The device provides flotation support while thermally insulating a beverage container. The device is adjustable to prevent tilting or capsizing as the liquid level changes inside the beverage container.
Beverage Container Flotation Device

FIG. 1

10 Beverage Container
30 Flotation Sleeve
20 Insulating Cylinder
Beverage Container Flotation Device

FIG. 2
Beverage Container
Flotation Device
Cross Section AA
FIG. 3
30 Flotation Sleeve

Flotation Sleeve

FIG. 4
FLOAT-N-DRINK

BACKGROUND OF THE INVENTION

[0001] A favorite form of personal recreation is swimming or lounging in swimming pools, lakes, rivers, the sea and other bodies of water. During this activity it is often desired to drink a beverage from a container. The ability to allow the beverage container to float near the person without capsizing is highly desirable.

<table>
<thead>
<tr>
<th>Reference cited: Date</th>
<th>Date of invention</th>
<th>Inventor</th>
<th>current U.S. class</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,831,209 Aug. 27, 1974</td>
<td>Clingman</td>
<td>441/136</td>
<td></td>
</tr>
<tr>
<td>4,571,594 Apr. 13, 1984</td>
<td>Kiss, James</td>
<td>441/1</td>
<td></td>
</tr>
<tr>
<td>2,093,839 Aug. 27, 1957</td>
<td>Mosley, Z. T.</td>
<td>441/131</td>
<td></td>
</tr>
<tr>
<td>3,367,525 Feb. 6, 1968</td>
<td>Elder, C. L.</td>
<td>220/560</td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY OF THE INVENTION

[0002] This invention provides stable floatation support and insulation for beverage containers in water environments. The container may be metal, as in typical beer or soda cans, plastic bottles, glass bottles and the like that fit into the floatation device. The beverage with the floatation device can be picked up to drink and returned to the surface of the water as an entire unit without capsizing.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0003] Thermal insulating devices are readily available for beverage cans and bottles. They are often produced from foam type materials, which are made of materials with a lower specific gravity than water. Some known examples are cellular polystyrene and polyurethane foam. Polyurethane foam devices, sometimes called Koozies, can be extruded in a cylindrical shape that can fit around a beverage container primarily to provide insulation to keep the cans, bottles, etc. cool or hot as the case may be. An annular cylindrical disk can be added to this insulating cylinder to provide stable floatation. We define this disk as a floatation sleeve; item 30 in FIG. 1. The floatation sleeve can be produced from similar materials to the insulating cylinder.

[0004] FIG. 1 shows the isometric view of the beverage container floatation device.

[0005] FIG. 2 is a plan and side view of the beverage container floatation device.

[0006] FIG. 3 is a cross section AA view of the beverage container floatation device.

[0007] FIG. 4 is a plan and side view of the floatation sleeve.

[0008] In order to prevent capsizing, the sleeve 30 must be moved up or down axially as the level of the liquid in the beverage container 10 changes. For example, when the beverage container (10) is full, the sleeve must be located near the top of the insulating cylinder (20). As the beverage is consumed and the container becomes lighter, the floatation sleeve (30) must be relocated down along the insulating cylinder (10) to maintain stability in an upright position. This is accomplished by physically sliding the floatation sleeve (30) down the insulating cylinder (20) to a position that enables floating stability. The user will quickly gain skill in this action based on their first or second experience using the device. Calibration marks or physical location stops could be added to the insulating cylinder (20) to help facilitate the proper floatation sleeve (30) location.

[0009] The floatation sleeve (30) must be manufactured such that the sliding fit between the insulating cylinder (20) and the floatation sleeve (30) are tight enough to maintain the integrity of the assembly providing floatation. Proper material selection for rigidity, manufacturing tolerances, surface finish and other properties can be produced to provide proper function as described.

[0010] An important characteristic of this device is that the user can pick up the entire device, drink from the beverage container and put it back on the surface of the water without removing the beverage container (10) from the floatation device. Also, the entire unit remains stable when replaced to the water surface without capsizing or tilting.

[0011] The beverage container floatation device has been described above for purposes of illustration and is not intended to limit the configuration, implementation and/or scope of the present invention. Various modifications of this floatation device can become clear to persons having ordinary skills in this art. Such modifications are clearly covered hereby.

What I claim as my invention is:

1) A beverage container floatation device for supporting a beverage in a stable upright position in water comprised of an insulating cylinder around the container with a moveable floatation sleeve providing said stability from capsizing or tilting.

2) A beverage container floatation device in accordance with claim 1 where the floatation sleeve material is manufactured from polyurethane foam, cellular polystyrene or material with similar properties.

3) A beverage container floatation device in accordance with claim 1 where the floatation sleeve can be moved axially along the insulating cylinder to provide upright floatation stability for various levels of fill conditions in the beverage container.

4) The beverage container floatation device as in claim 3 with calibration marks printed, molded etc. on the insulating cylinder to indicate the proper location of the floatation sleeve corresponding to the fill level in the beverage container e.g. Full, ¾ full, ½ full, ¼ full etc.

5) A beverage container floatation device as in claim 3 with “raised” ribs or protrusions on the outside surface of the insulating cylinder that will mechanically locate the floatation sleeve. The ribs can be located for the full, ¾ full, ½ full, ¼ full, conditions as the beverage container as emptied.