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ELECTRICALLY CONDUCTING 
POLYAMIDES 

and R2 denotes two singly charged cations or one doubly 
charged cation ) , thus forming the desired material . 

BRIEF DESCRIPTION OF THE DRAWINGS CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This Application claims the benefit of U.S. Provi 
sional Application 63 / 038,936 filed on Jun . 15 , 2021 , the 
entirety of which is incorporated herein by reference . 

a FEDERALLY - SPONSORED RESEARCH AND 
DEVELOPMENT 

[ 0002 ] The United States Government has ownership 
rights in this invention . Licensing inquiries may be directed 
to Office of Technology Transfer , US Naval Research Labo 
ratory , Code 1004 , Washington , D.C. 20375 , USA ; +1.202 . 
767.7230 ; techtran@nrl.navy.mil , referencing NC 111,774 . 
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BACKGROUND a 

[ 0003 ] State of the art commercially available conducting 
polymers such as polyaniline ( PANT ) and poly ( 3,4 ethyl 
enedioxy thiophene ) / poly ( styrene sulfonate ) ( PEDOT / PSS ) 
experience thermal degradation in terms of both conductiv 
ity loss and mechanical integrity . This is the case in both 
nitrogen and air environments . For PANI , these effects arise 
from thermally - induced deprotonation ( undoping ) involving 
acid release by diffusion , dehydration , and evaporation . 
Other mechanisms that appear to contribute to the conduc 
tivity loss include aromatic ring substitution by dopant acids 
containing sulfonate or chloride ions [ 1 ] . PANI has been 
reported to display significant conductivity losses at tem 
peratures of as low as 50 ° C. , over a 24 hour period [ 1 ] . The 
conductivity decline of PEDOT / PSS is thought to arise from 
a heat - induced decrease in the polymer grain size , inhibiting 
grain - to - grain electron hopping mechanisms [ 2 ] . The con 
ductivity of PEDOT / PSS has been reported to be stable 
indefinitely at relatively low temperatures ( 55 ° C. ) [ 3 ] but 
begins to show a significant decline at temperatures of above 
80 ° C. [ 3 ] [ 4 ] 
[ 0004 ] A need exists for new materials . 

[ 0008 ] FIG . 1 illustrates synthesis of poly ( 3 - amino - 1H 
pyrazole - 4 - carboxylate ) . 
[ 0009 ] FIG . 2 provides UV - visible spectra of Polyamide 1 
at various times during its synthesis , and isolated material . 
[ 0010 ] FIG . 3A is a FTIR spectra of the monomer for 
Polyamide 1 while FIG . 3B is a FTIR spectra of Polyamide 
1 . 
[ 0011 ] FIG . 4 shows a positive ion MS of Polyamide 1 . 
[ 0012 ] FIG . 5 provides a positive ion MS of Polyamide 1 
in smaller fragments than in FIG . 4 . 
[ 0013 ] FIGS . 6A - 6D are proposed structures of the MS 
fragments of molecular weight ( MW ) 552 D , 580 D , 608 D , 
and 637 D , respectively . FIG . 7 is a proposed structures of 
the largest MS fragment with a MW of 922 D. 
[ 0014 ] FIG . 8 is a 13C NMR spectra of Polyamide 1 . 
[ 0015 ] FIGS . 9A and 9B provide structures of polyamide 
1 in its undoped state , amide form ( A ) and iminol form ( B ) . 
[ 0016 ] FIGS . 10A and 10B provide structures of poly 
amide 1 in its undoped state , amide form ( A ) and iminol 
form ( B ) . 
[ 0017 ] FIGS . 11 and 12 compare of conductivities of 
polymers in undoped states and undoped states , respectively . 
[ 0018 ] FIG . 13 shows conductivity vs. time for Polyamide 
1 and PEDOT / PSS at 150 ° C. 
[ 0019 ] FIG . 14 shows conductivity vs. time for PANI at 
150 ° C. 
[ 0020 ] FIG . 15 provides a thermogravimetric analysis of 
Polyamide 1 and PANI . 
[ 0021 ] FIG . 16 is a plot of In ( heating rate ) vs. 1 / T for 
Polyamide 1 . 
[ 0022 ] FIG . 17 is a plot of ln ( heating rate ) vs. 1 / T for 
PANI . 
[ 0023 ] FIG . 18 shows the activation energies of Poly 
amide 1 and PANI . 
[ 0024 ] FIG . 19 illustrates a possible extended hydrogen 
bonding structure in Polyamide 1 . 

BRIEF SUMMARY DETAILED DESCRIPTION 

Definitions [ 0005 ] Described herein are stable oligo- or polyamides 
that are inherently electrically conductive , have a high 
thermal stability , are inexpensive and simple to produce , and 
may have other advantages such as high mechanical 
strength . 
[ 0006 ] In one embodiment , a material comprises poly 
3 - amino - 1H - pyrazole - 4 - carboxylate , poly 3 - amino - 5 
chloro - 1H - pyrazole - 4 - carboxylate , poly 3 - amino - 5 - bromo 
1H - pyrazole - 4 - carboxylate , poly 3 - amino - 5 - fluoro - 1H 
pyrazole - 4 - carboxylate , poly 3 - amino - 5 - iodo - 1H - pyrazole 
4 - carboxylate , poly 3 , 5 - diamino - 1H - pyrazole - 4 
carboxylate , poly 3 - amino - 5 - NHR -1H - pyrazole - 4 
carboxylate , poly 3 - amino - 5 - NR2-1H - pyrazole - 4 
carboxylate , poly 3 - amino - 5 - hydroxy - 1H - pyrazole - 4 
carboxylate , and / or poly 3 - amino - 5 - OR - 1H - pyrazole - 4 
carboxylate , where R is alkyl and / or aromatic . 
[ 0007 ] Further embodiments include methods of preparing 
any of the materials of the first embodiment . For example , 
3 - amino - 1H - pyrazole - 4 - carboxylate can be reacted in an 
aqueous solution of R1 hydroxide followed by the addition 
R2 persulfate ( where R1 denotes one singly charged cation 

[ 0025 ] Before describing the present invention in detail , it 
is to be understood that the terminology used in the speci 
fication is for the purpose of describing particular embodi 
ments , and is not necessarily intended to be limiting . 
Although many methods , structures and materials similar , 
modified , or equivalent to those described herein can be used 
in the practice of the present invention without undue 
experimentation , the preferred methods , structures and 
materials are described herein . In describing and claiming 
the present invention , the following terminology will be 
used in accordance with the definitions set out below . 
[ 0026 ] As used herein , the singular forms “ a ” , “ an , ” and 
“ the ” do not preclude plural referents , unless the content 
clearly dictates otherwise . 
[ 0027 ] As used herein , the term “ and / or ” includes any and 
all combinations of one or more of the associated listed 
items . 
[ 0028 ] As used herein , the term “ about ” when used in 
conjunction with a stated numerical value or range denotes 
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somewhat more or somewhat less than the stated value or 
range , to within a range of + 10 % of that stated . 

Overview 

a 

[ 0029 ] Described herein is an electrically conducting 
amide polymer , poly ( 3 - amino - 1H pyrazole - 4 - carboxylate ) 
( Polyamide 1 ) with high stability towards thermal decom 
position . In embodiments , it is an 11 - mer that can be formed 
in a simple one - step synthesis with yields as high as 90 % . 
The conductivity is associated with the extended pi - conju 
gation that is present in the material . It is stable for at least 
24 hours at a temperature of at least 150 ° C. It is expected 
to have a significant military and commercial interest , and 
can potentially be used in a variety of applications such as 
thermoelectrics , electron acceptors for light - harvesting 
( photovoltaic ) materials , and thermally stable conducting 
energetic materials . To the best of our knowledge , this is the 
first example of a oligomer or polymer that is both highly 
stable towards thermal decomposition and is electrically 
conductive at a level comparable to that of commercially 
available conducting polymers . 
( 0030 ) Other polyamides related to Polyamide 1 have been 
synthesized by other groups using a three - step process , but 
their chain lengths were reported to be much shorter , three 
to four repeat units . They are semiconductors in nature , 
having reported conductivities roughly three orders of mag 
nitude lower than found for Polyamide 1. These materials 
have useful optoelectronic properties and are being charac 
terized to assess their value in these applications [ 5 ] [ 6 ] [ 7 ] . 
[ 0031 ] Polyamide 1 has an electrical conductivity that 
enables it to be useful in a variety of applications , and has 
a high stability towards thermal decomposition . In contrast , 
other commercially available conducting polymers are far 
less thermally stable . It can be formed in a simple one - step 
synthesis with yields as high as 90 % . Molecular modeling 
indicates that Polyamide 1 is capable of assembling into 
extended hydrogen - bonding structures ( FIG . 19 ) . This sug 
gests that the material , if processed correctly , will have a 
high mechanical strength in addition to its conductivity and 
thermal stability . 

-1 

drying followed by washing with water yields isolated 
product . The overall yield of the reaction was found to be 
85-90 % . The product , poly 3 - amino - 1H - pyrazole - 4 - car 
boxylate ( Polyamide 1 ) ( FIG . 1 ) was characterized by UV 
visible spectroscopy , mass spectrometry , FTIR spectros 
copy , NMR , and thermogravimetric analysis , and thin films 
were characterized electrochemically via electrochemical 
impedance spectroscopy . 
[ 0034 ] The polymerization was relatively rapid , with 
completion of the reaction occurring at 40 minutes , as shown 
by UV - visible spectroscopy ( FIG . 2 ) . Spectroscopy was 
performed by removing aliquots from the aqueous reaction 
mixture and diluting them into NMP ( N - methyl pyrrolidone ) 
solvent at a ratio of 1 to 9. The spectra shows that the 
polymer product absorbs strongly up to 1050 nm , indicating 
that long conjugation lengths are present . When the isolated 
powder product is re - dissolved in NMP and characterized 
spectroscopically , it shows strong absorption up to 650 nm . 
The gradual decline in absorption at higher wavelengths 
may indicate that the presence of a small amount of water is 
necessary for complete solvation of the polymer . The 
pseudo - first order rate constant for the reaction was calcu 
lated using the UV - visible spectrum , and quantifying the 
position of the shoulder at 630 nm as a function of time . It 
was found to be 0.616 min - 1 . 
[ 0035 ] The FTIR spectra of the starting compound 
3 - amino - 1H pyrazole - 4 - carboxylate and that of Polyamide 1 
are shown in FIGS . 3a and 3b . The carboxylate group is 
evident by the strong , broad OH - stretch ranging from 3267 
cm - l to 2482 cm - 7 . Also present are the CO stretch evident 
by the bands at 1326 cm - 1 and 1281 cm - 1 , and the OH bend 
indicated by the bands at 1358 cm and 940 cm - 1 . In the 
Polyamide 1 spectrum , the broad OH - stretch band is com 
pletely absent , and the latter two bands also are not present . 
This spectrum contains bands associated with the amide 
N - H stretch ( 3421 cm- ? ) and NH bend ( 1544 cm- ? ) as well 
as the amide C – O stretch ( 1621 cm ) and aromatic C = C 
stretch ( 1692 cm- ' ) . 
[ 0036 ] Mass spectrometry was performed on Polyamide 1 , 
and relatively large positive fragment sizes ranging from 
552 D to 922 D were obtained ( FIG . 4 ) . The highest value 
indicates that the average polymer length is an 11 - mer . Four 
fragments are shown in FIG . 5 , having MWs of 637 , 608 , 
580 , and 552 D. This likely indicates sequential loss of N2 
from the pyrazole ring . FIGS . 6a - d depict the proposed 
structures of these fragments . The fragment with the highest 
MW ( 922 D ) is shown in FIG . 7 , which appears to be a 
residue from an 11 - mer . 
[ 0037 ] The 13C NMR spectrum of Polyamide 1 ( DMSO 
d6 solvent ) is shown in FIG . 8. Carbons in at least 15 
different positions in the polymer chain can be identified . 
The inset structure shows results from NMR software pre 
dictions . The spectrum corresponds well with the mass 
spectral data discussed above . 
[ 0038 ] FIG . 9 depicts the proposed structures of Poly 
amide 1 in its electrically neutral form . The 9 - mer species is 
represented . The top structure ( A ) is the polyamide form , 
whereas the bottom structure is the polyiminol form . FIG . 10 
depicts the proposed structures of Polyamide 1 in its 
n - doped state , where the nitrogen at the 1 - position of the 
pyrazole ring is negatively charged . The polymer is trans 
formed into this state by either 1 ) application of a reducing 
voltage in the presence of electrolyte , or 2 ) treating the 
material with a base such as tetrabutylammonium hydrox 

2 

Examples 
[ 0032 ] Synthesis of Poly 3 - amino - 1H - pyrazole - 4 - car 
boxylate ( Polyamide 1 ) 
[ 0033 ] The synthesis is undertaken by adding 55 mL 
deionized water to a 100 mL Erlenmeyer flask , then dis 
solving 423 mg potassium hydroxide while stirring at room 
temperature . Next , 1.0 g 3 - amino - 1H - pyrazole - 4 - carboxy 
late is added and allowed to dissolve at 65 ° C. with heating 
in a mineral oil bath . This allows a 1 : 1 molar complex to 
form between potassium and the deprotonated nitrogen of 
the pyrazole ring . Next , 1.8 g of ammonium persulfate is 
added , giving a final molar ratio of 1.2 moles persulfate to 
1.0 moles monomer . The reaction is allowed to proceed for 
40 minutes at 60 ° C. Precipitate ( polymer ) begins to form at 
a reaction time of approximately 20 minutes . At the end of 
the reaction , the flask is then removed and allowed to cool 
to room temperature . The polymer product , a dark brown 
powder , will continue to precipitate over time . The reaction 
yield can be quantified by drying off the aqueous solvent , 
and subjecting the residue to extraction with N - methyl 
pyrrolidone ( NMP ) . This will dissolve the polymer while 
leaving salt by - products behind . Removal of the NMP by 

a 
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orientation of its hydrogen - bonding groups may allow it to 
form an extended bonding network that may also contribute 
to thermal stability . 
[ 0043 ] FIG . 15 shows the thermogravimetric behavior of 
PANI and Polyamide 1 , using heating with temperature 
ramp rates of 10 ° C./min , 15 ° C./min , 20 ° C./min , and 25 ° 
C./min , under nitrogen . PANI encounters a 50 % weight loss 
at a temperature of -280 ° C. , whereas Polyamide 1 reaches 
this amount at ~ 420 ° C. The much higher mass loss shown 
by PANI may arise from polymer degradation by chain 
scission and volatilization . Polyamide 1 may be less sus 
ceptible to these processes because of the stability of the 
amide linkage and the presence of the electron - rich pyrazole 
ring . FIGS . 16 and 17 depict plots of In ( heating rate ) versus 
1 / T for each polymer . The temperature T is that at which a 
given percent weight loss is reached , with values of 75 % , 
70 % , 65 % , and 60 % being used . The slopes of the plots are 
proportional to the thermal decomposition activation ener 
gies of the materials . FIG . 18 compares the activation 
energies of Polyamide ( 1 ) and PANI , with that of the former 
more than twice as high as that of the latter ( 595 kJ / mol vs. 
282 kJ / mol ) . 
[ 0044 ] Molecular modeling indicates that Polyamide 1 is 
capable of assembling into extended hydrogen - bonding 
structures ( FIG . 19 ) . This suggests that the material , if 
processed correctly , will have a high mechanical strength , in 
addition to its conductivity and thermal stability . 

Further Embodiments 

ide . In FIGS . 11 and 12 , the conductivities of Polyamide 1 
are compared with the conventional conducting polymers 
PEDOT / PSS and PANI . The polymers are compared in their 
doped and undoped states . When all polymers are in the 
undoped state , Polyamide ( 1 ) is 5750 - fold more conducting 
than PANI , and 12.6 - fold more conducting than PEDOT / 
PSS . When the polymers are in the doped state , Polyamide 
( 1 ) is the least conducting of the three , 8 - fold less conduct 
ing than PANI and 2.5 - fold less conducting than PEDOT 
PSS . However , because of the very low conductivities of the 
conventional conducting polymers in their undoped states , 
overall Polyamide 1 is the best performer with regard to 
conductivity 
[ 0039 ] A series of studies was performed to compare the 
thermal stabilities of the polymers , in terms of both con 
ductivity and thermal decomposition activation energies . 
For the former , electrodes coated with thin films ( ~ 10 
microns ) of polymer were held at elevated temperatures for 
various time periods , and their conductivities were recorded 
as a function of time . For the latter , thermogravimetric 
analysis was performed on the polymers , and plots of weight 
loss versus temperature were generated . This allowed the 
thermal decomposition activation energies to be calculated 
by constructing plots of In ( heating rate ) versus 1 / T . The 
temperature T is that at which a given percent weight loss is 
reached , with values of 75 % , 70 % , 65 % , and 60 % being 
used . The slopes of the plots are proportional to the thermal 
decomposition activation energies of the materials . 
[ 0040 ] FIG . 13 depicts the conductivities of PEDOT / PSS 
and Polyamide 1 as a function of time , while undergoing 
annealing at 150 ° C. for 24 hours . PEDOT / PSS undergoes a 
gradual decline in conductivity over the period , reaching a 
quasi - steady state near the 24 - hour period at a conductivity 
of less than one half that of the starting value . Interestingly , 
Polyamide ( 1 ) showed the opposite behavior , with conduc 
tivity increasing gradually over the 24 hour period , and 
reaching a quasi - steady state near the end of the time period . 
As discussed above , the conductivity decline of the PEDOT / 
PSS may arise from a heat - induced decrease in polymer 
grain size , inhibiting grain - to - grain electron hopping mecha 
nisms . The heat - induced conductivity enhancement of the 
Polyamide ( 1 ) may arise simply from the gradual baking out 
of trapped casting solvent . Alternatively , it may be caused by 
a thermally induced transformation of the polymer from its 
polyamide to its polyiminol form [ 8 ] . In the latter , the 
polymer is fully conjugated which may account for the 
increased conductivity . In the polyamide form the polymer 
is not fully conjugated . 
[ 0041 ] In FIG . 14 , the conductivity of PANI as a function 
of time is depicted while undergoing annealing at 150 ° C. 
for 24 hours . The polymer exhibits an exponential drop in 
conductivity at early times and retains the low conductivity 
throughout the time course . Its value at 24 hours is 50,000 
fold less than the initial value . As discussed above , this effect 
may arise from thermally - induced deprotonation ( undoping ) 
involving acid release by diffusion , dehydration , and evapo 
ration . Other mechanisms that may contribute to the con 
ductivity loss include aromatic ring substitution by dopant 
acids containing sulfonate or chloride ions . 
[ 0042 ] Evidently , Polyamide 1 is not susceptible to the 
types of thermal degradation processes that affect PEDOT / 
PSS and PANI . The presence of the amide linkage may be 
a primary factor accounting for its thermal stability . The 

[ 0045 ] It should be possible to form Polyamide 1 by 
allowing the starting monomer 3 - amino - 1H - pyrazole - 4 - car 
boxylate to slowly polymerize in the absence of stoichio 
metric oxidant , via a condensation reaction . It may be best 
to perform this reaction in a non - aqueous solvent , and 
optionally with a thermally activated initiator suitable for 
use in non - aqueous solvents , such as 2 , 2'azobisisobutyroni 
trile ( AIBN ) . 
[ 0046 ] It is expected that polymers of more than 20 repeat 
units should be obtainable as well as oligomers having 20 or 
fewer repeat units . 
[ 0047 ] One might use 3 - amino - 1H - pyrazole - 5 - carboxy 
late as a starting material instead of , or in addition to , 
3 - amino - 1H - pyrazole - 4 - carboxylate . 
[ 0048 ] Also contemplated are poly 3 - amino - 1H - pyrazole 
4 - carboxylate , poly 3 - amino - 5 - chloro - 1H - pyrazole - 4 - car 
boxylate , poly 3 - amino - 5 - bromo - 1H - pyrazole - 4 - carboxy 
late , poly 3 - amino - 5 - fluoro - 1H - pyrazole - 4 - carboxylate , 
poly 3 - amino - 5 - iodo - 1H - pyrazole - 4 - carboxylate , poly 3 , 
5 - diamino - 1H - pyrazole - 4 - carboxylate , poly 3 - amino - 5 
NHR1-1H - pyrazole - 4 - carboxylate , poly 3 - amino - 5 - NR2 
1H - pyrazole - 4 - carboxylate , poly 3 - amino - 5 - hydroxy - 1H 
pyrazole - 4 - carboxylate , and poly 3 - amino - 5 - OR - 1H 
pyrazole - 4 - carboxylate ( R = alkyl and / or aromatic ) as well as 
methods of preparing these , as discussed below . 
[ 0049 ] Concerning poly 3 - amino - 5 - chloro - 1H - pyrazole 
4 - carboxylate : poly 3 - amino - 1H - pyrazole - 4 - carboxylate of 
any chain length is reacted in 3 % -12.5 % sodium hypochlo 
rite solution in water . The reaction is practically quantitative , 
1 : 1 molar ratio , 5 - position C_H on polymer and Nacio . 
[ 0050 ] Concerning poly 3 - amino - 5 - bromo - 1H - pyrazole 
4 - carboxylate : poly 3 - amino - 1H - pyrazole - 4 - carboxylate of 
any chain length is reacted in 3 % -12.5 % Sodium Hypobro 
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tized phenolic moiety . Employing Na + RO- concentration 
ranging from 0.1 to 10 molar to yield the product , poly 
3 - amino - 5 - OR - 1H - pyrazole - 4 - carboxylate . 
[ 0057 ] Concerning poly 3 - amino - 5 - nitro - 1H - pyrazole - 4 
carboxylate , a first preparation entails the direct nitration of 
poly 3 - amino - 1H - pyrazole - 4 - carboxylate . There are several 
nitration methods to achieve the replacement of the hydro 
gen . The medium required to perform the transformation 
without destruction of the polymer chain is a function the 
concentration of nitronium cation and other factors ( tem 
perature , solvent media ) . Examples of increasingly strong 
media are ( i ) nitric acid ( 70 % ) , ( ii ) nitric acid ( 99 % ) , ( iii ) 
acetic anhydride and nitric acid , ( iv ) sulfuric acid and nitric 
acid , and ( v ) sulfuric acid , oleum , and nitric acid . This wide 
range of nitrating conditions , with modifications , allows for 
the product . A second preparation involves the direct nitro 
sation / oxidation of Poly 3 - amino - 1H - pyrazole - 4 - carboxy 
late . The nitrosation reaction is very mild . Employing 
NaNO , in acid media replaces the 1 - H with nitroso moiety 
ANO ) . This C — NO is the easily oxidized with HNO3 to 
yield the product . A third preparation entails the oxidation of 
poly 3 , 5 - diamino - 1H - pyrazole - 4 - carboxylate . The 5 - NH , 
moiety oxidized to 5 - NO , moiety by employing H2O2 ( 3 % 
10 % ) , or peroxide / acid media . 
[ 0058 ] Moreover , when the compound is not poly 
3 - amino - 1H - pyrazole - 4 - carboxylate , the compound might 
be prepared via the chemical derivatization of poly 3 - amino 
1H - pyrazole - 4 - carboxylate . 

or 

mite solution in water . The reaction is practically quantita 
tive , 1 : 1 molar ratio , 5 - position C - H on polymer and 
NaBro . 
[ 0051 ] Concerning poly 3 - amino - 5 - fluoro - 1H - pyrazole - 4 
carboxylate : poly 3 - amino - 1H - pyrazole - 4 - carboxylate of 
any chain length can be fluorinated via the Fowler process 
( CoFz and F2 ) . There are Electrochemical Fluorination 
methods ( Simons and Phillps methods ) also available to 
accomplish this facile fluorination . 
[ 0052 ] Concerning poly 3 - amino - 5 - iodo - 1H - pyrazole - 4 
carboxylate : poly 3 - amino - 1H - pyrazole - 4 - carboxylate of 
any chain length is reacted in 3 % -12.5 % Sodium Hypoiodite 
solution in water . The reaction is practically quantitative , 1 : 1 
molar ratio , 5 - position C — H on polymer and Nalo . 
[ 0053 ] Concerning poly 3 , 5 - diamino - 1H - pyrazole - 4 - car 
boxylate , in general a synthesis can be accomplished via 
direct amination by replacement of the halogens ( CI , Br , I ) 
in the 5 - positions of starting compounds . In one preparation , 
poly 3 - amino - 5 - chloro - 1H - pyrazole - 4 - carboxylate , or poly 
3 - amino - 5 - bromo - 1H - pyrazole - 4 - carboxylate , poly 
3 - amino - 5 - iodo - 1H - pyrazole - 4 - carboxylate , of any chain 
length , is reacted with NH4OH in aqueous media to yield the 
product , poly 3 , 5 - diamino - 1H - pyrazole - 4 - carboxylate . In 
another preparation , poly 3 - amino - 5 - chloro - 1H - pyrazole - 4 
carboxylate , or poly 3 - amino - 5 - bromo - 1H - pyrazole - 4 - car 
boxylate , or poly 3 - amino - 5 - iodo - 1H - pyrazole - 4 - carboxy 
late , of any chain length , is reacted with anhydrous ammonia 
( 2-4 atmospheres ) to yield the product , poly 3 , 5 - diamino 
1H - pyrazole - 4 - carboxylate . 
[ 0054 ] Concerning poly 3 - amino - 5 - NHR -1H - pyrazole - 4 
carboxylate and poly 3 - amino - 5 - NR2-1H - pyrazole - 4 - car 
boxylate , in general a synthesis can be accomplished via 
direct amination by replacement of halogens ( Cl , Br , I ) in the 
5 - positions of starting compounds with aminated moiety . 
Poly 3 - amino - 5 - chloro - 1H - pyrazole - 4 - carboxylate , or poly 
3 - amino - 5 - bromo - 1H - pyrazole - 4 - carboxylate , poly 
3 - amino - 5 - iodo - 1H - pyrazole - 4 - carboxylate , of any chain 
length , is reacted with amine candidate ( NRH , or NR2H ) in 
either neat media or in aqueous media to yield the product 
( s ) , poly 3 - amino - 5 - NHR1-1H - pyrazole - 4 - carboxylate or 
poly 3 - amino - 5 - NR2-1H - pyrazole - 4 - carboxylate , as appro 
priate . 
[ 0055 ] Concerning poly 3 - amino - 5 - hydroxy - 1H - pyrazole 
4 - carboxylate , in general a synthesis can be accomplished 
via direct hydroxylation by replacement of halogens ( C1 , Br , 
I ) in the 5 - positions of starting compounds with hydroxyl 
moiety . Poly 3 - amino - 5 - chloro - 1H - pyrazole - 4 - carboxylate , 
or poly 3 - amino - 5 - bromo - 1H - pyrazole - 4 - carboxylate , or 
poly 3 - amino - 5 - iodo - 1H - pyrazole - 4 - carboxylate , of any 
chain length , is reacted with hydroxyl base media ( NaOH , 
LiOH , KOH , aqueous ) at concentration ranging from 0.1 to 
10 molar to yield the product , poly 3 - amino - 5 - hydroxy - 1H 
pyrazole - 4 - carboxylate 
[ 0056 ] Concerning poly 3 - amino - 5 - OR - 1H - pyrazole - 4 
carboxylate ( R = alkyl , aromatic ) , in general a synthesis can 
be accomplished via replacement of the halogens ( C1 , Br , I ) 
in the 5 - positions of starting compounds with RO- moiety . 
Poly 3 - amino - 5 - chloro - 1H - pyrazole - 4 - carboxylate , or poly 
3 - amino - 5 - bromo - 1H - pyrazole - 4 - carboxylate , poly 
3 - amino - 5 - iodo - 1H - pyrazole - 4 - carboxylate , of any chain 
length , is reacted in a media of Na + alkoxide ( Na + RO- ) in 
an appropriate conjugate acid , alkyl - OH solvent . Wherein 
Nat can be substituted by either K + , Lit and R can be 
methyl , ethyl , propyl , other alkyl moiety , and any deriva 

Advantages 
[ 0059 ] Polyamide 1 has an electrical conductivity that 
enables it to be useful in a variety of applications , and has 
a high stability towards thermal decomposition . In contrast , 
other commercially available conducting polymers are far 
less thermally stable . It is formed in a simple one - step 
synthesis with yields as high as 90 % . Molecular modeling 
indicates that Polyamide 1 is capable of assembling into 
extended hydrogen - bonding structures ( FIG . 19 ) . This sug 
gests that the material , if processed correctly , will have a 
high mechanical strength in addition to its conductivity and 
thermal stability . 

or 

Concluding Remarks 
[ 0060 ] All documents mentioned herein are hereby incor 
porated by reference for the purpose of disclosing and 
describing the particular materials and methodologies for 
which the document was cited . 
[ 0061 ] Although the present invention has been described 
in connection with preferred embodiments thereof , it will be 
appreciated by those skilled in the art that additions , dele 
tions , modifications , and substitutions not specifically 
described may be made without departing from the spirit and 
scope of the invention . Terminology used herein should not 
be construed as being “ means - plus - function " language 
unless the term “ means ” is expressly used in association 
therewith . 
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1. A material comprising poly ( 3 - amino - 1H - pyrazole - 4 
carboxylate ) . 

2. The material of claim 1 , wherein the poly ( 3 - amino 
1H - pyrazole - 4 - carboxylate ) has from 2 to 20 repeat units . 

3. A method of preparing poly ( 3 - amino - 1H - pyrazole - 4 
carboxylate ) comprising : 

reacting 3 - amino - 1H - pyrazole - 4 - carboxylate with 
aqueous solution of R1 hydroxide ; then 

adding R2 persulfate ; and then 
allowing a reaction to form a product comprising poly ( 3 

amino - 1H - pyrazole - 4 - carboxylate ) , 
wherein R1 denotes one singly charged cation and R2 

denotes either ( a ) two singly charged cations or ( b ) one 
doubly charged cation . 

4. The method of claim 3 , wherein said R1 hydroxide is 
potassium hydroxide and said R2 persulfate is sodium 
persulfate . 

5. The method of claim 3 , wherein said R1 hydroxide is 
potassium hydroxide and said R2 persulfate is copper per 
sulfate . 

6. The method of claim 3 , further comprising extraction of 
the product with a non - aqueous solvent . 

7. The method of claim 6 , wherein the non - aqueous 
solvent is N - methyl pyrrolidone . 

8. A method of preparing poly ( 3 - amino - 1H - pyrazole - 4 
carboxylate ) comprising : 

allowing 3 - amino - 1H - pyrazole - 4 - carboxylate to polym 
erize via a condensation reaction in the absence of 
stoichiometric oxidant , thereby obtaining poly ( 3 
amino - 1H - pyrazole - 4 - carboxylate ) . 

9. The method of claim 8 , conducted in a non - aqueous 
solvent . 

10. The method of claim 9 , further comprising the use of 
a thermally activated initiator suitable for use in non 
aqueous solvents . 

11. A material comprising a compound selected from the 
group consisting of poly 3 - amino - 1H - pyrazole - 4 - carboxy 
late , poly 3 - amino - 5 - chloro - 1H - pyrazole - 4 - carboxylate , 
poly 3 - amino - 5 - bromo - 1H - pyrazole - 4 - carboxylate , poly 
3 - amino - 5 - fluoro - 1H - pyrazole - 4 - carboxylate , poly 
3 - amino - 5 - iodo - 1H - pyrazole - 4 - carboxylate , poly 3,5 - di 
amino - 1H - pyrazole - 4 - carboxylate , poly 3 - amino - 5 - NHR - 
1H - pyrazole - 4 - carboxylate , poly 3 - amino - 5 - NR2-1H - pyra 

zole - 4 - carboxylate , poly 3 - amino - 5 - hydroxy - 1H - pyrazole 
4 - carboxylate , and poly 3 - amino - 5 - OR - 1H - pyrazole - 4 
carboxylate ( R = alkyl , aromatic ) . 

12. The material of claim 11 , wherein said compound 
comprises from 2 to 20 repeat units . 

13. A method of preparing the material of claim 11 , 
comprising : 

reacting a suitable starting material with an aqueous 
solution of R1 hydroxide ; then 

adding R2 persulfate ; and then 
allowing a reaction to form said a product comprising said 

material , 
wherein R1 denotes one singly charged cation and R2 

denotes either ( a ) two singly charged cations or ( b ) one 
doubly charged cation . 

14. The method of claim 13 , wherein said suitable starting 
material is selected from the group consisting of 3 - amino 
1H - pyrazole - 4 - carboxylate , 3 - amino - 5 - chloro - 1H - pyrazole 
4 - carboxylate , 3 - amino - 5 - bromo - 1H - pyrazole - 4 - carboxy 
late , 3 - amino - 5 - fluoro - 1H - pyrazole - 4 - carboxylate , 
3 - amino - 5 - iodo - 1H - pyrazole - 4 - carboxylate , 3 , 5 - diamino 
1H - pyrazole - 4 - carboxylate , 3 - amino - 5 - NHR1-1H - pyra 
zole - 4 - carboxylate , 3 - amino - 5 - NR2-1H - pyrazole - 4 - car 
boxylate , 3 - amino - 5 - hydroxy - 1H - pyrazole - 4 - carboxylate , 
and 3 - amino - 5 - OR - 1H - pyrazole - 4 - carboxylate , where 
R = alkyl and / aromatic . 

15. The method of claim 14 , further comprising the use of 
potassium hydroxide , sodium hydroxide , sodium persulfate , 
copper persulfate , 2,2'azobisisobutyronitrile , and / or a non 
aqueous solvent . 

16. A method of preparing the material of claim 11 , 
comprising : 

allowing a suitable starting material to polymerize via a 
condensation reaction in the absence of stoichiometric 
oxidant , thereby obtaining said material . 

17. The method of claim 16 , wherein said suitable starting 
material is selected from the group consisting of 3 - amino 
1H - pyrazole - 4 - carboxylate , 3 - amino - 5 - chloro - 1H - pyrazole 
4 - carboxylate , 3 - amino - 5 - bromo - 1H - pyrazole - 4 - carboxy 
late , 3 - amino - 5 - fluoro - 1H - pyrazole - 4 - carboxylate , 
3 - amino - 5 - iodo - 1H - pyrazole - 4 - carboxylate , 3 , 5 - diamino 
1H - pyrazole - 4 - carboxylate , 3 - amino - 5 - NHR1-1H - pyra 
zole - 4 - carboxylate , 3 - amino - 5 - NR2-1H - pyrazole - 4 - car 
boxylate , 3 - amino - 5 - hydroxy - 1H - pyrazole - 4 - carboxylate , 
and 3 - amino - 5 - OR - 1H - pyrazole - 4 - carboxylate , where 
R = alkyl and / aromatic . 

18. The method of claim 17 , further comprising the use of 
potassium hydroxide , sodium hydroxide , sodium persulfate , 
copper persulfate , 2 , 2'azobisisobutyronitrile , and / or a non 
aqueous solvent . 

19. A method of preparing the material of claim 11 , 
wherein said compound is not poly 3 - amino - 1H - pyrazole 

4 - carboxylate , and 
wherein the method comprises chemical derivatization of 

poly 3 - amino - 1H - pyrazole - 4 - carboxylate . 


