To all whom it may concern:

Be it known that I, Francis J. Moore, a citizen of the United States, residing at Minneapolis, in the county of Hennepin and State of Minnesota, have invented certain new and useful Improvements in Roof-Flashings and Jackets for Vent-Pipes; and I do hereby declare the following to be a full, clear, and exact description of the invention, such as will enable others skilled in the art to which it appertains to make and use the same.

My invention relates to improvements in roof flashings and jackets for vent pipes and the like; and, to this end, it consists of the novel devices and combinations of devices hereinafter described and defined in the claims.

In the accompanying drawings, which illustrate the invention, like characters indicate like parts throughout the several views:

Referring to the drawings:

Fig. 1 is a perspective view of the improved flashing and lower section of the jacket;

Fig. 2 is a perspective view of the upper section of the jacket;

Fig. 3 is a view, partly in side elevation and partly in central vertical section of the upper section of the jacket and vent pipe to which it is applied;

Fig. 4 is a view corresponding to Fig. 3, with the exception that the vent pipe is temporarily sealed by a cap pressed into the flange of the jacket;

Fig. 5 is a view, partly in side elevation and partly in vertical section of the invention applied to a roof and vent pipe;

Fig. 6 is a detailed view in section taken on the line 6—6 of Fig. 5; and

Fig. 7 is a fragmentary perspective view, illustrating a slightly modified form of the flashing.

The numeral 8 indicates a shingled pitch roof and the numeral 9 indicates a vent pipe projecting therethrough and thereabobe. Surrounding the vent pipe 9 and nailed to the roof 8, is a flashing 10 having soldered or otherwise rigidly secured thereto the lower section of a jacket 11 for said vent pipe. The upper section of the jacket 11 is telescoped over the upper end portion of the lower section of said jacket to afford a slip joint.

Soldered to the upper end of the upper section of the jacket 11, is an annular clenching flange 12 of sheet lead or other relatively soft metal. The outer portion of the flange 12 closely fits around the hub of the vent pipe 9 and the intermediate portion thereof is curved inward over the top or upper end of said hub and supports the upper section of the jacket 11 therefrom. The inner portion of the flange 12 primarily projects inwardly and downwardly, as shown in Fig. 3, for a purpose that will presently appear.

As shown, the flashing 10 is formed from a single sheet of metal and, like the jacket 11, is preferably galvanized. The central portion of the flashing 10 is pressed upward and leaves at the top of said flashing a relatively wide flange and, at the sides and bottom thereof, relatively narrow flanges. The flanges of the flashing 10 rest directly upon the roof, while the central portion thereof is spaced thereabout and has a pitch that is comparatively flat with respect to the pitch of said flanges, or, in other words, the pitch of the roof.

The raised portion of the flashing 10 forms an unbroken continuation of its wide upper flange, and is connected to the side flanges by triangular side walls and to the front flange by a rectangular front wall. These three walls slope upwardly and inwardly, as best shown in Fig. 1. In bending the flashing from a single sheet of metal, gussets 13 are formed at the vertical corners, between the side and front walls of the flashing. The raised portion of the flashing is provided with an aperture, through which the vent pipe 9 projects, and surrounding this aperture and rigidly secured to the flashing, is the lower section of the jacket 11. In applying the flashing 10 to the roof 8, the wide upper flange thereof is inserted under one of the rows of shingles and the side flanges thereof are secured to the roof by nails 14.

It is important to note that the front flange of the flashing is entirely independent of the side flanges thereof, and, by pressing down upon the raised portion of the flashing, the side walls, side flanges, front wall and front flange will be spread, and thereby increase the pitch of the flashing and change the inclination of the jacket 11. The outer longitudinal edges of the front and side flanges are preferably curved slightly, so that they will freely slide on the roof in adjusting the flashing thereto. After the flashing is properly adjusted, the side flanges are secured in position by the nails 14.
When it is necessary to spread the front and side walls of the housing to secure the proper inclination of the jacket 11, the gussets 13 will open. On the other hand, when it is necessary to contract said side walls, the gussets will be flattened. The flashing, above described, can be very easily adjusted to roofs of different pitch to give the proper inclination to the connected jacket, without having to do any cutting or soldering. It is also evident that the flashing may be very easily and cheaply manufactured.

In the construction shown in Fig. 7, the gussets 13 are made from sheet lead, or other relatively soft metal, in order that the same may be easily bent, during the adjustment of the flashing.

For temporarily closing or sealing the upper end of the vent pipe, while the system is being tested to determine whether or not all joints are perfectly tight and that there are no leaks of any kind, a cap 15, preferably of pressed metal, with a conical upper end or top is inserted into the flange 12 and a downward pressure thereon will force said flange, which is of a soft material, on the internal wall of the vent pipe and seal the same. After the proper tests have been made, the cap may be removed and used on other work. It is, of course, understood that the cap must be removed to put the system in working order and the conical upper end thereof, which projects above the vent pipe, can be easily seen by a person standing on the ground, thus making it unnecessary to get up onto the roof to determine whether or not the cap has been removed.

What I claim is:

1. A combined flashing and vent pipe jacket, said jacket being rigidly secured to the flashing and said flashing being adjustable by bending to change the inclination of the jacket with respect to the flashing.

2. A combined flashing and vent pipe jacket, said jacket being secured to the flashing and said flashing having adjustable gussets for changing the inclination of the jacket.

3. A flashing having an upwardly extended central portion, a vent pipe jacket secured to said central portion of the flashing, certain portions of the central portion of the flashing adapted to be folded to adjust the flashing and thereby changing the inclination of the jacket.

4. An inclined flashing having an upwardly extended central portion with a flatter pitch than said flashing, a vent pipe jacket secured to said central portion of the flashing, the vertical corners of said central portion of the flashing adapted to be folded to change the inclination of the central portion of the flashing.

5. An inclined flashing formed from a single sheet of metal having an upwardly pressed central portion with a flatter pitch than said flashing, a vent pipe jacket secured to said portion of the flashing, the vertical corners of said central portion of the flashing adapted to be folded to change the inclination of the central portion of the flashing.

In testimony whereof I affix my signature in presence of two witnesses.

FRANCIS J. MOORE.

Witnesses:

Harry D. Klegore,
Eva E. König.

Copies of this patent may be obtained for five cents each, by addressing the "Commissioner of Patents, Washington, D.C."