J = 7.9, 1H), 6.78 (d, J = 7.7, 1H), 6.53 (d, J = 7.1, 1H), 5.15 (d, J = 7.0, 1H), 5.08 (d, J = 7.8, 1H), 4.81 (s, 1H), 4.51 (d, J = 6.2 1H), 4.46(s, 1H), 4.38 (d, J = 6.32, 1H), 4.31(s, 6H) 2.86-2.67 (m, 4H), 2.55 (s, 1H), 1.81 (s, 3H), 1.64-1.54 (m, 6H), 1.51 (s, 3H), 1.39 (s, 3H), 1.18-1.08 (m, 4H), 0.99-0.78 (m, 3H); Anal. Calcd for C\(_{32}\)H\(_{47}\)N\(_3\)O\(_6\)S\(\cdot\)0.3 TFA\(\cdot\)0.75 H\(_2\)O: C, 61.67 H, 7.01 N, 6.83. Found: C, 61.78 H, 6.66 N, 6.63.
Example A14: 3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl) methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (benzo[1,3]dioxol-5-ylmethyl)-amide

IR (neat or KBr cm\(^{-1}\)) 3302, 2922, 2351, 2333, 1768, 1750, 1646, 1537; \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 9.36 (s, 1H), 8.44 (s, 1H), 8.13 (d, \(J = 7.9\) 1H), 7.34-7.13 (m, 5H), 6.99-6.77 (m, 4H), 6.78 (d, \(J = 7.7\), 1H), 5.93 (d, \(J = 7.1\), 2H), 5.15 (d, \(J = 7.0\), 1H), 5.08 (d, \(J = 7.8\), 1H), 4.43 (d, \(J = 9.32\), 2H), 4.34 (m, 2H), 4.12(d, \(J = 6.18\), 1H), 4.08 (d, \(J = 6.08\), 1H), 2.86-2.67 (m, 2H), 2.55 (s, 1H), 1.81 (s, 3H), 1.51 (s, 3H), 1.39 (s, 3H); Anal. Calcd C\(_{32}\)H\(_{35}\)N\(_3\)O\(_7\)S•0.65 TFA•1.0 H\(_2\)O: C, 57.31 H, 5.44 N, 6.02. Found: C, 57.58 H, 5.47 N, 5.85.

Example A15: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl) methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (furan-2-ylmethyl)-amide

IR (neat or KBr cm\(^{-1}\)) 3311, 2931, 2360, 2333, 1732, 1718, 1695, 1646; \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 9.36 (s, 1H), 8.44 (t, \(J = 6.98\), 1H), 8.13 (d, \(J = 7.9\) 1H), 7.53 (s, 1H), 7.34-7.13 (m, 5H), 6.95 (t, \(J = 7.8\), 1H), 6.78 (d, \(J = 7.7\), 1H), 6.56 (d, \(J = 7.4\), 1H), 6.35 (d, \(J = 7.1\), 1H), 6.26 (d, \(J = 7.12\), 1H), 5.15 (d, \(J = 7.0\), 1H), 5.08 (d, \(J = 7.8\), 1H), 4.45 (d, \(J = 7.5\), 1H), 4.34-4.22 (m, 4H), 4.20 (m, 2H), 2.86-2.67 (m, 2H), 1.81 (s, 3H), 1.51 (s, 3H), 1.39 (s,
3H); Anal. Calcd C_{29}H_{33}N_{3}O_{6}S•0.2 TFA•1.0 H_{2}O: C, 59.60 H, 5.99 N, 7.09. Found C, 59.68, H, 5.73 N, 6.97.

Example A16: (R)-3-((2S,3S)-2-Hydroxy-3-\{1-(3-hydroxy-2-methyl-phenyl)-methanoyl\}-amino\}-4-phenyl-butanoyl\}-5,5-dimethyl-thiazolidine-4-carboxylic acid (R)-chroman-4-ylamide

\[
\text{HO-}
\begin{array}{c}
\text{OH}
\end{array}
\text{N}
\begin{array}{c}
\text{O}
\end{array}
\text{N}
\begin{array}{c}
\text{O}
\end{array}
\text{N}
\begin{array}{c}
\text{O}
\end{array}
\text{S}
\begin{array}{c}
\text{O}
\end{array}
\text{N}
\begin{array}{c}
\text{O}
\end{array}
\text{N}
\begin{array}{c}
\text{O}
\end{array}
\text{N}
\begin{array}{c}
\text{O}
\end{array}
\text{N}
\begin{array}{c}
\text{O}
\end{array}
\]

White solid: mp = 135-136 °C; IR (cm\(^{-1}\)) 3312, 2928, 1644, 1584, 1520, 1489, 1454, 1283, 1105; \(^{1}\)H NMR (DMSO-\(d_{6}\)) \(\delta\) 9.37 (s, 1H), 8.55 (d, J = 8.2, 1H), 8.20 (d, J = 8.9, 1H), 7.36 (d, J = 7.2, 2H), 7.26-7.07 (m, 5H); 6.95-6.90 (m, 1H), 6.81-6.73 (m, 3H), 6.54 (d, J = 7.2, 1H), 5.47 (d, J = 6.9, 1H), 5.16 (d, J = 8.9, 1H), 5.01 (d, J = 8.9, 1H), 4.54-4.32 (m, 4H), 4.22-4.12 (m, 2H), 2.94-2.64 (m, 2H), 2.10-1.90 (m, 2H), 1.80 (s, 3H), 1.49 (s, 3H); Anal. Calcd for C_{33}H_{37}N_{3}O_{6}S•1.25 H_{2}O: C, 63.29; H, 6.36; N, 6.71. Found: C, 63.22; H, 6.18; N, 6.51.

Example A17: (R)-3-((2S,3S)-2-Hydroxy-3-\{1-(3-hydroxy-2-methyl-phenyl)-methanoyl\}-amino\}-4-phenyl-butanoyl\}-5,5-dimethyl-thiazolidine-4-carboxylic acid (S)-chroman-4-ylamide

\[
\text{HO-}
\begin{array}{c}
\text{OH}
\end{array}
\text{N}
\begin{array}{c}
\text{O}
\end{array}
\]

White solid: mp = 135-136 °C; IR (cm\(^{-1}\)) 3312, 2928, 1644, 1584, 1520, 1489, 1454, 1283, 1105; \(^{1}\)H NMR (DMSO-\(d_{6}\)) \(\delta\) 9.37 (s, 1H), 8.49 (d, J = 8.2, 1H), 8.23 (d, J = 8.4, 1H); 7.33-7.10 (m, 7H), 6.94-6.75 (m, 4H), 6.54 (d, J = 7.7, 1H), 5.34 (d, J = 7.2, 1H),
5.14 (d, J = 8.9, 1H), 5.01 (d, J = 8.9, 1H), 4.54-4.30 (m, 4H), 4.24-4.10 (m, 2H), 2.82-2.62 (m, 2H), 2.10-1.90 (m, 2H), 1.79 (s, 3H), 1.49 (s, 3H), 1.45 (s, 3H); Anal. Calcd for C_{33}H_{37}N_{3}O_{5}S·0.25 H_{2}O: C, 65.17; H, 6.21; N, 6.91. Found: C, 65.24; H, 6.28; N, 6.95.

5 Example A18: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (R)-thiochroman-4-ylamide

![Chemical Structure of Example A18](image)

White solid: mp = 125-127 °C; IR (cm⁻¹) 3313, 2927, 1644, 1585, 1520, 1455, 1285, 1081, 1048; ¹H NMR (DMSO-d₆) δ 9.37 (s, 1H), 8.61 (d, J = 8.3, 1H), 8.20 (d, J = 8.6, 1H), 7.38-6.90 (m, 10H), 6.76 (d, J = 8.1, 1H), 6.54 (d, J = 7.9, 1H), 5.46 (d, J = 6.6, 1H), 5.17 (d, J = 9.0, 1H), 5.01 (d, J = 9.0, 1H), 4.56-4.21 (m, 4H), 3.20-2.61 (m, 4H), 2.30-2.00 (m, 2H), 1.79 (s, 3H), 1.49 (s, 3H), 1.41 (s, 3H); Anal. Calcd for C_{33}H_{37}N_{3}O_{5}S₂·0.5 H_{2}O: C, 63.03; H, 6.09; N, 6.68. Found: C, 62.84; H, 6.29; N, 6.38.

Example A19: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (S)-thiochroman-4-ylamide

![Chemical Structure of Example A19](image)

White solid: mp = 125-127 °C; IR (cm⁻¹) 3312, 2927, 1644, 1585, 1520, 1455, 1372, 1285; ¹H NMR (DMSO-d₆) δ 9.37 (s, 1H), 8.47 (d, J = 7.5, 1H), 8.23 (d, J = 7.7, 1H), 7.37-6.91 (m, 10H), 6.76 (d, J = 8.6, 1H), 6.54 (d, J = 7.5, 1H), 5.33 (d, J = 6.8, 1H), 5.15
(d, J = 9.0, 1H), 5.00 (d, J = 9.0, 1H), 4.60-4.30 (m, 4H), 3.20-2.62 (m, 4H), 2.30-2.10 (m, 2H), 1.79 (s, 3H), 1.49 (s, 3H), 1.46 (s, 3H); Anal. Calcd for C_{33}H_{37}N_{3}O_{5}S_{2}·1.75 H_{2}O: C, 60.86; H, 6.27; N, 6.45. Found: C, 60.57; H, 5.90; N, 6.32.

Example A20: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl) methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid cyclopropylmethyl-amide

![Chemical Structure](image)

1H NMR (DMSO-d_6) 8 9.32, (s, 1H), 8.08 (d, J = 8.4, 1H), 7.98 (t, J = 6.0, 1H), 7.33 (d, J = 6.9, 2H), 7.24 (t, J = 7.2, 2H), 7.16 (t, J = 7.1, 1H), 6.94 (t, J = 7.8, 1H), 6.88 (d, J = 7.1, 1H), 6.55 (d, J = 6.6, 1H), 5.09 (d, J = 9.1, 1H), 5.00 (d, J = 9.1, 1H), 4.46 (d, J = 3.4, 1H), 4.41 (s, 1H), 4.40 (m, 1H), 2.95 (m, 2H), 2.87-2.65 (m, 2H), 1.82 (s, 3H), 1.50 (s, 3H), 1.38 (s, 3H), 0.89 (m, 1H), 0.38 (m, 2H), 0.16 (m, 2H); HRMS (ESI) m/z calc'd for C_{27}H_{32}N_{3}O_{5}SNa (M + Na)^+ 548.2190, found 548.2180.

Example A21: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl) methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid cyclohexylamide

![Chemical Structure](image)

1H NMR (DMSO-d_6) 8 9.33, (s, 1H), 8.18 (d, J = 8.4, 1H), 7.79 (d, J = 8.0, 1H), 7.35-7.12 (m, 5H), 6.92 (t, J = 7.9, 1H), 6.75 (d, J = 8.1, 1H), 6.53 (d, J = 7.5, 1H), 5.29 (d, J = 7.0, 1H), 5.09 (d, J = 9.2, 1H), 5.00 (d, J = 9.2, 1H), 4.56-4.37 (m, 2H), 3.61-3.49 (m, 2H),
2.89-2.65 (m, 2H), 1.80 (s, 3H), 1.79-1.58 (m, 5H), 1.48 (s, 3H), 1.36 (s, 3H), 1.35-1.02 (m, 5H); Anal. Calcd for C\textsubscript{30}H\textsubscript{39}N\textsubscript{3}O\textsubscript{5}S: C, 65.07%; H, 7.10; N, 7.59. Found: C, 65.39; H, 6.92; N, 7.32.

Example A22: 3-(2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid-(4-methyl-pyridin-3-ylmethyl) amide

![Chemical structure](image)

\(^1H\) NMR (DMSO-\textsubscript{d}6) \(\delta 9.33\) (s, 1H), 8.43 (s, 1H), 8.39 (t, \(J = 6.0\), 1H), 8.29 (d, \(J = 4.9\), 1H), 8.11 (d, \(J = 8.2\), 1H), 7.31 (d, \(J = 7.0\), 2H), 7.24 (d, \(J = 7.0\), 2H), 7.17 (m, 2H), 6.95 (t, \(J = 7.7\), 1H), 6.78 (d, \(J = 7.3\), 1H), 6.55 (d, \(J = 7.0\), 1H), 5.42 (d, \(J = 6.7\), 1H), 5.14 (d, \(J = 9.1\), 1H), 5.01 (d, \(J = 9.2\), 1H), 4.54-4.40 (m, 4H), 4.17 (dd, \(J = 5.1, 15.1\), 1H), 2.82 (dd, \(J = 3.0, 14.1\), 1H), 2.72 (dd, \(J = 10.1, 14.2\), 1H), 2.30 (s, 3H), 1.82 (s, 3H), 1.49 (s, 3H), 1.32 (s, 3H); Anal. Calcd for C\textsubscript{31}H\textsubscript{36}N\textsubscript{4}O\textsubscript{5}S\textsubscript{2}H\textsubscript{2}O: C, 60.76; H, 6.58; N, 9.14; S, 5.23. Found: C, 60.89; N, 6.26; H, 8.90; S, 5.05.

Example A23: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (thiophen-2-ylmethyl)-amide

![Chemical structure](image)

\(^1H\) NMR (DMSO-\textsubscript{d}6) \(\delta 9.35\) (s, 1H), 8.51 (t, \(J = 6.0\), 1H), 8.08 (d, \(J = 8.4\), 1H), 7.40-7.12 (m, 6H), 7.04-6.88 (m, 3H), 6.80 (d, \(J = 7.4\), 1H), 6.57 (d, \(J = 7.4\), 1H), 5.12 (d, \(J = 9.0\), 1H)
Example A24: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (5-chloro-benzo[b]thiophen-3-ylmethyl)-amide

IR (neat, cm⁻¹) 3401, 1643, 1531, 1443, 1284, 1H NMR (DMSO-d₆) δ 9.37 (s, 1H), 8.54 (t, J = 5.7, 1H), 8.16 (d, J = 8.4, 1H), 8.00-7.95 (m, 2H), 7.67 (s, 1H), 7.38 (dd, J = 8.6, 2.0, 1H), 7.32-7.11 (m, 5H), 6.97 (t, J = 7.7, 1H), 6.77 (d, J = 7.9, 1H), 6.55 (d, J = 7.1, 1H), 5.46 (s br, 1H), 5.14 (d, J = 9.3, 1H), 5.02 (d, J = 9.5, 1H), 4.62-4.40 (m, 5H), 2.87-2.67 (m, 2H), 1.82 (s, 3H), 1.47 (s, 3H), 1.30 (s, 3H); HRMS (ESI) m/z calcd for C₂₉H₃₃N₃O₅S₂Na(M + Na)⁺ 674.1521, found 674.1547; Anal. Calcd for C₂₉H₃₃N₃O₅S₂ClNa: C, 59.13; H, 5.41; N, 6.27. Found: C, 59.19; H, 5.41; N, 6.08.

Example A25: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid cyclopropylamide
1H NMR (DMSO-d$_6$) δ 9.32, (s, 1H), 8.20 (d, J = 8.4, 1H), 7.80 (d, J = 8.0, 1H), 7.36-7.10 (m, 5H), 6.90 (t, J = 7.9, 1H), 6.75 (d, J = 8.1, 1H), 6.55 (d, J = 7.5, 1H), 5.35 (d, J = 7.0, 1H), 5.15 (d, J = 9.2, 1H), 5.02 (d, J = 9.2, 1H), 4.59-4.30 (m, 3H), 2.89-2.65 (m, 3H), 1.82 (s, 3H), 1.48 (s, 3H), 1.36 (s, 3H), 0.73-0.59 (m, 2H) 0.57-0.33 (m, 2H); Anal. Calcd for C$_{27}$H$_{33}$N$_3$O$_5$S: C, 63.83; H, 6.50; N, 8.21. Found: C, 63.39; H, 6.82; N, 8.32.

Example A26: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl) methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid cyclobutylamide

![Chemical structure](image)

1H NMR (DMSO-d$_6$) δ 9.33, (s, 1H), 8.18 (d, J = 8.4, 1H), 7.79 (d, J = 8.0, 1H), 7.40-7.12 (m, 5H), 6.90 (t, J = 7.9, 1H), 6.75 (d, J = 8.1, 1H), 6.47 (d, J = 7.5, 1H), 5.34 (d, J = 7.0, 1H), 5.14 (d, J = 9.2, 1H), 4.99 (d, J = 9.2, 1H), 4.55-4.32 (m, 3H), 2.90-2.65 (m, 3H), 1.81 (s, 3H), 1.49 (s, 3H), 1.36 (s, 3H) 1.34-1.02 (m, 6H); Anal. Calcd for C$_{28}$H$_{35}$N$_3$O$_5$S: C, 63.97; H, 6.71; N, 7.99. Found: C, 64.05; H, 6.55; N, 8.07.

Example A27: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl) methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid cyclopentylamide

![Chemical structure](image)

1H NMR (DMSO-d$_6$) δ 9.33, (s, 1H), 8.15 (d, J = 8.4, 1H), 7.80 (d, J = 8.0, 1H), 7.38-7.11 (m, 5H), 6.88 (t, J = 7.9, 1H), 6.75 (d, J = 8.1, 1H), 6.52 (d, J = 7.4, 1H), 5.30 (d, J = 7.0,
Example A28: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)\-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (2-phenyl-cyclopropyl)-amide

![Chemical Structure Image]

IR (neat, cm\(^{-1}\)) 3425, 1637, 1525, 1455, 1278, \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 9.37 (s, 1H), 8.26 (m, 1H), 8.17 (d, \(J = 7.7\), 1H), 7.36-7.05 (m, 10H), 6.93 (t, \(J = 7.7\), 1H), 6.77 (d, \(J = 8.1\), 1H), 6.54 (d, \(J = 7.0\), 1H), 5.38 (d, \(J = 6.2\), 1H), 5.12 (d, \(J = 9.0\), 1H), 5.01 (d, \(J = 9.3\), 1H), 4.49-4.36 (m, 3H), 2.84-2.68 (m, 2H), 1.92-1.82 (m, 2H), 1.81 (s, 3H), 1.50 (s, 3H), 1.37 (s, 3H), 1.22-1.09 (m, 2H); HRMS (ESI) \(m/z\) calcd for C\(_{33}\)H\(_{37}\)N\(_3\)O\(_5\)SNa (M + Na\(^+\)) 610.2346, found 610.2335; Anal. Calcd for C\(_{33}\)H\(_{37}\)N\(_3\)O\(_5\)S*0.8H\(_2\)O: C, 65.82; H, 6.46; N, 6.98. Found: C, 65.77; H, 6.34; N, 6.84.

Example A29: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (R)-indan-1-ylamide

![Chemical Structure Image]

White solid: mp 128-130 °C; IR (neat, cm\(^{-1}\)) 3306, 1632, 1537, 1454, 1286; \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 9.37 (s, 1H), 8.37 (d, \(J = 8.1\), 1H), 8.17 (d, \(J = 8.4\), 1H), 7.38-7.06 (m, 9H),
6.93 (t, J = 7.5, 1H), 6.77 (d, J = 7.5, 1H), 6.54 (d, J = 7.5, 1H), 5.44 (d, J = 6.9, 1H), 5.35 (dd, J = 16.7, 8.1, 1H), 5.15 (d, J = 8.8, 1H), 5.01 (d, J = 8.8, 1H), 4.58-4.32 (m, 3H), 2.95-2.70 (m, 2H), 2.40-2.20 (m, 2H), 1.90-1.70 (m, 2H), 1.81 (s, 3H), 1.51 (s, 3H), 1.43 (s, 3H); Anal. Calc'd for C_{33}H_{37}N_{3}O_{5}S·0.75 H_{2}O: C, 65.92; H, 6.45; N, 6.99. Found: C, 65.57; H, 6.31; N, 6.82.

Example A30: N-{(1S,2S)-1-Benzyl-3-[(R)-5,5-dimethyl-4-(1-morpholin-4-yl-methanoyl)-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl]-3-hydroxy-2-methyl-benzamide

IR (neat, cm⁻¹) 3341, 2955, 1640, 1524, 1455, 1284, 1113, 1H NMR (DMSO-d$_6$) δ 9.36 (s, 1H), 8.24 (d, J = 8.6, 1H), 7.36-7.13 (m, 5H), 6.94 (t, J = 7.7, 1H), 6.78 (d, J = 7.5, 1H), 6.53 (d, J = 7.5, 1H), 5.34 (m, 1H), 5.12 (d, J = 9.2, 1H), 5.04 (d, J = 9.2, 1H), 4.50 (m, 1H), 4.33-4.30 (m, 2H), 3.78-3.51 (m, 8H), 2.81-2.62 (m, 2H), 1.80 (s, 3H), 1.56 (s, 3H), 1.38 (s, 3H); HRMS (ESI) m/z calc'd for NaC$_{29}$H$_{35}$N$_{3}$O$_{6}$S (M + Na)$^+$ 564.2139, found 564.2116.

Example A31: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid cycloheptylamine
Example A32: (R)-3-((2S,3S)-2-Hydroxy-3-\{[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino\}-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (S)-cyclohex-2-enylamide

White solid: mp 177-179 °C; IR (neat, cm⁻¹) 3319, 2943, 1637, 1531, 1455, 1361, 1284;
¹H NMR (DMSO-d₆) δ 9.35 (s, 1H), 8.16 (d, J = 7.6, 1H), 7.95 (d, J = 7.7, 1H), 7.38-7.10
(m, 5H), 6.93 (t, J = 7.6, 1H), 6.76 (d, J = 7.6, 1H), 6.53 (d, J = 7.6, 1H), 5.80-5.70
(m, 1H), 5.50-5.40 (m, 1H), 5.35 (d, J = 6.9, 1H), 5.11 (d, J = 9.2, 1H), 4.99 (d, J = 9.2,
1H), 4.55-4.30 (m, 4H), 2.84-2.62 (m, 2H), 2.00-1.62 (m, 9H), 1.48 (s, 3H), 1.37 (s, 3H);
Anal. Calcd for C₃₀H₃₇N₃O₅S • 0.5 H₂O: C, 64.26; H, 6.83; N, 7.49. Found: C, 64.21; H,
6.74; N, 7.36.

Example A33: N-\{(1S,2S)-1-Benzyl-3-\{(R)-5,5-dimethyl-4-(1-thiomorpholin-4-yl-methanoyl)-thiazolidin-3-yl\}-2-hydroxy-3-oxo-propyl\}-3-hydroxy-2-methyl-benzamide
1H NMR (DMSO-d6) δ 9.40 (s, 1H), 8.30 (d, J = 8.4, 1H), 7.40-7.16 (m, 5H), 6.97 (t, J = 7.5, 1H), 6.80 (d, J = 8.1, 1H), 6.57 (d, J = 7.1, 1H), 5.40 (d, J = 7.1, 1H), 5.18 (d, J = 9.2, 1H), 5.06 (d, J = 9.7, 1H), 4.54 (m, 1H), 4.35-4.19 (m, 2H), 3.68-3.59 (m, 2H), 3.28-3.10 (m, 2H), 2.87-2.44 (m, 6H), 1.83 (s, 3H), 1.60 (s, 3H), 1.37 (s, 3H); HRMS (ESI) m/z calc'd for C28H38N3O5S2Na (M + Na)⁺ 580.1910, found 580.1922.

Example A34: N-{(1S,2S)-1-Benzyl-3-[(R)-5,5-dimethyl-4-(1-piperidin-1-yl-methanoyl)-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl]-3-hydroxy-2-methyl-benzamide

![Chemical structure of Example A34](image1)

IR (neat, cm⁻¹) 3389, 2931, 1631, 1461, 1284, 1H NMR (DMSO-d6) δ 9.36 (s, 1H), 8.05 (d, J = 8.1, 1H), 7.38-7.12 (m, 5H), 6.94 (t, J = 7.7, 1H), 6.77 (d, J = 7.3, 1H), 6.53 (d, J = 7.3, 1H), 5.29 (d, J = 7.1, 1H), 5.14-5.01 (m, 2H), 4.50 (m, 1H), 4.32-4.19 (m, 2H), 3.78-3.67 (m, 2H), 3.42-3.09 (m, 2H), 2.81-2.62 (m, 2H), 1.80 (s, 3H), 1.75-1.35 (m, 6H), 1.57 (s, 3H), 1.36 (s, 3H); HRMS (ESI) m/z calc'd for C29H37N3O5SNa (M + Na)⁺ 562.2346, found 562.2327; Anal. Calcd for C29H37N3O5S•0.8H2O: C, 62.86; H, 7.02; N, 7.58. Found: C, 62.83; H, 6.95; N, 7.38.

Example A35: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (S)-indan-1-ylamide

![Chemical structure of Example A35](image2)
White solid: mp 204-206 °C; IR (neat, cm⁻¹) 3307, 1633, 1537, 1454, 1287; ᵃ¹H NMR (DMSO-d₆) δ 9.37 (s, 1H), 8.37 (d, J = 8.1, 1H), 8.17 (d, J = 8.4, 1H), 7.38-7.06 (m, 9H), 6.93 (t, J = 7.5, 1H), 6.77 (d, J = 7.5, 1H), 6.54 (d, J = 7.5, 1H), 5.44 (d, J = 6.9, 1H), 5.35 (dd, J = 16.7, 8.1, 1H), 5.13 (d, J = 8.8, 1H), 5.04 (d, J = 8.8, 1H), 4.58-4.32 (m, 3H), 2.95-2.70 (m, 2H), 2.40-2.20 (m, 2H), 1.90-1.70 (m, 2H), 1.81 (s, 3H), 1.51 (s, 3H), 1.43 (s, 3H); Anal. Calcd for C₃₃H₇₁N₅O₅S: C, 67.44; H, 6.35; N, 7.15. Found: C, 67.10; H, 6.43; N, 7.02.

Example A36: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (4-methyl-cyclohexyl)-amide

White solid: mp 192-194 °C; IR (neat, cm⁻¹) 3298, 2955, 1638, 1531, 1449, 1349, 1284, 1099; ᵃ¹H NMR (DMSO-d₆) δ 9.35 (s, 1H), 8.22-8.21 (m, 1H), 7.82-7.70 (m, 1H), 7.34-7.14 (m, 5H), 6.95-6.90 (m, 1H), 6.76 (d, J = 8.1, 1H), 6.53 (d, J = 7.3, 1H), 5.33 (d, J = 5.9, 1H), 5.13-4.94 (m, 2H), 4.60-4.30 (m, 3H), 3.80-3.40 (m, 1H), 2.81-2.68 (m, 2H), 1.79 (s, 3H), 1.80-1.13 (m, 15H), 0.89-0.82 (m, 3H); Anal. Calcd for C₃₁H₄₁N₅O₅S•1 H₂O: C, 63.57; H, 7.40; N, 7.17. Found: C, 63.73; H, 7.36; N, 6.91.

Example A37: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (tetrahydro-furan-2-ylmethyl)-amide
1H NMR (DMSO-d_6) δ 9.36 (s, 1H), 8.14 (d, $J = 8.8$, 1H), 8.03 (d, $J = 5.0$, 1H), 7.32-7.15 (m, 5H), 6.94 (t, $J = 7.5$, 1H), 6.79 (d, $J = 7.5$, 1H), 6.57 (d, $J = 7.5$, 1H), 5.49 (d, $J = 5.5$, 1H), 5.12 (d, $J = 9.3$, 1H), 5.02 (d, $J = 9.3$, 1H), 4.52-4.12 (m, 3H), 3.79-3.53 (m, 5H), 3.31-3.20 (m, 2H); 2.92-2.62 (m, 2H), 1.90-1.71 (m, 2H), 1.69 (s, 3H), 1.48 (s, 3H), 1.34 (s, 3H); Anal. Calcd for C$_{29}$H$_{37}$N$_3$O$_6$S•0.5 H$_2$O: C, 61.68; H, 6.78; N, 7.44. Found: C, 61.52; H, 6.62; N, 7.53.

Example A38: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (R)-cyclohex-2-enylamide

White solid: mp = 193-195 °C; IR (neat, cm$^{-1}$) 3316, 2931, 1637, 1584, 1519, 1449, 1349, 1279, 1085; 1H NMR (DMSO-d_6) δ 9.34 (s, 1H), 8.14 (d, $J = 8.4$, 1H), 8.03 (d, $J = 8.1$, 1H), 7.35-7.12 (m, 5H), 6.93 (t, $J = 7.2$, 1H), 6.77 (d, $J = 7.2$, 1H), 6.53 (d, $J = 7.2$, 1H), 5.79(d, $J = 9.9$, 1H), 5.52 (d, $J = 9.9$, 1H), 5.36 (d, $J = 6.8$, 1H), 5.10 (d, $J = 9.2$, 1H), 4.99 (d, $J = 9.2$, 1H), 4.48-4.20 (m, 4H), 2.84-2.62 (m, 2H), 2.00-1.85 (m, 2H), 1.80 (s, 3H), 1.80-1.40 (m, 4H), 1.48 (s, 3H), 1.37 (s, 3H); Anal. Calcd for C$_{30}$H$_{37}$N$_3$O$_5$S•0.25 H$_2$O: C, 64.60; H, 6.78; N, 7.53. Found: C, 64.83; H, 6.72; N, 7.44.
Example A39: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (cyclopent-1-enylmethyl)-amide

\[
\begin{align*}
\text{HO} & \quad \text{N} \quad \text{O} \\
\text{R} & \quad \text{O} \quad \text{N} \quad \text{S} \quad \text{N} \\
& \quad \text{OH} \quad \text{S} \quad \text{NH} \\
\end{align*}
\]

\[\text{H NMR (DMSO-d}_6) \delta 9.37 (s, 1H), 8.11 (d, J = 7.9, 1H), 8.06 (t, J = 5.7, 1H), 7.33-7.13 (m, 5H), 6.94 (t, J = 7.7, 1H), 6.77 (d, J = 8.1, 1H), 6.53 (d, J = 7.5, 1H), 5.50 (s, 1H), 5.45 (d, J = 6.6, 1H), 5.11 (d, J = 9.0, 1H), 4.98 (d, J = 9.2, 1H), 4.47-4.38 (m, 3H), 3.81 (dd, J = 15.8, 6.4, 1H), 3.61 (dd, J = 15.9, 5.3, 1H), 2.84-2.67 (m, 2H), 2.20-2.15 (m, 4H), 1.83-1.73 (m, 2H), 1.80 (s, 3H), 1.49 (s, 3H), 1.35 (s, 3H); HRMS (ESI) m/z calcd for C\text{\textsubscript{30}}H\text{\textsubscript{37}}N\text{\textsubscript{3}}O\text{\textsubscript{3}}S\text{\textsubscript{2}}Na (M + Na+) 574.2346, found 574.2354.

Example A40: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (thiophen-3-ylmethyl)-amide

\[
\begin{align*}
\text{HO} & \quad \text{N} \quad \text{O} \\
\text{R} & \quad \text{O} \quad \text{N} \quad \text{S} \quad \text{N} \\
& \quad \text{OH} \quad \text{S} \quad \text{NH} \\
\end{align*}
\]

\[\text{H NMR (DMSO-d}_6) \delta 9.40 (s, 1H), 8.44 (t, J = 5.7, 1H), 8.16 (d, J = 8.1, 1H), 7.45 (m, 1H), 7.35-7.15 (m, 6H), 7.05 (d, J = 6.0, 1H), 6.97 (t, J = 7.7, 1H), 6.80 (d, J = 8.1, 1H), 6.57 (d, J = 7.3, 1H), 5.52 (d, J = 6.4, 1H), 5.15 (d, J = 9.3, 1H), 5.03 (d, J = 9.2, 1H), 5.12-4.37 (m, 4H), 2.86-2.67 (m, 2H), 4.18 (dd, J = 15.2, 5.1, 1H), 2.89-2.70 (m, 2H), 1.84 (s, 3H), 1.52 (s, 3H), 1.36 (s, 3H); HRMS (ESI) m/z calcd for C\text{\textsubscript{29}}H\text{\textsubscript{33}}N\text{\textsubscript{3}}O\text{\textsubscript{3}}S\text{\textsubscript{2}}Na (M + Na+) 590.1754, found 590.1734; Anal. Calcd for C\text{\textsubscript{29}}H\text{\textsubscript{33}}N\text{\textsubscript{3}}O\text{\textsubscript{3}}S\text{\textsubscript{2}}•0.6 H\text{\textsubscript{2}}O: C, 60.20; H, 5.96; N, 7.26. Found: C, 60.26; H, 6.02; N, 7.08.
Example A41: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (thiazol-2-ylmethyl)-amide

\[
\text{HO} \quad \text{O} \quad \text{N} \quad \text{O} \quad \text{N} \quad \text{O} \quad \text{N} \\
\text{HO}\text{-} \quad \text{HO} \quad \text{OH} \quad \text{S} \quad \text{S} \quad \text{N} \\
\text{O} \quad \text{O} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N}
\]

\(^1\)H NMR (DMSO-d\text{$_6$}) \(\delta\) 9.38 (s, 1H), 8.82 (t, \(J = 5.9\), 1H), 8.11 (d, \(J = 8.2\), 1H), 7.68 (d, \(J = 3.3\), 1H), 7.57 (d, \(J = 3.1\), 1H), 7.33-7.13 (m, 5H), 6.94 (t, \(J = 7.7\), 1H), 6.77 (d, \(J = 7.3\), 1H), 6.54 (d, \(J = 6.6\), 1H), 5.49 (d, \(J = 6.4\), 1H), 5.11 (d, \(J = 9.3\), 1H), 5.02 (d, \(J = 9.3\), 1H), 4.64-4.38 (m, 5H), 2.88-2.68 (m, 2H), 1.82 (s, 3H), 1.51 (s, 3H), 1.36 (s, 3H); HRMS (ESI) \(m/z\) calcd for C\(_{28}\)H\(_{32}\)N\(_4\)O\(_5\)S\(_2\)Na (M + Na)\(^+\) 591.1706, found 591.1710.

Example A42: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenylbutyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (5,6,7,8-tetrahydro-quinolin-5-yl)-amide

\[
\text{HO} \quad \text{O} \quad \text{N} \quad \text{O} \quad \text{N} \\
\text{O} \quad \text{O} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N}
\]

Purified by Prep HPLC using 15% CH\(_3\)CN/H\(_2\)O (0.1% TFA) to 95% CH\(_3\)CN at 254 nm.

White foam; IR (cm\(^{-1}\)) 3298, 2943, 1637, 1584, 1531, 1447, 1366; \(^1\)H NMR (DMSO-d\text{$_6$}) \(\delta\) 9.36 (s, 1H), 8.34-8.28 (m, 2H), 8.20 (d, \(J = 8.6\), 1H), 7.55 (d, \(J = 6.9\), 1H), 7.27-6.90 (m, 7H), 6.76 (d, \(J = 8.1\), 1H), 6.53 (d, \(J = 7.5\), 1H), 5.37 (d, \(J = 6.7\), 1H), 5.10-5.00 (m, 1H), 5.14 (d, \(J = 9.3\), 1H), 5.01 (d, \(J = 9.3\), 1H), 4.58-4.40 (m, 2H), 4.40 (s, 1H), 2.90-2.60 (m, 2H), 2.00-1.80 (m, 6H), 1.79 (s, 3H), 1.49 (s, 3H), 1.42 (s, 3H); Anal. Calcd for
C₃₃H₃₈N₄O₅S•0.5 TFA•0.6 H₂O: C, 60.90; H, 5.97; N, 8.36. Found: C, 60.87; H, 6.28; N, 8.44.

Example A43: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenylbutyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (5,6,7,8-tetrahydro-quinolin-5-yl)-amide

![Structure of Example A43](image)

Purified by Prep HPLC using 15% CH₃CN/H₂O (0.1% TFA) to 95% CH₃CN at 254 nm. White foam; IR (cm⁻¹) 3298, 2942, 1637, 1584, 1531, 1447, 1366, 1208, 1091; ¹H NMR (DMSO-d₆) δ 9.36 (s, 1H), 8.47 (d, J = 8.8, 1H), 8.30 (dd, J = 4.8, 1.2, 1H), 8.18 (d, J = 8.4, 1H), 7.63 (d, J = 7.2, 1H), 7.37-6.90 (m, 7H), 6.76 (d, J = 8.1, 1H), 6.55 (d, J = 7.5, 1H), 5.45 (d, J = 6.9, 1H), 5.50-5.05 (m, 1H), 5.16 (d, J = 8.9, 1H), 5.01 (d, J = 8.9, 1H), 4.52-4.49 (m, 2H), 4.42 (s, 1H), 3.00-2.65 (m, 2H), 2.00-1.60 (m, 6H), 1.80 (s, 3H), 1.50 (s, 3H), 1.42 (s, 3H); Anal. Calcd for C₃₃H₃₈N₄O₅S•0.5 TFA•0.6 H₂O: C, 60.90; H, 5.97; N, 8.36. Found: C, 60.87; H, 6.28; N, 8.44.

Example A44: 3-(2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (1H-indazol-3-ylmethyl)-amide

![Structure of Example A44](image)

¹H NMR (DMSO-d₆) δ 12.81 (s, 1H), 9.34 (s, 1H), 8.51 (t, J = 5.5, 1H), 8.14 (d, J = 8.2, 1H) 7.86-6.56 (m, 12H), 5.35 (d, J = 6.6, 1H), 5.12 (d, J = 9.1, 1H), 5.03 (d, J = 9.1, 1H), 4.71 (s, 1H), 4.53 (s, 1H), 4.33 (s, 1H), 3.62 (m, 2H), 2.54-1.98 (m, 15H), 1.42 (s, 3H), 1.33 (s, 3H); Anal. Calcd for C₃₃H₃₈N₄O₅S•0.5 TFA•0.6 H₂O: C, 60.90; H, 5.97; N, 8.36. Found: C, 60.87; H, 6.28; N, 8.44.
4.74-4.41 (m, 5H), 4.49 (s, 1H), 2.91-2.69 (m, 2H), 1.84 (s, 3H), 1.47 (s, 3H), 1.30 (s, 3H); Anal. Calcd for C_{32}H_{35}N_{5}O_{3}S 0.5 EtOAc: C, 63.23; H, 6.09; N, 10.85; S, 4.97. Found: C, 63.12; H, 6.27; N, 10.78; S, 4.86.

Example A45: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (furan-3-ylmethyl)-amide

![Chemical Structure](image)

^1H NMR (DMSO-d$_6$) δ 9.40 (s, 1H), 8.34 (t, $J = 5.7$, 1H), 8.18 (d, $J = 8.4$, 1H), 7.57 (m, 2H), 7.36-7.15 (m, 5H), 6.97 (t, $J = 7.7$, 1H), 6.80 (d, $J = 7.9$, 1H), 6.57 (d, $J = 7.3$, 1H), 6.41 (s, 1H), 5.47 (d, $J = 6.2$, 1H), 5.12 (d, $J = 9.2$, 1H), 5.00 (d, $J = 9.2$, 1H), 4.46-4.39 (m, 3H), 4.22-3.98 (m, 2H), 2.85-2.67 (m, 2H), 1.81 (s, 3H), 1.48 (s, 3H), 1.32 (s, 3H); HRMS (ESI) m/z calcd for C$_{29}$H$_{34}$N$_{5}$O$_{6}$S (M + H)$^+$ 552.2168, found 551.2173; Anal. Calcd for C$_{29}$H$_{33}$N$_{5}$O$_{6}$S: C, 61.63; H, 6.15; N, 7.43. Found: C, 61.76; H, 6.10; N, 7.24.

Example A46: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (tetrahydro-furan-3-ylmethyl)-amide

![Chemical Structure](image)

^1H NMR (DMSO-d$_6$) δ 9.36 (s, 1H), 8.14-8.03 (m, 2H), 7.34-7.13 (m, 5H), 6.93 (t, $J =$ 7.9, 1H), 6.76 (d, $J = 8.1$, 1H), 6.52 (d, $J = 7.5$, 1H), 5.43 (m, 1H), 5.10 (d, $J = 9.3$, 1H), 4.99 (d, $J = 9.2$, 1H), 4.46-4.35 (m, 3H), 3.69-3.50 (m, 4H), 3.40-3.22 (m, 1H), 3.12-2.95
Example A47: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenylbutyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (4,5,6,7-tetrahydro-benzofuran-4-yl)-amide

White foam; IR (cm⁻¹) 3331, 2943, 1643, 1590, 1522, 1445, 1364, 1282; ¹H NMR (DMSO-d₆) δ 9.35 (s, 1H), 8.21-8.16 (m, 2H), 7.42-7.14 (m, 6H), 6.96-6.90 (m, 1H), 6.76 (d, J = 8.2, 1H), 6.54 (d, J = 7.2, 1H), 6.28 (d, J = 1.8, 1H), 5.39 (d, J = 6.9, 1H), 5.13 (d, J = 9.0, 1H), 5.02 (d, J = 9.0, 1H), 4.90-4.70 (m, 1H), 4.55-4.30 (m, 3H), 2.89-2.68 (m, 2H), 1.81 (s, 3H), 2.00-1.50 (m, 6H), 1.48 (s, 3H), 1.39 (s, 3H); Anal. Calcd for C₃₅H₃₇N₃O₆S•0.5 H₂O: C, 63.98; H, 6.38; N, 6.99. Found: C, 63.93; H, 6.44; N, 6.68.

Example A48: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenylbutyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (4,5,6,7-tetrahydro-benzofuran-4-yl)-amide

White foam; IR (cm⁻¹) 3316, 2935, 1754, 1657, 1642, 1584, 1530, 1454, 1357, 1284, 1209; ¹H NMR (DMSO-d₆) δ 9.35 (s, 1H), 8.19 (d, J = 8.8, 1H), 8.14 (d, J = 8.1, 1H),
7.43-7.14 (m, 6H), 6.96-6.91 (m, 1H), 6.77 (d, J = 7.9, 1H), 6.54 (d, J = 7.5, 1H), 6.38 (d, J = 1.9, 1H), 5.32 (d, J = 6.9, 1H), 5.13 (d, J = 9.0, 1H), 5.00 (d, J = 9.0, 1H), 4.83-4.50 (m, 1H), 4.52-4.12 (m, 3H), 2.82-2.62 (m, 2H), 1.79 (s, 3H), 2.00-1.50 (m, 6H), 1.47 (s, 3H), 1.41 (s, 3H); Anal. Caled for C$_{32}$H$_{37}$N$_{3}$O$_{6}$S•0.5 H$_{2}$O: C, 63.98; H, 6.38; N, 6.99. Found: C, 64.03; H, 6.37; N, 6.66.

Example A49: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (4,5,6,7-tetrahydro-benzo[b]thiophen-4-yl)-amide

White foam; IR (cm$^{-1}$) 3317, 2943, 1643, 1525, 1455, 1367, 1256; 1H NMR (DMSO-d$_6$) δ 9.36 (s, 1H), 8.36 (d, J = 8.6, 1H), 8.18 (d, J = 8.2, 1H), 7.37 (d, J = 7.2, 1H), 7.28-6.75 (m, 8H), 6.54 (d, J = 7.2, 1H), 5.41 (d, J = 6.9, 1H), 5.14 (d, J = 8.8, 1H), 4.99 (d, J = 8.8, 1H), 5.00-4.56 (m, 1H), 4.52-4.30 (m, 3H), 2.80-2.60 (m, 2H), 1.81 (s, 3H), 2.00-1.60 (m, 6H), 1.49 (s, 3H), 1.41 (s, H); Anal. Caled for C$_{32}$H$_{37}$N$_{3}$O$_{6}$S•0.5 H$_{2}$O: C, 62.31; H, 6.21; N, 6.81. Found: C, 62.30; H, 6.17; N, 6.60.

Example A50: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (4,5,6,7-tetrahydro-benzo[b]thiophen-4-yl)-amide
White foam; IR (cm⁻¹) 3321, 2935, 1642, 1585, 1530, 1372, 1283, 1045; ¹H NMR (DMSO-d₆) δ 9.35 (s, 1H), 8.24 (d, J = 8.8, 1H), 8.20 (d, J = 8.4, 1H), 7.31 (d, J = 7.2, 1H), 7.23-6.70 (m, 8H), 6.54 (d, J = 7.2, 1H), 5.32 (d, J = 6.4, 1H), 5.13 (d, J = 9.2, 1H), 5.01 (d, J = 9.2, 1H), 5.00-4.60 (m, 1H), 4.60-4.30 (m, 3H), 2.80-2.60 (m, 2H), 1.80 (s, 3H), 2.00-1.60 (m, 6H), 1.47 (s, 3H), 1.42 (s, 3H); Anal. Calcd for C₃₂H₇₇N₇O₅S₂: C, 63.24; H, 6.14; N, 6.91. Found: C, 63.59; H, 6.20; N, 6.68.

Example A51: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenylbutyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (6,7-dihydro-5H-[1]pyridin-5-yl)-amide

![Chemical Structure](image)

Purified by Prep HPLC using 15% CH₃CN/H₂O (0.1% TFA) to 95% CH₃CN at 254 nm.

White foam; IR (cm⁻¹) 3296, 2966, 1644, 1538, 1554, 1373, 1284, 1046; ¹H NMR (DMSO-d₆) δ 9.36 (s, 1H), 8.41 (d, J = 7.3, 1H), 8.33 (d, J = 4.4, 1H), 8.19 (d, J = 9.2, 1H), 7.55 (d, J = 7.2, 1H), 7.36 (d, J = 7.2, 1H), 7.28-6.90 (m, 6H), 6.76 (d, J = 7.9, 1H), 6.53 (d, J = 6.6, 1H), 5.39 (d, J = 7.2, 1H), 5.32 (dd, J = 14.9, 7.3, 1H), 5.15 (d, J = 9.0, 1H), 5.02 (d, J = 9.0, 1H), 4.54-3.54 (m, 3H), 3.00-2.60 (m, 4H), 2.44-2.30 (m, 1H), 1.98-1.81 (m, 1H), 1.79 (s, 3H), 1.48 (s, 3H), 1.40 (s, 3H); Anal. Calcd for C₃₂H₃₆N₄O₅S•0.25 TFA•0.5 H₂O: C, 62.33; H, 6.00; N, 8.95. Found: C, 62.58; H, 6.15; N, 8.95.
Example A52: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenylbutyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (6,7-dihydro-5H-[1]pyrindin-5-yl)-amide

Purified by Prep HPLC using 15% CH₃CN/H₂O (0.1% TFA) to 95% CH₃CN at 254 nm. White foam; IR (cm⁻¹) 3296, 2966, 1643, 1539, 1554, 1373, 1284, 1045; ¹H NMR (DMSO-d₆) δ 9.35 (s, 1H), 8.59 (d, J = 8.0, 1H), 8.32 (d, J = 4.0, 1H), 8.16 (d, J = 8.4, 1H), 7.57 (d, J = 7.7, 1H), 7.36 (d, J = 7.7, 1H), 7.25-6.90 (m, 6H), 6.76 (d, J = 8.0, 1H), 5.54 (d, J = 7.7, 1H), 5.43 (d, J = 6.9, 1H), 5.36 (dd, J = 16.0, 8.0, 1H), 5.14 (d, J = 9.0, 1H), 5.01 (d, J = 9.0, 1H), 4.54-4.36 (m, 3H), 2.90-2.70 (m, 4H), 2.44-2.30 (m, 1H), 1.84-1.70 (m, 1H), 1.80 (s, 3H), 1.51 (s, 3H), 1.42 (s, 3H); Anal. Calcd for C₃₂H₃₆N₄O₅S•0.25 TFA•0.5 H₂O: C, 62.33; H, 6.00; N, 8.95. Found: C, 62.41; H, 6.38; N, 8.81.

Example A53: (R)-3-(((2S,3S)-2-Hydroxy-3-{[1-(3-hydroxy-2-methyl-phenyl)methanoyl]-amino}-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (2-methyl-furan-3-ylmethyl)-amide

¹H NMR (DMSO-d₆) δ 9.37 (s, 1H), 8.20 (m, 1H), 8.14 (d, J = 7.9, 1H), 7.35-7.13 (m, 6H), 6.94 (t, J = 7.7, 1H), 6.75 (d, J = 8.0, 1H), 6.53 (d, J = 7.5, 1H), 6.28 (s, 1H), 5.42 (d, J = 6.6, 1H), 5.11 (d, J = 9.0, 1H), 4.99 (d, J = 9.1, 1H), 4.46-4.38 (m, 3H), 4.12-3.92 (m, 2H), 2.84-2.66 (m, 2H), 2.20 (s, 3H), 1.80 (s, 3H), 1.46 (s, 3H), 1.30 (s, 3H); HRMS (ESI)
m/z calc'd for C$_{30}$H$_{38}$N$_3$O$_6$S (M + H)$^+$ 566.2332, found 566.2325.; Anal. Calc'd for C$_{30}$H$_{38}$N$_3$O$_6$S•0.5 H$_2$O: C, 62.70; H, 6.31; N, 7.31. Found: C, 62.82; H, 6.19; N, 7.09.

Example A54: (R)-3-[(2S,3S)-2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (3-methyl-benzofuran-2-ylmethyl)-amide

1H NMR (DMSO-d$_6$) δ 9.37 (s, 1H), 8.55 (t, $J = 5.5$, 1H), 8.15 (d, $J = 8.3$, 1H), 7.52 (d, $J = 6.9$, 1H), 7.51-7.36 (m, 3H), 7.28-7.18 (m, 5H), 6.96 (t, $J = 7.8$, 1H), 6.78 (d, $J = 8.0$, 1H), 6.55 (d, $J = 7.4$, 1H), 5.42 (br s, 1H), 5.12 (d, $J = 9.1$, 1H), 5.00 (d, $J = 9.1$, 1H), 4.48-4.39 (m, 5H), 2.83 (m, 1H), 2.72 (dd, $J = 13.5, 10.7$, 1H), 2.20 (s, 3H), 1.99 (s, 3H), 1.46 (s, 3H), 1.27 (s, 3H); HRMS (ESI) m/z calc'd for C$_{34}$H$_{38}$N$_3$O$_6$S (M + H)$^+$ 616.2481, found 616.2464; Anal. Calc'd for C$_{34}$H$_{37}$N$_3$O$_6$S: C, 66.32; H, 6.06; N, 6.82. Found: C, 60.06; H, 6.04; N, 6.71.

Example A55: (R)-3-[(2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid ((S)-6,8-difluoro-chroman-4-yl)-amide

White solid: 1H NMR (DMSO) δ 9.36 (s, 1H), 8.49 (d, $J = 8.1$, 1H), 8.21 (d, $J = 8.6$, 1H), 7.30-6.50 (m, 10H), 5.34 (d, $J = 6.2$, 1H), 5.16 (d, $J = 9.3$, 1H), 5.10-4.90 (m, 2H), 4.55-
4.20 (m, 3H), 2.80-2.60 (m, 2H), 2.10-1.95 (m, 2H), 1.78 (s, 3H), 1.50 (s, 3H), 1.43 (s, 3H), 1.40-1.35 (m, 1H), 1.30-1.20 (m, 1H); HRMS (ESI) \(m / z \) calcd for \(C_{33}H_{36}N_3O_6F_2S (M + H)^+ \) 640.2293, found 640.2284.

Example A56: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid ((S)-5-fluoro-indan-1-yl)-amide

\[
\begin{align*}
\text{HO} & \text{N} \text{O} \text{N} \text{S} \\
\end{align*}
\]

White solid: \(^1H \) NMR (DMSO) \(\delta \) 9.36 (s, 1H), 8.33 (d, \(J = 7.8 \), 1H), 8.20 (d, \(J = 8.6 \), 1H), 7.30-6.50 (m, 11H), 5.37 (d, \(J = 6.9 \), 1H), 5.30-5.20 (m, 1H), 5.14 (d, \(J = 8.9 \), 1H), 5.02 (d, \(J = 8.9 \), 1H), 4.60-4.30 (m, 3H), 3.00-2.60 (m, 4H), 2.90-2.30 (m, 1H), 2.00-1.80 (m, 1H), 1.19 (s, 3H), 1.48 (s, 3H), 1.41 (s, 3H); HRMS (ESI) \(m / z \) calcd for \(C_{33}H_{37}N_3O_6F_2S (M + H)^+ \) 606.2438, found 606.2441.

Example A57: N-[(1S,2S)-1-Benzyl-3-[(R)-5,5-dimethyl-4-(N'-methyl-N'-phenyl-hydrazinocarbonyl)-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl]-3-hydroxy-2-methyl-benzamide

\[
\begin{align*}
\text{HO} & \text{N} \text{O} \text{N} \text{S} \\
\end{align*}
\]

\(^1H \) NMR (DMSO-\(d_6 \)) \(\delta \) 10.12 (s, 1H), 9.37 (s, 1H), 8.18 (d, 1H, \(J = 8.2 \)), 7.26-7.11 (m, 7H), 6.96-6.87 (m, 3H), 6.77 (d, 1H, \(J = 7.3 \)), 6.68 (t, 1H, \(J = 7.1 \)), 6.54 (d, 1H, \(J = 7.5 \)), 5.55 (d, 1H, \(J = 6.6 \)), 5.16 (d, 1H, \(J = 9.3 \)), 5.04 (d, 1H, \(J = 9.2 \)), 4.48 (d, 1H, \(J = 4.5 \)), 4.42-4.32 (m, 1H), 4.40 (s, 1H), 3.05 (s, 3H), 2.86-2.68 (m, 2H), 1.81 (s, 3H), 1.55 (s, 3H),
1.47 (s, 3H). Exact mass calculated for C$_{31}$H$_{37}$N$_4$O$_5$S (M + H)$^+$ 577.2485, found 577.2469.

Example A58: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenylbutyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (ethyl-morpholino)-amide

![Chemical structure](image)

White solid: 1H NMR (DMSO-d$_6$) δ 9.81, (s 1H), 9.40 (s, 1H), 8.18 (s, 1H), 7.41-6.91 (m, 10H), 6.62 (d, J = 7.7, 1H), 5.12 (q, J = 9.3, 1H), 4.44-4.35 (m, 3H), 4.08-2.78 (m, 12H), 2.81-2.67 (m, 2H), 1.88 (s, 3H), 1.49 (s, 3H), 1.34 (s, 3H); Anal. (C$_{30}$H$_{40}$N$_4$O$_6$S\cdot1.0H$_2$O\cdot0.5 TFA) calculated C (56.13), H (6.45), N (8.42), found C (56.31), H (6.55), N (7.83). HRMS (ESI) m/z calcd for 585.2740, found 585.2747.

Example A59: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (2,2-difuoro-benzo[1,3]dioxol-5-ylmethyl)-amide

![Chemical structure](image)

1H NMR (DMSO-d$_6$) δ 9.36 (s, 1H), 8.55 (t, J = 5.8, 1H), 8.14 (d, J = 8.4, 1H), 7.29-7.11 (m, 8H), 6.94 (t, J = 7.8, 1H), 6.77 (d, J = 7.9, 1H), 6.54 (d, J = 7.4, 1H), 5.58 (d, J = 8.2, 1H), 5.17 (d, J = 9.2, 1H), 5.02 (d, J = 9.2, 1H), 4.49-4.39 (m, 3H), 4.43 (s, 1H), 4.21 (dd, J = 5.4, 15.3, 1H), 2.83 (m, 1H), 2.71 (dd, J = 13.5, 10.7, 1H), 2.20 (s, 3H), 1.51 (s, 3H), 1.34 (s, 3H); HRMS (ESI) m/z calcd for C$_{32}$H$_{34}$F$_2$N$_3$O$_7$S (M + H)$^+$ 642.2086, found
642.2099; Anal. Calcd for C_{32}H_{33}F_{2}N_{3}O_{7}S: C, 59.90; H, 5.18; N, 6.55. Found: C, 60.01; H, 5.27; N, 6.29.

Example A60: (R)-3-[(2S,3S)-2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (1H-benzoimidazol-2-ylmethyl)-amide

![Chemical Structure]

^1H NMR (DMSO-d6) δ 9.37 (s, 1H), 8.72 (t, J = 5.5, 1H), 8.18 (d, J = 8.3, 1H), 7.33-7.11 (m, 10H), 6.95 (t, J = 7.9, 1H), 6.79 (d, J = 8.1, 1H), 6.57 (d, J = 7.1, 1H), 5.54 (d, J = 6.6, 1H), 5.14 (d, J = 9.3, 1H), 5.05 (d, J = 9.3, 1H), 4.75 (m, 1H), 4.55-4.28 (m, 3H), 4.09 (dd, J = 10.4, 5.2, 1H), 2.86 (m, 1H), 2.72 (dd, J = 13.5, 10.7, 1H), 1.82 (s, 3H), 1.53 (s, 3H), 1.36 (s, 3H); HRMS (ESI) m/z calcd for C_{32}H_{35}N_{3}O_{7}S (M + H)^+ 602.2437, found 602.2424; Anal. Calcd for C_{32}H_{35}N_{3}O_{7}S: C, 63.12; H, 5.93; N, 11.50. Found: C, 63.02; H, 5.99; N, 11.49.

Example A61: (R)-3-[(2S,3S)-2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (1H-indol-2-ylmethyl)-amide

![Chemical Structure]

^1H NMR (DMSO-d6) δ 10.74 (s, 1H), 9.39 (s, 1H), 8.46 (t, J = 4.9, 1H), 8.17 (d, J = 8.3, 1H), 7.45 (d, J = 7.7, 1H), 7.37 (t, J = 7.9, 2H), 7.26 (t, J = 7.1, 2H), 7.18 (d, J = 7.2, 1H),
7.10 (t, J = 7.2, 1H), 6.99 (d, J = 7.6, 1H), 6.95 (d, J = 7.5, 1H), 6.79 (d, J = 7.7, 1H), 6.57 (d, J = 7.1, 1H), 6.41 (s, 1H), 5.49 (br s, 1H), 5.15 (d, J = 9.1, 1H), 5.02 (d, J = 9.2, 1H), 4.69-4.39 (m, 4H), 2.86 (m, 1H), 2.74 (dd, J = 13.5, 10.6, 1H), 1.83 (s, 3H), 1.50 (s, 3H), 1.38 (s, 3H); HRMS (ESI) m/z calcd for C_{33}H_{37}N_{4}O_{5}S (M + H)^+ 601.2485, found 605.2460.

Example A62: (R)-3-[(2S,3S)-2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (benzofuran-2-ylmethyl)-amide

![Chemical structure](image)

1H NMR (DMSO-d$_6$) δ 9.37 (s, 1H), 8.55 (t, J = 5.5, 1H), 8.15 (d, J = 8.3, 1H), 7.52 (d, J = 6.9, 1H), 7.51-7.36 (m, 3H), 7.28-7.18 (m, 5H), 6.96 (t, J = 7.8, 1H), 6.78 (d, J = 8.0, 1H), 6.61 (s, 1H), 6.55 (d, J = 7.4, 1H), 5.42 (br s, 1H), 5.12 (d, J = 9.1, 1H), 5.00 (d, J = 9.1, 1H), 4.48-4.39 (m, 5H), 2.83 (m, 1H), 2.72 (dd, J = 13.5, 10.7, 1H), 1.99 (s, 3H), 1.46 (s, 3H), 1.27 (s, 3H); HRMS (ESI) m/z calcd for C_{33}H_{36}N_{3}O_{6}S (M + H)^+ 602.2325, found 602.2326.

Example A63: (R)-3-[(2S,3S)-2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (1-methyl-1H-indol-2-ylmethyl)-amide

![Chemical structure](image)
1H NMR (DMSO-d$_6$) δ 9.39 (s, 1H), 8.46 (t, $J = 4.9$, 1H), 8.17 (d, $J = 8.3$, 1H), 7.45 (d, $J = 7.7$, 1H), 7.37 (t, $J = 7.9$, 2H), 7.26 (t, $J = 7.1$, 2H), 7.18 (d, $J = 7.2$, 1H), 7.10 (t, $J = 7.2$, 1H), 6.99 (d, $J = 7.6$, 1H), 6.95 (d, $J = 7.5$, 1H), 6.79 (d, $J = 7.7$, 1H), 6.57 (d, $J = 7.1$, 1H), 6.41 (s, 1H), 5.49 (br s, 1H), 5.15 (d, $J = 9.1$, 1H), 5.02 (d, $J = 9.2$, 1H), 4.66 (dd, $J = 15.5$, 6.4, 1H), 4.49 (s, 1H), 4.44 (m, 1H), 4.34 (dd, $J = 15.5$, 4.2, 1H), 3.67 (s, 3H), 2.86 (m, 1H), 2.74 (dd, $J = 13.5$, 10.6, 1H), 1.83 (s, 3H), 1.50 (s, 3H), 1.38 (s, 3H); HRMS (ESI) m/z calcld for C$_{34}$H$_{39}$N$_4$O$_5$S (M + H)$^+$ 615.2641, found 615.2628; Anal. Calcld for C$_{34}$H$_{39}$N$_4$O$_5$S•0.3H$_2$O: C, 65.85; H, 6.27; N, 9.03. Found: C, 65.80; H, 6.23; N, 8.91.

Example A64: (R)-3-[(2S,3S)-2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (3-methyl-benzofuran-2-ylmethyl)-amide

\[\text{Diagram of the molecule}\]

1H NMR (DMSO-d$_6$) δ 9.37 (s, 1H), 8.55 (t, $J = 5.5$, 1H), 8.15 (d, $J = 8.3$, 1H), 7.52 (d, $J = 6.9$, 1H), 7.51-7.36 (m, 3H), 7.28-7.18 (m, 5H), 6.96 (t, $J = 7.8$, 1H), 6.78 (d, $J = 8.0$, 1H), 6.55 (d, $J = 7.4$, 1H), 5.42 (br s, 1H), 5.12 (d, $J = 9.1$, 1H), 5.00 (d, $J = 9.1$, 1H), 4.48-4.39 (m, 5H), 2.83 (m, 1H), 2.72 (dd, $J = 13.5$, 10.7, 1H), 2.20 (s, 3H), 1.99 (s, 3H), 1.46 (s, 3H), 1.27 (s, 3H); HRMS (ESI) m/z calcld for C$_{34}$H$_{38}$N$_3$O$_6$S (M + H)$^+$ 616.2481, found 616.2464; Anal. Calcld for C$_{34}$H$_{37}$N$_3$O$_6$S: C, 66.32; H, 6.06; N, 6.82. Found: C, 60.06; H, 6.04; N, 6.71.

Example A64: (R)-3-[(2S,3S)-2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (3-methyl-benzofuran-2-ylmethyl)-amide
1H NMR (DMSO-d$_6$) δ 9.37 (s, 1H), 8.55 (t, J = 5.5, 1H), 8.15 (d, J = 8.3, 1H), 7.52 (d, J = 6.9, 1H), 7.51-7.36 (m, 3H), 7.28-7.18 (m, 5H), 6.96 (t, J = 7.8, 1H), 6.78 (d, J = 8.0, 1H), 6.55 (d, J = 7.4, 1H), 5.42 (br s, 1H), 5.12 (d, J = 9.1, 1H), 5.00 (d, J = 9.1, 1H), 4.48-4.39 (m, 5H), 2.83 (m, 1H), 2.72 (dd, J = 13.5, 10.7, 1H), 2.20 (s, 3H), 1.99 (s, 3H),

Example A65: 3-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenylbutyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (propyl-morpholino)-amide

White solid: 1H NMR (DMSO-d$_6$) δ 9.81, (s 1H), 9.40 (s, 1H), 8.18 (s, 1H), 7.41-6.91 (m, 10H), 6.62 (d, J = 7.7, 1H), 5.12 (dd, J = 9.3, 1H), 4.44-4.35 (m, 3H), 4.08-2.78 (m, 13H), 2.81-2.67 (m, 2H), 1.88 (s, 3H), 1.49 (s, 3H), 1.34 (s, 3 H); Anal. (C$_{2}$H$_{42}$N$_{4}$O$_{6}$S•0.18 H$_{2}$O) calculated C (51.56), H (5.53), N (9.36), found C (52.05), H (5.95), N (6.51). HRMS (ESI) m/z calcd for 599.2902, found 599.2903.
Amides of the general structure 3 (synthesized in the same manor as in the Methods A section) are coupled to boc-protected acid 15, and exposed to methane sulfonic acid to yield amines 16. Subjecting amines 16 to the reaction conditions depicted yielded a series of amides 17, carbamates 18, and ureas 19.
Synthesis of amines of the general type 16.
16a

The title compound was prepared as follows. (R)-5,5-Dimethyl-thiazolidine-3,4-
dicarboxylic acid 3-tert-butyl ester 1 (1.95 g, 7.47 mmol) was dissolved in EtOAc (25 mL)
and cooled to 0 °C. Diphenyl chlorophosphosphate (1.71 mL, 8.23 mmol) was added followed
by TEA (1.14 mL, 8.23 mmol). The reaction was stirred at 0 °C for 1h, and treated with
(S)-Cyclohex-2-enylamine (0.8 g, 8.23 mmol). The reaction mixture was stirred at room
temperature overnight, then partitioned between 1N HCl (25 mL) and EtOAc (30 mL).
The organic layer was washed with saturated NaHCO₃, brine, dried over Na₂SO₄ and
concentrated to a yellow oil. The resulting oil (2.54 g, 7.47 mmol) was dissolved in
EtOAc (30 mL) and then cooled to 0 °C. Methanesulfonic acid (2.27 mL, 33.62 mmol)
was added and the solution was stirred at 0 °C for 15 minutes, then at room temperature
for 4h. The mixture was re-cooled to 0 °C and quenched with 10% Na₂CO₃ (30 mL) then
extracted with EtOAc (30 mL). Organic layer was washed with brine, dried over Na₂SO₄
and concentrated in vacuo to give a yellow oil 3. The resulting yellow oil (1.86 g, 7.74
mmol) was dissolved in EtOAc (77 mL). BOC-AHPBA 4 (2.29 g, 7.74 mmol) was added
followed by HOBT (1.05g, 7.74 mmol). The mixture was stirred at room temperature 1h,
then cooled to 0 °C. DCC (1.60 g, 7.74 mmol) was slowly added as solution in EtOAc (30
mL). The mixture was allowed to gradually warm to room temperature and stirred
overnight. The mixture was filtered and the filtrate was washed with 1N HCl (40 mL),
saturated NaHCO₃ (40 mL), brine (40 mL), dried over Na₂SO₄ and concentrated to give a
crude white solid (contaminated with DCU). The DCU was removed by flash
chromatography (30% to 50% EtOAc in hexanes) to provide a white solid (4 g, 7.73
mmol), which was dissolved in EtOAc (30 mL) and then cooled to 0 °C. Methanesulfonic
acid (2.35 mL, 34.76 mmol) was added and the solution was stirred at 0 °C for 15 minutes,
then at room temperature for 3h. The mixture was re-cooled to 0 °C and quenched with
10% Na₂CO₃ (35 mL) then extracted with EtOAc (30 mL). Organic layer was washed
with brine, dried over Na₂SO₄ and concentrated in vacuo to give a material which was
recrystallized from 60% EtOAc in hexanes to provide B1 (2.41 g, 80%) as a white solid. 1H NMR (DMSO-d_6) δ 8.21 (d, $J = 8.1$, 1H), 7.31-7.17 (m, 5H), 5.80 (d, $J = 5.6$, 1H), 5.52-5.48 (m, 2H), 5.30-5.25 (m, 2H), 4.89 (s, 2H), 4.26 (s, 1H), 4.21-4.00 (m, 3H), 3.15-2.70 (m, 2H), 2.50-2.00 (m, 2H), 2.00-1.00 (m, 4H), 1.49 (s, 3H), 1.31 (s, 3H); Anal. Calcd for C$_{22}$H$_{31}$N$_3$O$_3$S: C, 63.28; H, 7.48; N, 10.06. Found: C, 63.40; H, 7.20; N, 9.98.

The following amines 16b-k were prepared by the specific method outlined above using the requisite amine.

16b

![Chemical structure of 16b](image)

1H NMR (DMSO-d_6) δ 8.36 (t, $J = 6.0$, 1H), 7.36-7.14 (m, 5H), 5.70 (m, 1H), 5.34 (s br, 1H), 5.12 (d, $J = 17.0$, 1H), 4.96-4.88 (m, 3H), 4.34 (s, 1H), 4.10 (d, $J = 7.0$, 1H), 3.80-3.55 (m, 2H), 3.06 (d, $J = 13.0$, 1H), 2.87 (t, $J = 9.0$, 1H), 2.38 (dd, $J = 13.0$, 10.0, 1H), 1.52 (s, 3H), 1.33 (s, 3H).

16c

![Chemical structure of 16c](image)
16d

1H NMR (DMSO-d$_6$) δ 8.69 (t, $J = 5.3$, 1H), 7.34-7.14 (m, 5H), 5.34 (s br, 1H), 4.90 (s, 2H), 4.29 (s, 1H), 4.08 (d, $J = 7.0$, 1H), 3.90-3.70 (m, 2H), 3.07 (dd, $J = 13.4$, 2.5, 1H), 2.96 (t, $J = 2.6$, 1H), 2.88, (ddd, $J = 9.8$, 8.0, 2.8, 1H), 2.37 (dd, $J = 13.2$, 9.9, 1H), 1.50 (s, 3H), 1.32 (s, 3H).

16e

1H NMR (DMSO-d$_6$) δ 8.74 (t, $J = 5.4$, 1H), 7.36 (m, 1H), 7.34-7.14 (m, 5H), 6.24 (m, 1H), 6.16 (d, $J = 3.3$, 1H), 5.32 (s br, 1H), 4.90 (s, 2H), 4.32 (s, 1H), 4.30-4.10 (m, 2H), 4.07 (d, $J = 9.0$, 1H), 3.09 (dd, $J = 13.1$, 2.6, 1H), 2.80 (ddd, $J = 10.0$, 8.0, 2.7, 1H), 2.33 (ddd, $J = 13.1$, 10.0, 1H), 1.50 (s, 3H), 1.28 (s, 3H).

16f

1H NMR (DMSO-d$_6$) δ 8.36 (t, $J = 5.4$, 1H), 7.33-7.15 (m, 5H), 5.30 (s br, 1H), 4.90 (s, 2H), 4.30 (s, 1H), 4.09 (d, $J = 7.9$, 1H), 3.06 (dd, $J = 13.2$, 2.0, 1H), 3.02-2.77 (m, 3H), 2.47 (dd, $J = 13.4$, 10.1, 1H), 1.50 (s, 3H), 1.34 (s, 3H), 0.80 (m, 1H), 0.28 (m, 2H), 0.06 (m, 2H).
16g

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{O} \quad \text{S} \quad \text{N} \quad \text{N} \\
\text{OH} & \quad \text{S} \quad \text{N} \\
\text{H}_2\text{N} & \quad \text{O} \quad \text{S} \quad \text{N} \quad \text{N} \\
\end{align*}
\]

1H NMR (DMSO-d_6) δ 8.59 (d, $J = 7.3$, 1H), 7.29-7.20 (m, 5H), 7.04 (d, $J = 6.8$, 1H), 6.89 (d, $J = 7.2$, 1H), 6.76-6.72 (m, 1H), 6.53-6.46 (m, 1H), 5.32 (d, $J = 5.9$, 1H), 4.89 (s, 2H), 4.89-4.80 (m, 1H), 4.24 (s, 1H), 4.17-3.90 (m, 2H), 3.08-3.04 (m, 2H), 2.20-1.70 (m, 4H), 1.52 (s, 3H), 1.35 (s, 3H); Anal. Calcd for C$_{25}$H$_{31}$N$_3$O$_4$S: C, 63.94; H, 6.65; N, 8.95. Found: C, 63.76; H, 6.60; N, 8.98.

16h

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{O} \quad \text{S} \\
\text{OH} & \quad \text{S} \\
\text{H}_2\text{N} & \quad \text{O} \\
\end{align*}
\]

1H NMR (DMSO-d_6) δ 8.37 (d, $J = 7.3$, 1H), 7.30-6.66 (m, 9H), 5.29 (d, $J = 8.2$, 1H), 4.86 (s, 2H), 4.86-4.80 (m, 1H), 4.23 (s, 1H), 4.05-3.97 (m, 1H), 3.08-3.04 (m, 1H), 2.70-2.40 (m, 4H), 2.20-2.00 (m, 2H), 1.70-1.55 (m, 4H), 1.52 (s, 3H), 1.36 (s, 3H); Anal. Calcd for C$_{26}$H$_{33}$N$_3$O$_5$S: C, 66.78; H, 7.11; N, 8.99. Found: C, 66.90; H, 7.01; N, 8.98.

16i

\[
\begin{align*}
\text{H}_2\text{N} & \quad \text{O} \quad \text{S} \\
\text{OH} & \quad \text{S} \\
\end{align*}
\]

1H NMR (DMSO-d_6) δ 8.47 (d, $J = 8.6$, 1H), 7.28-6.82 (m, 9H), 5.33 (d, $J = 5.9$, 1H), 5.25-5.19 (m, 1H), 4.91 (d, $J = 9.2$, 1H), 4.85 (d, $J = 9.2$, 1H), 4.29 (s, 1H), 4.03 (d, $J = 8.1$, 1H), 3.08-3.05 (m, 1H), 2.77-2.60 (m, 2H), 2.30-2.10 (m, 2H), 1.70-1.50 (m, 2H), 1.52 (s, 3H), 1.36 (s, 3H); Anal. Calcd for C$_{25}$H$_{31}$N$_3$O$_5$S: C, 66.20; H, 6.89; N, 9.26. Found: C, 66.35; H, 7.01; N, 8.98.
^{1}H NMR (DMSO-d_6) δ 8.35 (t, J = 5.7, 1H), 7.31-7.16 (m, 5H), 5.24 (d, J = 8.1, 1H), 4.92 (d, J = 9.2, 1H), 4.88 (d, J = 9.2, 1H), 4.31 (s, 1H), 4.09 (m, 1H), 3.83-3.51 (m, 2H), 3.42-3.31 (m, 1H), 3.23-3.07 (m, 2H), 2.99-2.91 (m, 1H), 2.86-2.79 (m, 1H), 2.34 (dd, J = 13.0, 10.1, 1H), 1.80-1.42 (m, 6H), 1.50 (s, 3H), 1.31 (s, 3H).

^{1}H NMR (DMSO-d_6) δ 8.13 (t, J = 5.4, 1H), 7.35-7.15 (m, 5H), 5.28 (d, J = 8.1, 1H), 4.79 (m, 2H), 4.27 (s, 1H), 4.07 (t, J = 7.1, 1H), 3.10-2.71 (m, 4H), 2.37 (dd, J = 13.2, 9.9, 1H), 1.49 (s, 3H), 1.34 (m, 2H), 1.33 (s, 3H), 0.77 (t, J = 7.4, 3H).

Isolated yield: 84%; MS (APCI, m/z): 461, 463 (M+H)
16m

Isolated yield: 93%; MS (APCI, m/z): 464 (M+H).

16n

Isolated yield: 86%; MS (APCI, m/z): 496 (M+H).

16o

Isolated yield: 87%. MS-APCI (m/z+): 458.

16p

Isolated yield: 45%. MS-APCI (m/z+): 341, 429.
Synthesis of final products of the general type 17, 18 and 19 from 16a-k,

General Methods:

Carbamate formation #1 - The corresponding amine, of general structure 16, triethylamine (2 eq.) and chloroformate (1.1-1.2 eq.) were taken in dichloromethane and stirred at room temperature under nitrogen. (1.5 hr to overnight). The solvent was then removed in vacuo and the resulting residue subjected to flash silica gel chromatography or preparative HPLC to afford the desired product.

Carbamate formation #2 - The corresponding alcohol was treated with phosgene (1.7 eq.) in toluene followed by diisopropylethylamine (1.1 eq.) and the amine of general structure 16. The solvent was then removed in vacuo and the resulting residue subjected to flash silica gel chromatography or preparative HPLC to afford the desired product.

Amide formation – To a solution of acid, amine 16 and HOBT in CH₂Cl₂ was added EDC and the solution stirred overnight at room temperature. The solution was concentrated in vacuo and the residue dissolved in ethyl acetate and a small portion of water. The solution was washed with saturated NH₄Cl or 0.5N HCl (2x), saturated NaHCO₃ (2x), brine (1x), dried with MgSO₄ and concentrated in vacuo. The resulting residue subjected to flash silica gel chromatography or preparative HPLC to afford the desired product.

Urea formation #1-The corresponding amine and isocyanate (1.1-1.2 eq.) were taken in dichloromethane and stirred at room temperature under nitrogen. (1.5 hr to overnight). The solvent was then removed in vacuo and the resulting residue subjected to flash silica gel chromatography or preparative HPLC to afford the desired product.

Urea formation #2-The corresponding amine was dissolved in CH₂Cl₂ and treated with diisopropylethylamine (1.5 eq.) and phosgene (1 eq., 20% soln. in toluene) at -78 °C. The resulting solution was warmed to room temperature and treated with the amine of general structure 16. The resulting residue subjected to flash silica gel chromatography or preparative HPLC to afford the desired product.
Specific Carbamate Synthesis

Example B1: {1-Benzyl-3-[5,5-dimethyl-4-(2-methyl-benzylcarbamoyl)-thiazolidin-3-yl]- 2-hydroxy-3-oxo-propyl]-carbamic acid tetrahydropuran-3-yl- ester

\[
\text{O} \quad \text{O} \quad \text{N} \quad \text{N} \quad \text{O} \quad \text{N} \quad \text{O} \quad \text{H}
\]

(S)-(+-)-3-Hydroxytetrahydrofuran (0.11 mL, 1.37 mmol) was dissolved in toluene (1 mL) and cooled to 0 °C with magnetic stirring. To this was added Phosgene as a 20% solution in toluene (1.2 mL, 2.34 mmol). The resulting solution was stirred for 24 h at 23 °C then concentrated. The residue was dissolved in dry THF (3 mL) and treated with Diisopropylethylamine (0.25 mL, 1.40 mmol). 16c was added as a slurry in THF (0.3 g, 0.73 mmol) and resulting amber solution was stirred at 23 °C for 3 h. The solution was diluted with EtOAc (10 mL) and washed with 10% citric acid (25 mL) dried over Na₂SO₄, filtered, and concentrated to a white solid.

\(^1\)H NMR (CDCl₃) δ 7.23-7.09 (m, 9H), 6.79 (s br, 1H), 5.90 (s br, 1H), 5.16-3.63 (m, 17H), 1.55 (s, 3H), 1.50 (s, 3H), 1.45 (s, 3H); HRMS (ESI) m/z calc for C₂₉H₃₇N₃O₆SNa (M + Na)\(^+\) 578.2301, found 578.2288; Anal. Calc d for C₂₉H₃₇N₃O₆S•1H₂O: C, 60.71; H, 6.85; N, 7.32. Found: C, 60.97; H, 6.47; N, 6.91.
Specific Amide Synthesis

Example B2: 1,2,3,4-Tetrahydro-quinoline-5-carboxylic acid \{(1S,2S)-1-benzyl-3-[(R)-5,5-dimethyl-4-(2-methyl-benzylcarbamoyl)-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl\}-amide

The amine 16c (0.21 g, 0.48 mmol) and 1,2,3,4-Tetrahydroquinoline-5-carboxylic acid (0.085 g, 0.48 mmol) were dissolved in dry CH₂Cl₂ (5 mL) at 23 °C with magnetic stirring. The solution was treated sequentially with EDC (0.18 g, 0.96 mmol), HOBt (0.13 g, 0.96 mmol), and Triethylamine (0.14 mL, 0.96 mmol). The result was stirred for 24h and then poured into H₂O (25 mL). The mixture was extracted with EtOAc (2 x 25 mL). The combined organics were washed sequentially with saturated NaHCO₃ (1 x 50 mL), 0.5N HCl (1 x 50 mL), and H₂O (1 x 50 mL). The result was dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash column chromatography (40%-60% EtOAc in hexanes) to yield the title compound as a pale yellow solid (0.21 g, 72%).

¹H NMR (DMSO-d₆) δ 8.32 (t, J = 5.1, 1H), 8.04 (d, J = 8.4, 1H), 7.33-7.10 (m, 9H), 6.79 (t, J = 7.7, 1H), 6.41 (d, J = 8.1, 1H), 6.22 (d, J = 7.3, 1H), 5.71 (s br, 1H), 5.46 (d, J = 6.8, 1H), 5.14 (d, J = 9.2, 1H), 5.01 (d, J = 9.2, 1H), 4.48-4.37 (m, 4H), 4.11 (dd, J = 15.0, 4.8, 1H), 3.07 (m, 2H), 2.84-2.67 (m, 2H), 2.32-2.26 (m, 2H), 2.26 (s, 3H), 1.59 (m, 2H), 1.49 (s, 3H), 1.35 (s, 3H); HRMS (ESI) m/z calcld for C₃₂H₄₀N₅O₄SNa (M + Na)⁺ 623.2662, found 623.2669; Anal. Calcld for C₃₂H₄₀N₅O₄S: C, 66.97; H, 6.78; N, 9.18. Found: C, 66.97; H, 6.73; N, 9.12.
Specific Urea Synthesis

Example B3: 3-(2-hydroxy-3-[(1-(3-hydroxy-pyrrolidin-yl)-methanoyl]-amino)-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid-2-methyl-benzylamide

(R)-Pyrrolidin-3-ol (0.21 g, 2.40 mmol) was dissolved in dry CH2Cl2 (15 mL) and cooled to −78 °C under argon with magnetic stirring. To this solution was added Diisopropylethylamine (0.63 mL, 3.63 mmol) followed by Phosgene as a 20% solution in toluene (1.2 mL, 2.40 mmol). The resulting yellow solution was stirred for 20 min at −78 °C then allowed to warm to room temperature. The solution was concentrated and redissolved in dry CH2Cl2 (5 mL) and THF (5 mL). To this was added Diisopropylethylamine (0.31 mL, 1.81 mmol) followed by 16c. The result was stirred for 16 h at 23 °C then diluted with EtOAc (50 mL). The mixture was washed sequentially with 10% citric acid (1 x 50 mL), saturated NaHCO3 (1 x 50 mL), H2O (1 x 50 mL). The organics were dried over Na2SO4, filtered, and concentrated. The residue was purified by flash column chromatography (5% MeOH in EtOAc) to yield the title compound (0.12 g, 18%) as a white foam.

1H NMR (DMSO-d6) δ 8.38 (t, J = 5.7, 1H), 7.34-7.09 (m, 10H), 5.99 (d, J = 8.3, 1H), 5.04 (d, J = 9.5, 1H), 4.96 (d, J = 9.5, 1H), 4.49 (s, 1H), 4.48-4.38 (m, 3H), 4.22-3.83 (m, 4H), 3.29-3.04 (m, 3H), 2.77-2.70 (m, 2H), 2.28 (s, 3H), 1.52 (s, 3H), 1.32 (s, 3H), 1.82-1.69 (m, 2H); HRMS (ESI) m / z calculated for C20H38N4O5SNa (M + Na)+ 577.2455, found 577.2440; Anal. Calcd for C29H38N4O5S•2H2O: C, 58.96; H, 7.17; N, 9.48; S, 5.43. Found: C, 58.90; H, 6.40; N, 9.23; S, 5.24.

The following examples were prepared by the corresponding specific method outlined above using the requisite P2 fragment.
Example B4: 3-{2-Hydroxy-4-phenyl-3-[2-(2H-[1,2,4]triazol-3-yl)sulfonyl]-ethanoylamino}-butanoyl)5,5-dimethyl-thiazolidine-4-carboxylic acid-2-methyl-benzylamide

\[
\text{HN} \quad \text{N} \quad \text{S} \quad \text{CONH} \quad \text{CONH} \quad \text{OH} \quad \text{S} \quad \text{CON}
\]

\(^1\)H NMR (DMSO-d$_6$) δ 14.00 (s br, 1H), 8.54 (s br, 1H), 8.35 (t, $J = 5.7$, 1H), 8.30 (s br, 1H), 7.32-7.06 (m, 10H), 4.98 (d, $J = 9.2$, 1H), 4.92 (d, $J = 9.2$, 1H), 4.50 (s, 1H), 4.43-4.36 (m, 2H), 4.12 (m, 2H), 3.77 (s br, 2H), 2.76-2.58 (m, 2H), 2.26 (s, 3H), 1.50 (s, 3H), 1.32 (s, 3H); HRMS (ESI) m / z calcld for C$_{28}$H$_{34}$N$_6$O$_4$S$_2$Na (M + Na)$^+$ 605.1975, found 605.1988; Anal. Calcld for C$_{28}$H$_{34}$N$_6$O$_4$S$_2$$\cdot$$0.25H_2$O: C, 57.27; H, 5.92; N, 14.31; S, 10.92. Found: C, 57.21; H, 5.97; N, 14.10; S, 10.71.

Example B5: ((1S,2S)-1-Benzyl-3-[(R)-5,5-dimethyl-4-(2-methyl-benzylcarbamoyl)-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl]-carbamic acid (R)-2-isopropyl-tetrahydro-thiophen-3-yl ester

\[
\text{HN} \quad \text{N} \quad \text{S} \quad \text{CONH} \quad \text{CONH} \quad \text{OH} \quad \text{S} \quad \text{CON}
\]

\(^1\)H NMR (DMSO-d$_6$) δ 8.38 (s br, 2H), 7.42-7.09 (m, 9H), 5.12 (s, 1H), 4.99 (s, 2H), 4.52-3.80 (m, 5H), 3.19-2.79 (m, 6H), 2.29 (s, 3H), 1.99-1.71 (m, 3H), 1.51 (s, 3H), 1.39 (s, 3H), 0.99 (m, 6H); Anal. Calcld for C$_{32}$H$_{43}$N$_3$O$_5$S$_2$: C, 62.61; H, 7.06; N, 6.85. Found: C, 62.45; H, 6.84; N, 7.04.
Example B6: 2,3-Dihydro-1H-indole-4-carboxylic acid \{(1S,2S)-1-benzyl-3-\((R)-5,5\text{-}
\text{dimethyl-4-(2-methyl-benzylcarbamoyl)-thiazolidin-3-yl}\}-2\text{-hydroxy-3-oxo-propyl}\}-amide

\[
\text{HN} \quad \text{NH} \\
\text{\begin{array}{c}
\text{\includegraphics[width=0.5\textwidth]{example_b6}} \\
\end{array}
}\]

Pale yellow solid; IR (neat, cm\(^{-1}\)) 3417, 1644, 1529, 1453, 1114; \(^1\)H NMR (DMSO-\(d_6\)) \(\delta\) 8.35 (t, \(J = 5.1\, \text{Hz}\), 1H), 8.06 (d, \(J = 8.6\, \text{Hz}\), 1H), 7.34-7.11 (m, 9H), 6.91 (t, \(J = 7.7\, \text{Hz}\), 1H), 6.78 (d, \(J = 5.5\, \text{Hz}\), 1H), 6.70 (d, \(J = 7.5\, \text{Hz}\), 1H), 6.53 (d, \(J = 7.7\, \text{Hz}\), 1H), 5.58 (s, 1H), 5.10 (d, \(J = 9.2\, \text{Hz}\), 1H), 5.00 (d, \(J = 9.2\, \text{Hz}\), 1H), 4.51-4.36(m, 4H), 4.13 (dd, \(J = 15.0\, \text{Hz}, 4.6\, \text{Hz}\), 1H), 3.34-3.29 (m, 2H), 2.80-2.00 (m, 4H), 2.25 (s, 3H), 1.50 (s, 3H), 1.35 (s, 3H); HRMS (ESI) \(m/z\) calcld for C\(_{33}\)H\(_{38}\)N\(_4\)O\(_4\)SNa (M + Na)\(^{+}\) 609.2506, found 609.2485.

Example B7: (R)-3-\{(2S,3S)-3-\(2,2\text{-}\text{Dimethylphenoxy})\text{-ethanoylamino}\}-2\text{-hydroxy-4-phenyl-butanoyl}\}-5,5\text{-dimethylthiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[
\text{\begin{array}{c}
\text{\includegraphics[width=0.5\textwidth]{example_b7}} \\
\end{array}
}\]

Example B8: 1H-Indole-4-carboxylic acid \{(1S,2S)-1-benzyl-3-\((R)-5,5\text{-dimethyl-4-(2-methyl-benzylcarbamoyl)-thiazolidin-3-yl}\}-2\text{-hydroxy-3-oxo-propyl}\}-amide

\[
\text{\begin{array}{c}
\text{\includegraphics[width=0.5\textwidth]{example_b8}} \\
\end{array}
}\]
White solid; IR (neat, cm⁻¹) 3422, 1642, 1520, 1349, 1114; ¹H NMR (DMSO-d₆) δ 11.24 (s, 1H), 8.36 (t, J = 6.1, 1H), 8.18 (d, J = 8.2, 1H), 7.50 (d, J = 8.1, 1H), 7.51-7.06 (m, 12H), 6.71 (s, 1H), 5.48 (d, J = 6.4, 1H), 5.11 (d, J = 9.3, 1H), 5.04 (d, J = 9.3, 1H), 4.58-4.49 (m, 3H), 4.39 (dd, J = 15.2, 6.6, 1H), 4.14 (dd, J = 15.2, 4.9, 1H), 2.86 (m, 2H), 2.25 (s, 3H), 1.51 (s, 3H), 1.35 (s, 3H); HRMS (ESI) m/z calcd for C₃₃H₃₆N₄O₈SNa (M + Na)⁺ 607.2349, found 607.2350.

Example B9: 1H-Indazole-4-carboxylic acid {1-benzyl-3-[5,5-dimethyl-4-(2-methylbenzyl carbamoyl)-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl}-amide

\[\text{\includegraphics[width=2in]{example_b9_structure}} \]

¹H NMR (DMSO-d₆) δ 13.18 (s, 1H), 8.46 (d, J = 8.2, 1H), 8.35 (t, J = 5.6, 1H), 8.20 (s, 1H), 7.68-7.06 (m, 12H), 5.53 (d, J = 6.6, 1H), 5.13 (d, J = 9.1, 1H), 5.06 (d, J = 9.1, 1H), 4.61-4.54 (m, 2H), 4.51 (s, 1H), 4.40 (dd, J = 14.9, 6.2, 1H), 4.16 (dd, J = 14.9, 4.7, 1H), 2.91-2.89 (m, 2H), 2.51 (s, 3H), 1.53 (s, 3H), 1.31 (s, 3H); HRMS (ESI) m/z calcd for C₃₂H₃₅N₅O₅SNa (M + Na)⁺ 608.2302, found 608.2273; Anal. Calcd for C₃₂H₃₅N₅O₅S: C, 64.92; H, 6.08; N, 11.83; S, 5.42. Found: C, 65.15; H, 6.21; N, 11.44; S, 5.13.

Example B10: ((1S,2S)-1-Benzyl-3-[(R)-5,5-dimethyl-4-(2-methylbenzylcarbamoyl)-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl)-carbamic acid prop-2-ynyl ester

\[\text{\includegraphics[width=2in]{example_b10_structure}} \]
Isolated yield: 83%; 1H-NMR (400 MHz, dms-o-d$_6$): δ 8.30 (t, 1H), 7.48 (d, 1H), 7.0 – 7.3 (m, 10H), 5.35 (d, 1H), 4.96 (q, 2H), 4.48 – 4.31 (m, 5H), 4.14 (dd, 1H), 3.87 (m, 1H), 3.44 (s, 1H), 2.7 (dd, 1H), 2.61 (t, 1H), 2.26 (s, 3H), 1.48 (s, 3H), 1.35 (s, 3H); IR (KBr in cm$^{-1}$): 3302, 1711, 1643, 1528, 1237, 1047; MS (APCI, m/z): 524 (M+H):
C$_{28}$H$_{33}$N$_3$O$_5$S1.0.21 H$_2$O Calculated: C63.76, H6.39, N7.97, Observed: C64.22, H6.35, N8.02; HPLC: Rf (min.) 20.177; Purity: 99%.

Example B11: {1(S,2S)-1-Benzyl-3-[R]-5,5-dimethyl-4-(2-methyl-benzylcarbamoyl)-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl]-carbamic acid allyl ester

![Image of the chemical structure]

Isolated yield: 83%; 1H-NMR (400 MHz, dms-o-d$_6$): δ 8.30 (t, 1H), 7.04 – 7.35 (m, 10H), 5.7 – 5.83 (m, 1H), 5.3 (d, 1H), 5.09 (d, 1H), 5.14 (d, 1H), 4.96 (q, 2H), 4.3 (s, 1H), 4.3 – 4.43 (m, 4H), 4.13 (dd, 1H), 3.87 (m, 1H) 2.74 (dd, 1H), 2.61 (dd, 1H), 2.26 (s, 3H), 1.48 (s, 3H), 1.30 (s, 3H); IR (KBr in cm$^{-1}$): 3324, 1691, 1645, 1530, 1238, 1041; MS (APCI, m/z): 526 (M+H), 468; C$_{28}$H$_{35}$N$_3$O$_5$S1.0.35 H$_2$O Calculated: C63.22, H6.76, N7.90, Observed: C663.98, H6.71, N7.99; HPLC: Rf (min.) 20.97; Purity: 98%.

Example B12: (R)-3-[2S,3S]-2-Hydroxy-3-(2-methyl-butyrylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

![Image of the chemical structure]

Isolated yield: 75%; 1H-NMR (400 MHz, dms-o-d$_6$): δ 8.37 (q, 1H), 7.71 (d, 1H), 7.04 – 7.37 (m, 9H), 5.24 (brd, 1H), 5.11 (t, 1H), 5.04 (dd, 1H), 4.5 – 4.28 (m, 3H), 4.15 (m, 2H),
2.75 - 2.54 (m, 2H), 2.28 (s, 3H), 2.11 (m, 1H), 1.5 (s, 3H), 1.27 (s, 3H). 1.02 - 1.24 (m, 2H), 0.93 (d) + 0.7 (m) + 0.41 (t) 6H; IR (KBr in cm⁻¹): 3311, 2966, 1642, 1530; MS (APCI, m/z): 526 (M+H), 480, 265; C29H39N3O4S1.038 H2O Calculated:
C65.41H7.53N7.89, Observed: C66.26, H7.48, N7.99; HPLC : Rf (min.) 20.68; Purity: 100%.

Example B13: (R)-3-[(2S,3S)-3-(3-Allyl-ureido)-2-hydroxy-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

Isolated yield: 65%; 1H-NMR (400 MHz, dmsO-d₆): δ 8.35 (t, 1H), 7.35 - 7.04 (m, 10H), 6.13 (d, 1H), 5.96 (t, 1H), 5.70 (m, 1H), 5.13 - 4.87 (m, 5H), 4.5 - 4.35 (m, 2H), 4.17 (dd, 1H), 4.04 (t, 1H), 3.52 (m, 2H), 2.22 (s, 3H), 1.48 (s, 3H), 1.32 (s, 3H); MS (APCI, m/z): 541 (M+H), 442, 396, 277; HPLC : Rf (min.) 21.05; Purity: >95%.

Example B14: [(1S,2S)-1-Benzyl-3-[(R)-5,5-dimethyl-4-(2-methyl-benzylcarbamoyl)-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl]-carbamic acid but-3-enyl ester

Isolated yield: 81%; 1H-NMR (400 MHz, dmsO-d₆): δ 8.26 (t, 1H), 7.0 - 7.27 (m, 10H) 5.7 - 5.56 (m, 1H), 5.27 (d, 1H), 4.83 - 5.04 (m, 4H), 4.4 (s, 1H), 4.35 (m, 2H), 4.13 (dd, 1H), 3.65 - 3.87 (m, 2H), 2.65 (d, 1H), 2.52 (m, 1H), 2.22 (s, 3H), 2.17 (m, 2H), 1.44 (s, 3H), 1.26 (s, 3H); MS (APCI, m/z): 540 (M+H), 468; HPLC : Rf (min.) 21.31; Purity: 96%.
Example B15: 3-[(S)-3-(Cyclopropanecarbonyl-amino)-2-hydroxy-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

![Chemical Structure](image)

Isolated yield: 78%; 1H-NMR (400 MHz, dmsø-d₆): δ 8.35 (t, 1H), 8.26 (d, 1H), 7.0 – 7.26 (m, 10H), 5.174 (d, 1H), 5.0 (d, 1H), 4.87 (d, 1H), 4.44 (s, 1H), 4.3 – 4.44 (m, 2H), 4.17 – 4.04 (m, 2H), 2.30 – 2.70 (m, 2H), 1.52 (m, 1H), 1.44 (s, 3H), 1.30 (s, 3H), 0.52 (m, 2H), 0.44 (m, 2H); MS (APCI, m/z): 510 (M+H), 265; HPLC : Rf (min.) 19.857; Purity: 94%.

Example B16: [(S)-1-Benzyl-3-[(5,5-dimethyl-4-(2-methyl-benzylcarbamoyl)-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl]-carbamic acid isopropyl ester

![Chemical Structure](image)

Isolated yield: 81%; 1H-NMR (400 MHz, dmsø-d₆): δ 8.26 (t, 1H), 7.0 – 7.30 (m, 10H), 5.26 (brs, 1H), 4.91 (q, 2H), 4.35 – 4.13 (m, 2H), 4.13 (dd, 1H), 4.83 (t, 1H), 3.7 (q, 1H), 2.66 (dd, 1H), 2.52 (t, 1H), 2.2 (s, 3H), 1.44 (s, 3H), 1.26 (s, 3H), 0.74 (t, 6H); MS (APCI, m/z): 528 (M+H), 468; HPLC : Rf (min.) 21.127; Purity: 98%.
Example B17: 3-[(S)-2-Hydroxy-3-(3-isopropyl-ureido)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

Isolated yield: 81%; 1H-NMR (400 MHz, dmso-d₆): δ 8.35 (t, 1H), 7.0 – 7.32 (m, 10H), 5.87 (d, 1H), 5.7 (d, 1H), 5.17 (d, 1H), 5.03 (d, 1H), 4.91 (d, 1H), 4.48 – 4.3 (m, 2H), 4.44 (s, 1H), 4.17 (dd, 1H), 4.0 (m, 1H), 3.52 (m, 1H), 2.65 (dd, 1H), 2.22 (s, 3H), 1.48 (s, 3H), 1.35 (s, 3H), 0.91 (d, 3H), 0.83 (d, 3H); MS (APCI, m/z): 527 (M+H), 442, 396, 263; HPLC : Rf (min.) 19.94; Purity: 95%.

Example B18: (R)-3-((2S,3S)-2-Hydroxy-3-pent-4-ynoylamino-4-phenyl-butyryl)-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

Isolated yield: 79%; 1H-NMR (400 MHz, dmso-d₆): δ 8.35 (t, 1H), 8.08 (d, 1H), 7.35 – 7.0 (m, 10H), 5.26 (d, 1H), 5.04 (d, 1H), 5.87 (d, 1H), 4.48 (s, 1H), 4.38 (m, 2H), 4.15 (m, 2H), 2.74 – 2.52 (m, 2H), 2.22 (s, 3H), 2.17 (m, 4H), 1.48 (s, 3H), 1.30 (s, 3H); IR (KBr in cm⁻¹): 3294, 1642, 1530, 744; MS (APCI, m/z): 522 (M+H), 476, 265; C30H36N4O4S1.244 H₂O Calculated: C60.80, H6.95, N9.45, Observed: C65.67, H6.61, N10.21; HPLC : Rf (min.) 19.787; Purity: 100%.
Example B19: (R)-3-[(2S,3S)-2-Hydroxy-4-phenyl-3-(3,3,3-trifluoropropionylamino)butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[
\text{\begin{center}
\begin{array}{c}
\text{\includegraphics[width=0.3\textwidth]{structure1.png}}
\end{array}
\end{center}
}
\]

Isolated yield: 72%; 1H-NMR (400 MHz, dmsod₆): δ 8.48 (d, 1H), 8.38 (t, 1H), 7.35 – 7.04 (m, 10H), 5.35 (d, 1H), 5.0 (d, 1H), 4.92 (d, 1H), 4.48 (s, 1H), 4.38 (m, 2H), 4.17 (m, 2H), 3.14 (m, 2H), 2.7 (d, 1H), 2.6 (t, 1H), 2.26 (s, 3H), 1.48 (s, 3H), 1.35 (s, 3H); IR (KBr in cm⁻¹): 3305, 1649, 1534, 1239, 1110, 743; MS (APCI, m/z): 552 (M+H), 431, 265; C27H32N3O4S1F3.041 H2O Calculated: C58.01, H5.92, N7.52, Observed: C58.79, H5.85, N7.62; HPLC: Rf (min.) 20.319; Purity: 100%.

Example B20: (R)-3-[(2S,3S)-3-Butyrylamino-2-hydroxy-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[
\text{\begin{center}
\begin{array}{c}
\text{\includegraphics[width=0.3\textwidth]{structure2.png}}
\end{array}
\end{center}
}
\]

Isolated yield: 72%; 1H-NMR (400 MHz, dmsod₆): δ 8.35 (t, 1H), 7.96 (d, 1H), 7.35 – 7.04 (m, 10H), 5.22 (d, 1H), 5.09 (d, 1H), 4.91 (d, 1H), 4.48 (s, 1H), 4.38 (m, 2H), 4.17 (m, 2H), 2.67 (d, 1H), 2.56 (t, 1H), 2.26 (s, 3H), 1.91 (t, 2H), 1.48 (s, 3H), 1.30 (s+m, 5H), 0.65 (t, 3H); IR (KBr in cm⁻¹): 3308, 2967, 1641, 1534, 743; MS (APCI, m/z): 512 (M+H), 466, 265; C28H35N3O4S1.048 H2O Calculated: C65.16, H7.03, N7.71, Observed: C65.16, H7.09, N8.44; HPLC: Rf (min.) 20.070; Purity: 95%.
Example B21: 2,3-Dihydro-1H-indole-4-carboxylic acid [(1S,2S)-3-((R)-4-allylcarbamoyl-5,5-dimethyl-thiazolidin-3-yl)-1-benzyl-2-hydroxy-3-oxo-propyl]-amide

Beige solid; \(^1\)H NMR (DMSO-\(d_6\)) \(\delta\) 8.09 (t, \(J = 5.7, 1\)H), 8.00 (d, \(J = 8.6, 1\)H), 7.70 (d, \(J = 7.7, 1\)H), 7.34-7.11 (m, 6H), 6.91 (t, \(J = 7.9, 1\)H), 6.68 (d, \(J = 8.1, 1\)H), 5.80-5.71 (m, 1H), 5.58 (s, 1H), 5.44 (d, \(J = 7.0, 1\)H), 5.23-5.01 (m, 4H), 4.47-4.39 (m, 4H), 3.73-3.61 (m, 2H), 2.99-2.81 (m, 4H), 1.50 (s, 3H), 1.35 (s, 3H); HRMS (ESI) \(m/z\) calcd for C\(_{28}\)H\(_{34}\)N\(_4\)O\(_4\)SNa (M + Na\(^+\)) 545.219, found 545.2205.

Example B22: [(1S,2S)-3-((R)-4-Allylcarbamoyl-5,5-dimethyl-thiazolidin-3-yl)-1-benzyl-2-hydroxy-3-oxo-propyl]-carbamic acid (S)-(tetrahydro-furan-3-yl) ester

White solid; \(^1\)H NMR (DMSO-\(d_6\)) \(\delta\) 8.06 (t, \(J = 5.9, 1\)H), 7.27-7.12 (m, 6), 5.76 (m, 1H), 5.39 (d, \(J = 7.1, 1\)H), 5.19 (dd, \(J = 17.2, 1.7, 1\)H), 5.03-4.90 (m, 4H), 4.39-4.35 (m, 2H), 3.88 (m, 1H), 3.76-3.58 (m, 5H), 3.42 (d, \(J = 10.4, 1\)H), 2.75-2.55 (m, 2H), 2.03 (m, 1H), 1.80 (m, 1H), 1.49 (s, 3H), 1.34 (s, 3H); HRMS (ESI) \(m/z\) calcd for C\(_{24}\)H\(_{33}\)N\(_3\)O\(_6\)SNa (M + Na\(^+\)) 514.1982, found 514.1967.
Example B23: (R)-3-[(2S,3S)-3-[2-(2,6-Dimethyl-phenoxy)-ethanoylamino]-2-hydroxy-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid allylamide

White solid; IR (neat, cm\(^{-1}\)) 3418, 1651, 1532, 1454, 1372, 1264, 1195; \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 8.15 (t, \(J = 5.7\), 1H), 8.10 (d, \(J = 8.8\), 1H), 7.32-7.13 (m, 5H), 7.00-6.89 (m, 3H), 5.83-5.71 (m, 1H), 5.48 (d, \(J = 6.8\), 1H), 5.21 (dd, \(J = 17.2, 1.8\), 1H), 5.03-4.91 (m, 3H), 4.49-4.36 (m, 3H), 4.16 (d, \(J = 14.1\), 1H), 3.98 (d, \(J = 14.1\), 1H), 3.72 (m, 2H), 2.79-2.76 (m, 2H), 2.13 (s, 6H), 1.50 (s, 3H), 1.36 (s, 3H); HRMS (ESI) \(m/z\) calcld for C\(_{29}\)H\(_{37}\)N\(_3\)O\(_5\)SNa (M + Na\(^+\)) 562.2346, found 562.2324.

Example B24: 1-H-indazole-4-carboxylic acid [3-(4-allylcarbamoyl-5,5-dimethyl-thiazolidin-3-yl)-1-benzyl-2-hydroxy-3-oxo-propyl]-amide

\(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 13.18 (s, 1H), 8.42 (d, \(J = 8.2\), 1H), 8.19 (s, 1H), 8.10 (t, \(J = 5.7\), 1H), 7.68-7.11 (m, 8H), 5.81-5.72 (m, 1H), 5.52 (d, \(J = 6.8\), 1H), 5.24-4.83 (m, 4H), 4.57 (m, 2H), 4.42 (s, 1H), 3.74-3.66 (m, 2H), 2.90 (m, 2H), 1.53 (s, 3H), 1.37 (s, 3H); Anal. Caled for C\(_{27}\)H\(_{33}\)N\(_3\)O\(_5\)S\(_0.25\)H\(_2\)O: C, 61.63; H, 6.04; N, 13.31; S, 6.09. Found: C, 61.63; H, 6.09; N, 12.95; S, 5.95.
Example B25: (R)-3-((2S,3S)-2-Hydroxy-4-phenyl-3-[2-(1H-[1,2,4]triazol-3-ylsulfanyl]-ethanoylamino]-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid allylamide

![Chemical structure](image)

Example B26: [(1S,2S)-1-Benzyl-3-[(R)-4-(cyclopropylmethyl-carbamoyl)-5,5-dimethyl-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl]-carbamic acid (S)-(tetrahydrofuran-3-yl) ester

![Chemical structure](image)

White solid; 1H NMR (DMSO-d$_6$) δ 7.99 (t, J = 5.7, 1H), 7.28-7.07 (m, 6H), 5.32 (d, J = 7.3, 1H), 4.96-4.92 (m, 3H), 4.38 (s, 1H), 3.90 (m, 1H), 3.76-3.54 (m, 4H), 3.41 (d, J = 10.4, 1H), 3.04-2.92 (m, 2H), 2.73-2.54 (m, 2H), 2.03 (m, 1H), 1.83 (m, 1H), 1.49 (s, 3H), 1.36 (s, 3H), 0.88 (m, 1H), 0.35 (m, 2H), 0.15 (m, 2H); HRMS (ESI) m/z calcd for C$_{25}$H$_{35}$N$_3$O$_6$SNa (M + Na)$^+$ 528.2139, found 528.2121.

Example B27: (R)-3-((2S,3S)-3-[2-(2,6-Dimethyl-phenoxy)-ethanoylamino]-2-hydroxy-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid cyclopropylmethyl-amide

![Chemical structure](image)
White solid; IR (neat, cm⁻¹) 3413, 1648, 1531, 1443, 1390, 1196; ¹H NMR (DMSO-d₆) δ 8.12 (d, J = 9.0, 1H), 8.06 (t, J = 5.7, 1H), 7.33-7.13 (m, 5H), 7.01-6.89 (m, 3H), 5.44 (d, J = 6.8, 1H), 4.97 (d, J = 9.0, 1H), 4.91 (d, J = 9.0, 1H), 4.47-4.36 (m, 2H), 4.41 (s, 1H), 4.16 (d, J = 14.2, 1H), 3.98 (d, J = 14.2, 1H), 3.10-2.76 (m, 4H), 2.13 (s, 6H), 1.51 (s, 3H), 1.38 (s, 3H), 0.88 (m, 1H), 0.36 (m, 2H), 0.15 (m, 2H); HRMS (ESI) m/z calcd for C₃₀H₃₀N₅O₅Na (M + Na)⁺ 576.2503, found 576.2503.

Example 28: 2,3-Dihydro-1H-indole-4-carboxylic acid ((1S,2S)-1-benzyl-3-[(R)-4-cyclopropylmethyl-carbamoyl]-5,5-dimethyl-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl]-amide

Off white solid; ¹H NMR (DMSO-d₆) δ 8.03-8.01 (m, 2H), 7.35-7.11 (m, 5H), 6.91 (t, J = 7.7, 1H), 6.69 (d, J = 7.9, 1H), 6.52 (d, J = 7.7, 1H), 5.58 (s br, 1H), 5.39 (d, J = 6.8, 1H), 5.06 (d, J = 9.2, 1H), 4.99 (d, J = 9.2, 1H), 4.48-4.39 (m, 4H), 2.98-2.79 (m, 6H), 1.51 (s, 3H), 1.37 (s, 3H), 0.87 (m, 1H), 0.35 (m, 2H), 0.14 (m, 2H); HRMS (ESI) m/z calcd for C₂₉H₃₆Na₄O₄Na (M + Na)⁺ 559.2349, found 559.2353.

Example B29: 2,3-Dihydro-1H-indole-4-carboxylic acid ((1S,2S)-1-benzyl-3-[(R)-4-((S)-chroman-4-ylcarbamoyl)-5,5-dimethyl-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl]-amide
Beige solid; 1H NMR (DMSO-d$_6$) δ 8.52 (d, J = 8.1, 1H), 8.21 (d, J = 8.4, 1H), 7.54-6.72 (m, 13H), 5.40 (d, J = 5.9, 1H), 5.20-4.90 (m, 3H), 4.70-4.12 (m, 3H), 3.10-2.80 (m, 4H), 2.20-1.90 (m, 6H), 1.51 (s, 3H), 1.49 (s, 3H); HRMS (ESI) m/z calcd for C$_{34}$H$_{38}$N$_4$O$_5$SNa (M + Na)$^+$ 685.2303, found 685.2319; Anal. Calcd for C$_{34}$H$_{38}$N$_4$O$_5$S•0.5 H$_2$O: C, 65.47; H, 6.30; N, 8.98. Found: C, 65.34; H, 6.02; N, 8.75.

Example B30: (R)-3-[(2S,3S)-3-[2-(2,6-Dimethyl-phenoxy)-ethanoylamino]-2-hydroxy-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (S)-chroman-4-ylamide

![Structural diagram]

White solid: mp = 105-107 °C; 1H NMR (DMSO-d$_6$) δ 8.49 (d, J = 7.7, 1H), 8.14 (d, J = 8.6, 1H), 7.40-6.65 (m, 12H), 5.44 (d, J = 7.3, 1H), 4.96 (d, J = 8.6, 1H), 4.94 (d, J = 8.6, 1H), 4.44-3.94 (m, 8H), 2.82-2.70 (m, 2H), 2.15 (s, 6H), 2.10-1.90 (m, 2H), 1.49 (s, 3H), 1.45 (s, 3H); HRMS (ESI) m/z calcd for C$_{35}$H$_{41}$N$_3$O$_6$SNa (M + Na)$^+$ 654.2608, found 654.2622; Anal. Calcd for C$_{35}$H$_{41}$N$_3$O$_6$S: C, 66.54; H, 6.54; N, 6.65. Found: C, 66.54; H, 6.68; N, 6.69

Example B31: (R)-3-[(2S,3S)-2-Hydroxy-4-phenyl-3-[2-(1H-[1,2,4]triazol-3-ylsulfanyl)-ethanoylamino]-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (S)-chroman-4-ylamide

![Structural diagram]
\[^1H \text{ NMR (DMSO-}d_6\text{) } \delta \text{ 8.47 (d, } J = 8.2, 1H), 8.37 (d, } J = 8.6, 1H), 8.23 (s \text{ br, } 1H), 7.20-7.08 \text{ (m, 7H), 6.85-6.74 (m, 2H), 5.26 (d, } J = 6.6, 1H), 4.98-4.89 \text{ (m, 3H), 4.41 (s, 1H), 4.30-4.20 \text{ (m, 4H), 3.75 (dd, } J = 22.2, 14.5, 2H), 2.75-2.50 \text{ (m, 2H), 2.20-1.90 \text{ (m, 2H), 1.48 (s, 3H), 1.44 (s, 3H); HRMS (ESI) } m/z \text{ calcd for } C_{29}H_{34}N_6O_7S_2Na (M + Na)^+ 633.1924, \text{ found 633.1930.}
\]

Example B32: ((1S,2S)-1-Benzyl-3-((R)-5,5-dimethyl-4-[(S)-(1,2,3,4-tetrahydro-naphthalen-1-yl)carbamoyl]-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl)-carbamic acid 2,6-dimethyl-benzyl ester

![Chemical structure diagram]

White solid: \(mp = 88-90^\circ C \); \(^1H \text{ NMR (DMSO-}d_6\text{) } \delta \text{ 8.30 (d, } J = 8.9, 1H), 8.15 (d, } J = 9.3, 1H), 7.35-6.85 \text{ (m, 12H), 5.45 (d, } J = 6.0, 1H), 5.20-4.90 \text{ (m, 2H), 4.45-3.90 \text{ (m, 6H), 2.80-2.62 \text{ (m, 2H), 2.14 (s, 6H), 1.90-1.60 \text{ (m, 6H), 1.49 (s, 3H), 1.45 (s, 3H); HRMS (ESI) } m/z \text{ calcd for } C_{36}H_{43}N_3O_5SNa (M + Na)^+ 652.2816, \text{ found 652.2836; Anal. Calcd for } C_{36}H_{43}N_3O_5S: \text{ C, 68.65; H, 6.88; N, 6.67. Found: C, 68.45; H, 6.98; N, 6.58.}
\]

Example B33: ((1S,2S)-1-Benzyl-3-((R)-5,5-dimethyl-4-[(S)-(1,2,3,4-tetrahydro-naphthalen-1-yl)carbamoyl]-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl)-carbamic acid (S)-(tetrahydro-furan-3-yl) ester

![Chemical structure diagram]

White solid: \(mp = 103-105^\circ C \); \(^1H \text{ NMR (DMSO-}d_6\text{) } \delta \text{ 8.26 (d, } J = 7.9, 1H), 7.30-7.08 \text{ (m, 10H), 5.50 (d, } J = 7.9, 1H), 5.00-4.90 \text{ (m, 3H), 4.42-4.38 \text{ (m, 3H), 4.00-3.30 \text{ (m, 5H), 3.75-3.35 \text{ (m, 3H), 2.40-2.20 \text{ (m, 2H), 1.80-1.40 \text{ (m, 6H); HRMS (ESI) } m/z \text{ calcd for } C_{36}H_{43}N_3O_5SNa (M + Na)^+ 652.2816, \text{ found 652.2836; Anal. Calcd for } C_{36}H_{43}N_3O_5S: \text{ C, 68.65; H, 6.88; N, 6.67. Found: C, 68.45; H, 6.98; N, 6.58.}
\]
3.00-2.40 (m, 4H), 1.90-1.60 (m, 4H), 1.47 (s, 3H), 1.43 (s, 3H), 1.40-1.38 (m, 2H); HRMS (ESI) m / z calcld for C$_{31}$H$_{39}$N$_{3}$O$_{5}$SNa (M + Na)$^+$ 604.2452, found 604.2430; Anal. Calcld for C$_{31}$H$_{39}$N$_{3}$O$_{5}$S•0.25 H$_{2}$O: C, 63.51; H, 6.79; N, 7.17. Found: C, 63.40; H, 6.73; N, 7.08.

Example B34: 2,3-Dihydro-1H-indole-4-carboxylic acid [(1S,2S)-1-benzyl-3-((R)-5,5-dimethyl-4-prop-2-ynylcarbamoyl-thiazolidin-3-yl)-2-hydroxy-3-oxo-propyl]-amide

![Chemical Structure](image)

Orange solid; 1H NMR (DMSO-d$_6$) δ 8.41 (t, $J = 5.0$, 1H), 8.01 (d, $J = 8.3$, 1H), 7.34-7.11 (m, 5H), 6.91 (t, $J = 7.7$, 1H), 6.68 (d, $J = 7.5$, 1H), 6.52 (d, $J = 7.9$, 1H), 5.58 (s br, 1H), 5.45 (d, $J = 6.8$, 1H), 5.06 (d, $J = 9.3$, 1H), 4.99 (d, $J = 9.5$, 1H), 4.48-4.37 (m, 4H), 3.84 (m, 2H), 3.09 (m, 1H), 2.98-2.81 (m, 4H), 1.50 (s, 3H), 1.35 (s, 3H); HRMS (ESI) m / z calcld for C$_{28}$H$_{32}$N$_{4}$O$_{4}$SNa (M + Na)$^+$ 543.2036, found 543.2039.

Example B35: 1H-indazole-4-carboxylic acid [1-benzyl-3-(5,5-dimethyl-4-prop-2-ynylcarbamoyl-thiazolidin-3-yl)-2-hydroxy-3-oxo-propyl]-amide

![Chemical Structure](image)

1H NMR (DMSO-d$_6$) δ 13.18 (s, 1H), 8.42 (m, 2H), 8.19 (s, 1H), 7.68-7.12 (m, 8H), 5.54 (d, $J = 5.6$, 1H), 5.10 (d, $J = 9.3$, 1H), 5.08 (d, $J = 9.3$, 1H), 4.54 (m, 2H), 4.41 (s, 1H), 3.87 (m, 2H), 3.03 (t, $J = 2.5$, 1H), 2.89 (m, 2H), 1.53 (s, 3H), 1.38 (s, 3H); HRMS (ESI) m / z calcld for C$_{27}$H$_{29}$N$_{5}$O$_{4}$SNa (M + Na)$^+$ 542.1832, found 542.1855; Anal. Calcld for
C₂₁H₂₉N₃O₄S•0.25H₂O: C, 61.87; H, 5.67; N, 13.36; S, 6.12. Found: C, 61.85; H, 5.64; N, 13.19; S, 6.08.

Example B36: (R)-3-[(2S,3S)-3-[2-(2,6-Dimethyl-phenoxo)-ethanoylamino]-2-hydroxy-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid prop-2-ynylamide

White solid; IR (neat, cm⁻¹) 3418, 1658, 1530, 1378, 1196; ¹H NMR (DMSO-d₆) δ 8.46 (t, J = 5.1, 1H), 8.10 (d, J = 9.0, 1H), 7.33-7.14 (m, 5H), 7.01-6.89 (m, 3H), 5.49 (d, J = 6.8, 1H), 4.97 (d, J = 9.2, 1H), 4.92 (d, J = 9.0, 1H), 4.48-4.35 (m, 2H), 4.40 (s, 1H), 4.15 (d, J = 14.3, 1H), 3.99 (d, J = 14.1, 1H), 3.93-3.86 (m, 2H), 3.10 (s, 1H), 2.77 (m, 2H), 1.50 (s, 3H), 1.37 (s, 3H), 2.13 (s, 6H); HRMS (ESI) m/z calcd for C₂₉H₃₅N₅O₄SNa (M + Na)⁺ 560.2190, found 560.2168.

Example B37: 1-H-indazole-4-carboxylic acid (1-benzyl-3-[4[(furan-2-ylmethyl)-carbamoyl]-5,5-dimethyl-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl)-amide

¹H NMR (DMSO-d₆) δ 13.18 (s, 1H), 8.44 (m, 2H), 8.19 (s, 1H), 7.68-7.12 (m, 9H), 6.34 (m, 1H), 6.26 (m, 1H), 5.54 (d, J = 6.6, 1H), 5.10 (d, J = 9.2, 1H), 5.06 (d, J = 9.2, 1H), 4.55 (m, 2H), 4.44 (s, 1H), 4.29 (m, 2H), 2.90 (m, 2H), 2.06 (m, 3H), 1.51 (s, 3H), 1.30 (s, 3H); HRMS (ESI) m/z calcd for C₂₉H₃₁N₅O₅SNa (M + Na)⁺ 584.1938, found 584.1922; Anal. Calcd
for C_{29}H_{31}N_{5}O_{5}S\cdot0.5H_{2}O: C, 61.03; H, 5.65; N, 12.27; S, 5.62. Found: C, 61.14; H, 5.60; N, 12.17; S, 5.60.

Example B38: (R)-3-((2S,3S)-3-[2-(2,6-Dimethyl-phenoxy)-ethanoylamino]-2-hydroxy-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (furan-2-ylmethyl)-amide

![Chemical structure](image)

White solid; IR (neat, cm\(^{-1}\)) 3409, 1657, 1530, 1452, 1371, 1195; \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 8.47 (t, \(J = 5.7, 1H\)), 8.12 (d, \(J = 8.8, 1H\)), 7.52 (s, 1H), 7.32-7.14 (m, 5H), 7.01-6.89 (m, 3H), 6.33 (m, 1H), 6.26 (m, 1H), 5.50 (d, \(J = 7.0, 1H\)), 4.97 (d, \(J = 9.0, 1H\)), 4.92 (d, \(J = 9.0, 1H\)), 4.46-4.27 (m, 5H), 4.15 (d, \(J = 14.3, 1H\)), 4.00 (d, \(J = 14.3, 1H\)), 2.79 (m, 2H), 2.14 (s, 6H), 1.48 (s, 3H), 1.31 (s, 3H); HRMS (ESI) \(m/z\) calc'd for C\(_{31}\)H\(_{37}\)N\(_{5}\)O\(_{5}\)SNa (M + Na\(^+\)) 602.2295, found 602.2310.

Example B39: 2,3-Dihydro-1H-indole-4-carboxylic acid ((1S,2S)-1-benzyl-3-((R)-4-[(furan-2-ylmethyl)-carbamoyl]-5,5-dimethyl-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl)-amide

![Chemical structure](image)

Pale pink solid; \(^1\)H NMR (DMSO-d\(_6\)) \(\delta\) 8.42 (t, \(J = 5.3, 1H\)), 8.02 (d, \(J = 8.2, 1H\)), 7.53 (s, 1H), 7.34-7.11 (m, 6H), 6.91 (t, \(J = 7.7, 1H\)), 6.69 (d, \(J = 7.7, 1H\)), 6.52 (d, \(J = 7.7, 1H\)), 6.34 (m, 1H), 6.25 (m, 1H), 5.58 (s br, 1H), 5.46 (d, \(J = 6.6, 1H\)), 5.06 (d, \(J = 9.2, 1H\), 5.06 (d, \(J = 9.2, 1H\).
4.99 (d, J = 9.2, 1H), 4.48-4.18 (m, 5H), 4.40 (s, 1H), 3.00-2.79 (m, 4H), 1.48 (s, 3H), 1.30 (s, 3H).

Example B40: (R)-3-((2S,3S)-2-Hydroxy-4-phenyl-3-[(S)-1-tetrahydro-furan-2-ylmethanoyl]-amino]-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (furan-2-ylmethyl)-amide

![Chemical structure](image)

Off white solid; ¹H NMR (DMSO-d₆) δ 8.44 (t, J = 5.3, 1H), 7.57 (d, J = 9.0, 1H), 7.53 (s, 1H), 7.23-7.15 (m, 5H), 6.34 (m, 1H), 6.26 (m, 1H), 5.45 (d, J = 6.8, 1H), 4.94 (s, 2H), 4.39 (s, 2H), 4.28 (m, 3H), 4.10 (m, 1H), 3.79-3.64 (m, 2H), 2.79-2.64 (m, 2H), 1.98-1.87 (m, 2H), 1.65-1.33 (m, 2H), 1.47 (s, 3H), 1.30 (s, 3H); HRMS (ESI) m/z calcd for C₂₆H₃₃N₃O₇SNa (M + Na)⁺ 538.1982, found 538.1997.

Example B41: 2,3-Dihydro-1H-indole-4-carboxylic acid [(1S,2S)-1-benzyl-3-[(R)-4-[(S)-cyclohex-2-enylcarbamoyl]-5,5-dimethyl-thiazolidin-3-yl]-2-hydroxy-3-oxopropyl]-amide

![Chemical structure](image)

¹H NMR (DMSO-d₆) δ 8.01 (d, J = 8.2, 1H), 7.94 (d, J = 7.7, 1H), 7.36-7.06 (m, 5H), 6.90 (t, J = 7.6, 1H), 6.69 (d, J = 7.6, 1H), 6.52 (d, J = 7.6, 1H), 5.80-5.68 (m, 1H), 5.35 (d, J = 6.7, 1H), 5.07 (d, J = 9.2, 1H), 4.98 (d, J = 9.2, 1H), 4.49-4.32 (m, 3H), 4.32-4.20 (m, 1H), 3.00-2.71 (m, 6H), 2.00-1.60 (m, 6H), 1.49 (s, 3H), 1.37 (s, 3H); HRMS (ESI) m/z calcd
for C$_{31}$H$_{38}$N$_4$O$_4$SNa (M + Na)$^+$ 585.2506, found 585.2500; Anal. Calcd for C$_{31}$H$_{38}$N$_4$O$_4$S•1 H$_2$O: C, 64.11; H, 6.94; N, 9.65. Found: C, 64.38; H, 6.72; N, 9.54.

Example B42: 2,3-Dihydro-1H-indole-4-carboxylic acid [(1S,2S)-1-benzyl-2-hydroxy-3-[R)-4-((S)-indan-1-ylcarbamoyl)-5,5-dimethyl-thiazolidin-3-yl]-3-oxo-propyl]-amide

![Chemical structure]

1H NMR (DMSO-d$_6$) δ 8.32 (d, J = 8.1, 1H), 8.06 (d, J = 8.6, 1H), 7.33-7.11 (m, 9H), 6.91 (t, J = 7.6, 1H), 6.71 (d, J = 7.6, 1H), 6.53 (d, J = 7.6, 1H), 5.36-5.25 (m, 2H), 5.09 (d, J = 9.2, 1H), 5.01 (d, J = 9.2, 1H), 4.50 (d, J = 3.6, 1H), 4.44 (s, 1H), 4.42-4.32 (m, 1H), 2.97-2.71 (m, 6H), 2.39-2.34 (m, 2H), 1.87-1.80 (m, 2H), 1.50 (s, 3H), 1.44 (s, 3H); HRMS (ESI) m/z calcd for C$_{34}$H$_{38}$N$_4$O$_4$SNa (M + Na)$^+$ 621.2506, found 621.2519; Anal. Calcd for C$_{34}$H$_{38}$N$_4$O$_4$S•0.25 H$_2$O: C, 67.69; H, 6.43; N, 9.29. Found: C, 67.73; H, 6.26; N, 8.98.

Example B43: (R)-3-((2S,3S)-2-Hydroxy-3-[(1-(3-hydroxy-2,4-dimethyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (S)-indan-1-ylamide

![Chemical structure]

1H NMR (DMSO-d$_6$) δ 8.33 (d, J = 7.7, 1H), 8.24 (s, 1H), 8.14 (d, J = 8.4, 1H), 7.32-7.12 (m, 9H), 6.86 (d, J = 7.7, 1H), 6.53 (d, J = 7.7, 1H), 5.38-5.26 (m, 2H), 5.14 (d, J = 9.2, 1H), 5.03 (d, J = 9.2, 1H), 4.60-4.30 (m, 4H), 2.95-2.64 (m, 3H), 2.42-2.30 (m, 1H), 1.90-
1.80 (m, 1H), 2.12 (s, 3H), 1.85 (s, 3H), 1.49 (s, 3H), 1.44 (s, 3H); HRMS (ESI) m/z calcd for C$_{34}$H$_{39}$N$_3$O$_5$SNa (M + Na)$^+$ 624.2503, found 624.2509; Anal. Calcd for C$_{34}$H$_{39}$N$_3$O$_5$S: C, 67.86; H, 6.53; N, 6.98. Found: C, 67.77; H, 6.50; N, 6.79.

Example B44: 2,3-Dihydro-1H-indole-4-carboxylic acid [(1S,2S)-1-benzyl-3-((R)-5,5-dimethyl-4-[(R)-1-(tetrahydro-furan-2-yl)methyl]-carbamoyl]-thiazolidin-3-yl)-2-hydroxy-3-oxo-propyl]-amide

White solid; IR (neat, cm$^{-1}$) 3401, 2978, 2861, 1643, 1531, 1455, 1372, 1279, 1073; 1H NMR (DMSO-d$_6$) δ 8.04 (m, 2H), 7.35-7.11 (m, 6H), 6.90 (t, $J = 7.7$, 1H), 6.68 (d, $J = 7.7$, 1H), 6.52 (d, $J = 7.7$, 1H), 5.58 (s br, 1H), 5.39 (d, $J = 6.8$, 1H), 5.06 (d, $J = 9.2$, 1H), 4.97 (d, $J = 9.3$, 1H), 4.49-4.36 (m, 3H), 3.83-3.56 (m, 4H), 3.15 (m, 2H), 2.99-2.78 (m, 4H), 1.78 (m, 4H), 1.50 (s, 3H), 1.36 (s, 3H); HRMS (ESI) m/z calcd for C$_{30}$H$_{38}$N$_4$O$_5$SNa (M + Na)$^+$ 589.2455, found 589.2440.

Example B45: 2,3-Dihydro-1H-indole-4-carboxylic acid [(1S,2S)-1-benzyl-3-((R)-5,5-dimethyl-4-propyl-carbamoyl-thiazolidin-3-yl)-2-hydroxy-3-oxo-propyl]-amide

Pink solid; 1H NMR (DMSO-d$_6$) δ 8.01 (d, $J = 8.2$, 1H), 7.89 (t, $J = 5.3$, 1H), 7.35-7.10 (m, 5H), 6.90 (t, $J = 7.8$, 1H), 6.68 (d, $J = 7.8$, 1H), 6.52 (d, $J = 7.8$, 1H), 5.57 (s, 1H), 5.39 (d, $J = 6.9$, 1H), 5.05 (d, $J = 9.2$, 1H), 4.98 (d, $J = 9.2$, 1H), 4.49-4.40 (m, 2H), 4.35 (s, 1H), 3.04-2.78 (m, 8H), 1.49 (s, 3H), 1.34 (s, 3H), 1.43-1.30 (m, 2H), 0.82 (t, $J = 7.5$, 3H);
HRMS (ESI) m/z calcd for $C_{28}H_{36}N_{4}O_{4}S$Na $(M + Na)^+ 547.2349$, found 547.2323; Anal. Calcd for $C_{28}H_{36}N_{4}O_{4}S$•0.25 H$_2$O: C, 63.55; H, 6.95; N, 10.59. Found: C, 63.33; H, 6.60; N, 10.46.

Example B46: 3-[(2S,3S)-3-[3-(2-Chloro-benzyl)-ureido]-2-hydroxy-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-chloro-benzylamide

![Chemical Structure](image)

1H-NMR (400 MHz, dmsø-d$_6$): 7.00-7.40 (m, 13H), 4.00-4.80 (m, 9H), 2.60 (m, 2H), 1.50, 1.40 (s, 3H), 1.26, 1.22 (s, 3H); MS (APCI, m/z): 628, 630; C$_{31}$H$_{34}$C$_{12}$N$_{4}$O$_{4}$S

Example B47: [(1S,2S)-1-Benzyl-3-[(R)-4-(2-chloro-benzylcarbamoyl)-5,5-dimethyl-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl]-carbamic acid allyl ester

![Chemical Structure](image)

Isolated yield: 68%; 1H-NMR (400 MHz, dmsø-d$_6$): 7.00-7.40 (m, 9H), 6.60 (m, 1H), 5.80 (m, 1H), 5.32 (m, 1H), 5.19 (m, 1H), 4.00-5.00 (m, 9H), 2.75 (m, 2H), 1.56, 1.51 (s, 3H), 1.36, 1.33 (s, 3H); MS (APCI, m/z): 548 (M+H); C$_{27}$H$_{32}$ClN$_{3}$O$_{5}$S. 0.89 H$_2$O Calculated: C57.69, H6.06, N7.22, Observed: C57.30, H5.70, N7.22.
Example B48: {1-Benzyl-3-[4-(2-chloro-benzylcarbamoil)-5,5-dimethyl-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl}-carbamic acid prop-2-ynyl ester

Isolated yield: 45%; 1H-NMR (400 MHz, dmso-d$_6$): 6.88-7.62 (m, 9H), 4.20-5.00 (m, 9H), 2.70-2.90 (m, 2H), 2.42 (t, J = 2.5 Hz, 1H), 1.56, 1.50 (s, 3H), 1.37, 1.32 (s, 3H); MS (APCI, m/z): 545 (M+H); C$_{27}$H$_{30}$ClN$_3$O$_5$S .065 H$_2$O Calculated: C58.35, H5.68, N7.56, Observed: C57.96, H5.48, N7.37.

Example B49: 3-{(2S,3S)-3-[3-(2,6-Difluoro-benzyl)-ureido]-2-hydroxy-4-phenyl-butyryl}-5,5-dimethyl-thiazolidine-4-carboxylic acid 2,6-difluoro-benzylamidea

Isolated yield: 42%; 1H-NMR (400 MHz, dmso-d$_6$): 6.60-7.40 (m, 11H), 4.00-4.80 (m, 9H), 2.60 (m, 2H), 1.50, 1.37 (s, 3H), 1.30, 1.13 (s, 3H); MS (APCI, m/z): 633; C$_{31}$H$_{32}$F$_4$N$_4$O$_4$S Calculated: C58.85, H5.10, N8.86, Observed: C58.54, H5.00, N8.71.

Example B50: {1S,2S)-1-Benzyl-3-{(R)-4-(2,6-difluoro-benzylcarbamoil)-5,5-dimethyl-thiazolidin-3-yl}-2-hydroxy-3-oxo-propyl}-carbamic acid allyl ester
Isolated yield: 71%; 1H-NMR (400 MHz, dms-o-d⁶): 6.60-7.40 (m, 8H), 5.80 (m, 1H), 5.05-5.35 (m, 2H), 4.00-5.00 (m, 9H), 2.75 (m, 2H), 1.56, 1.52 (s, 3H), 1.37, 1.35 (s, 3H); MS (APCI, m/z): 548 (M+H); C₂₇H₃₂ClN₃O₅S. 0.13 H₂O Calculated: C58.97, H5.73, N7.64, Observed: C58.58, H5.61, N7.53.

Example B51: {1-Benzyl-3-[4-(2,6-difluoro-benzylcarbamoyl)-5,5-dimethyl-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl]-carbamic acid prop-2-ynyl

![Chemical Structure]

Isolated yield: 73%; 1H-NMR (400 MHz, dms-o-d⁶): 6.60-7.40 (m, 8H), 4.20-5.00 (m, 9H), 2.70-2.90 (m, 2H), 2.42 (m, 1H), 1.56, 1.50 (s, 3H), 1.38, 1.34 (s, 3H); MS (APCI, m/z): 546 (M+H); C₂₇H₃₀ClN₃O₅S Calculated: C59.44, H5.36, N7.70, Observed: C59.33, H5.39, N7.56.

Example B52: 3-{[(2S,3S)-2-Hydroxy-4-phenyl-3-[3-(2-trifluoromethyl-benzyl)-ureido]-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-trifluoromethyl-benzylamide

![Chemical Structure]

Isolated yield: 82%; 1H-NMR (400 MHz, dms-o-d⁶): 7.00-7.57 (m, 13H), 4.00-4.80 (m, 9H), 2.60 (m, 2H), 1.46, 1.40 (s, 3H), 1.25, 1.22 (s, 3H); MS (APCI, m/z): 697 (M+H); C₃₃H₃₄F₆N₃O₅S Calculated: C56.89, H4.92, N8.04, Observed: C56.33, H4.78, N7.94.
Example B53: \{(1S,2S)-1-Benzyl-3-\{[5,5-dimethyl-4-(2-trifluoromethyl-benzylcarbamoyl)-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl\}-carbamic acid allyl ester\}

\[
\begin{align*}
\text{Isolated yield: } & 80\%; \\
\text{1H-NMR (400 MHz, dms-o-d6): } & 7.00-7.70 (m, 9H), 5.80 (m, 1H), 5.20 (m, 2H), 4.00-5.00 (m, 9H), 2.75 (m, 2H), 1.56, 1.50 (s, 3H), 1.40, 1.29 (s, 3H); \\
\text{MS (APCI, m/z): } & 580 (M+H); \\
\text{C}_{28}\text{H}_{32}\text{F}_{3}\text{N}_{5}\text{O}_{5}\text{S}. \text{0.56 H}_{2}\text{O Calculated: } C 57.70, H 5.60, N 7.21, \\
\text{Observed: } & C 57.31, H 5.31, N 6.83.
\end{align*}
\]

Example B54: \{1-Benzyl-3-\{[5,5-dimethyl-4-(2-trifluoromethyl-benzylcarbamoyl)-thiazolidin-3-yl]-2-hydroxy-3-oxo-propyl\}-carbamic acid prop-2-ynyl ester\}

\[
\begin{align*}
\text{Isolated yield: } & 61\%; \\
\text{1H-NMR (400 MHz, dms-o-d6): } & 6.90-7.60 (m, 9H), 4.20-5.00 (m, 9H), 2.60-2.80 (m, 2H), 2.42 (m, 1H), 1.55, 1.48 (s, 3H), 1.40, 1.28 (s, 3H); \\
\text{MS (APCI, m/z): } & 578 (M+H); \\
\text{C}_{28}\text{H}_{30}\text{F}_{3}\text{N}_{5}\text{O}_{5}\text{S Calculated: } C 58.17, H 5.24, N 7.27, \text{Observed: } C 57.78, H 5.25, N 6.94.
\end{align*}
\]
Example B55: 3-([2S,3S]-3-[3-(Fluoro-phenyl)-ureido]-2-hydroxy-4-phenyl-
butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[
\begin{array}{c}
\text{F} \\
\text{N} \quad \text{O} \\
\text{N} \quad \text{Bn} \quad \text{O} \\
\text{N} \quad \text{S} \quad \text{N} \\
\text{OH} \quad \text{NH} \quad \text{N} \\
\text{H} \quad \text{N} \\
\end{array}
\]

Isolated yield: 40%. \(^1 \text{H NMR (400 MHz, DMSO-}\text{d}_6) \): \(\delta \) 8.73 (s, 1H), 8.39 (t, 1H), 7.36-
7.10 (m, 11H), 6.91 (d, 1H), 6.65 (t, 1H), 6.45 (d, 1H), 5.33 (br s, 1H), 4.98 (s, 2H), 4.49
(s, 2H), 4.38 (dd, 1H), 4.22-4.12 (m, 2H), 2.58 (d, 2H), 2.55 (m, 1H), 2.24 (s, 3H), 1.49 (s,
3H), 1.35 (s, 3H); MS-APCI (m/z+): 315, 579 (M+H).

Example B56: N-[(1S,2S)-3-(4-Allylcarbamoyl-5,5-dimethyl-thiazolidin-3-yl)-1-
benzyl-2-hydroxy-3-oxo-propyl]-nicotinamide

\[
\begin{array}{c}
\text{N} \quad \text{O} \\
\text{N} \quad \text{H} \\
\text{O} \\
\text{S} \quad \text{N} \\
\text{OH} \\
\end{array}
\]

White solid: \(^1 \text{H NMR (DMSO-}\text{d}_6) \): \(\delta \) 8.81 (d, \(J = 8.6, 1 \)), 8.77 (d, \(J = 6.2, 1 \)), 8.12 (m,
1H), 7.99 (m, 1H), 7.63 (m, 1H), 7.32-7.12 (m, 7H), 5.78 (m, 1H), 5.18 (m, 2H), 4.56(m,
3H), 4.40 (m, 4H), 2.87-2.67 (m, 2H), 1.49 (s, 3H), 1.34 (s, 3H); Anal. (C\text{26}H\text{32}N\text{4}O\text{4}S\times 0.5
H\text{2O}\times 0.5 \text{TFA}) calculated C (57.65), H (6.36), N (10.19), found C (57.73), H (5.91), N
(10.15). HRMS (ESI) m/z caleed for 483.2075, found 497.2066.

Example B57: 3-[(2S,3S)-3-(5-Bromo-thiophene-2-sulfonylamino)-2-hydroxy-4-
phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[
\begin{array}{c}
\text{Br} \\
\text{N} \quad \text{H} \\
\text{S} \\
\text{N} \\
\text{OH} \\
\text{Bn} \\
\end{array}
\]
Isolated yield: 33%. MS-APCI (m/z+): 667 (M+H); HPLC: Rf (min) 20.98; Purity: 97%.

Example B58: 3-[(2S,3S)-3-(4-Cyano-benzenesulfonylamino)-2-hydroxy-4-phenylbutyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

Isolated yield: 25%. MS-APCI (m/z+): 607 (M+H); HPLC: Rf (min) 20.71; Purity: 96%.

Example B59: 3-[(2S,3S)-3-(3-Benzyl-ureido)-2-hydroxy-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

Isolated yield: 69%. \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 8.35 (t, 1H), 7.29 (d, 1H), 7.25-7.6 (m, 13H), 6.31 (t, 1H), 6.18 (d, 1H), 5.11 (d, 1H), 5.01 (d, 1H), 4.95 (d, 1H), 4.48-4.45 (s, 2H), 4.37 (dd, 1H), 4.19-4.03 (m, 4H), 2.70 (d, 1H), 2.53-2.46 (m, partially obscured by DMSO, 1H), 2.24 (s, 3H), 1.49 (s, 3H), 1.33 (s, 3H); MS-APCI (m/z+): 575 (M+H); HPLC: Rf(min.) 20.66; Purity: 97%, C\(_{32}\)H\(_{38}\)N\(_4\)O\(_4\)S•0.4 H\(_2\)O calculated: 66.05, 6.72, 9.63; found: 66.18, 6.70, 9.61.

Example B60: 3-[(S)-2-Hydroxy-3-[3-(4-methoxy-benzyl)-ureido]-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide
Isolated yield: 41%. \(^1 \text{H} \) NMR (400 MHz, DMSO-\(d_6 \)): \(\delta \) 8.36 (t, 1H), 7.30-7.05 (m, 11H), 7.00 (d, 1H), 6.79 (d 1H), 6.23 (t, 1H), 6.12 (d, 1H), 5.10 (d, 1H), 5.02 (d, 1H), 4.94 (d, 1H), 4.48-4.44 (m, 2H), 4.38 (dd, 1H), 4.14 (dd, 1H), 4.08-3.96 (m, 4H), 3.69 (s, 3H), 2.68 (d, 1H), 2.24 (s, 3H), 1.49 (s, 3H), 1.33 (s, 3H); MS-APCI (m/z+): 605 (M+H).

Example B61: 3-[(2S,3S)-3-(3-Benzyl-ureido)-2-hydroxy-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid benzylamide

\[
\begin{align*}
\text{O} & \quad \text{Bn} & \quad \text{O} & \quad \text{N} & \quad \text{H} & \quad \text{N} & \quad \text{S} & \quad \text{N} & \quad \text{H} & \quad \text{N} & \quad \text{H}
\end{align*}
\]

Isolated yield: 53%. \(^1 \text{H} \) NMR (400 MHz, DMSO-\(d_6 \)): \(\delta \) 8.48 (t, 1H), 7.29-7.16 (m, 13H), 7.06 (d, 2H), 6.31-6.25 (m, 2H), 6.17 (d, 1H), 5.14 (d, 1H), 5.00 (d, 1H), 4.95 (d, 1H), 4.47-4.34 (m, 2H), 4.25-4.03 (m, 4H), 2.72 (d, 1H), 1.48 (s, 3H), 1.31 (s, 3H); MS-APCI (m/z+): 561; C\(_{31}\)H\(_{36}\)N\(_4\)O\(_4\)S-0.3H\(_2\)O calculated: C65.77, H6.52, N9.90, found: C65.70, H6.50, N 9.90.

Example B62: 3-[(2S,3S)-2-Hydroxy-3-[3-(2-methyl-benzyl)-ureido]-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[
\begin{align*}
\text{O} & \quad \text{Bn} & \quad \text{O} & \quad \text{N} & \quad \text{H} & \quad \text{N} & \quad \text{S} & \quad \text{N} & \quad \text{H} & \quad \text{N} & \quad \text{H}
\end{align*}
\]

Isolated yield: 84%. \(^1 \text{H} \) NMR (400 MHz, DMSO-\(d_6 \)): \(\delta \) 8.36 (t, 1H), 7.30-7.04 (m, 12H), 6.97 (d, 1H), 6.21-6.15 (m, 2H), 5.11 (d, 1H), 5.02 (d, 1H), 4.93 (d, 1H), 4.48-4.44 (m, 2H), 4.39 (dd, 1H), 4.19-4.04 (m, 4H), 2.67 (d, 2H), 2.24 (s, 3H), 2.14 (s, 3H), 1.48 (s, 3H), 1.33 (s, 3H); MS-APCI (m/z+): 589; HPLC: Rf (min) 21.25; Purity: 100%.
Example B63: 33-[(2S,3S)-2-Hydroxy-3-[3-(4-methoxy-benzyl)-ureido]-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 4-methoxy-benzylamidine

\[
\text{Structure of 33-[(2S,3S)-2-Hydroxy-3-[3-(4-methoxy-benzyl)-ureido]-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 4-methoxy-benzylamidine}
\]

Isolated yield: 59%. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.41 (t, 1H), 7.22-7.14 (m, 8H), 7.00 (d, 2H), 6.83-6.77 (m, 3H), 6.23-6.21 (m, 2H), 6.11 (d, 1H), 5.11 (d, 1H), 5.00 (d, 1H), 4.94 (d, 1H), 4.46-4.41 (m, 2H), 4.29-3.96 (m, 4H), 3.69 (s, 3H), 3.65 (s, 3H), 2.68 (d, 1H), 1.47 (s, 3H), 1.28 (s, 3H); MS-APCI (m/z+): 121, 621; HPLC: Rf (min) 20.68; Purity: 98%.

Example B64: (1S,2S)-1-Benzyl-2-hydroxy-3-[4-(4-methoxy-benzylcarbamoyl)-5,5-dimethyl-thiazolidin-3-yl]-3-oxo-propyl]-carbamic acid prop-2-ynyl ester

\[
\text{Structure of (1S,2S)-1-Benzyl-2-hydroxy-3-[4-(4-methoxy-benzylcarbamoyl)-5,5-dimethyl-thiazolidin-3-yl]-3-oxo-propyl]-carbamic acid prop-2-ynyl ester}
\]

Isolated yield: 64%. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.39 (t, 1H), 7.46 (d, 1H), 7.27-7.13 (m, 8H), 6.79 (d, 2H), 5.34 (d, 1H), 4.93 (dd, 2H), 4.50 (s, 2H), 4.40(s, 2H), 4.29 (dd, 1H), 4.14 (dd, 1H), 3.97-3.88 (m, 1H), 3.67 (s, 3H), 2.72-2.58 (m, 2H), 1.48 (s, 3H), 1.27 (s, 3H); MS-APCI (m/z+): 540; HPLC: Rf (min) 19.07; Purity: 100%; C\(_{28}\)H\(_{33}\)N\(_3\)O\(_6\)S 0.4 H\(_2\)O: calcd: C61.50, H6.23, N7.68; found: C61.54, H6.37, N7.63.

Example B65: 3-[(2S,3S)-2-Hydroxy-3-((S)-2-methyl-butyrylaminol)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamidine

\[
\text{Structure of 3-[(2S,3S)-2-Hydroxy-3-((S)-2-methyl-butyrylaminol)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamidine}
\]
Isolated yield: 98%. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.36 (t, 1H), 7.92 (d, 1H), 7.31-7.26 (m, 3H), 7.18-7.08 (m, 6H), 5.19 (d, 1H), 5.10 (d, 1H), 4.92 (d, 1H), 4.48 (s, 1H), 4.40 (dd, 1H), 4.19-4.14 (m, 2H), 2.69-2.57 (m, 2H), 2.26 (s, 3H), 2.13-2.08 (m, 1H), 1.48 (s, 3H), 1.44-1.36 (m, 1H) 1.33 (s, 3H); 1.20-1.14 (m, 1H), 0.75-0.65 (m, 6H): MS-APCI (\(m/z^+\): 265, 526 (M+H); \(C_{29}H_{39}N_3O_4S\): calcd: C66.26, H7.48, N7.99, found: C65.93, H7.59, N7.83.

Example B66: 3-(((S,S)-2-Hydroxy-3-[3-(2-methyl-benzyl)-ureido]-4-phenyl-pentyl)-5,5-dimethyl-thiazolidine-4-carboxylic acid (pyridin-4-ylmethyl)-amide

![Chemical structure](image)

Isolated yield: 41%. MS-APCI (\(m/z^+\): 225, 576; HPLC: Rf (min) 17.93; Purity: 98%; \(C_{31}H_{37}N_3O_4S\cdot0.6H_2O\): calcd: C63.48, H6.56, N11.94; found: C63.41, H6.44, N11.87.

Example B67: ((1S,2S)-1-Benzyl-3-{5,5-dimethyl-4-[(pyridin-4-ylmethyl)-carbamoyl]-thiazolidin-3-yl}-2-hydroxy-3-oxo-propyl)-carbamic acid prop-2-ynyl ester

![Chemical structure](image)

Isolated yield: 22%. \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.55 (t, 1H), 8.49 (d 2H), 7.46 (d, 1H), 7.28 (d, 2H), 7.26-7.09 (m, 6H), 5.42 (d, 1H), 4.97 (d, 1H), 4.47-4.38 (m, 5H), 4.93 (d, 1H), 4.23 (dd, 1H), 3.92-3.88 (m, 1H), 2.72-2.56 (m, 2H), 1.51 (s, 3H), 1.33 (s, 3H); MS-APCI (\(m/z^+\): 455, 511; HPLC: Rf (min) 16.76; Purity: 100%.
Example B68: 3-{(2S,3S)-2-Hydroxy-3-[(1-methyl-1H-pyrrole-3-carbonyl)-amino]-4-phenyl-butyryl}-5,5-dimethyl-thiazolidine-4-carboxylic acid (pyridin-4-ylmethyl)-amide

\[
\begin{align*}
\text{Isolated yield: 21\%. } \text{H NMR (400 MHz, DMSO-}d_6\text{): } & \delta 8.57 (t, 1H), 8.41 (d 2H), 7.90 (d, 1H), 7.30 (d, 2H), 7.25 (d, 2H), 7.21-7.19 (m, 1H), 7.14 (t, 1H), 7.07 (t, 1H), 6.81-6.78 (m, 2H), 5.95-5.92 (m, 1H), 5.45 (d, 1H), 5.12 (d, 1H), 5.00 (d, 1H), 4.49-4.34 (m, 3H), 4.32-4.29 (m, 1H), 4.22 (dd, 1H), 3.68 (s, 3H), 2.81-2.76 (m, 2H), 1.52 (s, 3H), 1.34 (s, 3H); \\
\text{MS-APCI (}m/z\text{): 536; HPLC: Rf (min) 17.58; Purity: 96%}.
\end{align*}
\]

Example B69: 3-{3-[3-(2,4-Dimethyl-benzyl)-ureido]-2-hydroxy-4-phenyl-butyryl}5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[
\begin{align*}
\text{Isolated yield: 17 \%; MS-APCI (}m/z\text{): 603; HPLC: Rf (min) 21.96; Purity: 97\%}.
\end{align*}
\]

Example B70: 3-{2-Hydroxy-3-[3-(2-methoxy-benzyl)-ureido]-4-phenyl-butyryl}-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[
\begin{align*}
\text{Isolated yield: 18 \%; MS-APCI (}m/z\text{): 605; HPLC: Rf (min) 21.72; Purity: 94\%}.
\end{align*}
\]
Example B71: 3-{{3-[(2,4-Difluoro-benzyl)-ureido]-2-hydroxy-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[
\text{Isolated yield: 12 \%}; \text{ MS-APCI (m/z+): 611}; \text{ HPLC: Rf (min) 21.00}; \text{ Purity: 86\%}. \]

Example B72: 3-{{3-[(2-Bromo-benzyl)-ureido]-2-hydroxy-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[
\text{Isolated yield: 16 \%}; \text{ MS-APCI (m/z+): 442, 468, 655}; \text{ HPLC: Rf (min) 21.59}; \text{ Purity: 94\%}. \]

Example B73: 3-{{3-[(4-Bromo-benzyl)-ureido]-2-hydroxy-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[
\text{Isolated yield: 5 \%}; \text{ MS-APCI: 652 (M-H)}; \text{ HPLC: Rf (min) 22.12}; \text{ Purity: 95\%}. \]
Example B74: (R)-3-[(2S,3S)-3-[3-(3,4-Dimethoxy-benzyl)-ureido]-2-hydroxy-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[\text{Structure Image} \]

Isolated yield: 24%; MS-APCI (m/z): 635; HPLC: Rf (min) 19.44; Purity: 88%.

Example B75: (R)-3-[(2S,3S)-2-Hydroxy-4-phenyl-3-[3-(3-trifluoromethyl-benzyl)-ureido]-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[\text{Structure Image} \]

Isolated yield: 19%; MS-APCI (m/z): 643; HPLC: Rf (min) 21.87; Purity: 95%.

Example B76: (R)-3-[(2S,3S)-2-Hydroxy-3-[3-(3-methoxy-benzyl)-ureido]-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[\text{Structure Image} \]

Isolated yield: 35% MS-APCI (m/z): 605; HPLC: Rf (min) 20.63; Purity: 95%.

Example B77: (R)-3-[(2S,3S)-3-[2-(2,6-Dichloro-phenoxy)-acetylamo]-2-hydroxy-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[\text{Structure Image} \]
Isolated yield: 75%. 1H NMR (400 MHz, DMSO-d$_6$): δ 8.36 (t, 1H), 8.12 (d, 1H), 7.47 (d, 2H), 7.30-7.22 (m, 3H), 7.20-7.06 (m, 7H), 5.49 (d, 1H), 4.96 (d, 1H), 4.94 (d, 1H), 4.48-4.45 (m, 2H), 4.40-4.33 (m, 3H), 4.23-4.14 (m, 2H), 2.78-2.69 (m, 2H), 2.24 (s, 3H), 1.49 (s, 3H), 1.334 (s, 3H); MS-APCI (m/z+): 644, 646. HPLC: Rf (min) 22.23; Purity: 98%.

Example B78: (R)-3-{(2S,3S)-2-Hydroxy-4-phenyl-3-[1-o-tolyl-methanoyl]-amino]-butanoyl}-5,5-dimethyl-thiazolidine-4-carboxylic acid (S)-indan-1-ylamide

\[\text{Structural formula image} \]

IR (neat, cm$^{-1}$) 3311, 3026, 2966, 1655, 1538, 1454, 1222, 1H NMR (DMSO) δ 8.40-8.25 (m, 2H), 7.40-7.10 (m, 13H), 5.43 (d, $J = 6.9$, 1H), 5.30 (dd, $J = 15.0$, 7.6, 1H), 5.14 (d, $J = 9.3$, 1H), 5.04 (d, $J = 9.3$, 1H), 4.54-4.30 (m, 3H), 3.00-2.60 (m, 4H), 2.42-2.30 (m, 1H), 2.02 (s, 3H), 1.90-1.80 (m, 1H), 1.49 (s, 3H), 1.44 (s, 3H) HRMS (ESI) m/z calcld for C$_{33}$H$_{38}$N$_3$O$_4$S (M + H)$^+$ 572.2581, found 572.2583.

Example B79: (R)-3-{(2S,3S)-2-Hydroxy-4-phenyl-3-[1-o-tolyl-methanoyl]-amino]-butanoyl}-5,5-dimethyl-thiazolidine-4-carboxylic acid (thiophen-2-ylmethyl)-amide

\[\text{Structural formula image} \]

IR (neat, cm$^{-1}$) 3306, 3062, 2966, 1651, 1538, 1454, 1369, 1222, 1110, 700, 1H NMR (DMSO) δ 8.54 (t, $J = 6.0$, 1H), 8.21 (d, $J = 7.9$, 1H), 7.40-7.10 (m, 11H), 6.90 (dd, $J = 5.0$, 3.5, 1H), 5.51 (d, $J = 6.6$, 1H), 5.10 (d, $J = 9.3$, 1H), 5.01 (d, $J = 9.3$, 1H), 4.60-4.30 (m, 5H), 2.92-2.62 (m, 2H), 2.04 (s, 3H), 1.48 (s, 3H), 1.32 (s, 3H) HRMS (ESI) m/z calcld for C$_{29}$H$_{34}$N$_3$O$_4$S$_2$ (M + H)$^+$ 552.1989, found 552.1991.
Example B80: (R)-3-[(2S,3S)-2-Hydroxy-4-phenyl-3-[(1-o-tolyl-methanoyl)-amino]-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (S)-cyclohex-2-enylamide

IR (neat, cm\(^{-1}\)) 3316, 2932, 1632, 1530, 1452, 1242, 1109, \(^1\)H NMR (DMSO) \(\delta\) 8.25 (d, \(J = 8.2, 1\)H), 7.95 (d, \(J = 7.9, 1\)H), 7.40-7.05 (m, 9H), 5.80-5.70 (m, 2H), 5.50-5.40 (m, 1H), 5.39 (d, \(J = 6.9, 1\)H), 5.12 (d, \(J = 9.2, 1\)H), 5.00 (d, \(J = 9.2, 1\)H), 4.54-4.20 (m, 3H), 2.90-2.62 (m, 2H), 2.02 (s, 3H), 2.00-1.60 (m, 6H), 1.48 (s, 3H), 1.37 (s, 3H); HRMS (ESI) m/z calcd for C\(_{30}\)H\(_{38}\)N\(_2\)O\(_4\)S (M + H)\(^+\) 536.2568, found 536.2583.

Example B81: (R)-3-[(2S,3S)-3-[(1-(3-Fluoro-2-methyl-phenyl)-methanoyl]-amino]-2-hydroxy-4-phenyl-butanoyl]-5,5-dimethyl-thiazolidine-4-carboxylic acid (S)-cyclohex-2-enylamide

White solid: \(^1\)H NMR (DMSO) \(\delta\) 8.37 (d, \(J = 8.8, 1\)H), 7.95 (d, \(J = 7.7, 1\)H), 7.40-6.90 (m, 8H), 5.80-5.70 (m, 2H), 5.50-5.40 (m, 2H), 5.10 (d, \(J = 8.9, 1\)H), 5.00 (d, \(J = 8.9, 1\)H), 4.60-4.20 (m, 3H), 2.90-2.60 (m, 2H), 2.00-1.89 (m, 2H), 1.88 (s, 3H), 1.80-1.60 (m, 4H), 1.48 (s, 3H), 1.37 (s, 3H); HRMS (ESI) m/z calcd for C\(_{30}\)H\(_{37}\)N\(_2\)O\(_4\)SF (M + H)\(^+\) 554.2502, found 554.2489.
Example B82: (R)-3-((2S,3S)-3-[[1-(3-Fluoro-2-methyl-phenyl)-methanoyl]-amino]-2-hydroxy-4-phenyl-butanoil)-5,5-dimethyl-thiazolidine-4-carboxylic acid (S)-indan-1-ylamide

White solid: 1H NMR (DMSO) δ 8.43 (d, $J = 8.8$, 1H), 8.34 (d, $J = 7.9$, 1H), 7.40-7.10 (m, 11H), 6.95 (d, $J = 7.2$, 1H), 5.47 (d, $J = 6.8$, 1H), 5.30 (dd, $J = 15.6$, 7.9, 1H), 5.13 (d, $J = 9.2$, 1H), 5.04 (d, $J = 9.2$, 1H), 4.50-4.30 (m, 3H), 3.00-2.60 (m, 4H), 2.42-2.30 (m, 1H), 1.89 (s, 3H), 1.90-1.79 (m, 1H), 1.49 (s, 3H), 1.41 (s, 3H); HRMS (ESI) m/z calcd for C$_{35}$H$_{37}$N$_3$O$_4$FS (M + H)$^+$ 590.2489, found 590.2486.

Example B83: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoil)-1-thia-3-aza-spiro[4.4]nonane-4-carboxylic acid (S)-indan-1-ylamide

1H NMR (DMSO-d$_6$) δ 9.37 (s, 1H), 8.33 (d, 1H, $J = 8.1$), 8.20 (d, 1H, $J = 8.4$), 7.30-7.13 (m, 9H), 6.94 (t, 1H, $J = 8.24$), 6.76 (d, 1H, $J = 7.9$), 6.54 (d, 1H, $J = 7.9$), 5.40 (d, 1H, $J = 6.4$), 5.29 (m, 1H), 5.13 (d, 1H, $J = 9.3$), 4.98 (d, 1H, $J = 9.3$), 4.60 (s, 1H), 4.51 (m, 1H), 4.40 (m, 1H), 2.96-2.63 (m, 4H), 2.54-2.26 (m, 2H), 2.04-1.68 (m, 8H), 1.79 (s, 3H). Exact mass calculated for C$_{35}$H$_{40}$N$_3$O$_5$S (M + H)$^+$ 614.2689, found 614.2678.
Example B84: (R)-3-((2S,3S)-2-Hydroxy-3-{{1-(3-hydroxy-2-methyl-phenyl)\-methanoyl}l-amino}-4-phenyl-butanoyl)-1-thia-3-aza-spiro[4.5]decane-4-carboxylic acid (S)-cyclohex-2-enylamide

\[
\begin{align*}
\text{HO} & \quad \text{O} & \quad \text{N} & \quad \text{OH} \\
\text{N} & \quad \text{O} & \quad \text{NH} & \quad \text{O} \\
\end{align*}
\]

\(^1\text{H NMR (DMSO-d}_6\text{)} \delta 9.35 (s, 1H), 8.14 (d, 1H, \text{J} = 8.6), 8.01 (d, 1H, \text{J} = 7.9), 7.34-7.13 (m, 5H), 6.90 (t, 1H, \text{J} = 7.9), 6.78 (d, 1H, \text{J} = 5.3), 6.52 (d, 1H, \text{J} = 7.3), 5.57-5.72 (m, 1H), 5.48-5.44 (m, 1H), 5.36 (d, 1H, \text{J} = 7.0), 5.05 (d, 1H, \text{J} = 9.0), 4.91 (d, 1H, \text{J} = 9.0), 4.55 (s, 1H), 4.49-4.46 (m, 1H), 4.42-4.28 (m, 2H), 2.79-2.69 (m, 2H), 1.93 (m, 2H), 1.79 (s, 3H), 1.77-1.45 (m, 14H). Exact mass calculated for C\text{33}H\text{42}N\text{3}O\text{5}S (M + H)^+ 592.2845, found 592.2842.

Example B85: (R)-3-((2S,3S)-2-Hydroxy-3-(4-hydroxy-butyrylamino)-4-phenyl-butyryl]-5,5-dimethyl-thiazolidine-4-carboxylic acid 2-methyl-benzylamide

\[
\begin{align*}
\text{HO} & \quad \text{O} & \quad \text{N} & \quad \text{OH} \\
\text{N} & \quad \text{O} & \quad \text{NH} & \quad \text{O} \\
\end{align*}
\]
1H NMR (DMSO-d_6) δ 8.36 (t, 1H, $J = 5.9$), 7.97 (d, 1H, $J = 8.2$), 7.31-7.09 (m, 9H), 5.23 (d, 1H, $J = 7.2$), 5.05 (d, 1H, $J = 9.2$), 4.92 (d, 1H, $J = 9.2$), 4.48 (s, 1H), 4.44-4.34 (m, 2H), 4.19-4.13 (m, 2H), 3.26-3.20 (m, 2H), 2.72-2.54 (m, 2H), 2.25 (s, 3H), 2.04-1.98 (m, 2H), 1.49 (s, 3H), 1.47-1.38 (m, 2H), 1.34 (s, 3H). (no peak for primary OH) Exact mass calculated for $C_{28}H_{38}N_3O_5S$ (M + H)$^+$ 528.2532, found 528.2540. Anal. Calcd for $C_{28}H_{37}N_3O_5S$•0.3H$_2$O: C, 63.08; H, 7.11; N, 7.88. Found: C, 62.95; H, 6.88; N, 7.56.
General Methods C

The synthesis of compounds with the general structure 24 is as follows. The boc-protected carboxylic acids 20a-j are coupled to the requisite amines 2 to yield amino amides 23 using a two step process. The process includes treatment of 20 with 2 in the presence of either diphenyl chlorophosphosphate or EDCI, followed by exposure to HCl or methane sulfonic acid. Final compounds 24 are obtained by a DCC-mediated coupling of 23 and 4 followed by deprotection of the P2 phenol. Final compounds were purified either by flash chromatography or preparative HPLC.

Additional General Method C
The synthesis of compounds of the general structure 31 (where P2 is not 2-methyl-3-hydroxy benzamide) is as follows. Amino amides of the general structure 23 were coupled to the Boc-acid intermediate 15 using DCC coupling conditions. The resulting intermediate 29 was deprotected under acidic conditions to yield amine of the general structure 30. Final compounds were obtained by modification of amine 30 by methods described in General Methods B section to give P2 amides, ureas, and carbamates.

Methods used for synthesis of compounds with P1 variations.

EDCI coupling – To a solution of acid, amine and HOBT in CH₂Cl₂ was added EDCI and the solution stirred overnight at room temperature. The solution was concentrated in vacuo and the residue dissolved in ethyl acetate and a small portion of water. The solution was washed with saturated NH₄Cl (2x), saturated NaHCO₃ (2x), brine (1x), dried with MgSO₄ and concentrated in vacuo. The crude used without further purification unless otherwise noted.

DCC coupling – A solution of acid, amine and HOBT was prepared in ethyl acetate. To the solution was then added DCC in an EtOAc solution at 0 °C and the mixture was stirred overnight at room temperature. The mixture was filtered and the filtrate was concentrated in vacuo. The residue dissolved in ethyl acetate washed with saturated NH₄Cl (1x), saturated NaHCO₃ (1x), brine (1x), dried over Na₂SO₄ and concentrated in vacuo. The crude was used without further purification unless otherwise noted.

4N HCl Boc deprotection – To a solution of Boc-amine in dioxane was added 4N HCl solution in dioxane and the solution stirred overnight at room temperature. The solution was poured into saturated NaHCO₃ and the product was extracted into ethyl acetate. The organic solution was washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The crude was used without further purification unless otherwise noted.

MeSO₃H Boc deprotection – To a solution of Boc-amine in ethyl acetate at 0 °C was added methane sulfonic acid and the solution stirred 3-6 h at room temperature. The solution was cooled to 0 °C and sufficient saturated NaHCO₃ was added to quench the acid. The solution was diluted with ethyl acetate, washed with saturated NaHCO₃ and brine, dried over Na₂SO₄ and concentrated in vacuo. The crude used without further purification unless otherwise noted.
KCN Phenolic acetate deprotection – A solution of phenolic acetate and KCN in ethanol was heated at 50 °C overnight. The solution was concentrated in vacuo. The residue was purified by flash chromatography eluted with 0 to 5% methanol in CH₂Cl₂ unless otherwise noted.

NaOMe/MeOH Phenolic acetate deprotection - 0.5 N NaOCH₃/MeOH Phenolic acetate deprotection – A solution of phenolic acetate in EtOAc and methanol was cooled to 0 °C in an ice bath. 0.5 N NaOCH₃/MeOH was then added dropwise and then stirred at 0 °C for 1.5-2 hrs following addition. Additional EtOAc was then added, the .15 N HCl (4.5 eq.) added dropwise. The phases were separated and organic phase washed with 2.5% Na₂CO₃ aqueous solution, then with 0.1 N HCl/brine (2:1), followed with brine, dried with MgSO₄ and concentrated in vacuo. The resulting residue subjected to flash silica gel chromatography to afford the desired product unless otherwise noted.

HCl/MeOH Phenolic acetate deprotection – To a solution of phenolic acetate in methanol was added 4N HCl in dioxane and the solution stirred at room temperature ca. 4 h. The solution was concentrated in vacuo. The residue was purified by flash chromatography eluted with 0 to 5% methanol in CH₂Cl₂ unless otherwise noted.

Source of Boc-carboxylic Acids 20a-j

Boc-acids 20a, 20b and 20c were prepared following the procedure of Demange, L.; Ménez, A.; Dugave, C. Tet. Lett. 1998, 39, 1169.

Boc-acid 20d was prepared in the following way.

(2S)-3,3-Dimethyl-4-oxo-N-(9-phenylfluorenyl)proline methyl ester (F2):

The known ketone F1 (Blanco, M.-J.; Sardina, F. J. J. Org. Chem. 1996, 61, 4748)(14.2 g, 37 mmol) was dimethylated following the procedure of Sharma and Lubell (Sharma, R.; Lubell, W. D. J. Org. Chem. 1996, 61, 202) for the benzyl ester analog. The crude was purified by flash chromatography eluted with 0 to 10% ethyl acetate in hexanes. Isolated yield: 7.86 g (52%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.74 (d, 1H), 7.67 (d, 1H), 7.43-7.23 (m, 11H), 3.97 (d, 1H), 3.75 (d, 1H), 3.43 (s, 1H), 2.95 (s, 3H), 1.38 (s, 3H), 0.84 (s, 3H); MS-APCI (m/z\(^+\)): 412, 241.

(2S)-3,3-Dimethyl-4-oxo-N-(Boc)proline methyl ester (F3):

To a solution of 9-phenylfluorene-protected amine F2 (300 mg, 0.73 mmol) and di-tert-butyldicarbonate (320 mg, 1.5 mmol) in tetrahydrofuran (50 mL) was added 20 wt % palladium on carbon (100 mg), and the slurry was treated with 50 psi hydrogen gas for 40 h. The solution was filtered and concentrated in vacuo. The crude was purified by chromatography eluted with hexane, 10% ethyl acetate/hexane, and 25% ethyl acetate/hexane. Isolated yield: 182 mg (92%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 4.42 (s) + 4.31 (s) (1H), 4.05 (d) + 4.01 (d) (1H), 3.96 (d) + 3.94 (d) (1H), 3.72 (s, 3H), 1.48 (s) + 1.45 (s) (9H), 1.29 (s) + 1.27 (s) (3H), 1.07 (s) + 1.06 (s) (3H); MS-APCI (m/z\(^+\)): 172.
(2S)-4,4-Difluoro-3,3-dimethyl-N-(Boc)proline methyl ester (F4):

A solution of ketone F3 (1.1 g, 4.1 mmol) and diethylamino sulfur trifluoride (4.3 mL, 32 mmol) in anhydrous dichloroethane (40 mL) was heated at 70 °C for 11 h. The solution was then cooled to ambient temperature and poured slowly into ice-cooled satd. NaHCO₃ soln (75 mL). The solution was diluted with ethyl acetate (100 mL) and washed with the NaHCO₃ soln, water (1 x 100 mL) and brine (1 x 100 mL), dried with magnesium sulfate and concentrated in vacuo. The crude was purified by flash chromatography eluted with 0 to 10% ethyl acetate in hexanes. Isolated yield: 0.75 g (63%). ¹H NMR (400 MHz, DMSO-d₆): δ 4.15 (s) + 4.07 (s) (1H), 3.88-3.77 (m, 2H), 3.76 (s) + 3.75 (s) (3H), 1.47 (s) + 1.41 (s) (9H), 1.27 (s, 3H), 1.06 (s, 3H); ¹⁹F NMR (376 MHz, DMSO-d₆): δ -112.8 (dt, J = 230, 13 Hz) + -114.2 (dt, J = 230, 15 Hz) (1F), -114.2 (dt, J = 230, 14 Hz) + -115.1 (dt, J = 230, 11 Hz) (1F); MS-APCI (m/z+): 194.

(2S)-4,4-Difluoro-3,3-dimethyl-N-(Boc)proline (20d):

To a solution of methyl ester F4 (4.7 g, 16 mmol) in methanol (100 mL) was added a solution of LiOH (6.8 g, 160 mmol) in water (50 mL) and the solution was heated at 50 °C for 14 h. The methanol was removed in vacuo and the remaining solution was diluted with water (200 mL). The aqueous solution was extracted with ether (2 x 200 mL), acidified with 1N HCl (200 mL) and extracted again with ether (2 x 200 mL). The combined organics were washed with brine (1 x 200 mL), dried with magnesium sulfate and concentrated in vacuo. The while solid was dried overnight at 40 °C under vacuum. Isolated yield: 4.3 g (95%). ¹H NMR (400 MHz, DMSO-d₆): δ 12.95 (bs, 1H), 3.93 (s, 1H), 3.84-3.74 (m, 2H), 1.38 (s) + 1.33 (s) (9H), 1.19 (s, 3H), 1.01 (s, 3H); ¹⁹F NMR (376 MHz, DMSO-d₆): δ -111.4 (dt, J = 227, 13 Hz) + -112.4 (dt, J = 227, 13 Hz) (1F), -113.5 (dt, J = 227, 14 Hz) + -113.9 (dt, J = 227, 15 Hz) (1F); MS-APCI (m/z+): 180.1, (m/z-): 278.

Boc-acids 20e, 20f, 20g and 20h were prepared following the procedure of Karanewsky, D.; et al. J. Med. Chem. 1990, 33, 1459.

Boc-acids of the general structure 20i were prepared by the following method.
Example for $n = 2$:

The known amino thiol ($n = 2$) (Nagasawa, H. T.; et al. *J. Med. Chem.* **1987**, *30*, 1373.) (0.78 g, 3.7 mmol) was stirred in H$_2$O (10 mL) at room temp. The mixture was treated with 37% aqueous formaldehyde (0.36 mL, 4.8 mmol) and the result was stirred overnight at room temp. Next, Boc anhydride (0.96 g, 4.4 mmol) was added as a soln. in THF (5 mL). The result was stirred overnight at room temp. The desired product was isolated and purified by acid-base extraction. (2N HCl, sat. bicarb, and EtOAc).

The result **20i** ($n = 2$) was a white solid. Yield: (92%). 1H NMR (CDCl$_3$): δ 4.82-4.35 (m, 3H), 2.21-1.79 (m, 8H), 1.54 (s, 9H).

Boc-acid **20k** was obtained by mild base hydrolysis of intermediate **F3** from the preparation of Boc-acid **20d**.

Specific Method C

Example C1: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methylbenzoylamino)-4-phenyl-butyryl]-pyrrolidine-2-carboxylic acid 2-methylbenzylamide.

The title compound was prepared according to general methods using carboxylic acid **20a** (0.96 g, 3.8 mmol), o-methylbenzyl amine (0.57 mL, 4.6 mmol), HOBT (0.62 g, 4.6
mmol), EDCI (0.88 g, 4.6 mmol), CH₂Cl₂ (50 mL). To give the crude Boc-amide (MS-APCI (m/z+): 355, 255) (1.35 g, 3.8 mmol). The Boc was removed using the general 4N HCl Boc deprotection. 4N HCl in 1,4-dioxane (5 mL), 1,4-dioxane (5 mL). The result was amino amide of general structure 23. Isolated yield: 0.79 g (71%, 2 steps). ¹H NMR (400 MHz, DMSO-d₆): δ 9.02 (t, 1H), 7.24-7.14 (m, 4H), 4.55 (t, 1H), 4.35 (dd, 1H), 4.30 (dd, 1H), 3.73 (m, 2H), 2.94 (m, 2H), 2.52 (m, 1H), 2.27 (s, 3H); ¹⁹F NMR (376 MHz, DMSO-d₆): δ -95.3 (dq, J = 235, 15 Hz, 1F), -96.5 (dq, J = 235, 12 Hz, 1F); MS-APCI (m/z+): 255.

Amino amide 23 (100 mg, 0.34 mmol) was coupled to carboxylic acid 4 (140 mg, 0.38 mmol) using the general DCC coupling method outlined above. HOBT (51 mg, 0.38 mmol), DCC (78 mg, 0.38 mmol), TEA (50 μL, 0.36 mmol), CH₂Cl₂ (10 mL). The crude was purified by chromatography eluted with 10% acetone in CH₂Cl₂. Isolated yield: 0.13 g (63%). MS-APCI (m/z+): 608. This material was subjected to the general KCN phenolic acetate deprotection conditions (130 mg, 0.21 mmol), KCN (1 mg, 15 μmol), ethanol (10 mL). The crude was precipitated from diethyl ether and ethyl acetate with hexanes at −78 °C. Isolated yield: 0.10 g (84%). ¹H NMR (400 MHz, DMSO-d₆): δ 9.37 (s, 1H), 8.36 (t, 1H), 8.16 (d, 1H), 7.32-7.09 (m, 9H), 6.93 (t, 1H), 6.76 (d, 1H), 6.54 (d, 1H), 5.49 (d, 1H), 4.66 (dd, 1H), 4.34-4.15 (m, 6H), 2.85-2.67 (m, 3H), 2.40 (m, 1H), 2.22 (s, 3H), 1.79 (s, 3H); ¹⁹F NMR (376 MHz, DMSO-d₆): δ -98.7 (m, 2F); MS-APCI (m/z+): 566; HPLC Purity: 100%; Rf (min.) 19.01; Anal. C₃₁H₃₃N₃O₃F₂·0.3 H₂O C, H, N calcd: C 65.21, H 5.93, N 7.36; found: C 65.11, H 5.90, N 7.17.

Example C2: (S)-4,4-Difluoro-1-((2S,3S)-2-hydroxy-3-[(1-(3-hydroxy-2-methylphenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-pyrrolidine-2-carboxylic acid (S)-inden-1-ylamide
White solid; IR (neat, cm⁻¹) 3308, 3070, 2962, 1651, 1585, 1538, 1372, 1259, 1098; ¹H NMR (DMSO-d₆) δ 9.34 (s, 1H), 8.36 (d, J = 8.2, 1H), 8.21 (d, J = 7.9, 1H), 7.33-7.14 (m, 9H), 6.96-6.91 (m, 1H), 6.77 (d, J = 8.2, 1H), 6.55 (d, J = 7.7, 1H), 5.41 (d, J = 6.6, 1H), 5.28 (dd, J = 15.0, 7.9, 1H), 4.68 (d, J = 5.5, 1H), 4.63 (d, J = 5.5, 1H), 4.40-4.20 (m, 3H), 3.00-2.62 (m, 4H), 2.50-2.30 (m, 4H), 1.79 (s, 3H); HRMS (ESI) m/z calced for C₃₂H₃₄N₃O₅F₂ (M + H)⁺ 578.2467, found 578.2476; Anal. Calcd for C₃₂H₃₃N₃O₅F₂: C, 66.54; H, 5.76; N, 7.27. Found: C, 66.35; H, 5.70; N, 7.20.

Example C3: (S)-4,4-Difluoro-1-((2S,3S)-2-hydroxy-3-[[1-(3-hydroxy-2-methylphenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-pyrroloidine-2-carboxylic acid (1,2,3,4-tetrahydro-naphthalen-1-yl)-amide

IR (neat, cm⁻¹) 3300, 2934, 1651, 1520, 1455, 1368, 1284; ¹H NMR (DMSO-d₆) δ 9.35 (s, 1H), 8.35 (d, J = 8.2, 1H), 8.21 (d, J = 8.2, 1H), 7.34-7.10 (m, 9H), 6.96-6.91 (m, 1H), 6.77 (d, J = 8.1, 1H), 6.55 (d, J = 7.5, 1H), 5.40 (d, J = 6.4, 1H), 5.00-4.90 (m, 1H), 4.65 (d, J = 6.2, 1H), 4.63 (d, J = 6.2, 1H), 4.40-4.20 (m, 3H), 3.00-2.60 (m, 4H), 2.50-2.40 (m, 2H), 1.90-1.60 (m, 4H), 1.79 (s, 3H); HRMS (ESI) m/z calced for C₃₃H₃₆N₃O₅F₂ (M + H)⁺ 592.2623, found 592.2610; Anal. Calcd for C₃₃H₃₅N₃O₅F₂·H₂O: C, 65.01; H, 6.12; N, 6.89. Found: C, 65.07; H, 5.99; N, 6.75.
Example C4: (S)-4,4-Difluoro-1-((2S,3S)-2-hydroxy-3-[(1-(3-hydroxy-2-methylphenyl)-methanoyl]-amino)-4-phenyl-butanoyl)-pyrrolidine-2-carboxylic acid (S)-cyclohex-2-enylamide

White solid; IR (neat, cm$^{-1}$) 3002, 2944, 1650, 1535, 1456, 1371, 1282, 1100; 1H NMR (DMSO-d$_6$) δ 9.35 (s, 1H), 8.18 (d, $J = 8.2$, 1H), 8.01 (d, $J = 8.2$, 1H), 7.35-7.13 (m, 5H), 6.96-6.91 (m, 1H), 6.76 (d, $J = 8.1$, 1H), 6.54 (d, $J = 7.5$, 1H), 5.77-5.73 (m, 1H), 5.49-5.45 (m, 1H), 5.39 (d, $J = 6.7$, 1H), 4.60 (d, $J = 5.9$, 1H), 4.56 (d, $J = 5.9$, 1H), 4.40-4.10 (m, 4H), 2.90-2.60 (m, 4H), 2.50-2.30 (m, 2H), 1.79 (s, 3H), 1.78-1.60 (m, 2H), 1.60-1.38 (m, 2H); HRMS (ESI) m/z calcd for C$_{29}$H$_{34}$N$_3$O$_5$F$_2$ (M + H)$^+$ 542.2467, found 542.2460; Anal. Calcd for C$_{29}$H$_{33}$N$_3$O$_5$F$_2$+0.75 H$_2$O: C, 62.75; H, 6.26; N, 7.57. Found: C, 62.77; H, 6.14; N, 7.37.

Example C5: (S)-4,4-Difluoro-1-((2S,3S)-2-hydroxy-3-[(1-(3-hydroxy-2-methylphenyl)-methanoyl]-amino)-4-phenyl-butanoyl)-pyrrolidine-2-carboxylic acid 3-fluoro-2-methyl-benzylamide

White solid; IR (neat, cm$^{-1}$) 3310, 1648, 1584, 1531, 1467, 1361, 1284, 1101; 1H NMR (DMSO-d$_6$) δ 9.36 (s, 1H), 8.43 (t, $J = 5.5$, 1H), 8.16 (d, $J = 7.5$, 1H), 7.31-6.90 (m, 9H), 6.76 (d, $J = 8.2$, 1H), 6.54 (d, $J = 7.3$, 1H), 5.33 (d, $J = 8.9$, 1H), 4.67 (d, $J = 5.7$, 1H), 4.64 (d, $J = 5.7$, 1H), 4.38-4.17 (m, 5H), 2.90-2.60 (m, 4H), 2.14 (s, 3H), 1.79 (s, 3H); HRMS
(ESI) m/z calcd for C$_{31}$H$_{33}$N$_3$O$_5$F$_3$ (M + H)$^+$ 584.2372, found 584.2397; Anal. Calcd for C$_{31}$H$_{32}$N$_3$O$_5$F$_3$·1 H$_2$O: C, 62.83; H, 5.61; N, 7.09. Found: C, 62.52; H, 5.63; N, 6.76.

Example C6: (S)-4,4-Difluoro-1-((2S,3S)-2-hydroxy-3-[(1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino)-4-phenyl-butanoyl)-pyrrolidine-2-carboxylic acid 5-fluoro-2-methyl-benzylamide

White solid; IR (neat, cm$^{-1}$) 3310, 1651, 1585, 1531, 1455, 1372, 1283, 1099; 1H NMR (DMSO-d$_6$) δ 9.36 (s, 1H), 8.45 (t, $J = 5.5$, 1H), 8.15 (d, $J = 7.5$, 1H), 7.30-6.90 (m, 9H), 6.76 (d, $J = 8.2$, 1H), 6.55 (d, $J = 7.7$, 1H), 5.54 (d, $J = 6.2$, 1H), 4.68 (d, $J = 5.6$, 1H), 4.65 (d, $J = 5.6$, 1H), 4.40-4.00 (m, 5H), 3.00-2.60 (m, 4H), 2.19 (s, 3H), 1.79 (s, 3H); HRMS (ESI) m/z calcd for C$_{31}$H$_{33}$N$_3$O$_5$F$_3$ (M + H)$^+$ 584.2372, found 584.2391; Anal. Calcd for C$_{31}$H$_{32}$N$_3$O$_5$F$_3$·1 H$_2$O: C, 62.83; H, 5.61; N, 7.09. Found: C, 62.73; H, 5.65; N, 6.77.

Example C7: 4,4-Difluoro-1-[2-hydroxy-3-(3-hydroxy-2-methyl-benzoyleamino)-4-phenyl-butryryl]-pyrrolidine-2-carboxylic acid propylamide

1H-NMR (400 MHz, dmso-d$_6$): δ 9.30 (s, 1H), 8.13 (d, 1H), 7.87 (t, 1H), 7.35 - 7.08 (m, 5H), 6.91 (t, 1H), 6.74 (d, 1H), 6.52 (d, 1H), 5.44 (d, 1H), 4.57 (m, 1H), 4.35 - 4.09 (m, 3H), 2.96 (m, 2H), 2.83 (d, 1H), 2.7 (m, 2H), 2.35 (m, 1H), 1.8 (s, 3H), 1.35 (q, 2H), 0.78
(t, 3H); IR (KBr in cm⁻¹): 3301, 1641, 1524, 1284; MS (APCI, m/z): 504 (M+H), 486, 312, 179.

Example C8: (S)-4,4-Difluoro-1-((2S,3S)-2-hydroxy-3-{{1-(3-hydroxy-2-methylphenyl)-methanoyl}-amino}-4-phenyl-butanoyl)-pyrrolidine-2-carboxylic acid ((E)-2-methyl-but-2-enyl)-amide

![Chemical Structure]

White solid; ¹H NMR (DMSO-d₆) δ 9.36 (s, 1H), 8.13 (d, J = 7.9, 1H), 8.02 (t, J = 6.0, 1H), 7.33-7.13 (m, 5H), 6.93 (t, J = 7.9, 1H), 6.76 (d, J = 8.1, 1H), 6.54 (d, J = 7.5, 1H), 5.49 (d, J = 6.0, 1H), 5.29 (m, 1H), 4.60 (dd, J = 9.3, 5.5, 1H), 4.33-4.16 (m, 4H), 3.66 (dd, J = 15.2, 5.5, 1H), 3.52 (dd, J = 15.2, 5.5, 1H), 2.86-2.66 (m, 3H), 2.37 (dd, J = 14.5, 5.5, 1H), 1.79 (s, 3H), 1.50 (s, 6H); HRMS (ESI) m/z calcd for C₂₈H₃₄N₅O₅F₂ (M + H)⁺ 530.2467, found 530.2464.

Example C9: (S)-4,4-Difluoro-1-((2S,3S)-2-hydroxy-3-{{1-(3-hydroxy-2-methyl-phenyl)-methanoyl}-amino}-4-phenyl-butanoyl)-pyrrolidine-2-carboxylic acid (3-methyl-but-2-enyl)-amide

![Chemical Structure]

White solid; ¹H NMR (DMSO-d₆) δ 9.36 (s, 1H), 8.15 (d, J = 8.2, 1H), 7.97 (t, J = 5.5, 1H), 7.35-7.14 (m, 5H), 6.94 (t, J = 7.7, 1H), 6.76 (d, J = 8.2, 1H), 6.53 (d, J = 6.8, 1H), 5.47 (d, J = 6.6, 1H), 5.07 (m, 1H), 4.57 (dd, J = 9.2, 5.3, 1H), 4.32-4.15 (m, 4H), 3.70-
3.60 (m, 2H), 2.86-2.64 (m, 3H), 2.38 (dd, J = 14.1, 5.1, 1H), 1.79 (s, 3H), 1.62 (s, 3H), 1.58 (s, 3H); HRMS (ESI) m/z calcd for C_{28}H_{34}N_5O_5F_2 (M + H)^+ 530.2467, found 530.2463.

Example C10: 4,4-Difluoro-1-[2-hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-pyrrolidine-2-carboxylic acid 2-chloro-benzylamide

\begin{center}
\includegraphics[width=0.5\textwidth]{example_c10}
\end{center}

$^1^H$-NMR (400 MHz, dmso-d^6): 9.35 (s, 1H), 9.3 (d, 1H), 8.52 (t, 1H), 8.13 (d, 1H), 7.44 – 7.09 (m, 9H), 6.91 (t, 1H), 6.74 (d, 1H), 6.48 (d, 1H), 5.35 (d, 1H), 4.65 (m, 1H), 4.44 – 4.17 (m, 5H), 2.96 – 2.57 (m, 3H), 2.41 (m, 1H), 1.74 (s, 3H); IR (KBr, cm$^{-1}$): 3300, 1640, 1522, 1283; MS (APCI, m/z): 586, 588 (M+H), 445, 330, 284.

Example C11: 4,4-Difluoro-1-[2-hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-pyrrolidine-2-carboxylic acid (benzo[1,3]dioxol-5-ylmethyl)-amide

\begin{center}
\includegraphics[width=0.5\textwidth]{example_c11}
\end{center}

$^1^H$-NMR (400 MHz, dmso-d^6): 8.38 (t, 1H), 8.13 (d, 1H), 7.35 – 7.09 (m, 5H), 6.91 (t, 1H), 6.74 (m, 4H), 6.52 (d, 1H), 5.91 (d, 2H), 5.52 (d, 1H), 4.61 (m, 1H), 4.17 – 4.38 (m, 4H), 4.09 (dd, 1H), 2.87 (d, 1H), 2.70 (q, 2H), 2.38 (dd, 1H), 0.78 (s, 3H); IR (KBr, cm$^{-1}$): 3299, 1643, 1492, 1445, 1237, 1038; MS (APCI, m/z): 531 (M+H), 340, 225, 180; HPLC: R$_f$ (min.) 18.226; Purity: 95%.
Example C12: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methylbenzoylamino)-4-phenyl-butyryl]-pyrrolidine-2-carboxylic acid 3-methoxy-benzylamide

Isolated material was subjected to flash silica gel chromatography, eluting with 30% EtOAc/hexanes then with EtOAc/hexanes (4:1) to afford the title compound. Isolated yield: 89%. 1H NMR (400 MHz, DMSO-d6): δ 9.36 (s, 1H), 8.45 (t, 1H), 8.13 (d, 1H), 7.29 (d, 2H), 7.24-7.19 (m, 3H), 7.17-7.14 (m, 2H), 6.92 (t, 1H), 6.82-6.80 (m, 2H), 6.76-6.73 (m, 1H), 6.54 (d, 1H), 5.60-5.50 (m, 1H), 4.64 (dd, 1H), 4.37-4.13 (m, 6H), 3.69 (s, 3H), 2.88-2.67 (m, 3H), 2.41 (dd, 1H), 1.79 (s, 3H); MS-APCI (m/z+): 582. Anal. C31H33N3O6F2·0.2 H2O calcd: 63.62, 5.75, 7.18; found: 63.62, 5.93, 6.92.

Example C13: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methylbenzoylamino)-4-phenyl-butyryl]-pyrrolidine-2-carboxylic acid 4-methoxy-benzylamide

Isolated material was subjected to flash silica gel chromatography, eluting with EtOAc/hexanes (1:1) then with EtOAc/hexanes (4:1) to afford the title compound. Isolated yield: 91%. 1H NMR (400 MHz, DMSO-d6): δ 9.36 (s, 1H), 8.40 (t, 1H), 8.14 (d, 1H), 7.30 (d, 2H), 7.21 (d, 2H), 7.17-7.14 (m, 3H), 6.92 (t, 1H), 6.82-6.80 (m, 2H), 6.76-6.73 (m, 1H), 6.54 (d, 1H), 5.60-5.50 (m, 1H), 4.64 (dd, 1H), 4.37-4.13 (m, 6H), 3.69 (s, 3H),
2.88-2.67 (m, 3H), 2.41 (dd, 1H), 1.79 (s, 3H); MS-APCI (m/z+): 582. HPLC: Rf(min.) 18.53; Purity: 100%.

Example C14: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methylbenzoylamo)-4-phenyl-butyryl]-pyrrolidine-2-carboxylic acid 2-chloro-6-fluorobenzylamide

![Chemical Structure]

Isolated material was subjected to flash silica gel chromatography, eluting with EtOAc/hexanes gradient then with 2% MeOH/CH₂Cl₂ to afford the title compound. Isolated yield: 49%. ¹H NMR (400 MHz, DMSO-δ₆): δ 9.38 (s, 1H), 8.38 (t, 1H), 8.36 (d, 1H), 7.38-7.29 (m, 3H), 7.25-7.13 (m, 5H), 6.93 (t, 1H), 6.75 (d, 1H), 6.53 (d, 1H), 5.37 (d, 1H), 4.62 (dd, 1H), 4.47-4.18 (m, 6H), 2.90-2.64 (m, 3H), 2.35-2.26 (m, 1H), 1.78 (s, 3H); MS-APCI (m/z+): 312, 604. HPLC: Rf(min.) 19.02; Purity: 94%; Anal. C₃₀H₂₉N₃O₅F₂Cl·0.2 H₂O calcd: 59.30, 4.88, 6.92, found: 59.27, 4.74, 6.69.

Example C15: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methylbenzoylamo)-4-phenyl-butyryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid 2-methyl-benzylamide

![Chemical Structure]
Example C16: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methylbenzoylamino)-4-phenylbutyryl]-3,3-dimethylpyrrolidine-2-carboxylic acid (S)-indan-1-ylamide

\[
\text{H NMR (400 MHz, DMSO-d}_6\text{): } \delta \text{ 9.36 (s, 1H), 8.30 (d, 1H), 8.20 (d, 1H), 7.32 (d, 2H), 7.24-7.12 (m, 7H), 6.93 (t, 1H), 6.76 (d, 1H), 6.53 (d, 1H), 5.45 (d, 1H), 5.29 (dd, 1H), 4.46 (dd, 1H), 4.38-4.20 (m, 4H), 2.98-2.74 (m, 3H), 2.67 (t, 1H), 2.42-2.32 (m, 1H), 1.86-1.80 (m, 1H), 1.78 (s, 3H), 1.18 (s, 3H), 1.10 (s, 3H); }^{19}\text{F NMR (376 MHz, DMSO-d}_6\text{): } \delta -109.1 \text{ (d, 1F), -113.5 (d, 1F); MS-APCI (m/z): 606; HPLC Purity: 95%, Rf(min.) 21.30; Anal. C}_{34}\text{H}_{37}\text{N}_3\text{O}_5\text{F}_2\text{.0}_4\text{ H}_2\text{O calcd: C66.63, H6.22, N6.86, found: C66.62, H6.19, N6.79.}
\]

Example C17: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methylbenzoylamino)-4-phenylbutyryl]-3,3-dimethylpyrrolidine-2-carboxylic acid prop-2-ylnylamide
The title compound was purified by flash chromatography eluting with 0 to 5% MeOH/CH₂Cl₂, another column was run which was eluted with 50 to 100% ethyl acetate/hexanes. ¹H NMR (400 MHz, DMSO-d₆): δ 9.35 (s, 1H), 8.40 (t, 1H), 8.13 (d, 1H), 7.32 (d, 2H), 7.24 (t, 2H), 7.15 (t, 1H), 6.93 (t, 1H), 6.75 (d, 1H), 6.51 (d, 1H), 5.54 (d, 1H), 4.43 (dd, 1H), 4.36-4.22 (m, 3H), 4.20 (s, 1H), 3.86 (m, 2H), 3.11 (s, 1H), 2.85 (d, 1H), 2.67 (t, 1H), 1.77 (s, 3H), 1.18 (s, 3H), 1.02 (s, 3H); ¹⁹F NMR (376 MHz, DMSO-d₆): δ -108.0 (d, 1F), -114.5 (d, 1F); MS-APCI (m/z+): 528, 312; HPLC: Rf(min.) 18.00; Purity: 97%. Anal. C₂₈H₃₁N₃O₃F₂ C, H, N calc'd: C 63.75, H 5.92, N 7.96, found: C 63.67, H 6.21, N 7.85.

Example C18: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-{{[1-(3-hydroxy-2-methylphenyl)methanoyl]amino}-4-phenyl-butanoyl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid 2-chloro-4-fluoro-benzylamide

Isolated material was subjected preparative HPLC purification, eluting with EtOAc/hexanes to afford the title compound. ¹H NMR (400 MHz, DMSO-d₆): δ 9.36 (s, 1H), 8.52 (t, 1H), 8.16 (d, 1H), 7.49 (dd, 1H), 7.40 (d, 1H), 7.28 (d, 2H), 7.24-7.19 (m, 3H), 7.15-7.10 (m, 2H), 6.92 (t, 1H), 6.75 (d, 1H), 6.52 (d, 1H), 5.55 (d, 1H), 4.46 (dd, 1H), 4.39-4.24 (m, 5H), 2.84 (d, 1H), 2.69-2.64 (m, 1H), 1.78 (s, 3H), 1.19 (s, 3H), 1.00 (s, 3H); MS-APCI (m/z+): 312, 632. HPLC: Rf(min.) 16.83; Purity: 93%.
Example C19: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-[[1-(3-hydroxy-2-methylphenyl)methanoyl]-amino]-4-phenyl-butanoyl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid propylamide

\[
\begin{align*}
\text{HO} & \quad \text{N} \quad \text{OH} \quad \text{N} \quad \text{OH} \\
\text{F} & \quad \text{F} \quad \text{F} \\
\end{align*}
\]

\(^1\text{H} \text{NMR (400 MHz, DMSO-}\text{d}_6): \delta 9.35 \text{ (s, 1H), 8.13 \text{ (d, 1H), 7.89 \text{ (bs, 1H), 7.32 \text{ (d, 2H),}}}

7.23 \text{ (t, 2H), 7.15 \text{ (t, 1H), 6.92 \text{ (t, 1H), 6.75 \text{ (d, 1H), 6.51 \text{ (d, 1H), 5.48 \text{ (d, 1H), 4.40 \text{ (dd,}}}

1\text{H), 4.34-4.14 \text{ (m, 4H), 3.01 \text{ (m, 2H), 2.84 \text{ (d, 1H), 2.67 \text{ (t, 1H), 1.78 \text{ (s, 3H), 1.39 \text{ (m,}}}

2\text{H), 1.17 \text{ (s, 3H), 1.01 \text{ (s, 3H), 0.83 \text{ (t, 3H);}}}

\(^{19}\text{F} \text{NMR (376 MHz, DMSO-}\text{d}_6): \delta -108.3 \text{ (d, 1F), -114.0 \text{ (d, 1F);}}

\text{MS-APCI (m/z+): } 532, 312; \text{ HPLC Purity: } 100\%, \text{ Rf(min.) } 18.22; \text{ Anal. } C_{38}H_{33}N_3O_5F_2 \cdot 0.2 \text{ H}_2O \text{ calcd, } C_{62.84}, H_{6.67}, N_{7.85}, \text{ found: } C_{62.71}, H_{6.65}, N_{7.64}.

Example C20: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methylbenzoylamino)-4-phenyl-butyryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid (furan-2-ylmethyl)-amide

\[
\begin{align*}
\text{HO} & \quad \text{N} \quad \text{OH} \quad \text{N} \quad \text{OH} \\
\text{F} & \quad \text{F} \quad \text{F} \\
\end{align*}
\]

\(^1\text{H} \text{NMR (400 MHz, DMSO-}\text{d}_6): \delta 9.35 \text{ (s, 1H), 8.40 \text{ (t, 1H), 8.13(d, 1H), 7.54 (s, 1H),}}

7.32 \text{ (d, 2H), 7.24 (t, 2H), 7.15 (t, 1H), 6.93 (t, 1H), 6.75 (d, 1H), 6.52 (d, 1H), 6.36 (s,}

1\text{H), 6.25 (s, 1H), 5.53 (d, 1H), 4.42 (dd, 1H), 4.36-4.24 (m, 6H), 2.85 (d, 1H), 2.68 (t,}

1\text{H), 1.79 (s, 3H), 1.16 (s, 3H), 0.97 (s, 3H);} \(^{19}\text{F} \text{NMR (376 MHz, DMSO-}\text{d}_6): \delta -108.2 \text{ (d,}

1\text{F), -114.3 (d, 1F); MS-APCI (m/z+): } 570; \text{ HPLC: Rf(min.) } 18.73; \text{ Purity: } 100\%. \text{ Anal.}

C_{38}H_{33}N_3O_6F_2 \text{ calced: } C_{63.26}, H_{5.84}, N_{7.38}, \text{ found: } C_{63.35}, H_{5.71}, N_{7.20}.\]
Example C21: 4,4-Difluoro-1-[2-hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid isobutyl-amide

\[
\begin{align*}
\text{HO} & \quad \text{O} \\
\text{N} & \quad \text{N}
\end{align*}
\]

\[^1\text{H} \text{NMR (400 MHz, DMSO-}\text{d}_6\text{)}: \delta 9.35 \text{ (s, 1H), 8.14 (d, 1H), 7.90 (t, 1H), 7.33 (d, 2H), 7.23 (t, 2H), 7.15 (t, 1H), 6.93 (t, 1H), 6.76 (d, 1H), 6.52 (d, 1H), 5.46 (d, 1H), 4.41 (dd, 1H), 4.34-4.20 (m, 4H), 2.92-2.80 (m, 3H), 2.67 (t, 1H), 1.78 (s, 3H), 1.67 (m, 1H), 1.18 (s, 3H), 1.02 (s, 3H), 0.83 (d, 6H); \[^1\text{F} \text{NMR (376 MHz, DMSO-}\text{d}_6\text{)}: \delta -108.2 \text{ (dt, 1F), -113.9 \text{ (d, 1F); MS-APCI (m/z+): 546; HPLC Purity: 100\%, Rf(min.) 18.81; Anal. C}_{29}\text{H}_{37}\text{N}_{3}\text{O}_{3}\text{F}_{2}\cdot \text{0.2 H}_{2}\text{O calcd: C63.42, H6.85, N7.65, found: C63.29, H6.77, N7.49.}}
\]

Example C22: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid (thiophen-2-ylmethyl)-amide

\[
\begin{align*}
\text{HO} & \quad \text{O} \\
\text{N} & \quad \text{N}
\end{align*}
\]

\[^1\text{H} \text{NMR (400 MHz, DMSO-}\text{d}_6\text{)}: \delta 9.36 \text{ (s, 1H), 8.53 (t, 1H), 8.13 (d, 1H), 7.36 (dd, 1H), 7.33 (d, 2H), 7.24 (t, 2H), 7.15 (t, 1H), 6.97 (t, 1H), 6.92 (m, 2H), 6.76 (d, 1H), 6.53 (d, 1H), 5.53 (d, 1H), 4.49-4.26 (m, 6H), 4.23 (s, 1H), 2.88 (d, 1H), 2.69 (dd, 1H), 1.79 (s, 3H), 1.17 (s, 3H), 1.00 (s, 3H); \[^1\text{F} \text{NMR (376 MHz, DMSO-}\text{d}_6\text{)}: \delta -108.6 \text{ (dt, 1F), -114.2 \text{ (d, 1F); MS-APCI (m/z+): 586; HPLC Purity: 100\%, Rf(min.) 19.07; Anal. C}_{30}\text{H}_{32}\text{N}_{3}\text{O}_{3}\text{F}_{2}\text{S calcd: C61.52, H5.68, N7.17, found: C61.23, H5.64, N6.90.}}
\]
Example C23: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methylbenzoylamino)-4-phenyl-butyryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid (2,2,2-trifluoro-ethyl)-amide

\[
\begin{align*}
\text{H NMR (400 MHz, DMSO-}\delta) & : \delta 9.35 (s, 1H), 8.66 (t, 1H), 8.14 (d, 1H), 7.31 (d, 2H), \\
& 7.24 (t, 2H), 7.15 (t, 1H), 6.93 (t, 1H), 6.75 (d, 1H), 6.51 (d, 1H), 5.56 (d, 1H), 4.45 (dd, 1H), \\
& 4.38-4.25 (m, 4H), 4.04-3.94 (m, 1H), 3.90-3.80 (m, 1H), 2.85 (d, 1H), 2.66 (dd, 1H), \\
& 1.77 (s, 3H), 1.19 (s, 3H), 1.01 (s, 3H); ^{19}F \text{ NMR (376 MHz, DMSO-}\delta) : \delta -71.0 (t, J = 10 \\
& \text{Hz, 3F}), -108.0 (d, J = 227 \text{ Hz, 1F}), -114.6 (d, J = 227 \text{ Hz, 1F}); \text{ MS-APCI (m/z\text{+}) : 572, } \\
& 312; \text{ HPLC Purity: 100\%, Rf(min.) 18.98; Anal. C}_{27}H_{30}N_{3}O_{5}F_{5} \text{ calehd: C56.74, H5.29, N7.35, found: C56.56, H5.43, N7.15.}
\end{align*}
\]

Example C24: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methylbenzoylamino)-4-phenyl-butyryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid (S)-1-benzopyran-4-y

Isolated material was subjected to flash silica gel chromatography, eluting with 45% EtOAc/hexanes to afford the title compound. \(^1\text{H NMR (400 MHz, DMSO-}\delta) : \delta 9.35 (s, 1H), 8.47 (d, 1H), 8.20 (d, 1H), 7.33 (d, 2H), 7.23 (t, 2H), 7.17-7.12 (m, 3H), 6.93 (t, 1H), 6.87 (t, 1H), 6.79 (t, 2H), 6.53 (d, 1H), 5.40 (d, 1H), 4.96 (dd, 1H), 4.47 (dd, 1H), 4.34-4.14 (m, 6H), 2.82 (d, 1H), 2.67 (t, 1H), 2.03-1.98 (m, 1H), 1.93-1.89 (m, 1H), 1.79 (s,
Example C25: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methylbenzoylamino)-4-phenyl-butyryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid 4-methoxy-benzylamide

Isolated material was subjected to flash silica gel chromatography, eluting with 45 % EtOAc/hexanes to afford the title compound. 1H NMR (400 MHz, DMSO-d_6): δ 9.36 (s, 1H), 8.34 (t, 1H), 8.13 (d, 1H), 7.31 (d, 2H), 7.25-7.13 (m, 5H), 6.93 (t, 1H), 6.83 (d, 2H), 6.76 (d, 1H), 6.53 (d, 1H), 5.54 (d, 1H), 4.43 (dd, 1H), 4.34-4.25 (m, 5H), 4.13 (dd, 1H), 3.68 (s, 3H), 2.88 (d, 1H), 2.68 (dd, 1H), 1.79 (s, 3H), 1.17 (s, 3H), 0.99 (s, 3H); MS-APCI ($m/z+$): 610; C$_{33}$H$_{37}$N$_3$O$_6$F$_2$·0.4 H$_2$O calcd: 64.25, 6.18, 6.81, found: 64.19, 6.13, 6.73.

Example C26: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2-methylbenzoylamino)-4-phenyl-butyryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid (1,3-benzodioxol-5-ylmethyl)-amide

Isolated material was subjected to flash silica gel chromatography, eluting with 45 % EtOAc/hexanes to afford the title compound. 1H NMR (400 MHz, DMSO-d_6): δ 9.33 (s,
Example C27: (S)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)\-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-oxazolidine-4-carboxylic acid (S)-indan-1-ylamide

\[\text{H NMR (DMSO-d6) \delta 9.35 (s, 1H), 8.31 (d, J = 8.1, 1H), 8.13 (d, J = 9.0, 1H), 7.30-7.13 (m, 9H), 6.94 (t, J = 7.9, 1H), 6.76 (d, J = 7.9, 1H), 6.55 (d, J = 7.5, 1H), 5.72 (d, J = 6.2, 1H), 5.46 (d, J = 4.0, 1H), 5.31 (dd, J = 15.6, 7.7, 1H), 5.24 (d, J = 3.9, 1H), 4.36 (m, 1H), 4.19 (m, 1H), 4.16 (s, 1H), 2.94-2.64 (m, 4H), 2.41-2.34 (m, 1H), 1.86-1.77 (m, 1H), 1.77 (s, 3H), 1.29 (s, 3H), 1.27 (s, 3H); HRMS (ESI) m/z calcd for C\text{33}H\text{38}N\text{3}O\text{6} (M + H)^+ 572.2761, found 572.2768.}

Example C28: (4S,5S)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)\-methanoyl]-amino]-4-phenyl-butanoyl)-5-methyl-oxazolidine-4-carboxylic acid (S)-cyclohex-2-enylamide
1H NMR (DMSO-d$_6$) δ 9.36 (s, 1H), 8.12 (d, $J = 8.2$, 1H), 7.92 (d, $J = 8.2$, 1H), 7.31-7.13 (m, 5H), 6.94 (t, $J = 7.9$, 1H), 6.76 (d, $J = 7.9$, 1H), 6.56 (d, $J = 7.3$, 1H), 5.77-5.73 (m, 1H), 5.66 (d, $J = 6.4$, 1H), 5.51 (d, $J = 3.7$, 1H), 5.50-5.44 (m, 1H), 5.06 (d, $J = 3.7$, 1H), 4.40-4.15 (m, 5H), 2.97-2.65 (m, 2H), 1.94 (m, 2H), 1.79-1.67 (m, 2H), 1.77 (s, 3H), 1.57-1.44 (m, 2H), 1.20 (d, $J = 6.2$, 3H); HRMS (ESI) m/z calcd for C$_{29}$H$_{36}$N$_3$O$_6$ (M + H)$^+$ 522.2604, found 522.2623.

Example C29: (S)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5,5-dimethyl-oxazolidine-4-carboxylic acid (S)-cyclohex-2-enylamide

1H NMR (DMSO-d$_6$) δ 9.36 (s br, 1H), 8.11 (d, $J = 8.6$, 1H), 7.97 (d, $J = 7.9$, 1H), 7.32-7.15 (m, 5H), 6.93 (t, $J = 7.7$, 1H), 6.76 (d, $J = 8.1$, 1H), 6.54 (d, $J = 7.3$, 1H), 5.76 (m, 1H), 5.67 (d, $J = 6.4$, 1H), 5.54-5.41 (m, 1H), 5.43 (d, $J = 3.8$, 1H), 5.21 (d, $J = 3.8$, 1H), 4.40-4.28 (m, 2H), 4.19-4.14 (m, 2H), 2.88 (m, 1H), 2.70 (m, 1H), 1.95 (m, 2H), 1.78 (s, 3H), 1.82-1.68 (m, 2H), 1.58-1.45 (m, 2H), 1.28 (s, 3H), 1.22 (s, 3H); HRMS (ESI) m/z calcd for C$_{30}$H$_{38}$N$_3$O$_6$ (M + H)$^+$ 536.2761, found 536.2751; Anal. Calcd for C$_{30}$H$_{37}$N$_3$O$_6$: C, 67.27; H, 6.96; N, 7.85. Found: C, 67.07; H, 7.00; N, 7.71.

Example C30: 3-(2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-1-thia-3-aza-spiro[4.4]nonane-4-carboxylic acid 2-methyl-benzamide
White solid; 1H NMR (DMSO-d$_6$) δ 9.37 (s, 1H), 8.38 (t, J = 5.5, 1H), 8.26 (d, J = 8.1, 1H), 7.31-6.85 (m, 10H), 6.76 (d, J = 8.1, 1H), 6.53 (d, J = 7.7, 1H), 5.54 (d, J = 6.4, 1H), 5.12 (d, J = 9.2, 1H), 4.95 (d, J = 9.2, 1H), 4.55 (s, 1H), 4.50-4.10 (m, 3H), 4.01 (m, 1H), 2.90-2.60 (m, 2H), 2.20 (s, 3H), 2.10-1.85 (m, 4H), 1.81 (s, 3H), 1.80-1.50 (m, 4H); Anal. Calcd for C$_{34}$H$_{39}$N$_3$O$_5$S: C, 67.86; H, 6.53; N, 6.98. Found: C, 67.50; H, 6.23; N, 6.70.

Example C31: 3-(2-Hydroxy-3-[[1-(2-methyl-3-hydroxy-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-1-thia-3-aza-spiro[4.5]decane-4-carboxylic acid 2-methyl-benzylamide

![Chemical structure of Example C31]

White solid; 1H NMR (DMSO-d$_6$) δ 9.37 (s, 1H), 8.36 (t, J = 5.5, 1H), 8.28 (d, J = 8.1, 1H), 7.34-6.83 (m, 10H), 6.74 (d, J = 8.1, 1H), 6.60 (d, J = 7.7, 1H), 5.57 (d, J = 6.4, 1H), 5.09 (d, J = 9.2, 1H), 4.97 (d, J = 9.2, 1H), 4.65 (s, 1H), 4.55-4.06 (m, 3H), 4.01 (m, 1H), 2.91-2.50 (m, 2H), 2.22 (s, 3H), 2.10-1.83 (m, 5H), 1.80 (s, 3H), 1.78-1.50 (m, 5H); Anal. Calcd for C$_{35}$H$_{41}$N$_3$O$_5$S: C, 68.26; H, 6.71; N, 6.82. Found: C, 68.44; H, 6.53; N, 6.73.

Example C32: 7-(2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5-thia-7-aza-spiro[3.4]octane-8-carboxylic acid 2-methyl-benzylamide

![Chemical structure of Example C32]
White solid; 1H NMR (DMSO-d$_6$) δ 9.37 (s, 1H), 8.40 (t, $J = 5.5$, 1H), 8.33 (d, $J = 8.1$, 1H), 7.34-6.92 (m, 10H), 6.81 (d, $J = 8.1$, 1H), 6.51 (d, $J = 7.7$, 1H), 5.48 (d, $J = 6.4$, 1H), 5.09 (d, $J = 9.2$, 1H), 4.87 (d, $J = 9.2$, 1H), 4.63 (s, 1H), 4.58-4.17 (m, 3H), 4.05 (m, 1H), 2.89-2.62 (m, 2H), 2.26 (s, 3H), 2.16-1.86 (m, 3H), 1.80 (s, 3H), 1.79-1.50 (m, 3H); Anal. Calcd for C$_{33}$H$_{37}$N$_3$O$_5$S: C, 67.44; H, 6.35; N, 7.15. Found: C, 67.57; H, 6.13; N, 7.22.

Example C33: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)methanoyl]amino]-4-phenyl-butanoyl)-1-thia-3-aza-spiro[4.4]nonane-4-carboxylic acid propylamide

![Chemical structure of Example C33]

1H NMR (DMSO-d$_6$) δ 9.36 (s, 1H), 8.11 (d, $J = 8.4$, 1H), 7.86 (t, $J = 5.5$, 1H), 7.34-7.13 (m, 5H), 6.93 (t, $J = 7.7$, 1H), 6.80 (d, $J = 8.1$, 1H), 6.52 (d, $J = 7.3$, 1H), 5.44 (d, $J = 7.0$, 1H), 5.08 (d, $J = 9.0$, 1H), 4.95 (d, $J = 9.3$, 1H), 4.47 (s, 1H), 4.44 (m, 2H), 3.04-2.95 (m, 2H), 2.85-2.70 (m, 2H), 1.93 (m, 2H), 1.81-1.61 (m, 6H), 1.80 (s, 3H), 1.31 (m, 2H), 0.82 (t, $J = 7.3$, 3H); HRMS (ESI) m/z calcd for C$_{29}$H$_{38}$N$_3$O$_5$S (M + H)$^+$ 540.2532, found 540.2531.

Example C34: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)methanoyl]amino]-4-phenyl-butanoyl)-1-thia-3-aza-spiro[4.4]nonane-4-carboxylic acid ((E)-2-methyl-but-2-enyl)-amide

![Chemical structure of Example C34]
1H NMR (DMSO-d$_6$) δ 9.37 (s, 1H), 8.08 (d, J = 8.1, 1H), 7.92 (t, J = 5.7, 1H), 7.33-7.15 (m, 5H), 6.93 (t, J = 7.7, 1H), 6.77 (d, J = 8.1, 1H), 6.53 (d, J = 7.3, 1H), 5.48 (d, J = 6.2, 1H), 5.32 (m, 1H), 5.08 (d, J = 9.3, 1H), 4.92 (d, J = 9.2, 1H), 4.49 (s, 1H), 4.43 (m, 2H), 3.74-3.67 (m, 1H), 3.42 (m, 1H), 2.85-2.72 (m, 2H), 1.98-1.90 (m, 2H), 1.82-1.62 (m, 6H), 1.81 (s, 3H), 1.49 (s, 6H); HRMS (ESI) m/z calcld for C$_{31}$H$_{46}$N$_3$O$_5$S (M + H)$^+$ 566.2689, found 566.2685.

Example C35: (S)-3-((2S,3S)-2-Hydroxy-3-[(1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino)-4-phenyl-butanoyl)-1-thia-3-aza-spiro[4.4]nonane-4-carboxylic acid (S)-cyclohex-2-enylamide

![Chemical structure](image)

1H NMR (DMSO-d$_6$) δ 9.35 (s, 1H), 8.15 (d, J = 8.4, 1H), 7.91 (d, J = 7.9, 1H), 7.34-7.12 (m, 5H), 6.96-6.91 (m, 1H), 6.76 (d, J = 8.1, 1H), 6.53 (d, J = 7.5, 1H), 5.80-5.65 (m, 1H), 5.48-5.40 (m, 1H), 5.36 (d, J = 7.2, 1H), 5.10 (d, J = 9.2, 1H), 4.94 (d, J = 9.2, 1H), 4.54 (s, 1H), 4.50-4.20 (m, 3H), 2.90-2.60 (m, 2H), 2.10-1.82 (m, 4H), 1.79 (s, 3H), 1.78-1.40 (m, 10H); Anal. Calcld for C$_{32}$H$_{36}$N$_3$O$_5$S: C, 66.53; H, 6.80; N, 7.27. Found: C, 66.34; H, 6.62; N, 6.96.

Example C36: (R)-3-((2S,3S)-2-Hydroxy-3-[(1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino)-4-phenyl-butanoyl)-1-thia-3-aza-spiro[4.4]nonane-4-carboxylic acid 5-fluoro-2-methyl-benzylamide

![Chemical structure](image)
White solid; 1H NMR (DMSO-d_6) δ 9.37 (s, 1H), 8.38 (t, $J = 5.5$, 1H), 8.26 (d, $J = 8.1$, 1H), 7.31-6.85 (m, 9H), 6.76 (d, $J = 8.1$, 1H), 6.53 (d, $J = 7.7$, 1H), 5.54 (d, $J = 6.4$, 1H), 5.12 (d, $J = 9.2$, 1H), 4.95 (d, $J = 9.2$, 1H), 4.55 (s, 1H), 4.50-4.10 (m, 3H), 4.01 (dd, $J = 16.0$, 5.5, 1H), 2.90-2.60 (m, 2H), 2.20 (s, 3H), 2.10-1.85 (m, 4H), 1.81 (s, 3H), 1.80-1.50 (m, 4H); Anal. Calcd for C$_{34}$H$_{38}$N$_3$O$_5$SF: C, 65.51; H, 6.21; N, 6.74. Found: C, 65.50; H, 6.23; N, 6.70.

Example C37: (R)-3-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-1-thia-3-aza-spiro[4.4]nonane-4-carboxylic acid (1,2,3,4-tetrahydro-naphthalen-1-yl)-amide

White solid; 1H NMR (DMSO-d_6) δ 9.36 (s, 1H), 8.26 (d, $J = 8.4$, 1H), 8.20 (d, $J = 8.4$, 1H), 7.30-6.89 (m, 10H), 6.76 (d, $J = 8.1$, 1H), 6.54 (d, $J = 7.3$, 1H), 5.36 (d, $J = 6.8$, 1H), 5.12 (d, $J = 9.2$, 1H), 4.98-4.90 (m, 2H), 4.60-4.30 (m, 3H), 2.90-2.60 (m, 4H), 2.07 (s, 3H), 2.05-1.50 (m, 12H); Anal. Calcd for C$_{36}$H$_{41}$N$_3$O$_5$S: C, 68.87; H, 6.58; N, 6.69. Found: C, 68.80; H, 6.41; N, 6.60.

Example C38: (R)-7-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-5-thia-7-aza-spiro[3.4]octane-8-carboxylic acid propylamide
\textbf{Example C39: (R)-7-((2S,3S)-2-Hydroxy-3-{[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino}-4-phenyl-butanoyl)-5-thia-7-aza-spiro[3.4]octane-8-carboxylic acid (S)-cyclohex-2-enylamide}

\begin{center}
\includegraphics[width=0.5\textwidth]{example_c39}
\end{center}

White solid; 1H NMR (DMSO-d\textsubscript{6}) \delta 9.38 (s, 1H), 8.18 (d, J = 8.2, 1H), 8.07 (d, J = 8.1, 1H), 7.36-7.18 (m, 5H), 6.96 (t, J = 8.2, 1H), 6.79 (d, J = 8.3, 1H), 6.56 (d, J = 7.1, 1H), 5.77 (m, 1H), 5.56-5.47 (m, 1H), 5.36 (d, J = 7.0, 1H), 5.02 (d, J = 9.3, 1H), 4.95 (d, J = 9.3, 1H), 4.58 (s, 1H), 4.51 (m, 1H), 4.39-4.31 (m, 2H), 2.75-2.70 (m, 2H), 2.60-2.44 (m, 2H), 2.15 (m, 1H), 2.04-1.88 (m, 5H), 1.82 (s, 3H), 1.80-1.64 (m, 2H), 1.55-1.46 (m, 2H); HRMS (ESI) m/z calcd for C\textsubscript{31}H\textsubscript{38}N\textsubscript{3}O\textsubscript{5}S (M + H+) 564.2532, found 564.2523.

\textbf{Example C40: 1-{[3-[2-(2,6-Dimethyl-phenoxy)-acetamino]-2-hydroxy-4-phenyl-butyryl]-4,4-difluoro-pyrrolidine-2-carboxylic acid 2-methyl-benzylamide}

\begin{center}
\includegraphics[width=0.5\textwidth]{example_c40}
\end{center}

1H NMR (400 MHz, DMSO-d_6): δ 8.36 (t, 1H), 8.13 (d, 1H), 7.29 (d, 2H), 7.25-7.08 (m, 7H), 6.99 (d, 2H), 6.91 (dd, 1H), 5.53 (d, 1H), 4.66 (dd, 1H), 4.33-4.10 (m, 7H), 3.94 (d, 1H), 2.86-2.73 (m, 4H), 2.46-2.38 (m, 1H), 2.22 (s, 3H), 2.12 (s, 6H); 19F NMR (376 MHz, DMSO-d_6): δ -98.1 (dq, 1F), -100.0 (dq, 1F); MS-APCI (m/z^+): 594; HPLC Purity: 100%, Rf(min.) 21.97; Anal. C$_{33}$H$_{37}$N$_3$O$_5$F$_2$·0.3 H$_2$O calcd: C 66.16, H 6.33, N 7.01; found: C 66.23, H 6.57, N 7.12.

Example C41: ((1S,2S)-1-Benzyl-3-[(S)-4-difluoro-2-(2-methyl-benzyl carbamoyl)-pyrrolidin-1-yl]-2-hydroxy-3-oxo-propyl]-carbamic acid (S)-(tetrahydro-furan-3-yl) ester

![Chemical structure](image)

White solid; 1H NMR (DMSO-d_6) δ 8.34 (t, $J = 5.5$, 1H), 7.31-7.09 (m, 10H), 5.40 (d, $J = 7.0$, 1H), 4.95 (m, 1H), 4.65 (dd, $J = 9.2$, 5.7, 1H), 4.35-4.09 (m, 5H), 3.81 (m, 1H), 3.75-3.56 (m, 3H), 3.40 (d, $J = 10.0$, 1H), 2.80-2.36 (m, 4H), 2.23 (s, 3H), 2.05-1.95 (m, 1H), 1.81 (m, 1H); HRMS (ESI) m/z calcd for C$_{28}$H$_{34}$N$_3$O$_6$F$_2$ (M + H)$^+$ 546.2416, found 546.2418.

Example C42: (S)-4-Difluoro-1-((2S,3S)-2-hydroxy-3-[(1-(3-hydroxy-2,4-dimethyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-pyrrolidine-2-carboxylic acid 2-methyl-benzylamide

![Chemical structure](image)
White solid; 1H NMR (DMSO-d$_6$) δ 8.35 (t, $J = 5.7$, 1H), 8.25 (s br, 1H), 8.09 (d, $J = 7.9$, 1H), 7.33-7.08 (m, 9H), 6.85 (d, $J = 7.7$, 1H), 6.53 (d, $J = 7.5$, 1H), 5.49 (d, $J = 6.2$, 1H), 4.67 (dd, $J = 9.3$, 5.5, 1H), 4.35-4.14 (m, 6H), 2.86-2.67 (m, 4H), 2.23 (s, 3H), 2.13 (s, 3H), 1.85 (s, 3H); HRMS (ESI) m/z calcld for C$_{32}$H$_{36}$N$_5$O$_5$F$_2$ (M + H)$^+$ 580.2623, found 580.2650.

Example C43: 3,5-Dimethyl-isoxazole-4-carboxylic acid {1-benzyl-3-[4,4-difluoro-2-(2-methyl-benzylearbamoyl)-pyrrolidin-1-yl]-2-hydroxy-3-oxo-propyl}-amide

![Chemical Structure]

The crude was purified by chromatography eluted with 10% and 20% acetone in CH$_2$Cl$_2$. 1H NMR (400 MHz, DMSO-d$_6$): δ 8.41 (t, 1H), 8.13 (d, 1H), 7.29 (d, 2H), 7.24-7.09 (m, 7H), 5.54 (d, 1H), 4.66 (dd, 1H), 4.40 (dd, 1H), 4.34-4.28 (m, 3H), 4.25-4.18 (m, 2H), 2.87-2.68 (m, 3H), 2.43-2.36 (m, 1H), 2.25 (s, 3H), 2.22 (s, 3H), 2.07 (s, 3H); 19F NMR (376 MHz, DMSO-d$_6$): δ -98.0 (dq, 1F), -99.9 (dq, 1F); MS-APCI (m/z+): 555;; HPLC Purity: 100%, Rf(min.) 19.63; Anal. C$_{29}$H$_{32}$N$_4$O$_5$F$_2$·0.3 H$_2$O calcld: C 62.20, H 5.87, N 10.00; found: C 62.25, H 6.00, N 9.65.

Example C44: {1-Benzyl-3-[4,4-difluoro-2-(2-methyl-benzylearbamoyl)-pyrrolidin-1-yl]-2-hydroxy-3-oxo-propyl}-carbamic acid prop-2-ynyl ester

![Chemical Structure]
The crude was purified by chromatography eluted with 10% acetone in CH₂Cl₂. ¹H NMR (400 MHz, DMSO-d₆): δ 8.37 (t, 1H), 7.53 (d, 1H), 7.28 (d, 2H), 7.24-7.10 (m, 7H), 5.36 (d, 1H), 4.65 (dd, 1H), 4.54-4.42 (m, 2H), 4.35-4.18 (m, 4H), 4.11 (dd, 1H), 3.8 (m, 1H), 3.43 (t, 1H), 2.79-2.69 (m, 2H), 2.59 (dd, 1H), 2.42-2.34 (m, 1H); ¹⁹F NMR (376 MHz, DMSO-d₆): δ -98.2 (dq, 1F), -99.7 (dq, 1F); MS-APCI (m/z+): 514; HPLC Purity: 92%, Rf(min.) 19.80; Anal. C₂₃H₂₉N₅O₃F₂ calcd: C 63.15, H 5.69, N 8.18; found: C 63.00, H 6.02, N 8.02.

Example C45: 1-{3-[2-(2,6-Dimethyl-phenoxy)-acetylamino]-2-hydroxy-4-phenyl-butyryl}-4,4-difluoro-pyrrolidine-2-carboxylic acid propylamide

![Chemical Structure](image1)

¹H-NMR (400 MHz, dmso-d₆): 8.09 (d, 1H), 7.91 (t, 1H), 6.8 – 7.35 (m, 8H), 5.48 (d, 1H), 4.6 (m, 1H), 3.87 – 4.4 (m, 5H), 3.04 (d, 2H), 2.61 – 2.87 (m, 3H), 2.35 (m, 1H), 2.35 (s, 3H), 2.13 (s, 6H), 1.4 (q, 2H), 0.8 (t, 3H); IR (KBr in cm⁻¹): 3278, 2931, 1657, 1534, 1449, 1194; MS (APCI, m/z): 531 (M+H), 340, 225, 180; HPLC: Rf(min.) 20.57; Purity: 95%.

Example C46: (S)-1-{(2S,3S)-3-[2-(2,6-Dimethyl-phenoxy)-acetylamino]-2-hydroxy-4-phenyl-butyryl}-4,4-difluoro-3,3-dimethyl-pyrrolidine-2-carboxylic acid 2-methyl-benzylamide

![Chemical Structure](image2)
\(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 8.33 (t, 1H), 8.14 (d, 1H), 7.33-7.28 (m, 3H), 7.22 (t, 2H), 7.16 (d, 1H), 7.14-7.06 (m, 3H), 7.02-6.86 (m, 2H), 6.91 (t, 1H), 5.50 (d, 1H), 4.36 (dd, 1H), 4.34-4.18 (m, 6H), 4.14 (d, 1H), 3.98 (d, 1H), 2.84-2.70 (m, 2H), 2.25 (s, 3H), 2.13 (s, 6H), 1.19 (s, 3H), 1.02 (s, 3H); \(^{19}\)F NMR (376 MHz, DMSO-\(d_6\)): \(\delta\) -109.1 (dt, 1F), -113.3 (dt, 1F); MS-APCI (m/z\(^+\)) 622; HPLC Purity: 94%; Rf(min.) 23.90; Anal.

C\(_{35}\)H\(_{41}\)N\(_3\)O\(_5\)F\(_2\) calcd: C67.62, H6.65, N6.76, found: C67.54, H7.02, N7.09.

Example C47: \(((\text{1S,2S})-1\text{-Benzy}-3-\text{[S]-5,5-dimethyl-4-(2-methyl-benzylcarbamoyl)-oxazolidin-3-yl]}\text{-2-hydroxy-3-oxo-propyl]-carbamic acid (S)-(tetrahydro-furan-3-yl) ester}

\[\text{\includegraphics[width=4cm]{chemical_diagram1.png}} \]

\(^1\)H NMR (DMSO-\(d_6\)) \(\delta\) 8.29 (t, \(J = 8.7\), 1H), 7.25-7.13 (m, 10H), 5.60 (d, \(J = 6.8\), 1H), 5.31 (d, \(J = 4.0\), 1H), 5.16 (d, \(J = 4.0\), 1H), 4.88 (m, 1H), 4.47-4.05 (m, 5H), 3.86 (m, 1H), 3.72-3.54 (m, 3H), 2.80 (m, 1H), 2.60 (m, 1H), 2.26 (s, 3H), 2.04-1.94 (m, 1H), 1.81-1.76 (m, 1H), 1.29 (s, 3H), 1.16 (s, 3H) HRMS (ESI) \(m / z\) calcd for C\(_{29}\)H\(_{38}\)N\(_3\)O\(_7\) (M + H\(^+\)) 540.2710, found 540.2706.

Example C48: 1-[2-Hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-4-phenyl-butyryl]-3,3-dimethyl-4-oxo-pyrrolidine-2-carboxylic acid 2-methyl-benzylamide

\[\text{\includegraphics[width=4cm]{chemical_diagram2.png}} \]
The product was recrystallized from ethyl acetate, ethyl ether and hexanes. 1H NMR (400 MHz, DMSO-d_6): δ 9.34 (s, 1H), 8.73 (t, 1H), 8.18 (d, 1H), 7.26-7.05 (m, 9H), 6.92 (t, 1H), 6.75 (d, 1H), 6.51 (d, 1H), 5.56 (d, 1H), 4.75 (s, 1H), 4.55 (d, 1H), 4.40-4.32 (m, 4H), 4.14 (dd, 1H), 2.85 (d, 1H), 2.66 (dd, 1H), 2.23 (s, 3H), 1.75 (s, 3H), 1.11 (s, 3H), 0.94 (s, 3H); MS-APCI (m/z+): 572; HPLC Purity: 100%, Rf(min.) 19.31.

Example C49: (3S,4aS,8aS)-2-((2S,3S)-2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-decahydro-isoquinoline-3-carboxylic acid 2-methyl-benzylamide

![Chemical Structure](image)

White solid: 1H NMR (DMSO) δ 9.38 (s, 1H), 8.45-8.15 (m, 2H), 7.40-6.40 (m, 12H), 5.18 (d, J = 7.0, 1H), 5.00-3.35 (m, 5H), 3.00-1.00 (m, 22H); Anal. Caled for C$_{36}$H$_{45}$N$_3$O$_5$: H$_2$O: C, 71.80; H, 7.28; N, 6.98. Found: C, 71.83; H, 7.40; N, 7.13.

Example C50: 2-(2-Hydroxy-3-[[1-(3-hydroxy-2-methyl-phenyl)-methanoyl]-amino]-4-phenyl-butanoyl)-2-aza-bicyclo[2.2.1]-heptane-3-carboxylic acid-2-methyl-benzylamide

![Chemical Structure](image)
1H NMR (DMSO) δ 9.34 (s, 1H), 8.25-8.17 (m, 2H), 7.40-7.16 (m, 9H), 6.96 (q, $J = 7.7$, 1H), 6.80 (d, $J = 7.7$, 1H), 6.58 (d, $J = 7.7$, 1H), 4.91 (d, $J = 5.7$, 1H), 4.74 (s, 1H), 4.46-4.00 (m, 5H), 2.85-2.66 (m, 3H), 2.28 (s, 3H), 1.88 (s, 3H), 1.85-1.50 (m, 6H); HRMS (ESI) m/z calc'd for C$_{33}$H$_{37}$N$_3$O$_5$Na ($\text{M} + \text{Na})^+$ 578.2625, found 578.2604.

General Methods D

![Diagram](image)

The synthesis of compounds with the general structure 27 is as follows. The boc-protected thiazolidine carboxylic acid 1 is converted to amino-ketones 26 with requisite grignard reagents 25 in the presence of oxalyl chloride. Final compounds 27 are obtained by a DCC-mediated coupling of 26 and 4 followed by deprotection of the P2 phenol. Final compounds were purified either by flash chromatography or preparative HPLC.

Specific Method D

Example D1: N-[(1S,2S)-1-Benzyl-3-((R)-5,5-dimethyl-4-pent-4-enoyl-thiazolidin-3-yl)-2-hydroxy-3-oxo-propyl]-3-hydroxy-2-methyl-benzamide

![Example Structure](image)
The title compound was prepared as follows. (R)-5,5-Dimethyl-thiazolidine-3,4-dicarboxylic acid 3-tert-butyl ester 1 (1.0 g, 3.80 mmol) was dissolved in benzene (10 mL) and cooled to 0 °C with magnetic stirring. Two drops of DMF were added followed by a drop wise addition of oxalyl chloride (0.33 mL, 3.80 mmol). When gas evolution ceased, the solution was concentrated to a yellow/red residue. The material was dissolved in dry THF (10 mL) and cooled to -78 °C with magnetic stirring. The grignard reagent, 3-butenylmagnesium bromide (7.7 mL, 3.80 mmol) was added dropwise over 10 min. The result was stirred at -78 °C for 1 h then at -55 °C for 30 min. The reaction was quenched at -55 °C with sat NH₄Cl soln.(3 mL) and then poured into H₂O (50 mL). The mixture was extracted with EtOAc (2 x 50 mL). The combined organics were washed with brine (1 x 100 mL), dried over Na₂SO₄, filtered, and concentrated. The result was the amino ketone 26 that was sufficiently pure to use in the subsequent step. The clear oil 26 (0.24 g, 1.15 mmol) was dissolved in EtOAc (10 mL). AMB-AHPBA 4 (0.40 g, 1.09 mmol) was added followed by HOBT (0.15 g, 1.09 mmol). The mixture was stirred at room temperature 1 h, then cooled to 0 °C. DCC (0.24 g, 1.15 mmol) was slowly added as solution in EtOAc (6 mL). The mixture was warmed to room temperature and stirred overnight. The mixture was filtered and the filtrate was washed with 1 N HCl (10 mL), saturated NaHCO₃ (10 mL), brine (10 mL), dried over Na₂SO₄ and concentrated to give a crude white solid (contaminated with DCU). The DCU was removed by flash chromatography (30% to 50% EtOAc in hexanes) to provide a white solid, which was dissolved in MeOH (2 mL) and treated with 4 N HCl in 1,4-dioxane (0.26 mL, 1.1 mmol). The reaction was stirred at room temperature overnight then partitioned between 1 N HCl (10 mL) and EtOAc (10 mL). The organic layer was washed with saturated sat. NaHCO₃ (1 x 25 mL) dried over Na₂SO₄, filtered, and concentrated to a residue which was purified by flash chromatography (60% EtOAc in hexanes) to provide the title compound as a white amorphous solid: ¹H NMR (DMSO-d₆) δ 9.36 (s, 1H), 8.23 (d, J = 8.1, 1H), 7.35-7.14 (m, 5H), 6.96 (t, J = 7.5, 1H), 6.78 (d, J = 8.2, 1H), 6.52 (d, J = 7.5, 1H), 5.81-5.69 (m, 2H), 5.32 (d, J = 9.7, 1H), 5.11-5.91 (m, 3H), 4.40 (m, 3H), 2.89-2.61 (m, 4H), 2.37-2.14 (m, 2H), 1.81 (s, 3H), 1.55 (s, 3H), 1.30 (s, 3H); Anal. Calcd for C₂₈H₃₄N₂O₅S: C, 65.86; H, 6.71; N, 5.49. Found: C, 65.52; H, 6.55; N, 5.81.
The following examples were synthesized using the specific method outlined above using the appropriate grignard reagent for the desired compound.

Example D2: (R)-3-((2S,3R)-4,4-Difluoro-1-[4-(3-fluoro-phenyl)-2-hydroxy-3-(3-hydroxy-2-methyl-benzoylamino)-butryl])-3,3-dimethyl-pyrrolidine-2-carboxylic acid allyl amide

![Chemical structure](image)

The following represents synthesis of key intermediates for the synthesis of the title compound.

L-2-tert-Butyloxycarbonylamino-3-(3-fluoro-phenyl)-propionic acid.

A mixture of L-2-amino-3-(3-fluoro-phenyl)-propionic acid (20.0 g, 110 mmol, 1 eq) in H₂O (100 mL) was treated with Na₂CO₃ (16.2 g, 153 mmol, 1.4 eq) in H₂O (40 mL) followed by 1,4-dioxane (100 mL) and cooled to 0 °C. The BOC₃O was added and the reaction mixture was stirred at ambient temperature for 5 h after which the dioxane was evaporated. H₂O (125 mL) was then added and the mixture then washed with Et₂O (2 x 100 mL). The aqueous phase was acidified with 10% citric acid followed by extraction with EtOAc (2 x 300 mL). The combined EtOAc layers were washed with H₂O (2 x 150 mL), brine (150 mL), dried (Na₂SO₄) and concentrated to give the acid as a colorless, viscous oil which slowly solidified upon standing (31 g, quant). ¹H NMR (CDCl₃) 7.33-7.26 (m,1H), 7.00-6.91 (m,3H), 4.96 (s,1H), 4.62 (bs,1H), 3.23 (dd, J=14,5.3 , 2H), 1.44 (s, 9H); Anal Calcd for C₁₄H₁₈NO₄F: C, 59.36; H,6.40; N,4.94. Found: C,59.29; H, 6.34; N, 4.90.
L-[2-(3-Fluoro-phenyl)-1-(methoxy-methyl-carbamoyl)-ethyl]-carbamic acid \textit{-t}ert-buty\textit{l ester}.

To a solution of \textit{L-2-\textit{t}ert-butoxycarbonylamino-3-(3-fluoro-phenyl)-propionic acid} (30.9 g, 109 mmol) in THF (180 mL) was added carbonyldiimidazole (21.2 g, 131 mmol, 1.2 eq). After stirring the solution at ambient temperature for 45 min was added DMF (64 mL), N,O-dimethylhydroxylamine hydrochloride (11.7 g, 120 mmol, 1.1 eq) and diisopropylethylamine (20 mL, 113 mmol, 1.04 eq). After stirring for a total time of 2 h, the solvents were evaporated \textit{in vacuo} and the oily residue dissolved in EtOAc (300 mL). The organic phase was washed with H$_2$O (500 mL), 10% citric acid (2 x 150 mL), H$_2$O (500 mL), sat’d Na$_2$CO$_3$ (200 mL), brine (200 mL), dried (Na$_2$SO$_4$) and concentrated to give the product suitable for further use (31.6 g, 89%). 1H NMR (CDCl$_3$) 7.29-7.22 (m, 1H), 6.98-6.89 (m, 3H), 5.20 (bs, 1H), 4.96 (bs, 1H), 3.72 (s, 3H), 3.19 (s, 3H), 3.07 (dd, J= 13.6, 5.9, 2H), 1.41 (s, 9H). Anal Calcd for C$_{16}$H$_{23}$N$_2$O$_4$F: C, 58.88; H, 7.10; N, 8.58. Found: C, 58.89; H, 7.19; N, 8.71.

L-[\textit{1}-(3-Fluoro-benzyl)-\textit{2-oxo-ethyl}]\textit{-carbamic acid \textit{t}ert-buty\textit{l ester}}.

To a 3-neck flask which purged with argon was added a 1M solution of LAH in Et$_2$O (106 mL, 1.1 eq) and cooled to 0°C. A solution of L-[2-(3-fluoro-phenyl)-1-(methoxy-methyl-carbamoyl)-ethyl]-carbamic acid \textit{-t}ert-buty\textit{l ester}(31.6 g, 97 mmol, 1 eq) in THF (150 mL) was added over a period of 1h such that the temperature remained below 5°C. After stirring for an additional 30 min the reaction was quenched with EtOAc (60 mL) followed by 5% KHSO$_4$ (100 mL). EtOAc (500 mL) was added and the organic phase was washed with 1N HCl (3 x 100 mL), H$_2$O (500 mL), brine (200 mL), dried (Na$_2$SO$_4$) and concentrated to a white solid which was filtered and washed with heptane (200 mL). The aldehyde was suitable for further use (17.6 g, 68%). 1H NMR (CDCl$_3$) 9.65 (s, 1H), 7.33-7.26 (m, 1H), 7.01-6.89 (m, 3H), 5.06 (bs, 1H), 4.43 (broad m, 2H), 1.45 (s, 9H). Anal Calcd for C$_{14}$H$_{18}$NO$_3$F: C, 62.91; H, 6.79; N, 5.24. Found: C, 62.73; H, 6.66; N, 5.21.

3-\textit{t}ert-Butoxycarbonylamino-4-(3-fluoro-phenyl)-2-hydroxy-butyr\textit{i}c acid (\textit{diastereomeric}).
A solution of L-[1-(3-fluoro-benzyl)-2-oxo-ethyl]-carbamic acid tert-butyl ester (17.6 g, 66 mmol, 1 eq) in MeOH (104 mL) was cooled to 0°C. A solution of sodium bisulfite in H₂O (104 mL) was added and the mixture stirred for 5 h at 0°C after which it was placed in a freezer for 7 h. The reaction mixture was then charged with a solution of NaCN (3.87 g, 79 mmol, 1.2 eq) in H₂O (104 mL) followed by EtOAc (280 mL) and stirred at room temperature for 11 h after which the organic layer was separated, dried (Na₂SO₄) and concentrated to give the crude cyanohydrin as a waxy solid. This material was dissolved in 1,4 dioxane (265 mL), charged with anisole (11 mL) and cooled to 0°C. Concentrated HCl (265 mL) was added, with vigorous stirring, to the reaction mixture followed by heating at reflux for 1 h. The dioxane plus most of the water was evaporated in vacuo. The remaining residue was basified with 2N NaOH and washed with Et₂O (3 x 200 mL). The aqueous phase was then charged with 1,4 dioxane (120 mL) followed by BOC₂O (15.8 g, 1.1 eq). After stirring at ambient temperature for 3 h the dioxane was removed in vacuo and the remaining mixture acidified with 10% citric acid followed by extraction with EtOAc (2 x 300 mL). The combined organic layers were washed with H₂O (300 mL), brine (200 mL), dried (Na₂SO₄) and concentrated to give the acid as a diastereomeric mixture (ca 1:1) and orange solid (10.56 g, 51%) ¹H NMR (DMSO) 7.35-7.25 (m, 2H), 7.06-6.96 (m, 6H), 6.76 (d, J= 9.0, 1H), 6.43 (d, J= 9.6, 1H), 4.02-3.89 (m, 4H), 3.57 (m, 2H), 2.83 (dd, J= 13.4, 6.1, 2H), 1.28 (s, 9H), 1.26 (s, 9H).

(2S,3R)-3-tert-Butoxycarbonylamino-4-(3-fluoro-phenyl)-2-hydroxy-butyric acid methyl ester.

To a solution of 3-tert-butoxycarbonylamino-4-(3-fluoro-phenyl)-2-hydroxy-butyric acid (diastereomeric) (10.56 g, 33.8 mmol., 1 eq) in DMF (130 mL) was suspended K₂CO₃ (6.07 g, 43 mmol, 1.3 eq) followed by CH₃I (4.2 mL, 68 mmol, 2 eq). After stirring for 2 h at ambient temperature the DMF was evaporated in vacuo. The remaining residue was dissolved in EtOAc (300 mL) and washed with H₂O (2 x 100 mL), sodium thiosulfate solution (100 mL), brine (200 mL) dried (Na₂SO₄) and concentrated to give a crude orange solid (9.55 g). Purification by column chromatography (1:1 EtOAc/hexanes) afforded 6.96 g total (63%); of which 3.28 g being the desired diastereomer (2S,3R)-3-tert-Butoxycarbonylamino-4-(3-fluoro-phenyl)-2-hydroxy-butyric acid methyl ester (cream colored solid), and 3.68 g being the undesired product (2R,3R)-3-tert-
butoxycarbonylamino-4-(3-fluoro-phenyl)-2-hydroxy-butyric acid methyl ester. (2S,3R) product: 1H NMR (CDCl$_3$) 7.30-7.22 (m, 1H), 7.01-6.90 (m, 3H), 4.88 (d, J=8.2,1H), 4.32 (m, 2H), 3.67 (s, 3H), 2.79 (t, J=6.9, 2H), 1.40 (s, 9H). (2R,3R) product: 1H NMR (CDCl$_3$) 7.32-7.25 (m, 1H), 7.09-6.91 (m, 3H), 4.82 (d, J=9.8, 1H), 4.27 (dd, J=16.9, 7.6, 1H), 4.08 (d, J=3.2, 1H), 3.78 (s, 3H), 3.17 (d, J=4.5, 1H), 2.93(d, J=4.5, 1H), 1.40 (s, 9H).

(2S,3R)-3-tert-Butoxycarbonylamino-4-(3-fluoro-phenyl)-2-hydroxy-butyric acid.

A mixture of (2S,3R)-3-tert-Butoxycarbonylamino-4-(3-fluoro-phenyl)-2-hydroxy-butyric acid methyl ester (3.28 g, 10.05 mmol, 1 eq), 4N NaOH (4 mL, 16 mmol, 1.6 eq), MeOH (42 mL) and 1,4-dioxane (63 mL) was stirred at ambient temperature for 1.5 h after which the solvents were evaporated. To the residue was added 10% citric acid (100 mL) followed by extraction with EtOAc (100 mL). The organic layer was washed with H$_2$O (100 mL), brine (50 mL), dried (Na$_2$SO$_4$) and concentrated to give the desired product as a cream colored solid (3.06 g, 97%). 1H NMR (DMSO) 7.33-7.26 (m, 1H), 7.02-6.97 (m, 3H), 6.78 (d, J=5.2, 1H), 3.98 (d, J=5.5, 1H), 3.99-3.86 (m, 2H), 2.77-2.82 (m, 2H), 1.27 (s, 9H).

Conversion of undesired (2R,3R) diastereomer-methylester to (2S,3R)-3-tert-butoxycarbonylamino-4-(3-fluoro-phenyl)-2-hydroxy-butyric acid.

(2S,3R)-3-tert-Butoxycarbonylamino-2-(2-chloro-acetoxy)-4-(3-fluoro-phenyl)-butyric acid methyl ester.

A solution of the (2R,3R)-3-tert-butoxycarbonylamino-4-(3-fluoro-phenyl)-2-hydroxy-butyric acid methyl ester (8 g, 24.5 mmol, 1 eq), chloroacetic acid (5.79 g, 61.3 mmol, 2.5 eq), and PPh$_3$ (16 g, 61.3 mmol, 2.5 eq) in benzene (340 mL) was cooled to 0°C followed by the addition of diethylzodicarboxylate (9.7 mL, 61.3 mmol, 2.5 eq) over a 20 min period. After the addition, the reaction mixture was stirred at ambient temperature for 2 h after which the reaction mixture was concentrated and the residue purified by column chromatography with 30% EtOAc/hexanes as eluant. Appropriate fractions were combined and concentrated to give a yellow solid which was shaken with heptane and filtered to remove the yellow DEAD residues. The product was thus obtained as a white solid (4.25 g, 43%) 1H NMR (CDCl$_3$) 7.32 (m, 1H), 7.03-6.96 (m, 3H), 5.34 (d, J=3.5,
1H), 4.26 (s, 2H), 4.75-4.5 (series of m, 2H), 3.77 (s, 3H), 2.92 (bd, J=7 , 2H), 1.43 (s, 9H).

(2S,3R)-3-tert-butoxycarbonylamino-4-(3-fluoro-phenyl)-2-hydroxy-butyric acid.

A mixture of (2S,3R)-3-tert-butoxycarbonylamino-2-(2-chloro-acetoxy)-4-(3-fluoro-phenyl)-butyric acid methyl ester (4.56 g, 11.3 mmol, 1 eq), 4N NaOH (6.5 mL, 25.9 mmol, 2.3 eq), MeOH (48 mL) and 1.4-dioxane (72 mL) was stirred at ambient temperature for 4 h after which the solvents were removed in vacuo and the residue was charged with H₂O (50 mL) and washed with Et₂O (100 mL). The aqueous layer was made acidic with 10% citric acid and extracted with EtOAc (2 x 75 mL). The combined EtOAc layers were washed with H₂O (3 x 50 mL) brine (50 mL), dried (Na₂SO₄), concentrated, shaken with heptane and filtered to give the desired acid as a white solid (3.3 g, 94%).

1H NMR (DMSO) 9.42 (s, 1H), 8.26 (d, J=8.1, 1H), 8.17 (t, J=5.9, 1H), 7.32 (m, 1H), 7.18 (m, 2H), 7.00 (m, 2H), 6.79 (d, J=8.1, 1H), 6.56 (d, J=7.5, 1H), 5.79 (m, 1H), 5.51 (d, J=6.4, 1H), 5.24 (d, J=15.4, 1H), 5.06 (d, J=10.4, 1H), 4.49-4.28 (series of m, 5H), 3.74 (broad m, 2H), 2.89-2.67 (m, 2H), 1.81 (s, 3H), 1.22 (s, 3H), 1.05 (s, 3H). Anal Calcd for C₂₈H₃₂N₃O₅F₃x0.25 H₂O: C,60.91; H,5.93; N,7.61. Found: C,60.96; H, 6.05; N, 7.20.

Example D3: (S)-4,4-Difluoro-1-[(2S, 3S)-4-(3-fluoro-phenyl)-2-hydroxy-3-(3-hydroxy-2-methyl-benzoalamino)-butyryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid isobutyl-amide

White solid: 1H NMR (DMSO-d₆) □9.14 (s, 1H), 8.03 (d, 1H, J = 8.3), 7.76 (t, 1H, J = 5.8), 7.09 (dd, 1H, J = 7.4, 14.4), 6.99 (d, 2H, J = 7.6), 6.81 – 6.73 (m, 2H), 6.58 (d, 1H, J
Example D4: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2,5-dimethylbenzoylamino)-4-phenyl-butyryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid propylamide

White solid: 1H NMR (DMSO-d_6) δ 9.17 (s, 1H), 8.04 (d, 1H, $J = 8.1$), 7.85 (t, 1H, $J = 5.1$), 7.29 - 7.09 (m, 5H), 6.53 (s, 1H), 6.30 (s, 1H), 5.38 (d, 1H, $J = 6.1$), 4.40 - 4.24 (m, 3H), 4.14 (s, 1H), 3.04 - 2.90 (m, 2H), 2.77 (d, 1H, $J = 2.2$), 2.65 - 2.59 (m, 1H), 2.09 (s, 3H), 1.67 (s, 3H), 1.39 - 1.31 (m, 2H), 1.13 (s, 3H), 0.97 (s, 3H), 0.78 (s, 3H). HRMS (ESI) m/z calcld for C$_{30}$H$_{37}$F$_3$N$_3$O$_5$ (M + H)$^+$ 564.6130, found: 564.6274; Anal. Calcld for C$_{30}$H$_{36}$F$_3$N$_3$O$_5$: C, 61.80; H, 6.44; N, 7.46. Found: C, 61.58; H, 6.45; N, 7.34.

Example D5: (S)-4,4-Difluoro-1-[(2S,3S)-2-hydroxy-3-(3-hydroxy-2,5-dimethylbenzoylamino)-4-phenyl-butyryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid isobutyl-amide

White solid: 1H NMR (DMSO-d_6) δ 9.17 (s, 1H), 8.04 (d, 1H, $J = 8.1$), 7.85 (t, 1H, $J = 5.1$), 7.29 - 7.09 (m, 5H), 6.53 (s, 1H), 6.30 (s, 1H), 5.38 (d, 1H, $J = 6.1$), 4.40 - 4.24 (m, 3H), 4.14 (s, 1H), 3.04 - 2.90 (m, 2H), 2.77 (d, 1H, $J = 2.2$), 2.65 - 2.59 (m, 1H), 2.09 (s, 3H), 1.67 (s, 3H), 1.39 - 1.31 (m, 2H), 1.13 (s, 3H), 0.97 (s, 3H), 0.78 (s, 3H). HRMS (ESI) m/z calcld for C$_{30}$H$_{37}$F$_3$N$_3$O$_5$ (M + H)$^+$ 546.6230, found 546.2780; Anal. Calcld for C$_{29}$H$_{38}$F$_2$N$_3$O$_5$: C, 63.84; H, 6.84; N, 7.70. Found: C, 63.44; H, 6.82; N, 7.52.
White solid: 1H NMR (DMSO-d_6) δ 9.24 (s, 1H), 8.11 (d, 1H, J = 8.3), 7.94 (t, 1H, J = 5.8), 7.37 – 7.16 (m, 5H), 6.60 (s, 1H), 6.38 (s, 1H), 5.44 (d, 1H, J = 6.3), 4.48 – 4.29 (m, 3H), 4.25 (s, 1H), 2.94 – 2.83 (m, 3H), 2.73 – 2.64 (m, 1H), 2.16 (s, 3H), 1.75 (s, 3H), 1.74 – 1.65 (m, 1H), 1.21 (s, 3H), 1.05 (s, 3H), 0.86 (d, 6H, J = 6.6); HRMS (ESI) m/z calcd for C$_{30}$H$_{40}$F$_2$N$_2$O$_5$ (M + H)$^+$ 560.6500, found: 560.2928; Anal. Calcd for C$_{30}$H$_{39}$F$_2$N$_3$O$_5$: C, 64.38; H, 7.02; N, 7.51. Found: C, 64.09; H, 7.05; N, 7.29.

Example D6: (S)-4,4-Difluoro-1-[(2S, 3S)-2-hydroxy-3-(3-hydroxy-2,5-dimethyl-benzoylamino)-4-phenyl-butryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid (2,2,2-trifluoro-ethyl)-amide

![Chemical Structure](image)

(S)-4,4-Difluoro-1-[(2S, 3S)-2-hydroxy-3-(3-hydroxy-2,5-dimethyl-benzoylamino)-4-phenyl-butryl]-3,3-dimethyl-pyrrolidine-2-carboxylic acid (2,2,2-trifluoro-ethyl)-amide

White solid: 1H NMR (DMSO-d_6) δ 9.27 (s, 1H), 8.72 (t, 1H, J = 6.2), 8.15 (d, 1H, J = 8.1), 7.37 – 7.19 (m, 5H), 6.63 (s, 1H), 6.39 (s, 1H), 5.57 (d, 1H, J = 6.3), 4.52 – 4.33 (m, 4H), 4.10 – 3.94 (m, 1H), 3.93 – 3.88 (m, 1H), 2.87 (d, 1H, J = 7.3), 2.75 – 2.69 (m, 1H), 2.19 (s, 3H), 1.77 (s, 3H), 1.25 (s, 3H), 1.06 (s, 3H); HRMS (ESI) m/z calcd for C$_{28}$H$_{33}$F$_3$N$_2$O$_5$ (M + H)$^+$ 586.5670, found 586.2340; Anal. Calcd for C$_{28}$H$_{32}$F$_3$N$_2$O$_5$·0.4 H$_2$O: C, 56.73; H, 5.58; N, 7.09. Found: C, 56.64; H, 5.41; N, 6.94.
Combinatorial Chemistry Approach to HIV Protease P2' Inhibitors

General Method E

Scheme I

The combinatorial building block, 8, is prepared using the following method. The boc-protected thiazolidine carboxylic acid, 1, is treated with allyl bromide in the presence of NaHCO₃ to yield the boc-protected thiazolidine allyl ester, 2. Deprotection of boc-protected allyl ester, 2, with HCl (g) in EtOAc gives the HCl salt of the thiazolidine allyl ester amine, 3, which is treated with TEA and coupled to 4 in the presence of HOBT and DCC to give the building block precursor, 5. Deprotection of the building block, 5, with 4N HCl yields the phenol, 6. Loading the building block, 6, on to activated cross-linked trityl chloride polystyrene beads, 7, was accomplished in the following manner. The polystyrene cross-linked trityl alcohol was activated to the trityl chloride, 7, by treatment with 20% acetyl chloride in anhydrous CH₂Cl₂ at room temperature. The trityl chloride beads were combined with the phenol 6 in the presence of Hunig's base in anhydrous CH₂Cl₂ to yield the substrate loaded polystyrene beads 8. Intermediates were purified either by flash chromatography or preparative HPLC.
Scheme II

The synthesis of the HIV protease combinatorial library was carried out in the following fashion. The allyl ester was removed by treatment with Pd[PPh₃]₄ and NMM in anhydrous THF to give carboxylate 9, which was treated with pentafluorophenol, pentafluorophenol trifluoromethyl acetate and pyridine in DMF to yield the pentafluoro ester, 10. The pentafluoro ester 10 was treated with various primary amines in a 96-well plate format to give amides 12. The final products were cleaved from the polystyrene crowns with TFA to give products 13. Each product was analyzed by LCMS and HPLC. The following table typifies compounds synthesized by this combinatorial method.

Table 1

<table>
<thead>
<tr>
<th>P₂⁺</th>
<th>Expected Mass (LCMS)</th>
<th>Observed Mass</th>
<th>% Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>582</td>
<td>583(MH⁺)</td>
<td>5</td>
</tr>
<tr>
<td>H₂N-CH₂-N(CH₃)=N</td>
<td>582</td>
<td>583(MH⁺)</td>
<td>5</td>
</tr>
<tr>
<td>H₂N-CH₂-N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2'</td>
<td>Expected Mass (LCMS)</td>
<td>Observed Mass (Na<sup>+</sup>)</td>
<td>% Inhibition</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>HO-CH<sub>3</sub>-NH<sub>2</sub></td>
<td>529</td>
<td>552(Na<sup>+</sup>)</td>
<td>38</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-CH<sub>3</sub></td>
<td>528</td>
<td>529(MH<sup>+</sup>)</td>
<td>4</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-OH</td>
<td>591</td>
<td>614(Na<sup>+</sup>)</td>
<td>18</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-N<sub>2</sub></td>
<td>555</td>
<td>578(Na<sup>+</sup>)</td>
<td>19</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-N<sub>2</sub>-CH<sub>3</sub></td>
<td>611</td>
<td>612(MH<sup>+</sup>)</td>
<td>6</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-N<sub>2</sub></td>
<td>593</td>
<td>594(MH<sup>+</sup>)</td>
<td>6</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-N<sub>2</sub></td>
<td>576</td>
<td>577(MH<sup>+</sup>)</td>
<td>6</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-N<sub>2</sub></td>
<td>635</td>
<td>658(Na<sup>+</sup>)</td>
<td>5</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-N<sub>2</sub>-CH<sub>3</sub></td>
<td>656</td>
<td>656(MH<sup>+</sup>)</td>
<td>8</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-N<sub>2</sub>-CH<sub>3</sub></td>
<td>575</td>
<td>598(Na<sup>+</sup>)</td>
<td>86</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-N<sub>2</sub>-CH<sub>3</sub></td>
<td>525</td>
<td>548(Na<sup>+</sup>)</td>
<td>56</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-N<sub>2</sub>-CH<sub>3</sub>-NH<sub>2</sub></td>
<td>541</td>
<td>564(Na<sup>+</sup>)</td>
<td>63</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-OH</td>
<td>529</td>
<td>552(Na<sup>+</sup>)</td>
<td>49</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-N<sub>2</sub>-CH<sub>3</sub>-NH<sub>2</sub></td>
<td>565</td>
<td>588(Na<sup>+</sup>)</td>
<td>42</td>
</tr>
<tr>
<td>H<sub>2</sub>N-NH-C<sub>6</sub>H<sub>5</sub>-N<sub>2</sub></td>
<td>587</td>
<td>610(Na<sup>+</sup>)</td>
<td>54</td>
</tr>
</tbody>
</table>
Scheme 3: Solid Phase Synthesis Of HIV Protease Inhibitors (AG 1776 Analogs)

The solid phase combinatorial synthesis of HIV protease inhibitors was performed using the IRORI Directed Sorting Technology. Commercial 4-formyl-3-methoxyphenoxymethyl polystyrene resin 1a (PS-MB-CHO, Argonaut Technologies) or 4-formyl-3,5-dimethoxyphenoxymethyl polystyrene resin 1b (PL-FDMP resin, Polymer Laboratories) was loaded into individual Minikans.

Step A. Reductive Amination With P₂' Amines

To separate flasks containing sorted MiniKans was added DCM (3 mL/MiniKan). The appropriate primary P₂' amine (3 eq), sodium triacetoxyborohydride (5 eq), and acetic acid (3 eq) were added, and the mixtures were placed under argon, agitated with periodic venting at room temperature for 1–2 hours, and allowed to react overnight. For resin 1a, the filtrates were poured off and the MiniKans were washed with DCM, MeOH (2x), DCM (2x), Et₃N/DCM (1:3, 3x), DCM (2x), MeOH (3x), and DCM (4x). For resin 1b, a washing sequence of DCM, MeOH (2x), DCM (2x), Et₃N/DCM (1:3, 3x), DCM (2x), DMF, 1M NaOH/DMF (1:5, 3x), DMF (3x), MeOH (3x), and DCM (3x) was used. The MiniKans were dried under vacuum and taken on in Step B.
Step B. Peptide Coupling With P1', Amino Acids

To separate flasks containing the sorted MiniKans was added DMF (3 mL/MiniKan). The appropriate FMOC-protected amino acid (2.5 eq) and 1-hydroxy-7-azabenzotriazole (HOAT) (3 eq) were added and mixed until dissolved, and 1,3-diisopropylcarbodiimide (DIC) (3 eq) was added. The containers were placed under argon and agitated at room temperature overnight. The filtrates were poured off, and the MiniKans were washed with DMF (3x), MeOH (3x), DCM (2x), and DMF (2x). The MiniKans were taken directly on to Step C.

Step C. FMOC Deprotection

A container of MiniKans in DMF and piperidine (25%) with a total reaction volume of 3 mL/MiniKan was agitated under argon at room temperature for 45 minutes. The filtrate was removed, and the reaction procedure was repeated. The MiniKans were filtered and washed with DMF (3x), MeOH (2x), DCM (3x), and DMF, and taken directly on to Step D.

Step D. Peptide Coupling With FMOC-APNS

FMOC-Allophenylnorstatine (APNS) (3 eq) was added to the flask of MiniKans in DMF (3 mL/MiniKan). After dissolution, HOAT (3.5 eq) and DIC (3.5 eq) were added. The mixture was placed under argon and agitated at room temperature overnight. The reaction was filtered and the MiniKans were washed with DMF (3x), MeOH (3x), DCM (3x), and DMF. FMOC deprotection was carried out as in Step C, and the MiniKans were washed with DMF (3x), MeOH (2x), DCM (3x), dried under vacuum and taken on to Step E or F.
Step E. Peptide Coupling With P₂ Acids

To separate flasks containing the sorted MiniKans in DMF (3 mL/MiniKan) was added the appropriate P₂ acid (3 eq), HOBT hydrate (4 eq), and (3-(dimethylamino)propyl)ethylcarbodiimide hydrochloride (EDAC) (3.5 eq). The reaction was agitated under argon at room temperature for 3 hours. After filtration, the MiniKans were washed with DMF (3x), MeOH (3x), and DCM (3x), dried under vacuum, and taken on to Step G.

Step F. Reaction With P₂ Isocyanates and Chloroformates

To separate flasks containing the sorted MiniKans in DCM (3 mL/MiniKan) was added the P₂ isocyanate (3 eq) or P₂ chloroformate (5 eq) and diisopropylethylamine (10 eq). The containers were agitated under argon at room temperature for 2-4 hours. After filtration, the MiniKans were washed with DCM (3x), MeOH (3x), and DCM (3x), dried under vacuum, and taken on to Step G.

Step G. Cleavage and Processing Of The HIV Analogs

The individual MinKans were sorted into cleavage racks and a solution of 25% TFA in DCM (3 mL/MinKan) was added. The racks were agitated for 1.5 hours. The individual filtrates and DCM rinses were collected, concentrated, and purified by HPLC to provide the final compounds.

Table 2
Scheme 3: Solid Phase Synthesis Of HIV Protease Inhibitors

Scheme 3 Experimental

The solid phase combinatorial synthesis of HIV protease inhibitors was performed using the IRORI Directed Sorting Technology. Commercial 4-formyl-3-methoxyphenoxyxymethyl polystyrene resin 1a (PS-MB-CHO, Argonaut Technologies) or 4-formyl-3,5-dimethoxyphenoxyxymethyl polystyrene resin 1b (PL-FDMP resin, Polymer Laboratories) was loaded into individual Minikans.

Step A. Reductive Amination With P₂⁺ Amines

To separate flasks containing sorted MiniKans was added DCM (3 mL/MiniKan). The appropriate primary P₂⁺ amine (3 eq), sodium triacetoxyborohydride (5 eq), and acetic acid (3 eq) were added, and the mixtures were placed under argon, agitated with periodic venting at room temperature for 1–2 hours, and allowed to react overnight. For resin 1a, the filtrates were poured off and the MiniKans were washed with DCM, MeOH (2x), DCM (2x), Et₃N/DCM (1:3, 3x), DCM (2x), MeOH (3x), and DCM (4x). For resin 1b, a washing sequence of DCM, MeOH (2x), DCM (2x), Et₃N/DCM (1:3, 3x), DCM (2x), DMF, 1M NaOH/DMF (1:5, 3x), DMF (3x), MeOH (3x), and DCM (3x) was used. The MiniKans were dried under vacuum and taken on in Step B.
Step B. Peptide Coupling With P₁ Amino Acids

To separate flasks containing the sorted MiniKans was added DMF (3 mL/MiniKan). The appropriate FMOC-protected amino acid (2.5 eq) and 1-hydroxy-7-azabenzotriazole (HOAT) (3 eq) were added and mixed until dissolved, and 1,3-diisopropylcarbodiimide (DIC) (3 eq) was added. The containers were placed under argon and agitated at room temperature overnight. The filtrates were poured off, and the MiniKans were washed with DMF (3x), MeOH (3x), DCM (2x), and DMF (2x). The MiniKans were taken directly on to Step C.

Step C. FMOC Deprotection

A container of MiniKans in DMF and piperidine (25%) with a total reaction volume of 3 mL/MiniKan was agitated under argon at room temperature for 45 minutes. The filtrate was removed, and the reaction procedure was repeated. The MiniKans were filtered and washed with DMF (3x), MeOH (2x), DCM (3x), and DMF, and taken directly on to Step D.

Step D. Peptide Coupling With FMOC-APNS

FMOC-Allophenylnorstatine (APNS) (3 eq) was added to the flask of MiniKans in DMF (3 mL/MiniKan). After dissolution, HOAT (3.5 eq) and DIC (3.5 eq) were added. The mixture was placed under argon and agitated at room temperature overnight. The reaction was filtered and the MiniKans were washed with DMF (3x), MeOH (3x), DCM (3x), and DMF. FMOC deprotection was carried out as in Step C, and the MiniKans were washed with DMF (3x), MeOH (2x), DCM (3x), dried under vacuum and taken on to Step E or F.

Step E. Peptide Coupling With P₂ Acids

To separate flasks containing the sorted MiniKans in DMF (3 mL/MiniKan) was added the appropriate P₂ acid (3 eq), HOBT hydrate (4 eq), and (3-(dimethylamino)propyl)ethylcarbodiimide hydrochloride (EDAC) (3.5 eq). The reaction was agitated under argon at room temperature for 3 hours. After filtration, the MiniKans were washed with DMF (3x), MeOH (3x), and DCM (3x), dried under vacuum, and taken on to Step G.
Step F. Reaction With P₂ Isocyanates and Chloroformates

To separate flasks containing the sorted MiniKans in DCM (3 mL/MiniKan) was added the P₂ isocyanate (3 eq) or P₂ chloroformate (5 eq) and diisopropylethylamine (10 eq). The containers were agitated under argon at room temperature for 2-4 hours. After filtration, the MiniKans were washed with DCM (3x), MeOH (3x), and DCM (3x), dried under vacuum, and taken on to Step G.

Step G. Cleavage and Processing Of The HIV Analogs

The individual MinKans were sorted into cleavage racks and a solution of 25% TFA in DCM (3 mL/MinKan) was added. The racks were agitated for 1.5 hours. The individual filtrates and DCM rinses were collected, concentrated, and purified by HPLC to provide the final compounds.

Table 3

![Chemical Structures](image-url)
BIOLOGICAL EVALUATION

Cells and Virus

T-cell lines, CEM-SS, and MT-2, and viruses HIV-1 RF and HIV-1 NL4-3 (pNL4-3) were obtained from the National Institutes of Health (AIDS Research and Reference Reagent Program, Bethesda, MD). HIV-1 NL4-3(I84V/L90M) was derived from a clinical isolate that exhibited the protease inhibitor-resistance associated substitutions I84V and L90M, by cloning of an reverse transcriptase-polymerase chain reaction amplified fragment into the unique Age I and Spe I restriction sites of pNL4-3.

Cytopathic effect (CPE) inhibition assays

The ability of compounds to protect cells against HIV infection was measured by the MTT dye reduction method, essentially as described (See Pauwels, R. Balzarini, J. Baba, M. Snoeck, R. Schols, D. Herdewijn, P. Desmyter, J. and De Clercq, E. 1988, “Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds,” J Virol. Methods, 20: 309-321 and Weislow, O.S. Kiser, R. Fine, D.L. Bader, J. Shoemaker, R.H. and Boyd, M.R. 1989. “New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDS-antiviral activity”. J. Natl. Cancer Inst. 81:577-586). Subject cells were infected with test virus at an moi of 0.025 to 0.819 or mock infected with medium only and added at 2 x 10^4 cells per well into 96 well plates containing half-log dilutions of test compounds. Six days later, 50 μl of XTT (1mg/ml XTT tetrazolium, 0.02 nM phenazine methosulfate) was added to the wells and the plate was reincubated for four hours. Viability, as determined by the amount of XTT formazan produced, was quantified spectrophotometrically by absorbance at 450 nm. Data from CPE assays were expressed as the percent of formazan produced in compound-treated cells compared to formazan produced in wells of uninfected, compound-free cells. The fifty percent effective concentration (EC50) was calculated as the concentration of compound that effected an increase in the percentage of formazan production in infected, compound-treated cells to 50% of that produced by uninfected, compound-free cells. The 50% cytotoxicity concentration (CC50) was calculated as the concentration of compound that decreased the percentage of formazan produced in uninfected, compound-treated cells to 50% of that
produced in uninfected, compound-free cells. The therapeutic index was calculated by dividing the cytotoxicity (CC_{50}) by the antiviral activity (EC_{50}).

Susceptibility assays

Compounds were tested in phenotypic susceptibility assays at Virologic, Inc. (See Petropoulos C.J., Parkin N.T., Limoli K.L., Lie Y.S., Wrin T., Huang W., Tian H., Smith D., Winslow G.A., Capon DJ, Whitcomb JM. 2000, “A novel phenotypic drug susceptibility assay for human immunodeficiency virus type 1,” Antimicrob Agents Chemother 44(4):920-928) or using the assay described here. MT-2 cells were infected with either HIV-1 NL4-3 or HIV-1 NL4-3(184V/L90M) and incubated in the presence of serial 0.5 log dilutions of test compounds. Three days later, culture supernatants were collected and virus production, as determined by p24 ELISA, was assayed. Percent inhibition was calculated as p24 concentration in compound-treated samples as compared to infected, compound-free controls. Inhibition of viral replication is determined by measuring reduction in HIV p24 present in the culture supernatant, using a Beckman-Coulter p24 HIV-1 Ag EIA kit and following the supplied protocol. Absorbance is read on a MRX microplate reader (Dynex Technologies). The EC_{50} was calculated as the concentration of compound that effected a decrease in the p24 production by infected, compound-treated cells to 50% of that produced by infected, compound-free cells.

HIV-1 Protease RET Assay

Ki's for the inhibitors of HIV-1 protease were determined using a resonance energy transfer (RET) assay. A mutant form of this enzyme (Q7S) is used for this assay because it is more stable against auto-proteolysis than the wild-type protein. This enzyme is first partially purified as inclusion bodies from cell lysate. It is then solubilized in 8M urea and passed through a Q-Sepharose column (Pharmacia) for further purification. To refold this protein, samples containing Q7S is dialyzed into 50mM sodium phosphate pH 7.0, 50mM NaCl, 10mM DTT, and 10% glycerol.

The commercially available peptide substrate (Molecular Probes Cat. # H-2930) RE(EDANS)SQNYPIVQK(DABCYL)R is used to assess activity and Ki's. This peptide is cleaved quantitatively by HIV-1 Pr at the Tyr-Pro bond. The EDANS fluorophore absorbs at 340nm and emits at 490nm. The reaction is carried out in a 96 well plate in a total volume of 100μL and is run for 12 minutes at 37C under steady-state conditions with 5μM substrate and 2nM active dimer enzyme concentration. The literature value Km for
this substrate and enzyme is 103 +/- 8µM (See Matayoshi, et al., "Novel Fluorogenic Substrates for Assaying Retroviral Proteases by Resonance Energy Transfer," *Science* 247, 954 (1990)). The buffer for this reaction is 0.1M sodium acetate pH 4.8, 1M NaCl, 1mM EDTA, 5mM dithiothreitol, 10% dimethyl sulfoxide and 1mg/ml bovine serum albumin. Inhibition curves are fit using the Morrison tight binding equation.

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Ave. K_i (nM)</th>
<th>Ave CPE EC_{50} (mM)</th>
<th>EC_{50} or IC_{50} (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.21</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>0.51</td>
<td>0.156</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>2.2</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>0.2</td>
<td>0.148</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>0.23</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>A7</td>
<td>1.7</td>
<td>0.113</td>
<td></td>
</tr>
<tr>
<td>A8</td>
<td>1.4</td>
<td>0.451</td>
<td></td>
</tr>
<tr>
<td>A9</td>
<td>0.49</td>
<td>0.138</td>
<td>1.081</td>
</tr>
<tr>
<td>A10</td>
<td>< 0.1</td>
<td>0.104</td>
<td>0.118*</td>
</tr>
<tr>
<td>A11</td>
<td>0.5</td>
<td>0.144</td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>5.5</td>
<td>0.127</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>3.4</td>
<td>0.495</td>
<td>0.921*</td>
</tr>
<tr>
<td>A14</td>
<td>0.32</td>
<td>0.061</td>
<td>0.226*</td>
</tr>
<tr>
<td>A15</td>
<td>< 0.1</td>
<td>0.055</td>
<td>0.057*</td>
</tr>
<tr>
<td>A16</td>
<td>0.43</td>
<td>0.254</td>
<td></td>
</tr>
<tr>
<td>A17</td>
<td>< 0.1</td>
<td>0.024</td>
<td>0.049*</td>
</tr>
<tr>
<td>A18</td>
<td>0.3</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>A19</td>
<td>0.21</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>A20</td>
<td>0.16</td>
<td>0.035</td>
<td>0.219*</td>
</tr>
<tr>
<td>A21</td>
<td>< 0.1</td>
<td>0.049</td>
<td>0.655*</td>
</tr>
<tr>
<td>A22</td>
<td>< 0.1</td>
<td>0.138</td>
<td>0.318</td>
</tr>
<tr>
<td>A23</td>
<td>2.6</td>
<td>0.017</td>
<td>0.048*</td>
</tr>
<tr>
<td>A24</td>
<td>0.52</td>
<td>0.466</td>
<td></td>
</tr>
<tr>
<td>A25</td>
<td>0.97</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>A26</td>
<td>0.6</td>
<td>0.168</td>
<td></td>
</tr>
<tr>
<td>Example No.</td>
<td>Ave. K_i (nM)</td>
<td>Ave CPE EC$_{50}$ (mM)</td>
<td>EC${50}$ or IC${50}$ (mM)</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>A27</td>
<td>< 0.1</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>A28</td>
<td>3.4</td>
<td>0.327</td>
<td></td>
</tr>
<tr>
<td>A29</td>
<td>0.31</td>
<td>0.118</td>
<td></td>
</tr>
<tr>
<td>A30</td>
<td>10.9</td>
<td>0.586</td>
<td></td>
</tr>
<tr>
<td>A31</td>
<td>0.44</td>
<td>0.062</td>
<td></td>
</tr>
<tr>
<td>A32</td>
<td>< 0.1</td>
<td>0.012</td>
<td>0.055*</td>
</tr>
<tr>
<td>A33</td>
<td>5.1</td>
<td>0.749</td>
<td></td>
</tr>
<tr>
<td>A34</td>
<td>1.4</td>
<td>0.386</td>
<td></td>
</tr>
<tr>
<td>A35</td>
<td>< 0.1</td>
<td>0.016</td>
<td>0.041*</td>
</tr>
<tr>
<td>A36</td>
<td>0.78</td>
<td>0.343</td>
<td></td>
</tr>
<tr>
<td>A37</td>
<td>3.7</td>
<td>0.416</td>
<td></td>
</tr>
<tr>
<td>A38</td>
<td>< 0.1</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>A39</td>
<td>< 0.1</td>
<td>0.123</td>
<td>0.213</td>
</tr>
<tr>
<td>A40</td>
<td>< 0.1</td>
<td>0.04</td>
<td>0.109</td>
</tr>
<tr>
<td>A41</td>
<td>0.17</td>
<td>0.145</td>
<td>0.242</td>
</tr>
<tr>
<td>A42</td>
<td>< 0.1</td>
<td>0.065</td>
<td>0.098</td>
</tr>
<tr>
<td>A43</td>
<td>2.6</td>
<td>0.534</td>
<td></td>
</tr>
<tr>
<td>A44</td>
<td>1.4</td>
<td>0.478</td>
<td></td>
</tr>
<tr>
<td>A45</td>
<td>< 0.1</td>
<td>0.034</td>
<td>0.048</td>
</tr>
<tr>
<td>A46</td>
<td>1.1</td>
<td>0.469</td>
<td></td>
</tr>
<tr>
<td>A47</td>
<td>0.27</td>
<td>0.196</td>
<td></td>
</tr>
<tr>
<td>A48</td>
<td>< 0.1</td>
<td>0.037</td>
<td>0.092</td>
</tr>
<tr>
<td>A49</td>
<td>0.49</td>
<td>0.161</td>
<td></td>
</tr>
<tr>
<td>A50</td>
<td>< 0.1</td>
<td>0.024</td>
<td>0.125</td>
</tr>
<tr>
<td>A51</td>
<td>< 0.1</td>
<td>0.159</td>
<td>0.05</td>
</tr>
<tr>
<td>A52</td>
<td>0.51</td>
<td>0.456</td>
<td></td>
</tr>
<tr>
<td>A53</td>
<td>< 0.1</td>
<td>0.028</td>
<td>0.07</td>
</tr>
<tr>
<td>A54</td>
<td>4.5</td>
<td>1.231</td>
<td></td>
</tr>
<tr>
<td>A55</td>
<td>0.21</td>
<td>0.054</td>
<td>0.798</td>
</tr>
<tr>
<td>A56</td>
<td>0.27</td>
<td>0.042</td>
<td>0.378</td>
</tr>
<tr>
<td>A57</td>
<td>5.6</td>
<td>1.531</td>
<td></td>
</tr>
<tr>
<td>Example No.</td>
<td>Ave. K_i (nM)</td>
<td>Ave CPE EC_{50} (mM)</td>
<td>EC_{50} or IC_{50} (mM)</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>A58</td>
<td>13%@64 nM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A59</td>
<td>0.19</td>
<td>0.417</td>
<td></td>
</tr>
<tr>
<td>A60</td>
<td>66.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A61</td>
<td>0.99</td>
<td>1.061</td>
<td></td>
</tr>
<tr>
<td>A62</td>
<td>9.6</td>
<td>2.261</td>
<td></td>
</tr>
<tr>
<td>A63</td>
<td>4.5</td>
<td>1.189</td>
<td></td>
</tr>
<tr>
<td>A65</td>
<td>0%@64nM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>0.27</td>
<td>0.049</td>
<td>0.236*</td>
</tr>
<tr>
<td>B2</td>
<td>0.35</td>
<td>0.087</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>2.5</td>
<td>0.905</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>3</td>
<td>0.707</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>1.2</td>
<td>0.314</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>0.31</td>
<td>0.095</td>
<td>0.405*</td>
</tr>
<tr>
<td>B7</td>
<td>< 0.1</td>
<td>0.265</td>
<td>0.333*</td>
</tr>
<tr>
<td>B8</td>
<td>0.63</td>
<td>0.474</td>
<td></td>
</tr>
<tr>
<td>B9</td>
<td>1.1</td>
<td>0.452</td>
<td></td>
</tr>
<tr>
<td>B10</td>
<td>0.57</td>
<td>0.386</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>0.86</td>
<td>0.567</td>
<td>2.015</td>
</tr>
<tr>
<td>B12</td>
<td>9.9</td>
<td>> 1</td>
<td></td>
</tr>
<tr>
<td>B13</td>
<td>2</td>
<td>1.458</td>
<td></td>
</tr>
<tr>
<td>B14</td>
<td>2.7</td>
<td>1.661</td>
<td></td>
</tr>
<tr>
<td>B15</td>
<td>1.3</td>
<td>2.305</td>
<td></td>
</tr>
<tr>
<td>B16</td>
<td>2.6</td>
<td>1.566</td>
<td></td>
</tr>
<tr>
<td>B17</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B18</td>
<td>0.56</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>B19</td>
<td>1.4</td>
<td>1.595</td>
<td>1.298</td>
</tr>
<tr>
<td>B20</td>
<td>2.1</td>
<td>1.563</td>
<td>2.084*</td>
</tr>
<tr>
<td>B21</td>
<td>0.91</td>
<td>0.109</td>
<td>0.547*</td>
</tr>
<tr>
<td>B22</td>
<td>12</td>
<td>0.246</td>
<td></td>
</tr>
<tr>
<td>B23</td>
<td>0.15</td>
<td>0.294</td>
<td></td>
</tr>
<tr>
<td>B24</td>
<td>8.3</td>
<td>0.512</td>
<td></td>
</tr>
<tr>
<td>Example No.</td>
<td>Ave. K_i (nM)</td>
<td>Ave CPE EC$_{50}$ (mM)</td>
<td>EC${50}$ or IC${50}$ (mM)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>B25</td>
<td>21</td>
<td>> 1</td>
<td></td>
</tr>
<tr>
<td>B26</td>
<td>2.1</td>
<td>0.348</td>
<td></td>
</tr>
<tr>
<td>B27</td>
<td>0.5</td>
<td>0.506</td>
<td></td>
</tr>
<tr>
<td>B28</td>
<td>4.2</td>
<td>0.731</td>
<td></td>
</tr>
<tr>
<td>B29</td>
<td>0.82</td>
<td>0.063</td>
<td></td>
</tr>
<tr>
<td>B30</td>
<td>0.21</td>
<td>0.443</td>
<td></td>
</tr>
<tr>
<td>B31</td>
<td>4.7</td>
<td>> 1</td>
<td></td>
</tr>
<tr>
<td>B32</td>
<td>0.48</td>
<td>0.433</td>
<td></td>
</tr>
<tr>
<td>B33</td>
<td>< 0.1</td>
<td>0.045</td>
<td>0.604*</td>
</tr>
<tr>
<td>B34</td>
<td>1.2</td>
<td>0.389</td>
<td></td>
</tr>
<tr>
<td>B35</td>
<td>11</td>
<td>0.564</td>
<td></td>
</tr>
<tr>
<td>B36</td>
<td>< 0.1</td>
<td>0.519</td>
<td></td>
</tr>
<tr>
<td>B37</td>
<td>7.4</td>
<td>0.529</td>
<td></td>
</tr>
<tr>
<td>B38</td>
<td>0.16</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>B39</td>
<td>1.9</td>
<td>0.372</td>
<td></td>
</tr>
<tr>
<td>B40</td>
<td>15.1</td>
<td>> 1</td>
<td></td>
</tr>
<tr>
<td>B41</td>
<td>0.11</td>
<td>0.268</td>
<td></td>
</tr>
<tr>
<td>B42</td>
<td>0.13</td>
<td>0.155</td>
<td></td>
</tr>
<tr>
<td>B43</td>
<td>< 0.1</td>
<td>0.375</td>
<td></td>
</tr>
<tr>
<td>B44</td>
<td>4.8</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>B45</td>
<td>1.1</td>
<td>0.572</td>
<td></td>
</tr>
<tr>
<td>B46</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B47</td>
<td>1.9</td>
<td>1.477</td>
<td></td>
</tr>
<tr>
<td>B48</td>
<td>0.83</td>
<td>1.478</td>
<td></td>
</tr>
<tr>
<td>B49</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B50</td>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B51</td>
<td>0.99</td>
<td>> 3.2</td>
<td></td>
</tr>
<tr>
<td>B52</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B54</td>
<td>2.3</td>
<td>1.659</td>
<td></td>
</tr>
<tr>
<td>B55</td>
<td>679</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B56</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example No.</td>
<td>Ave. K₁ (nM)</td>
<td>Ave CPE EC₅₀ (mM)</td>
<td>EC₅₀ or IC₅₀ (mM)</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>B57</td>
<td>16%@64nM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B58</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B59</td>
<td>2.1</td>
<td>1.815</td>
<td></td>
</tr>
<tr>
<td>B60</td>
<td>1.1</td>
<td>> 3.2</td>
<td></td>
</tr>
<tr>
<td>B61</td>
<td>16.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B62</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B63</td>
<td>7.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B64</td>
<td>0.53</td>
<td>1.603</td>
<td></td>
</tr>
<tr>
<td>B65</td>
<td>4.9</td>
<td>1.636</td>
<td></td>
</tr>
<tr>
<td>B66</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B67</td>
<td>11.4</td>
<td>> 3.2</td>
<td></td>
</tr>
<tr>
<td>B68</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B69</td>
<td>7.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B70</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B71</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B72</td>
<td>6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B73</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B74</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B75</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B76</td>
<td>11.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B77</td>
<td>< 0.1</td>
<td>0.143</td>
<td>1.633</td>
</tr>
<tr>
<td>B78</td>
<td>0.18</td>
<td>0.557</td>
<td></td>
</tr>
<tr>
<td>B79</td>
<td>0.78</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>B80</td>
<td>0.15</td>
<td>0.419</td>
<td>1.383</td>
</tr>
<tr>
<td>B81</td>
<td>0.35</td>
<td>0.878</td>
<td></td>
</tr>
<tr>
<td>B82</td>
<td>0.19</td>
<td>1.286</td>
<td></td>
</tr>
<tr>
<td>B83</td>
<td>< 0.1</td>
<td>0.009</td>
<td>0.202</td>
</tr>
<tr>
<td>B84</td>
<td>< 0.1</td>
<td>0.009</td>
<td>0.686</td>
</tr>
<tr>
<td>B85</td>
<td>1.3</td>
<td>0.363</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>0.38</td>
<td>0.627</td>
<td>0.427</td>
</tr>
<tr>
<td>C3</td>
<td>0.16</td>
<td>0.486</td>
<td></td>
</tr>
<tr>
<td>Example No.</td>
<td>Ave. K_i (nM)</td>
<td>Ave CPE EC$_{50}$ (mM)</td>
<td>EC${50}$ or IC${50}$ (mM)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>C4</td>
<td>0.17</td>
<td>0.236</td>
<td>1.903</td>
</tr>
<tr>
<td>C5</td>
<td>0.6</td>
<td>0.669</td>
<td>1.608</td>
</tr>
<tr>
<td>C6</td>
<td>2.4</td>
<td>0.744</td>
<td>1.944</td>
</tr>
<tr>
<td>C7</td>
<td>3</td>
<td>0.347</td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td>1.5</td>
<td>0.152</td>
<td>1.419</td>
</tr>
<tr>
<td>C9</td>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td>1.5</td>
<td>1.289</td>
<td></td>
</tr>
<tr>
<td>C11</td>
<td>2.8</td>
<td>1.308</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>2.7</td>
<td>1.768</td>
<td></td>
</tr>
<tr>
<td>C13</td>
<td>0.59</td>
<td>1.184</td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C15</td>
<td>< 0.1</td>
<td>0.025</td>
<td>0.057</td>
</tr>
<tr>
<td>C16</td>
<td>< 0.1</td>
<td>0.019</td>
<td>0.201</td>
</tr>
<tr>
<td>C17</td>
<td>< 0.1</td>
<td>0.115</td>
<td>0.186</td>
</tr>
<tr>
<td>C18</td>
<td>< 0.1</td>
<td>0.148</td>
<td>0.618</td>
</tr>
<tr>
<td>C19</td>
<td>< 0.1</td>
<td>0.055</td>
<td>0.084</td>
</tr>
<tr>
<td>C20</td>
<td>< 0.1</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>C21</td>
<td>< 0.1</td>
<td>0.015</td>
<td>0.081</td>
</tr>
<tr>
<td>C22</td>
<td>< 0.1</td>
<td>0.015</td>
<td>0.062</td>
</tr>
<tr>
<td>C23</td>
<td>< 0.1</td>
<td>0.037</td>
<td>0.109</td>
</tr>
<tr>
<td>C24</td>
<td>< 0.1</td>
<td>0.019</td>
<td>0.074</td>
</tr>
<tr>
<td>C25</td>
<td>< 0.1</td>
<td>0.031</td>
<td>0.068</td>
</tr>
<tr>
<td>C26</td>
<td>< 0.1</td>
<td>0.076</td>
<td>0.131</td>
</tr>
<tr>
<td>C27</td>
<td>0.13</td>
<td>0.115</td>
<td>0.189</td>
</tr>
<tr>
<td>C28</td>
<td>8.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C29</td>
<td>0.18</td>
<td>0.142</td>
<td>1.359</td>
</tr>
<tr>
<td>C30</td>
<td>< 0.1</td>
<td>0.018</td>
<td>0.273</td>
</tr>
<tr>
<td>C31</td>
<td>0.17</td>
<td>0.031</td>
<td>1.067</td>
</tr>
<tr>
<td>C32</td>
<td>< 0.1</td>
<td>0.009</td>
<td>0.19</td>
</tr>
<tr>
<td>C33</td>
<td>0.13</td>
<td>0.045</td>
<td>1.27</td>
</tr>
<tr>
<td>C34</td>
<td>< 0.1</td>
<td>0.022</td>
<td>0.627</td>
</tr>
<tr>
<td>Example No.</td>
<td>Ave. K_i (nM)</td>
<td>Ave CPE EC$_{50}$ (mM)</td>
<td>EC${50}$ or IC${50}$ (mM)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>C35</td>
<td>< 0.1</td>
<td>0.003</td>
<td>0.289</td>
</tr>
<tr>
<td>C36</td>
<td>< 0.1</td>
<td>0.05</td>
<td>0.666</td>
</tr>
<tr>
<td>C37</td>
<td>0.61</td>
<td>0.027</td>
<td>1.293</td>
</tr>
<tr>
<td>C38</td>
<td>< 0.1</td>
<td>0.042</td>
<td>1.313</td>
</tr>
<tr>
<td>C39</td>
<td>< 0.1</td>
<td>0.013</td>
<td>0.404</td>
</tr>
<tr>
<td>C40</td>
<td>1.8</td>
<td>1.599</td>
<td></td>
</tr>
<tr>
<td>C40</td>
<td>0.82</td>
<td>0.174</td>
<td>1.796</td>
</tr>
<tr>
<td>C41</td>
<td>1.3</td>
<td>1.433</td>
<td></td>
</tr>
<tr>
<td>C42</td>
<td>4</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>C43</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C44</td>
<td>14.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C45</td>
<td>3.6</td>
<td>1.575</td>
<td></td>
</tr>
<tr>
<td>C46</td>
<td>< 0.1</td>
<td>0.407</td>
<td></td>
</tr>
<tr>
<td>C47</td>
<td>1.4</td>
<td>1.382</td>
<td></td>
</tr>
<tr>
<td>C48</td>
<td>< 0.1</td>
<td>0.128</td>
<td></td>
</tr>
<tr>
<td>C49</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C50</td>
<td>7.9</td>
<td>0.997</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>< 0.1</td>
<td>0.052</td>
<td>0.601</td>
</tr>
<tr>
<td>D2</td>
<td><0.1</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td><.01</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td><0.1</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>D5</td>
<td><0.1</td>
<td>0.011</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td><0.1</td>
<td>0.018</td>
<td></td>
</tr>
</tbody>
</table>

*IC$_{50}$ (mM) Data was determined at Virologic Inc against the 46L, 84V, 90M virus

The following compounds have been prepared according to the procedures described herein and have demonstrated the noted activity:
<table>
<thead>
<tr>
<th>MOLSTRUCTURE</th>
<th>K_i</th>
<th>EC_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.34</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>422</td>
<td></td>
</tr>
<tr>
<td></td>
<td>468</td>
<td></td>
</tr>
<tr>
<td></td>
<td>152</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.126</td>
</tr>
<tr>
<td></td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>148</td>
<td></td>
</tr>
<tr>
<td></td>
<td>368</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>MOLSTRUCTURE</td>
<td>K_i</td>
<td>EC_{50}</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>0.39</td>
<td>0.332</td>
</tr>
<tr>
<td></td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.76</td>
<td>0.573</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.879</td>
</tr>
<tr>
<td></td>
<td>6.4</td>
<td>0.901</td>
</tr>
<tr>
<td></td>
<td>4.7</td>
<td>1</td>
</tr>
<tr>
<td>MOLSTRUCTURE</td>
<td>K_i</td>
<td>EC_{50}</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.13</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1.176</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>1.215</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.9</td>
<td>1.232</td>
</tr>
<tr>
<td>MOLSTRUCTURE</td>
<td>K_i</td>
<td>EC_{50}</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>1.252</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>1.281</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.293</td>
</tr>
<tr>
<td></td>
<td>4.7</td>
<td>1.293</td>
</tr>
<tr>
<td></td>
<td>17.2</td>
<td>1.328</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>0.44</td>
<td>1.431</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>1.536</td>
</tr>
<tr>
<td></td>
<td>6.9</td>
<td>1.551</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>1.552</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOLSTRUCTURE</th>
<th>K_i</th>
<th>EC_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>122</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>MOLSTRUCTURE</td>
<td>K_i</td>
<td>EC_{50}</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>1.553</td>
</tr>
<tr>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>156</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.88</td>
<td>1.641</td>
</tr>
<tr>
<td></td>
<td>7.6</td>
<td>1.756</td>
</tr>
<tr>
<td></td>
<td>0.32</td>
<td>1.884</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>1.947</td>
</tr>
<tr>
<td></td>
<td>7.4</td>
<td>1.957</td>
</tr>
<tr>
<td></td>
<td>17.1</td>
<td>2.199</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>3.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOLSTRUCTURE</th>
<th>K_i</th>
<th>EC_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.89</td>
<td>1.564</td>
</tr>
<tr>
<td></td>
<td>51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>158</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td>2.881</td>
</tr>
<tr>
<td></td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.4</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>17.4</td>
<td>3.2</td>
</tr>
<tr>
<td>MOLSTRUCTURE</td>
<td>K_i</td>
<td>EC_{90}</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.6</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>15.1</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>3.916</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>4.224</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>10</td>
</tr>
</tbody>
</table>
While the invention has been described in terms of preferred embodiments and specific examples, those skilled in the art will recognize that various changes and modifications can be made through routine experimentation without departing from the spirit and scope of the invention. Thus, the invention should be understood as not being limited by the foregoing detailed description, but as being defined by the appended claims and their equivalents.
WE CLAIM:

1. A compound having the Formula I:

 \[
 \text{\begin{align*}
 &\text{R}^1, \text{SR}^1, \text{NHR}^1, \text{N}(\text{R}^1)\text{X}^1 \text{OR}^1, \text{OR}^1, \text{N}^1 \text{C}(\text{O})\text{R}^1,
 \\
 &\text{wherein:}
 \\
 &\text{R}^1 \text{ is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula:}
 \\
 &\text{OR}^1, \text{SR}^1, \text{NHR}^1, \text{N}(\text{R}^1)\text{X}^1 \text{OR}^1, \text{OR}^1, \text{N}^1 \text{C}(\text{O})\text{R}^1,
 \\
 &\text{wherein R}^1 \text{ is an aliphatic, carbocyclic or heterocyclic group, and R}^1 \text{ is H or a C}^1-\text{C}^6 \text{ aliphatic group or R}^1 \text{ and R}^1 \text{ together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;}
 \\
 &V \text{ is C}=\text{O}, \text{C}=\text{S or SO}_2;
 \\
 &R^2 \text{ is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, a heterocyclic-aliphatic group or N}(\text{R}^{2a})\text{R}^{2b}, \text{wherein R}^{2a} \text{ is an aliphatic, carbocyclic or heterocyclic group, and R}^{2b} \text{ is H or a C}^1-\text{C}^6 \text{ aliphatic group;}
 \\
 &W \text{ is N, O, C or CH;}
 \\
 &\text{when W is N, O, C or CH, R}^2 \text{ is H or a C}^1-\text{C}^6 \text{ aliphatic group or R}^2 \text{ and R}^2 \text{ taken together with the atom W to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;}
 \\
 &\text{when W is O, R}^2 \text{ is absent;}
 \end{align*}}
 \]

\[
X \text{ is}
\]

\[
\text{where Y}^1 \text{ and Y}^2 \text{ are independently selected from H, halo, or a C}^1-\text{C}^6 \text{ aliphatic group;}
\]

\[
n \text{ is 1 or 2;}
\]

\[
R^3 \text{ is H or one or substituents independently selected from C}^1-\text{C}^6 \text{ alkyl, nitro, amino, cyan, halogen, C}^1-\text{C}^6 \text{ haloalkyl, hydroxyl, C}^1-\text{C}^6 \text{ alkoxy, alkylenedioxy, C}^1-\text{C}^6 \text{ alkylcarbonyl, C}^1-\text{C}^6 \text{ alkylxocarbonylb, C}^1-\text{C}^6 \text{ alkylcarbonyloxy, carboxyl, carbamoyl, formyl, C}^1-\text{C}^6}
\]
alkylamino, dialkylamino, alkyaminocarbonyl, dialkylaminocarbonyl,
alkylaminothiocarbonyl, di-C₁⁻C₆⁻ alkylaminothiocarbonyl, C₁⁻C₆ alkylsulfonyl, C₁⁻C₆
alkylsulphenyl, C₁⁻C₆ alkylcarbonylamino, C₁⁻C₆ alkythiocarbonylamino, C₁⁻C₆
alkylsulfonyloxy, C₁⁻C₆ alkylsulfonylamino, mercapto, and C₁⁻C₆ alkylthio;

R⁸ and R⁸' are each independently H, halo or a C₁⁻C₄ aliphatic group;

A is CH₂, CH(R⁴) or is absent;

Z is S, O, SO, SO₂, CH₂, CHF, CF₂, CH(OH), CH(O⁻R²), CH(N⁻R²⁻R₀⁻)
CH(S⁻R²), C(=O), or CH(R²), where R² is a C₁⁻C₆ aliphatic group or a carbocyclic or
heterocyclic group and R₀⁻ is H or a C₁⁻C₆ aliphatic group;

or R⁴ and R⁸, taken together with A and Z form an unsubstituted or substituted 5 or 6
membered carbocyclic or heterocyclic ring;

R² is H or a C₁⁻C₆ aliphatic group;

R⁴ and R⁵ are independently selected from H, halo, a C₁⁻C₆ aliphatic group or a group
having the formula C(O)R⁴', wherein R⁴' is an aliphatic, carbocyclic or heterocyclic group;

or R⁴ and R⁵, taken together with the atom to which they are bound, form an
unsubstituted or substituted carbocyclic ring;

or R⁴ and R⁶ or R⁷, together with the atoms to which they are bound, form an
unsubstituted or substituted carbocyclic ring;

R⁶ and R⁷ are independently selected from H, halo or a C₁⁻C₆ aliphatic group;

or R⁶ and R⁷, taken together with the atom to which they are bound, form an
unsubstituted or substituted carbocyclic or heterocyclic group;

wherein any of said aliphatic groups are saturated, partially saturated or fully
unsaturated and unsubstituted or substituted by one or more suitable substituents; and

wherein any of said carbocyclic or heterocyclic groups are unsubstituted or substituted
by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or
mono-, bi- or tri-cyclic;

provided that R² is not an aliphatic group, a phenyl group or a phenyl-substituted
aliphatic group, when A is absent; Z is S, SO, SO₂, CHF, O, or CH₂; V is C=O; W is N; R²,
R³, R⁸ and R⁸' are H or a C₁⁻C₄ alkyl group; R⁴, R⁵, R⁶ and R⁷ are H or a C₁⁻C₆ alkyl group; X
is

R\(^1\) is a substituted or unsubstituted 5 or 6-membered mono-cyclic carbocyclic or heterocyclic group;

or provided that R\(^2\) is not \(t\)-butyl when R\(^1\) is substituted or unsubstituted phenyloxymethylene, or quinolylmethylene carbonylaminomethylene; A is absent; Z is S; V is C=O; W is N; R\(^2\), R\(^3\), R\(^4\), R\(^5\), R\(^6\) and R\(^8\) are H; R\(^6\) and R\(^7\) are H, methyl, ethyl or propyl; and

X is , wherein R\(^x\) is H or methoxy,

or a prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or pharmaceutically acceptable solvate thereof.

2. A compound having the Formula I-A:

wherein:

R\(^1\) is an aliphatic group, a mono-, bi- or tri- cyclic carbocyclic or heterocyclic group or a group having the formula: OR\(^{1'}\), SR\(^{1'}\), NHR\(^{1'}\), N(R\(^1\))R\(^{1'}\) or C(O)R\(^{1'}\), wherein R\(^1\) is an aliphatic, carbocyclic or heterocyclic group, and R\(^{1'}\) is H or a C\(_{1}-C_{6}\) aliphatic group or R\(^{1'}\) and R\(^{1''}\) together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

R\(^2\) is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

R\(^2\) is H or a C\(_{1}-C_{6}\) alkyl group;

or R\(^2\) and R\(^2\) taken together with the nitrogen atom to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;
X is

\[\text{wherein} \]

\(Y' \) and \(Y'' \) are independently selected from \(\text{H, halo, or a C}_{1-6} \text{ aliphatic group, wherein R}^4 \text{ is} \)
\(\text{H or one or more substituents independently selected from alkyl, nitro, amino, cyano,} \)
\(\text{halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alklyloxycarbonyl,} \)
\(\text{alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino,} \)
\(\text{alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl,} \)
\(\text{dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfenyl, alkylcarbonylamino,} \)
\(\text{alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonlamino, mercapto, and alkylthio;} \)
\(\text{n is 1 or 2;} \)
\(\text{R}^4 \text{ and R}^8 \text{ are each independently H, halo or a C}_{1-4} \text{ aliphatic group;} \)
\(\text{Z is S, O, SO, SO}_2, \text{CH}_2, \text{CHF, CF}_2, \text{CH(OH), CH(O-R}^2), \text{CH(N-R}^2 \text{ R}^7), \text{CH(S-R}^2), \text{C(-O), or CH(R}^2), \text{where R}^2 \text{ is a} \text{C}_{1-6} \text{ aliphatic group or a carbocyclic or} \)
\(\text{heterocyclic group and R}^Z \text{ is H or a C}_{1-6} \text{ aliphatic group;} \)
\(\text{R}^3 \text{ is H or a C}_{1-6} \text{ aliphatic group;} \)
\(\text{R}^4 \text{ and R}^5 \text{ are independently selected from H, halo, a C}_{1-6} \text{ aliphatic group or a group} \)
\(\text{having the formula C(O)R}^4, \text{wherein R}^4 \text{ is an aliphatic, carbocyclic or heterocyclic group;} \)
\(\text{R}^6 \text{ and R}^7 \text{ are independently selected from H, halo or a C}_{1-6} \text{ aliphatic group;} \)
\(\text{wherein any of said aliphatic groups are unsubstituted or substituted by one or more} \)
\(\text{suitable substituents and saturated, partially unsaturated or fully unsaturated; and} \)
\(\text{wherein any of said carbocyclic or heterocyclic groups are mono-, bi- or tri-cyclic} \)
\(\text{saturated, partially unsaturated or fully unsaturated or unsubstituted or substituted by one or} \)
\(\text{more suitable substituents;} \)
\(\text{provided that R}^2 \text{ is not an aliphatic group, a phenyl group or a phenyl-substituted} \)
\(\text{aliphatic group, when Z is S, SO, SO}_2, \text{O, CHF or CH}_2; \text{R}^2, \text{R}^3, \text{R}^8 \text{ and R}^8 \text{ are H or a C}_{1-4} \text{alkyl group; R}^4, \text{R}^5, \text{R}^6 \text{ and R}^7 \text{ are H or a C}_{1-6} \text{ alkyl group; X is} \)
\(\text{and R}^1 \text{ is a} \)
\(\text{substituted or unsubstituted 5- or 6-membered mono-cyclic carbocyclic or heterocyclic group;} \)
\(\text{or provided that R}^2 \text{ is not t-butyl when R}^1 \text{ is substituted or unsubstituted} \)
phenyloxymethylene, or quinolymethylenecarbonylaminomethylenene; Z is S; R², R³, R⁴, R⁵, R⁶ and R⁸ are H; R⁶ and R⁷ are H, methyl, ethyl or propyl; and X is , wherein Rₓ is H or methoxy,
or a prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or pharmaceutically acceptable solvate thereof.

3. The compound, prodrug, salt, metabolite, or solvate according to claim 2, wherein:

R¹ is a 3-, 4-, or 7-membered mono-cyclic carbocyclic or heterocyclic group.

4. The compound, prodrug, salt, metabolite, or solvate according to claim 2, wherein:

R¹ is a 5- or 6-membered monocyclic carbocyclic or heterocyclic group; and
R² is cycloalkyl, cycloalkylalkyl, cycloalkenyl, cycloalkenylalkyl, a bi- or tri-cyclic carbocyclic group, a bi- or tri-cyclic carbocyclic-alkyl group, a bi- or tri-cyclic carbocyclic-alkenyl group, a bi- or tri-cyclic carbocyclic-alkynyl group, a heterocyclic group, a heterocyclic-alkyl group, a heterocyclic-alkenyl group or a heterocyclic-alkynyl group.

5. The compound, prodrug, metabolite, salt, or solvate according to claim 2, wherein:

R¹ is an aliphatic group, or a group having the formula: OR', SR', NHR', N(R'')R'' or C(O)R', wherein R'' is an aliphatic group, and R'' is H or a C₁-C₆ aliphatic group or R'' and R' together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

X is

where Y' and Y'' are independently selected from H, halo, or a C₁-C₆ aliphatic group; n is 1 or 2; and R⁴ is H or one or more suitable substituents independently selected from
C₁⁻C₆ alkyl, nitro, amino, cyano, halogen, C₁⁻C₆ haloalkyl, hydroxyl, C₁⁻C₆ alkoxy, alkylenedioxy, C₁⁻C₆ alkylcarbonyl, C₁⁻C₆ alkylhydroxy carbonyl, C₁⁻C₆ alkylcarbonyloxy, carboxyl, carbamoyl, formyl, C₁⁻C₆ alkylamino, di-C₁⁻C₆ alkylamino, C₁⁻C₆ alkylaminocarbonyl, di - C₁⁻C₄ alkylaminocarbonyl, C₁⁻C₆ alkylaminothiocarbonyl, di-C₁⁻C₆- alkylaminothiocarbonyl, C₁⁻C₆ alkylsulfonyl, C₁⁻C₆ alkylsulfonyl, C₁⁻C₆ alkylcarbonylamino, C₁⁻C₆ alkylthiocarbonylamino, C₁⁻C₆ alkylsulfonylexyloxy, C₁⁻C₆ alkylsulfonylexyloxy, mercapto, C₁⁻C₆ alkylthio and halo-C₁⁻C₆ alkylthio; and

R⁸ and R⁹ are each independently H, halo or a C₁⁻C₄ aliphatic group

provided that R⁸ and R⁹ are not both H when X is

6. The compound, prodrug, salt, metabolite, or solvate according to claim 2, wherein:

R¹ is a bi- or tri-cyclic carbocyclic or heterocyclic group, wherein said carbocyclic or heterocyclic group is saturated, partially unsaturated or fully unsaturated; and unsaturated or substituted by one or more suitable substituents.

7. A compound having the Formula I-A':

![Chemical Structure](attachment:image.png)

wherein:

R¹ is an alkyl, alkenyl, or alkynyl group, a bi- or tri-cyclic cycloalkyl, cycloalkenyl, aryl, heterocycloalkyl, heterocycloalkenyl or heteroaryl group or a group having the formula: OR¹, SR¹, NHR¹, N(R¹)R¹ or C(O)R¹, wherein R¹ is an alkyl, alkenyl, or alkynyl group, a bi- or tri-cyclic cycloalkyl, cycloalkenyl, aryl, heterocycloalkyl, heterocycloalkenyl or heteroaryl group, or a cycloalkylalkyl, cycloalkenylalkyl, arylalkyl, heterocycloalkylalkyl, heterocycloalkenylalkyl, heteroarylalkyl, cycloalkylalkenyl, cycloalkenylalkenyl, arylalkenyl,
heterocycloalkylalkenyl, heterocycloalkenylalkenyl, heteroarylalkenyl, cycloalkylalkynyl, cycloalkenylalkynyl, aroylalkynyl, heterocycloalkylalkynyl, heterocycloalkenylalkynyl, or heteroarylalkynyl group; and R¹ is H or a C₁-C₆ alkyl, alkenyl or alkynyl group or R¹ and R² together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

R² is a cycloalkyl, cycloalkylalkyl, cycloalkenyl, or cycloalkenylalkyl group, a bi- or tri-cyclic aryl group, a bi- or tri-cyclic arylalkyl group, a bi- or tri-cyclic arylalkenyl group, a bi- or tri-cyclic arylalkynyl group, or a heterocycloalkyl, heterocycloalkenyl, heterocycloalkenylalkyl, heteroaryl or heteroarylalkyl group;

R² is H or a C₁-C₆ alkyl group;

or R² and R² taken together with the nitrogen atom to which they are attached form a heterocycloalkyl or heterocycloalkenyl ring;

X is

Y' and Y'' are independently selected from H, halo, or a C₁-C₆ aliphatic group, wherein R⁴ is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alkylxycarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfonyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, and alkylthio;

Z is S, O, SO₂, CH₂, CHF, CF₂, CH(OH), CH(O-R²), CH(N-R² R²), CH(S-R²), C(=O), or CH(R²), where R² is a C₁-C₆ aliphatic group or a carbocyclic or heterocyclic group and R² is H or a C₁-C₆ aliphatic group;

R³ is H or a C₁-C₆ aliphatic group;

R⁴ and R⁵ are independently selected from H, halo, and a C₁-C₆ aliphatic group;

R⁵ and R⁶ are independently selected from H, halo and a C₁-C₆ aliphatic group;

where any of the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heterocycloalkyl, heterocycloalkenyl or heteroaryl groups or the alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, heterocycloalkyl, heterocycloalkenyl or heteroaryl moieties of
the cycloalkylalkyl, cycloalkenylalkyl, arylalkyl, heterocycloalkylalkyl, heterocycloalkenylalkyl, heteroarylalkyl, cycloalkylalkenyl, cycloalkenylalkenyl, arylalkenyl, heterocycloalkylalkenyl, heterocycloalkenylalkenyl, heteroarylalkenyl, cycloalkylalkynyl, cycloalkenylalkynyl, arylalkynyl, heterocycloalkylalkynyl, heterocycloalkenylalkynyl, and heteroarylalkynyl groups are unsubstituted or substituted by one or more suitable substituents; and

where any of said carbocyclic or heterocyclic groups are mono-, bi- or tri-cyclic; saturated, partially unsaturated or fully unsaturated, and unsubstituted or substituted by one or more suitable substituents;

provided that \(R^2 \) is not an aliphatic group, a phenyl group or a phenyl-substituted aliphatic group, when \(Z = S, SO, SO_2, O, CHF \) or \(CH_2 \); \(R^2 \) and \(R^3 \) are \(H \) or a \(C_1-C_4 \) alkyl group; \(R^4, R^5, R^6 \) and \(R^7 \) are \(H \) or a \(C_1-C_6 \) alkyl group; \(X \) is substituted or unsubstituted 5 or 6-membered mono-cyclic carbocyclic or heterocyclic group;

or provided that \(R^2 \) is not t-butyl when \(R^1 \) is substituted or unsubstituted phenyloxymethylene, or quinolylmethylene, or quinolylmethylene carbonylaminomethylene; \(Z = S; R^2, R^3, R^4, \) and \(R^5 \) are \(H; R^6 \) and \(R^7 \) are \(H, \) methyl, ethyl or propyl; and \(X \) is methoxy,

or a prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or pharmaceutically acceptable solvate thereof.

8. The compound, prodrug, salt, metabolite, or solvate according to claim 7, wherein:

\(Z = CF_2, CH(OH), CH(O-R^Z), CH(N-R^Z R^Z), CH(S-R^Z), C=O \) or \(CH(R^Z) \), where \(R^Z \) is a \(C_1-C_6 \) aliphatic group or a carbocyclic or heterocyclic group and \(R^Z \) is \(H \) a \(C_1-C_6 \) aliphatic group.

9. A compound having the Formula I-B:
wherein:

R^1 is an aliphatic, carbo cyclic or heterocyclic group, or a group having the formula: OR^1, SR^1, NHR^1, $N(R^1)R^1$ or $C(O)R^1$, wherein R^1 is an aliphatic, carbo cyclic or heterocyclic group, and R^1 is H or a C_1-C_6 aliphatic group or R^1 and R^1 together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

R^2 is an aliphatic group, a carbo cyclic group, a carbo cyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

R^2 is H or a C_1-C_6 aliphatic group;

or R^2 and R^2 taken together with the carbon atom to which they are attached form an unsubstituted or substituted carbo cyclic ring;

X is $\begin{array}{c} \text{(benzo-ring)} \\ 3 \end{array}$, $\begin{array}{c} \text{(phenyl-ring)} \\ \end{array}$, $\begin{array}{c} \text{(thiobenzene-ring)} \\ \end{array}$, $\begin{array}{c} \text{(phenyl oxide-ring)} \\ \end{array}$, or $\begin{array}{c} \text{(benzo-sulfone-ring)} \\ \end{array}$, wherein Y^1 and Y^2 are independently selected from H, H, or a C_1-C_6 aliphatic group; n is 1 or 2; and R^3 is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylendioxy, alkylcarbonyl, alkylxycarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylmino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, alkylaminothiocarbonyl, alkylsulfonyle, alkylsulfenyl, alkylthiocarbamino, alkylthiocyanothiocarbonyl, alkylsulfonyl, alkylsulfonyl, alkylthiocarbamino, mercapto, and alkylthio;

R^8 and R^9 are each independently H, halo or a C_1-C_4 aliphatic group;

Z is S, O, SO, SO_2, CHF, CH_2, CF_2, $CH(OH)$, $CH(OH)(R^2)$, $CH(N-R^2-R^2)$, $CH(S-R^2)$, $C(=O)$, or $CH(R^2)$, where R^2 is a C_1-C_6 aliphatic group or a carbo cyclic or heterocyclic group and R^2 is H or a C_1-C_6 aliphatic group;

R^3 is H or a C_1-C_6 aliphatic group;
R^4 and R^5 are independently selected from H, halo, a C_1-C_6 aliphatic group or a group having the formula C(O)R^{4\prime}, wherein R^{4\prime} is an aliphatic, carbocyclic or heterocyclic group;
R^6 and R^7 are independently selected from H, halo or a C_1-C_6 aliphatic group;
where any of said aliphatic groups are saturated, partially saturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and
where any of said carbocyclic or heterocyclic groups are unsubstituted, or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic;
or a prodrug, pharmaceutically active metabolite or pharmaceutically active salt or solvate thereof.

10. A compound having the Formula I-C:

![Chemical Structure](image)

wherein:
R^1 is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula:
OR^{1\prime}, SR^{1\prime}, NHR^{1\prime}, N(R^{1\prime})R^{1\prime\prime} or C(O)R^{1\prime\prime}, wherein R^{1\prime} is an aliphatic, carbocyclic or heterocyclic group, and R^{1\prime\prime} is H or a C_1-C_6 aliphatic group or R^{1\prime} and R^{1\prime\prime} together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;
R^2 is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, or a heterocyclic-aliphatic group;
W is N, O or C;
when W is N or C, R^2 is H or a C_1-C_6 alkyl group or R^2 and R^2 taken together with the atom W to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;
when W is O, R^2 is absent;
X is \(\text{R}^5 \) or \(\text{R}^6 \), wherein \(Y^1 \) and \(Y^2 \) are independently selected from H, halo, or a C\(_1\)-C\(_6\) aliphatic group; \(n \) is 1 or 2; and \(\text{R}^7 \) is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfonyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, and alkylthio;

\(\text{R}^8 \) and \(\text{R}^9 \) are each independently H, halo or a C\(_1\)-C\(_4\) aliphatic group;

\(Z \) is CF\(_2\), CH(OH), CH(O-R\(^2\)) or CH(R\(^2\)), where \(R^2 \) is a C\(_1\)-C\(_6\) aliphatic group or a carbocyclic or heterocyclic group;

\(\text{R}^3 \) is H or a C\(_1\)-C\(_6\) aliphatic group;

\(\text{R}^4 \) and \(\text{R}^5 \) are independently selected from H, halo, a C\(_1\)-C\(_6\) aliphatic group or a group having the formula C(O)R\(^6\), wherein \(\text{R}^6 \) is an aliphatic, carbocyclic or heterocyclic group;

\(\text{R}^6 \) and \(\text{R}^7 \) are independently selected from H, halo or a C\(_1\)-C\(_6\) aliphatic group;

where any of said aliphatic groups are saturated, partially saturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and where any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; mono-, bi- or tri-cyclic;

or a prodrug, pharmaceutically active metabolite or pharmaceutically active salt or solvate thereof.

11. A compound having the Formula I-D:
wherein:

R¹ is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR¹', SR¹', NHR¹', N(R¹')R¹'' or C(O)R¹', wherein R¹' is an aliphatic, carbocyclic or heterocyclic group, and R¹'' is H or a C₁-C₆ aliphatic group or R¹' and R¹'' together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

R² is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

W is N, O or C;

when W is N or C, R²' is H or a C₁-C₆ alkyl group or R² and R²' taken together with the atom W to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;

when W is O, R²' is absent;

X is , , or , wherein

Y' and Y'' are independently selected from H, halo, or a C₁-C₆ aliphatic group; n is 1 or 2; and R³ is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alkyl oxy carbonyl, alkylcarbonyloxyl, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarboxyl, alkylaminothiocarbonyl, dialkylaminothiocarboxyl, alkylsulfonamido, alkylsulfenyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonamidoxy, alkylsulfonylamino, mercapto, and alkylthio;

R⁸ and R⁸' are each independently H, halo or a C₁-C₆ aliphatic group;

Z is S, O, SO₂, CH₂, CF₂, CHF, CH(OH), CH(O-R²'), CH(N-R²' R²''), CH(S-R²'), C(=O), or CH(R²'), where R²' is a C₁-C₆ aliphatic group or a carbocyclic or
heterocyclic group and R² is H or a C₁-C₆ aliphatic group;

R³ is H or a C₁-C₆ aliphatic group;

R⁴ and R⁵ are independently selected from H, halo, a C₁-C₆ aliphatic group or a group having the formula C(O)R⁴’, wherein R⁴’ is an aliphatic, carbocyclic or heterocyclic group;

R⁶ and R⁷ are independently selected from H, halo or a C₁-C₆ aliphatic group;

where any of said aliphatic groups are saturated, partially saturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and

where any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic;

or a prodrug, pharmaceutically active metabolite or pharmaceutically active salt or solvate thereof.

12. A compound having the Formula I-E:

![Chemical Structure](image)

wherein:

- R¹ is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR¹, SR¹, NHR¹, N(R¹)R¹ or C(O)R¹”, wherein R¹” is an aliphatic, carbocyclic or heterocyclic group, and R¹’ is H or a C₁-C₆ aliphatic group or R¹’ and R¹” together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

- R² is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

- W is N, O or C;

- when W is N or C, R² is H or a C₁-C₆ alkyl group or R² and R²’ taken together with the atom W to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;

- when W is O, R²’ is absent;
X is \[\text{structure} \], wherein \(Y' \) and \(Y'' \) are independently selected from H, halo, or a C\(_1\)-C\(_6\) aliphatic group, wherein R\(^8\) is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alkylthiocarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkyaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonfonyl, alkylsulfenyl, alkylcarbonylamino, alkythiocarbonylamino, alkylsulfonyloxy, alkylsulfonlamino, mercapto, and alkylthio;

R\(^8\) and R\(^8\) are each independently H, halo or a C\(_1\)-C\(_4\) aliphatic group;

Z is S, O, SO, SO\(_2\), CH\(_2\), CHF, CF\(_2\), CH(OH), CH(O-R\(^2\)), CH(N-R\(^2\) R\(^2\)), CH(S-R\(^2\)), C(=O), or CH(R\(^2\)), where R\(^2\) is a C\(_1\)-C\(_6\) aliphatic group or a carbocyclic or heterocyclic group and R\(^2\) is H or a C\(_1\)-C\(_6\) aliphatic group;

n is 1 or 2;

R\(^3\) is H or a C\(_1\)-C\(_6\) aliphatic group;

R\(^4\) is selected from H, halo, a C\(_1\)-C\(_6\) aliphatic group or a group having the formula C(O)R\(^4\), wherein R\(^4\) is an aliphatic, carbocyclic or heterocyclic group;

R\(^7\) is H, halo or a C\(_1\)-C\(_6\) aliphatic group;

where any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and where any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents, saturated, partially unsaturated or fully unsaturated or mono-, bi- or tri-cyclic;

or a prodrug, pharmaceutically active metabolite or pharmaceutically active salt or solvate thereof.

13. A compound having the Formula I-F:
wherein:

R¹ is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR¹, SR¹, NHR¹, N(R¹)R¹ or C(O)R¹, wherein R¹ is an aliphatic, carbocyclic or heterocyclic group, and R¹ is H or a C₁-C₆ aliphatic group or R¹ and R¹ together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;

R² is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

W is N, O or C;

when W is N or C, R² is H or a C₁-C₆ alkyl group or R² and R² taken together with the atom W to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;

when W is O, R² is absent;

X is

\(\text{X is} \quad \begin{array}{c}
\text{R}^5 \\
\text{R}^5
\end{array} \quad \begin{array}{c}
\text{R}^5 \\
\text{O}^\prime
\end{array} \quad \begin{array}{c}
\text{R}^5 \\
\text{S}^\prime
\end{array} \quad \begin{array}{c}
\text{R}^5 \\
\text{CY}^\prime\text{W}
\end{array} \), wherein

\(Y' \) and \(Y'' \) are independently selected from H, halo, or a C₁-C₆ aliphatic group, wherein \(R^x \) is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxy, alkoxy, alkylenedioxy, alkylcarbonyl, alkylxycarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfanyl, alkylsulfenyl, alkylcarbonylamino, alkylthiocarboxylamino, alkylsulfoniloxy, alkylsulfonlamino, mercapto, and alkylthio;

\(n \) is 1 or 2;

\(n' \) is 1 or 2;

\(R^3 \) is H or a C₁-C₆ aliphatic group;
R^4 and R^5 are independently selected from H, halo, a C_1-C_6 aliphatic group or a group having the formula C(O)R^4, wherein R^4 is an aliphatic, carbocyclic or heterocyclic group; R^6 and R^7 are independently selected from H, halo or a C_1-C_6 aliphatic group; R^8 and R^9 are each independently H, halo or a C_1-C_4 aliphatic group; where any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and where any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic; or a prodrug, pharmaceutically active metabolite or pharmaceutically active salt or solvate thereof.

14. A compound having the Formula I-G:

![Chemical Structure](image)

wherein:
R^1 is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR^', SR^', NHR^', N(R^')_2R^'' or C(O)R^', wherein R^' is an aliphatic, carbocyclic or heterocyclic group, and R^'' is H or a C_1-C_6 aliphatic group or R^' and R^'' together with the atom to which they are attached form a substituted or unsubstituted heterocyclic ring;
R^2 is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;
W is N, O or C;
when W is N or C, R^2 is H or a C_1-C_6 alkyl group or R^2 and R^2 taken together with the atom W to which they are attached form an unsubstituted or substituted carbocyclic or heterocyclic ring;
when W is O, R^2 is absent;
X is

Y' and Y'' are independently selected from H, halo, or a C₁₋₆ aliphatic group, wherein R¹ is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alkylxoycarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyle, alkylsulfanyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, and alkylthio;

R² and R₆ are each independently H, halo or a C₁₋₄ aliphatic group;

Z is S, O, SO, SO₂, CH₂, CHF, CF₂, CH(OH), CH(O-R²), CH(N-R² R²), CH(S-R²), C(=O), or CH(R²), where R² is a C₁₋₆ aliphatic group or a carbocyclic or heterocyclic group and R² is H or a C₁₋₆ aliphatic group;

n is 1, 2, 3 or 4;

n' is 1 or 2;

R³ is H or a C₁₋₆ aliphatic group;

R⁴ and R⁵ are independently selected from H, halo, a C₁₋₆ aliphatic group or a group having the formula C(O)R⁴, wherein R⁴ is an aliphatic, carbocyclic or heterocyclic group;

where any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and

where any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic;

or a prodrug, pharmaceutically active metabolite or pharmaceutically active salt or solvate thereof.

15. A compound having the Formula I-B':
wherein:

R¹ is an aliphatic, carbocyclic or heterocyclic group,

R² is an aliphatic group, a carbocyclic-aliphatic group, or a heterocyclic-aliphatic group;

R² is H or a C₁-C₆ alkyl group;

or R² and R² taken together with the carbon atom to which they are both attached form an unsubstituted or substituted carbocyclic ring;

X is , wherein R³ is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylendioxy, alkylcarbonyl, alkoxy carbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfenyl, alkylsulfenylamino, alkylthiocarbonyl, alkylthiocarbonylamino, alkylsulfenylamino, mercapto, and alkylthio;

Z is S, O, SO, SO₂, CHF, CH₂, CF₂, C(=O), or CH(R²), where R² is a C₁-C₆ aliphatic group or a carbocyclic or heterocyclic group;

R³ is H or a C₁-C₆ aliphatic group;

R⁴ and R⁵ are independently selected from H, halo, or a C₁-C₆ aliphatic group;

R⁶ and R⁷ are independently selected from H, halo or a C₁-C₆ aliphatic group;

wherein any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and

wherein any of said carbocyclic or heterocyclic groups are unsubstituted or substituted
by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or
mono-, bi- or tri-cyclic;
or a prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or
pharmaceutically acceptable solvate thereof.

16. The compound, prodrug, salt, metabolite or solvate according to claim 15,
wherein:
 \[R^1 \text{ is a carbocyclic group,} \]
 \[R^2 \text{ is a } C_1-C_6 \text{ aliphatic group or a carbocyclic-} C_1-C_6 \text{-aliphatic group;} \]
 \[Z \text{ is S, O, CH}_2, \text{ CF}_2; \]
 \[R^3, R^4 \text{ and } R^5 \text{ are each } H; \]
 \[R^6 \text{ and } R^7 \text{ are each a } C_1-C_6 \text{ aliphatic group;} \]
wherein any of said aliphatic groups are saturated, partially unsaturated or fully
unsaturated and unsubstituted or substituted by one or more suitable substituents; and
wherein any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one
or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-,
bi- or tri-cyclic.

17. The compound, prodrug, salt, metabolite, or solvate according to claim 15,
wherein:
 \[R^1 \text{ is a phenyl group, unsubstituted or substituted with one or more substituents} \]
selected from alkyl, hydroxyl, halo, halo alkyl, haloalkoxy, methylene dioxy, and difluoromethylene dioxy;
 \[R^2 \text{ is an alkenyl group, an aralkyl group or a straight or branched chain saturated alkyl;} \]
 \[X \text{ is } \]
 \[\text{ where } R^5 \text{ is } H; \]
 \[Z \text{ is S;} \]
 \[R^3, R^4 \text{ and } R^5 \text{ are each } H; \]
 \[R^6 \text{ and } R^7 \text{ are each methyl;} \]
wherein any of said alkenyl, aralkyl, or alkyl groups are unsubstituted or substituted
with one or more substituents, independently selected from methyl, halo, trifluoromethyl or methoxy.

18. The compound, prodrug, salt, metabolite, or solvate according to claim 15, wherein:
 R¹ is a phenyl group, unsubstituted or substituted with one or more substituents selected from alkyl, hydroxyl, halo, halo alkyl, haloalkoxy, methylene dioxy, and difluoromethylene dioxy;
 R² is an alkenyl group, an aralkyl group or straight or branched chain saturated alkyl;
 X is where R⁵ is H;
 Z is CF₂;
 R³, R⁴ and R⁵ are each H; and
 R⁶ and R⁷ are each methyl;
 wherein any of said alkenyl, aralkyl, or alkyl groups are unsubstituted or substituted with one or more substituents, independently selected from methyl, halo, trifluoromethyl or methoxy.

19. A compound having the Formula I-C':

 \[
 \text{I-C'}
 \]

 wherein:
 R¹ is an aliphatic, carbocyclic or heterocyclic group, or a group having the formula: OR¹', wherein R¹'' is a carbocyclic or heterocyclic group;
 R² is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;
 W is N;
R^2 is H or a C_1-C_6 alkyl group;

\[
\begin{array}{c}
\text{X is} \\
\text{R^1, R^2, and R^3 are each H; and}
\end{array}
\]

or a prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or pharmaceutically acceptable solvate thereof.

20. The compound, prodrug, salt, metabolite, or solvate according to claim 19, wherein:

R^1 is an aryl group, an aryloxyalkyl group, an alkynloxy group, a heterocycloalkyloxy group or heteroaryl group;

R^2 is an alkyl, alkenyl, or alkynyl group, an arylalanyl group, a heteroarylatedkyl group, an indanyl group, a chromanyl group, a tetrahydronaphthalene group, an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

R^2 is H;

wherein the alkyl, alkenyl, alkynyl, arylalkyl, heteroarylalkyl, indanyl, chromanyl or tetrahydronaphthalene group is unsubstituted or substitutee with one or more substituents independently selected from alkyl, hydroxy, halo, haloalkyl, cyano, alkoxy or methylenedioxy.

21. The compound, prodrug, salt, metabolite, or solvate according to claim 19, wherein:

R^1 is a phenyl group, a phenoxyethyl group, a tetrahydrofurfuryloxy group, a C_1-C_4 alkynloxy group, or a isoxazolyl group, where the phenyl group, phenoxyethyl group or isoxazolyl group is unsubstituted or substituted by hydroxyl or methyl;
R² is an C₁-C₅ alkyl, C₁-C₆ alkenyl, or C₁-C₄ alkynyl group, a benzyl group; a furanymethyl group, a thiethylmethyl group, an indanyl group, a chromanyl group, a tetrahydronaphthalene group, or a cyclohexenyl group, where the alkyl groups is unsubstituted or substituted with one or more halogen; and the phenyl group is unsubstituted or substituted with halogen, hydroxyl, methoxy, methylenedioxy or methyl;

R² is H;

\[
\begin{array}{c}
\text{X is } \\
\text{wherein } R^x \text{ is } H; \text{ and } \\
\text{Z is } \text{CF}_2.
\end{array}
\]

22. A compound having the Formula I-D':

\[
\begin{array}{c}
\text{I-D'}
\end{array}
\]

wherein:

R¹ is a carbocyclic or heterocyclic group,

R² is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;

W is N, R³ is H or a C₁-C₆ alkyl group;

\[
\begin{array}{c}
\text{X is } \\
\text{wherein } R^x \text{ is } H \text{ or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy, carbonyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonfyl, alkylsulfonyl, alkylaminobenzoylamino, alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, alkylthio;}
\end{array}
\]
Z is O, CH₂, CHF, CF₂, or CH(R²), where R² is a C₁-C₆ aliphatic group;
n is 1 or 2;
R³, R⁴ and R⁵ are each H;
R⁷ is H;

wherein any of said aliphatic groups are saturated, partially unsaturated or fully
unsaturated and unsubstituted or substituted by one or more suitable substituents; and

wherein any of said carbocyclic or heterocyclic groups are unsubstituted or substituted
by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or
mono-, bi- or tri-cyclic;

or a prodrug, pharmaceutically acceptable salt, pharmaceutically active
metabolite, or pharmaceutically acceptable solvate thereof.

23. A compound having the Formula I-E’:

\[
\begin{array}{c}
\text{O} \\
\text{X} \\
\text{O} \\
\text{N} \\
\text{R}^1 \\
\text{R}^3 \\
\text{R}^4 \\
\text{(CH}_2)_n \\
\text{R}^7 \\
\text{W} \\
\text{R}^2 \\
\end{array}
\]

I-E’

wherein
R¹ is a carbocyclic or heterocyclic group,
R² is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a
heterocyclic group, or a heterocyclic-aliphatic group;
W is N;
R² is H or a C₁-C₆ alkyl group;

\[
\begin{array}{c}
\text{R}^5 \\
\end{array}
\]

X is

wherein R⁵ is H or one or more substituents independently selected
from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylenedioxy,
alkylecarbonyl, alkylxycarbonyl, alkylecarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino,
dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl,
dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfenyl, alkylcarbonylamino,
akylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonlamino, mercapto, and alkylthio;

\[Z = O, \text{CH}_2, \text{CHF, CF}_2, \text{or CH}(\text{R}^2), \text{where R}^2 \text{is a C}_1-\text{C}_6 \text{aliphatic group}; \]

\[n \text{ is 1 or 2}; \]

\[\text{R}^3, \text{R}^4 \text{and R}^5 \text{ are each H}; \text{and} \]

\[\text{R}^7 \text{ is H}; \]

wherein any of said aliphatic groups are saturated, partially unsaturated or fully
unsaturated and unsubstituted or substituted by one or more suitable substituents; and

wherein any of said carbocyclic or heterocyclic groups are unsubstituted or substituted
by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or
mono-, bi- or tri-cyclic;

or a prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or
pharmaceutically acceptable solvate thereof.

24. The compound, prodrug, salt, metabolite, or solvate according to claims 22 or
23, wherein:

\[\text{R}^1 \text{ is a carbocyclic group}; \]

\[\text{R}^2 \text{ is an arylalkyl group}; \]

\[\text{R}^2' \text{ is H}; \]

\[\text{X is } \text{, wherein R}^x \text{ is H}; \text{and} \]

\[Z \text{ is CH}_2, \]

wherein said carbocyclic group and arylalkyl group are unsubstituted or substituted
with one or more substituents selected from methyl, halo, or hydroxy.
25. A compound having the Formula I-F:\n
$$\text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4, \text{R}^5, \text{R}^6, \text{R}^7, \text{R}^8, \text{R}^9,$$

wherein:

- \(\text{R}^1 \) is a carbocyclic or heterocyclic group,
- \(\text{R}^2 \) is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;
- \(\text{W} \) is \(\text{N} \);
- \(\text{R}^2 \) is \(\text{H} \) or a \(\text{C}_1-\text{C}_6 \) alkyl group;
- \(\text{X} \) is , wherein \(\text{R}^x \) is \(\text{H} \) or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkenedioxy, alkycarbonyl, alklyloxy carbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfenyl, alkylcarbonylamino, alkylthiocarbonylamino, alkylsulfonyloxy, alkylsulfonylamino, mercapto, and alkylthio;
- \(n \) is 1 or 2;
- \(\text{R}^3, \text{R}^4, \text{R}^5 \) are each \(\text{H} \); and
- \(\text{R}^7 \) is \(\text{H} \);

wherein any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and

wherein any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic;

or a prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or pharmaceutically acceptable solvate thereof.
26. The compound, prodrug, salt, or metabolite according to claim 25, wherein:
R1 is a carbocyclic group;
R2 is an arylalkyl group;
R2 is H; and
\[\text{X is } \begin{array}{c}
\text{[Diagram]}
\end{array}, \text{wherein R}^x \text{ is H;} \]
wherein said carbocyclic group and arylalkyl group are unsubstituted or substituted with one or more substituents selected from methyl, halo, or hydroxy.

27. A compound having the Formula I-G':
\[\text{[Diagram: Formula I-G']} \]
wherein:
R1 is a carbocyclic or heterocyclic group,
R2 is an aliphatic group, a carbocyclic group, a carbocyclic-aliphatic group, a heterocyclic group, or a heterocyclic-aliphatic group;
W is N or C;
R2 is H or C\textsubscript{1}-C\textsubscript{6} alkyl group;
\[\text{X is } \begin{array}{c}
\text{[Diagram]}\end{array}, \text{wherein R}^x \text{ is H or one or more substituents independently selected from alkyl, nitro, amino, cyano, halogen, haloalkyl, hydroxyl, alkoxy, alkylendioxy, alkylcarbonyl, alkylhydroxycarbonyl, alkylcarbonyloxy, carboxyl, carbamoyl, formyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylaminocarboxyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, alkylsulfonyl, alkylsulfenyl, alkylcarbonylamino,} \]
alkylthiocarbonylamino, alkylsulfonfylxyloxy, alkylsulfonlamino, mercapto, and alkylthio;

\(Z \) is S, O, CH\(_2\), CHF, CF\(_2\), or CH(R\(^z\)), where R\(^z\) is a C\(_1\)-C\(_6\) aliphatic group;

n is 2, 3 or 4;

R\(^1\), R\(^4\) and R\(^5\) are each H;

wherein any of said aliphatic groups are saturated, partially unsaturated or fully unsaturated and unsubstituted or substituted by one or more suitable substituents; and

wherein any of said carbocyclic or heterocyclic groups are unsubstituted or substituted by one or more suitable substituents; saturated, partially unsaturated or fully unsaturated; or mono-, bi- or tri-cyclic;

or a prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or pharmaceutically acceptable solvate thereof.

28. The compound, prodrug, salt, metabolite, or salt according to claim 27, wherein:

R\(^1\) is a carbocyclic group;

R\(^2\) is an arylalkyl group;

W is N;

R\(^2\) is H;

\[\begin{array}{c}
\text{R}^5 \\
\text{X}
\end{array} \]

X is , wherein R\(^5\) is H; and

Z is CH\(_3\);

wherein said carbocyclic group and arylalkyl group are unsubstituted or substituted with one or more substituents selected from methyl, halo, or hydroxy.

29. The compound, prodrug, salt, metabolite, or solvate according to claim 27, wherein:

R\(^1\) is a carbocyclic group;

R\(^2\) is an arylalkyl group;

W is N;

R\(^2\) is H;
X is \(R^x \), wherein \(R^x \) is H; and

\(Z \) is \(\text{CF}_2 \);

wherein said carbocyclic group and arylalkyl group are unsubstituted or substituted with one or more substituents selected from methyl, halo, or hydroxy.

30. The compound, prodrug, salt, metabolite, or solvate according to claim 27, wherein:

\(R^1 \) is a carbocyclic group;

\(R^2 \) is an arylalkyl group;

\(W \) is \(\text{N} \);

\(R^2' \) is \(\text{H} \);

\(X \) is \(R^x \), wherein \(R^x \) is \(\text{H} \); and

\(Z \) is \(\text{S} \);

wherein said carbocyclic group and arylalkyl group are unsubstituted or substituted with one or more substituents selected from methyl, halo, or hydroxy.

31. The compound, prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or pharmaceutically acceptable solvate according to claim 1, having the formula:
32. The compound, prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or pharmaceutically acceptable solvate according to claim 1, having the formula:

33. The compound, prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or pharmaceutically acceptable solvate according to claim 1, having the formula:

34. A pharmaceutical composition comprising:

 a therapeutically effective amount of at least one HIV agent selected from compounds, prodrugs, pharmaceutically acceptable salts, pharmaceutically active metabolites, and pharmaceutically acceptable solvates defined in any one of claims 1, 2, 9, 10, 11, 12, 13, 14, 15, 19, 22, 23, 25 or 27; and

 a pharmaceutically acceptable carrier, diluent, vehicle, or excipient.

35. The pharmaceutical composition according to claim 34, wherein the composition further comprises a therapeutically effective amount of at least one HIV infection/AIDS treatment agent selected from the group consisting of HIV/AIDS antiviral agents, immunomodulators, and anti-infective agents.
36. The pharmaceutical composition according to claim 35, wherein the composition further comprises a therapeutically effective amount of at least one antiviral agent selected from the group consisting of non-nucleoside HIV reverse transcriptase inhibitors and nucleoside HIV reverse transcriptase inhibitors.

37. The pharmaceutical composition according to claim 36, further comprising a therapeutically effective amount of at least one HIV protease inhibitor.

38. A method of treating a mammalian disease condition mediated by HIV protease activity, comprising administering to a mammal in need thereof a therapeutically effective amount of at least one compound, prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or pharmaceutically acceptable solvate defined in any one of claims 1, 2, 9, 10, 11, 12, 13, 14, 15, 19, 22, 23, 25 or 27.

39. A method of inhibiting the activity of HIV protease in a subject in need thereof, comprising contacting the HIV protease with an effective amount of at least one compound, prodrug, pharmaceutically acceptable salt, pharmaceutically active metabolite, or pharmaceutically acceptable solvate defined in any one of claims 1, 2, 9, 10, 11, 12, 13, 14, 15, 19, 22, 23, 25 or 27.

40. A method of preventing or treating infection by HIV in a subject in need thereof comprising administering to the subject a therapeutically effective amount of a compound according to any one of claims 1, 2, 9, 10, 11, 12, 13, 14, 15, 19, 22, 23, 25 or 27.

41. The method according to claim 40, wherein the compound is administered in combination with a therapeutically effective amount of at least one HIV infection/AIDS treatment agent selected from the group consisting of HIV/AIDS antiviral agents, immunomodulators, and anti-infective agents.

NY_MAIN 263533_1
42. A compound selected from:

\[
\begin{align*}
&\text{[Chemical structures]} \\
&\text{wherein } n \text{ is an integer from 0 to 6.}
\end{align*}
\]

43. A compound selected from:

\[
\begin{align*}
&\text{[Chemical structures]}
\end{align*}
\]
or the prodrugs, pharmaceutically active metabolites, and pharmaceutically acceptable salts and solvates thereof.