6340 A2 I 00 D T 00 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

29 April 2004 (29.04.2004)

(10) International Publication Number

WO 2004/036340 A2

GO6F

(51) International Patent Classification’:

(21) International Application Number:
PCT/11.2003/000824

(22) International Filing Date: 12 October 2003 (12.10.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/419,594 21 October 2002 (21.10.2002) US

(71) Applicant: SUNGARD BUSINESS INTEGRATION
[TL/IL]; 3 Sapir St., 46852 Herzliya (IL).

(72) Inventors: BRONICKI, Youval, 34 Nurit St., 37830
Amikam (IL). BRANDES, Ofer; 11 Rashi St., 44373
Kfar-Saba (IL). RASKIN, Yishay; 16 Mark St., 67422
Tel-Aviv (IL). SHAKED, Yariv;, 30A Yehuda HaMacabi
St., 62005 Tel-Aviv (IL). SZEKELY, Smadar; 4
Avshalom Haviv St., 69495 Tel-Aviv (IL).

(74) Agent: LANGER, Edward; Shiboleth, Yisraeli, Roberts,
Zisman & CO., 46 Montefiore St., 65201 Tel-Aviv (IL).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
K7, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, 7ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: AMETHOD, A LANGUAGE AND A SYSTEM FOR THE DEFINITION AND IMPLEMENTATION OF SOFTWARE

SOLUTIONS

/— 1200

System

rlZlO

input
Adapter

Out,

/‘ 1260

Output
Adapter

€) (57) Abstract: A software development platform, used to develop software applications substantially free of the need to write code.
The platform includes a visualizable computer executable modeling language for the definition of software solutions. The platform
¥ also includes a visual modeling system comprising a visual modeling tool for users to develop software solutions using the model-
S ing language, and a runtime engine software program that automatically executes the defined software solutions. The visualizable
computer executable modeling language system enables defining each application by a set of: process models, each of which may
contain any number of sub process model; input and output slots; data models, each of which may contain any number of sub data
models; and flow rules applicable to connect pairs of slots, data models and sub-data models, thereby defining both data flow and
process flow, wherein the sets of process models, slots, data models and flow rules are arranged in a structural hierarchy conforming

=

to a set of rigid composition rules.

10

15

20

25

30

WO 2004/036340 PCT/IL2003/000824

A'METHOD, A LANGUAGE ANlD A SYSTEM FOR THE DEFINITION AND
IMPLEMENTATION OF SOFTWARE SOLUTIONS '

FIELD OF THE INVENTION

The present invention relates to methods and languages for developing software solutions.

More particularly, the p’reseht invention relates to a method, a language and a system for

‘substantially overcoming the need to write computer source code in order to develop software

applications.

BACKGROUND OF THE INVENTION
Originally computers utilized low level technical notation and encoding. Gradually, more
visually oriented and intuitive computer interfaces were developed. Such developments included

the video monitor, use of icons and object-orientation incorporated in Visual Basic, Visual C++ and

Jaxja. The development of graphical user interfaces for del/elopers began to reshape_tl)e
programming process.

The concept 4ofvan application framework means that programmers start with working
application code and basic user interface elements in 'place‘ Appilication development":frameworks
attempt to enable more SImplrﬂed processing of information through the various levels of computer
systems, so that application experts are not requrred to have programming skills in order to take a
significant role in the development process.

Objects are software components made up of data elements and functions to manipulate
these data elements. These can model VIrtually any real-world property of people computers and
systems, as well as abstract numbers and geometrical designs. Objects are often defined by

creating "classes" that define the structure and behavior of object.

Objects can be designed to hide, or encapsulate, all, or a portion of, their-internal data
structure and internal functions. Object oriented programming (OOP) also allows a programmer to
create an object that is a part of another object.

A common approach for software development is the use of modeling languages such as
the Unified lvlodellng Language (UML) for the design phase, and the use of source code of a hlgh~

10

15

- 20

25

30

WO 2004/036340 ' ' ’ PCT/1L.2003/000824

level computer language for writing the previously designed programs. This aoproach results ina
slow |mplementat|on process and suffers from maintenance problems due to the gap between the
descriptive nature of the modeling language used for the design and the language required for the
programming, where source code is used. .In addltlon currently known modeling languages, such
“as UML, are themselves very compllcated languages the learning and mastenng of which takes a

very long tlme

Another alternative is the use of distinct tools for the definition of process flows and for data
manipulation. According to this approach, different problems will be solved differently, by different

“tools. This approach results in high system complexity and maintenance problems resulting from the

seoaration of business logic across different systems. Typically, this hybrid appreach is not used to
compl_etely implement new systems, but rather provides a hybrid solution for integrating between
working systems. Integration. of the working systems is performed by automatic sequencing, i.e.
adding process logic invoking the working systems in a predefined order, and by providing data
transformations, i.e. data manipulation elements that translate messages and data structures from a

certain format to another.

Systems .for visually defining executable process logic have been around for years. - An
important class of such systems is Workflow Management systems. Workflow Management

systems began as systems for the management of manual work, and later evolved to handle

automatic processesA as well. Systems for visually defining executable data -manipulation logic have

also been around and have been used for application integration, e.g. mapping tools.

Recently, these two categories of Workflow and data manipulation have been converged into
a new category called Business Process Management (BPM). BPM systems typically embody the
aforementioned hybrid approach. The segregation that exists in these systems between the process

logic and the data manipulation logic actually makes them inadequate for creating applications from

. scratch. BPM systems are not meant for complete definition of new applications, but are rather used

for adding the “business process” layer on top of the “conventional” (hand-coded) applications.

Developments in the art include US Patent No. 5,850,548 by Williams, “System and
Methods for Visual Programming Based on a High-Level ‘Hierarchical Data Flow Model,” issued
December 15, 1998. The assignee is Borland, who launched one of the first PC development

SN

10

15

20.

25

30

WO 270.04/036340 ' A PCT/1L.2003/000824

environments, Turbo Pascé]®,. which made possible the commercial Adevelopr'n‘ent of PC

~ applications.

Accdrding to patent 5,850,548, a user constructs a program by selecting one or more
components from a library, which displays components in a tabbed palette. Using a visual editor df
the system, the user may drill-down into the internals of a component for modifying its logic. The
user connects various components via the component "ports”, which allow access to properties of

the component. Components of the systemA may be nested within other components to an arbitrafy

~level. Thus, high-level component manipulations are performéd “visually,” as illustrated in Figs 1-

9B. However, detailed manipulations are achieved through standard programming techniques, as V
illustrated in Figs. 10A-25B. The user must be a skilled progfammer, as well as an application
expert. ' ‘

US Patent No. 6,282,699 by Zhang et al, “Code Node for a Graphical Programming System
Which Invokes Execution -of Textual Code,” is also a hybrid visual/programming. tool, wherein the
graphibal program is operable to invbke execution of textual code. US Patent No. 6,138,273 by .
Sturges, “Programmable Interpretive Virtual Machine,” discloses an interpreter for a linear command

stream. No visual application development is provided.

US20020138819A1 patent application by Hills, “Computer Programming Language to
Describe and Encapsulate a Computer as a Set of Classes and Objects,” that describ'és" an object-
oriented programming language method, encapsulates the structure and behavior of all software-
visible objects making up a digital computer, as well as any abstract object normally described by
an object-oriented programming language. The language disclosed is also a visual/programming
hybrid.

US Patent No. 6,233,537 by Gryphon et al., “Workflow model language,” issued May 15,
2001, discloses a modeling system for the visual presentation(of business applications. It describes
a systematic methodology for describing the business logic of systems by a visual modeling
language capable of representing elements of the application in progressively finer levels of detail.
The language disclosed is meant to serve multiple people specifying and designing together the
functionality of a software system, and the design-components can be visualized using drawing
tools like VISIO or by d'rawing diagrams manually. Patent 6,233,537, however; does not eliminate

the need to implement the designed application, although it claims to describe business processes ‘

(93]

- 10

15

20

25

30

WO 2004/036340 ~ PCT/IL2003/000824

and business information in enough detail to-construct a software implementation of a business

~model, if desired.

e

‘ Therefore, there is a néed for a system and a method that overcomes the limitations of the

prior art, and provides for substantial replacement of the need to write source code.

~ SUMMARY OF THE INVENTION

Accordingly, it is a principal objéct of the present invention to overcome the limitations of prior

" art and provide a method and a system that substantially replace the writing of source code for '

developing software applications, and to achieve real visualization of the sdlution itself.

It is still a further object of the present invention that instead of writing code, a model is
created by the developer, wherein the model includes substantially everything needed. for defining
the application in adequately precise terms. . h

It is a further object of the present invention that the visualizable computer executable

-~ modeling language used to define software solutions, hereinafter referred to as thé modeling

, 'Ianguage, is easy to learn relative to currently knpwn object-oriented modeling languages such as

Unified Modeling Language (UML).

It is one further object of the present invention that no further coding is required once the

solution is visually defined by the modeling Tanguage, wherein the language is rich enough and

* precise enough for a computer to execute an application model that is created using a computer

with the appropriate graphic user interface (GUI).

It is one other object of the present invention that the modeling lénguage exists -
independently of any specific visualization.

10

15

20

25

30

WO 2004/036340 5 PCT/1L.2003/000824

It is one more object of the present invention that the modeling Alan‘guage is sufficiently

intuitive so that it can be understood by humans in a visual manner.

It is yet another objéct of the bresent invention that the modeling language supports ‘the
existence of hierarchical data structures within processes, allowing for direct access of each of the
elements and sub ‘elements of these data structures, without the need to retrieve the entire data

structure from the process to extract any specific desired element.

It is yet a further objéct of the present invention that any flow rule of the modeling language
may represent both data flow and process flow simultaneously. '

A software development platform is disclosed,” which is used to .dévelop ‘Softwaré
applications. substantially free of the need to write code. The platform includes a visualizable
computer executable modeling language system for fhe definition of software solutions. The
platform also includes a visual modeling environment for developing the software solutions Sy at

‘least one user, and a runtime engine software program that automatically executes.the software
solutions at runtime.

The system of the present invention enables a user to easily and intuitively visually define
systems and processes that comprise software solutions otherwise characterized by system .
analysts and then implemented by professional software programmers, laboriously writing numerous
lines of source code in one of the known high level brograhming languages, such as Java, C++, C,
Visual Basic, etc. lnstéad, according to the present invention, the user visually defines the software
solutions in the modeling language by means of the modeling en\)ironment, which actually replaces -
the lengthy procedure of writing a computer program. To complete the cycle, the runtime engine of
the present invention executes the solution defined by means df the modeling language, thereby

automatically enabling computer execution.

Consequently, using the system of the present invention is cost and time effective in
comparison to the prior art since it actually replaces the need of commercial companies to address
software houses or other companies that provide unique solutions to unique problems. Instead, the
users of the system of the present invention actually have a “tool" for defining solutions for numerous
problems and. needs from a \)ariety of fields. The user of the system of the present invention does

not need to be someone of special skill in cdmputer programming or in any other field of computer

10

15

20

25

30

WO 2004/03634'0 A o PCT/1L.2003/000824

science. Such a user will only have to undérgo brief tutoring of approximately two weeks time, in

which the user will 1earn how to operate and utilize the system of the present invention.

The method used for creating software solutions in accordance with the present invention

comprises specifically defining the required solution usingv the modeling language and executing the

~ modeling language definition by means of the runtime engine.

The modeling language can be used to define any nrocess, including processes that involve
human interaction. .l.e. such pfoceéses include tasks, the performance of which requires human
insight. The modeling language is most efficient when defining the details of automatic or semi

4 automatic data manlpulatlon processes, such as the processing of transactions in the financial

industry, supply chain processes such as orders management inventory management etc as well

as accounting processes, customer relationship processes, etc.

Modeling Language 4

The present invention is based on a wsuallzable computer executable modeling language
system for the definition and implementation of software solutions. The modeling language enables
a user to fully visually define software solutions. In a preferred embodiment, the visual method used
for developing the software solutions in accordance with the present -invention resembles a
combination of box diagrams and flow diagrams. The combination used gives an integrated view of
data flow and process flow. From Iboking at the diagrams one can learn both the path.in which data
flows, i.e., from where it originates and to which destination it goes, as well as the order of execution
of the various steps comprising the solution, i.e., which step is executed when. The combined
diagram generated in accordance with the present invention defines precise and complete computer
executable semantics, ready to be executed bby the runtime engine. Other than defining and

implementing the solution by means of the modeling language, there is substantially no need to

- further implement the solution with conventional source coding.

In a preferred embodiment of the present invention the visual conventions of defining
solutions in the modeling language comprise boxes of various shapes representing processes, -
arrows representing flows, and tree structures representing data.

The modeling language follows the following rules:

10

15

20

25

WO 2004/036340 . ‘ PCT/1L.2003/000824

Processes may contain sub-processes;

Sub-processes can be repetitive. They are called for more than one time during the
execution of the parent process. If a sub-process is repetitive, an instance thereof is created every

time the parent process calls for its exeéution;

Slots are logical ports representing the:inputs and outputs of a process. Each s'lot'has a
type that indicates the type of data that can be received és input or sent as output. Each' process
can have no slots at all, at least one input slot, at least one exit slot, or both input and exit slots,
depending on the process’ nature; , ‘ i '

Processes can receive input through input slots and sénd raw or processed data through
exit slots. In the context of a composite process, data can be transmitted through flows from an exit
slot of one sub;process to the input slot of another, from.an input slot of the parent process to an
input slot of one of its sub-processes, or from an exit slof of one of its sub-processes to an exit slot -

of the parent process;

There are two kinds of input slots; triggers and asynchronous iknput slots. Triggers are used
for the purpose of receiving data before a process starts, whereas asynchronous input slots are

used for the purpose of receiving data during the execution of a process, i.e. after its initiéti.on;

Input and exit slots that have no specified tybe are referred to as empty slots. Empty slots
are used for communication between the processes when no actual data is sent, simply

communicating timing information to synchronize the initiation of processes;

Input data sent to an input slot of a process can be divided into two kinds, mandatory and
optional. A process that requires mandatory data for its initiation does not start before all mandatory
input data is received;

A process terminates when it can no longer perform any work or when data is sent through
an exit slot of the process that is marked as ‘terminating;’

10

15

20

25

30

WO 2004/036340 PCT/1L.2003/000824

The existence of hierarchical data tree structures within processes is supported, including
control of the order of components, selection between alternative components, multiple occurrences
of components, etc; ' '

A process can directly access each of the elements.and sub elements on any level of a data
tree located within the process. If a certain data element in any level of a data tree structure situated
within a process is 'required, one does not have to retrieve the entire data tree from the process and
only then extract the specific desired element from the data tree. According to the present invention,

it is possible to access and use the desired data element directly; and

Flow arrows are used to represent both data flow and process flow on the same diagram. A

flow defines the order of execution of processes, the transition of data between processes, or both.

The modeling environment is one of the means by which the visual representation of modeling

language models can be viewed. As aforementioned, definition of a software solution is performed
by a user of the modeling environment using only the visual repres'entaﬁon of the modeling
language. Models of the modeling language also have textual representations, e.g. as Extensible
Markup Language (XML) documents. This textual representation can be‘ used to store models in

computer files, for manipulation by the molding environment and for execution by the runtime
engine. -

Modeling Environment '

The following section summarizes the modeling en\(ironment for defining and implementing
software solutions defined in the modeling language, the second major element of the present
invention. '

The modeling environment comprises three main components: é Graphical User Interface
(GUI) tool, or “Modeling Tool,” which enables a user to visually create “models,” which are modeling
language definitions of the components of the developed solutions; a "Knowledge Base” consisting
of a repository of models; and the runtime engine that intefprets modeling language models and
executes the solution they define. The runtime engine allows users of the modeling tool to test their

models as part of the solution development process.

10

WO 2004/036340 PCT/1L.2003/000824

Users of the modeling tool can display, create, modlfy or test modehng Ianguage models.
Users create and ‘edit models using various GUI operatlons such as creating new process or data
models. through menu operations, adding components to process or data models by dragging

‘models from palettes' of pre-existing models, modifying attributeé of models and of model

components, etc. ' The modeling tool prevents the user from creating models that are inconsistent

with the restrictions of the modeling language.

The Knowledge Base is a repository of formal répresentations of models that are provided by
third parties or developed by the users of the modeling tool. The formal representation of a model

should contain all the details of the model, to enable the modeling tool to retrieve thé modcl for

- further usage and to enable the runtime engine to execute it. In accordance with the preferred

15

20

- 25

30

embodiment of the present invention, XML based representations of models are used, but other

formal representations such as binary files or database records are possible as well. '

Runtime Engine
The following section briefly describes an exemplary embodiment of the runtime engine, the
third major element of the present invention. - '

The runtime engine comprises two main components:
An interpreter that is responsible for processing data accordmg o the Ioglc defined in

the models; and

A sche_duler that is responsible for activating the interpreter at the correct time.

Both the interpreter and the scheduler are written in Java, and are composed of various
classes. The interpreter and the scheduler can run within different threads in the same process in a
single Java Virtual Machine (JVM), or as separate processes, each with its own JVM. The
interpreter is the component responsible for the actual logic of the system." It receives input from
the environment, i.e. external systems, and enacts any processing defined in the model as read
from the model repository. The interpreter updates the state of processes in a run-time database
and performs external éctions, such as sending messages via the models' plug-ins. The scheduler

is an auxiliary component that monitors a schedule table and activates the interpreter when the time

~comes to perform a certain action.

WO 2004/036340 _ ‘ . PCT/1L.2003/000824

As an altérnative to the runtime engine, a code-generator may be used to generéte machine
or source code from the models. The code—generator produces code implementing the application
-exactly as modeled.

5 For better understand‘ing of the present invention and its componenté, the fdllowing is a
specification of an exemplary embodiment of the visualization of the modeling language, the

modeling environment and the runtime engine.

Additional featurés and advantages of the invention will become apparent from the following
10 drawings and description.

10

10

15

20

25

30

WO 2004/036340 7 4 ‘ PCT/1L.2003/000824

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of .the invention in regard to the embodiments thereof, reference
is made to the accompanying drawings and description, in which like numerals designate
corresponding elements or sections throughout, and in which: A

Fig. 1a is an exemplary schematic illustration of a data model, wherein data is composed of
data elements or fields, constructed in accordance with the principles of the present invention; -

Fig. 1b is an exemplary schematic illustration of a simple process model diagram, an atomic
action that concatenates two input strings and returns the result, constructed in aceordance with the
principles of the present invention; V

Fig. 2 is an exemplary schematic illustration of an atomic actton model that receives a string,

executes the a plug-in and eX|ts constructed in accordance W|th the principles of the present

_invention;

Fig. 3 is a schematic 1Ilustrat|on of a composnte process model that receives an lnput
concatenates two of its fields, and returns the result, constructed in accordance with the principles
of the present invention; A

Fig. 4 is an exemplary schematic illustration of a data manipulation process model, a
composite action model, which receives a message, parses it by invoking a sub-process and
retrieves some fields from the parsed message by involking a second sub-process, eoristructed in
accordance with the principles of the present invention, ' , ‘

Fig. 5 is a schematic 1llustrat|on of a composnte process model, which illustrates the use of
the Switch plug-in, constructed in accordance with the principles of the present invention;

Fig. 6 is an exemplary schematic illustration of an atomic action model‘ with a repetiti'ver
trigger through which it receives zero or more numbers, constructed in accordance with the
principles of the present invention, ‘

Fig. 7 is an exemplary schematic illustration of a repetitive action model whose instances
are triggered by instances of a repetitive data model, constructed in accordance with the principles
of the present invention;

Fig. 8 is a schematic tllustratlon of a system model, constructed in accordance with the
prmmples of the present invention;

Fig. 9 is an exemplary schematlc illustration of a small complete valld system model
composed of input and output adapters and a main process model, constructed- in accordance with
the principles of the prese'nt invention; ‘

11

10

15

20

25

30

WO 2004/036340 A PCT/1L.2003/000824

Fig. 10 is an exemplary schematic illustration of a typical asynchronous process model
composed of a main data element and three sub-processes, constructed in accordance with the -
principles of the present mventlon | A.

-Fig. 11 is an exemplary schematic illustration of the matching mechanlsm wherein a

rnessage is matched to an existing transactlon in the system, constructed in accordance with the

- . principles of the present invention;

Fig. 12 is an exemplary schematic illustration of a complete system model, constructed in
accordance with the principles of the present invention;

~ Fig. 13 is an exemplary schematic illustration of'exception handling, herein achieved by
modeling a special Fail exit and defining the flow from it, ‘constructedv_ in accordance with the
principles of the present invention; V

Fig. 14 .is an exemplary schematic illustration of a process model with main data
constructed in accordance with the principles of the present invention;

Fig. 15 is a schematic illustration of a test case, demonstrating a typical real llfe software |
problem, whose solution is to be modeled in accordance with the principles of the present invention;

t Fig. 16 is a screen-shot illustration of visual modeling tool, showing the zocom-in transition
from a top—levet model to an expanded display of one of its sub-models, constructed in accordance
with the principles of the present invention; ‘

Fig.16a is a ﬂow chart that partially describes the modeling of the Middle Office system of
Fig. 15, which can be carried out with the described series of modeling operations; .

Fig. 17 is a screen-shot illustration of a typical browser-based application, showing an
application that enables users to view the “interesting fi elds” of instances saved in an mstance
repository, constructed in accordance with the principles of the present lnventlon

Fig. 18 is a schematic block diagram of the architecture of a preferred embodiment of tne
run-time engine in an Enterprrse Java Beans (EJB) configuration, constructed m accordance with
the principles of the present lnventron

Fig. 19 is a schematic block dragram of the interpreter, constructed in accordance with the
prmClpIes of the present invention; and

Fig. 20 is a flowchart of the process execution algorithm, constructed in accordance with the .

principles of the present invention.

10

15

20

25

.30

WO 2004/036340 PCT/1L.2003/000824

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The invention will now be described in connection with certain preferred ,embodimenté with
reference to the folloWing illustrative figures so that it may be more fully ‘understood. References to
like numbers indicate like components in all of the figures. The elements of the invention are
described in increasing complexity in Figs. 1 thfough 14. However, to get an overview of the
invention, reference may be first made to Figs. 15, 16 and 16a, wherein a real life example best
illustrates the usage of the present invention for substantially replacing the writing of‘source code for
developing software applications. - |

The systém of the present invention can be described aé comprising three majdr elements: é
visua]izable co‘mpute‘r executable modéling language for the definition of software solutions; a
modeling environment for visually defining the software solutions in the mddeling language; and a
runtime engine that executes solutions defined in the modeling language. ' ‘

The term “visualizable” is used to denote a language that lends itself to having an intuitive
visual representation. Actually, the modeling language of the present invention has been designed
with the goal of enabling users to easily'understand visual diagrams of models in the language, and
the modeling tool extensively uses such diagrams. Nevertheless, the language itself does not
impose any specific visualizations, and the visualization can be modified and improved without any
change to the underlying language itself. The fnodeling language exists independently 6f any
specific visualization. ' ' ‘

Thus, the system of the present invention enables a user to easily and intuitively visually
define systems and processes that comprise software solutions otherwise characterized by system
analysts and .then implemented by professional software programmers, laboriously writing numerous
lines of source code in one of the known high level programming languages, such as Java, C++,VC,
Visual Basic, etc. By contrast, according to the present invention, the user visually defines the
software solutions in the modeling language by means of the modeling environment, which actuélly
replaces the lengthy procedure of writing a computer program. To complete the cycle, the runtime
engine of the present invention executes the solution defined by means of the modeling language,

thereby automaticaily enabling computer execution.

10

- 15

20

25

WO 2004/036340 ' PCT/1L.2003/000824

Modeling Language Usage

The modeling language provides means for describing business systems and processes. It

also provides a precise semantics, enabling execution of the systems and processes exactly as

defined by their models. The queling‘ language ‘has an intuitive visual representation that is
supportéd by the Modeling Tool and a formal, yet intuitive, textual, Extensive Markup Language
(XML)-based representation. The modeling language is designed to be user friendly and to solve

the main difficulties and complexities that have been encountered by prior art modeling Ianguages

The“mbdeling language consists of data.models and process models. Data models define
hierarchical structures, represented as tree structures of data. Process models, represented as

flow diagrams, define application logic and dynamic béhavior.

Process models can be composed of various elements: ‘proceé,s elements that represent

~ sub-processes; data elements that store information; slots that act as logical gates for sending and

. receiving information; and flow rules, or simply “flows,” thatAQOVern the flow of information and.

regulate the execution timing of sub-processes.
The basic semantics of the modeling-language is defined by the following rules:

Flows represent data transmission between processes, order of execution of sub-processes,
or both; ‘

Processes can receive and send data through slots. There are several kinds of slots:

Trigger (synchronous input slot) — a slot from which data is received before the procéss
starts. Trigger can be either mandatory or optional. A process can start only if all its mandatory
triggers have received data. A trigger can be repetitive, meaning that more than one data tree can
be received before the process starts; ‘

Asynchronous Input Slot — a slot from which data can be received only after the process has

- started. An asynchronous input slot can be repetitivé, meaning that a data tree can be received

several times while the process is executed;

Exit (output slot) ~ a slot from which data can be sent out. An‘ exit can be repetitive,
meaning that a data tree can be sent out several times while the process is executed. If an exit is
marked as 'terminating’ the process ends immedi‘ately after the exit is reached. A terminating exit
must not be repetitive because the first time the exit is reached the process ends; and

14

10 -

15

20

25

WO 2004/03§340 PCT/1L.2003/000824

Fail Exit — a slot that is used in case of a business exception. Fail is logically a special kind
of terminating exit, which means that if an exception occurs and the fail exit is reached, then the
process finishes; ‘

Data is transferred through flows. Flow connects between various types of sources and targets,

and each flow takes up one of the following combinations:
Source and target are both slots of any type;
Sourc:e is a slot and target is a node of a data model;
Source and target are both nodes of data models; and
Sourceis a node of data model and target is slot;

A process starts only after all its mandatory triggers have been charged. A Process ends -

" when it has nothing left to do, or when a terminating exit is charged or when a fail exit is charged;

A Process can be atomic or composite. A composite process contains one or more sub-
processes. An atomic process must not contain any sub-process;

An atomic process must have a plug-in, which is basically a piece of code implementing its

functionality, which is executed as part of the process’ execution; and

A sub-process can be marked as repetitive, in which case several instances of it may be

- created at runtime. An instance of the sub-process is ready to start when all its mandatory tnggers

have received thelr inputs. The same is true for a non—repetrtlve sub-process instance.

Trace Events enable techniques for debug and trace during runtime. Trace Events are a set

of logical events that are expected to occur during the execution of a top level model, i.e. a solution.

. Reference is now made to Fig. 1a, which is an exemplary schematic illustration of a data
model, wherein data is composed of data elements or fields, constructed in ‘accordance with the
principles of the present invention. Data models are used to represent pure data structures, e.g.
Trade Details 110, as well as formatted structures, e.g. SWIFT MT 541 (not shown in Fig. 1a) a

type of t" nancial messages defined by the rnternatronal SWIFT organization.

Data can be composed of data elements or fields. In Fig. 1a the fields of Trade Details 110
are: Date 111; Buy/Sell Indicator 112; Quantity 113; Price 114; and, Currency 115.

Fig. 1b is an exemplary schematic illustration of a simple process model diagrarn, an atomic

action named Concat, 150, that concatenates two input strings and returns the result, constructed in-

15

10

15

20

25

30

WO 2@04/036340 PCT/1L.2003/000824

accordance with the prrncrples of the present invention. . The process concatenates two data fi elds

received through its triggers (two input strlngs) In 1" 151 and 'ln 2' 152, and returns the result 'out’

through the single exit 160.

Triggers and exits, as well as other kinds of slots described below, have'a type int:licating the
type of data that can be received as input or sent as output through them. In Fig. 1b the type of all
three slots is String. String is one of the modeling language's built-in data models.

Processes are either synchronous (actions) or asynchronous. A Process of type Action

: represents a synchronous sequence of operations with well-defined beginning and end.

Action cannot receive inputs after it has started.

An Atomic process is a process whose behavior is implemented by way of plug-ins. A-
plug-in-is source code in a high-le\iel programming language. Atomic processes have'slots,' like -
any process, which are logical ports representing the inputs and outputs of the process, and at
least one plug -in. A plug-in implements predefined methods that support tne life cycle of a .
process, mcludmg, but not restncted to, Start, Resume, etc. -

-The modeling Ianguage has built-in plug-ins that support many basic operations, and users
can enrich the language by writing additional plug-ins for performing specific operations (e:g.
wrapping an existing function, written in a high-level programming language). Such plug-ins are
usually written by the user in the context of a specific solution. A

- Fig. 2 is an exemplary schematic illustration of tne‘ Log atomic action model 200 that
receives a string 210, executes the Log plug-in and exits at exit 220, constructed in accordance with
the principles of the present invention. Log can be implemented by several different plug-ins,

depending on the required. implementation. A simple Log plug-in receives a string and writes it to

‘ the log table. The action of writing a string to the log does not generate a meaningful output,

therefore no data is exposed through the Exit slot.

<

Fig. 3 is a schematic illustration of Handle_Header, 300, whioh is a composite process

model that receives an input In 305, concatenates two of its fields, Sender 311 and Receiver 312,
and returns the result output, constructed in accordance with the principles of the present invention.

" This composite process .model has one trigger (In), one exit (output), one sub-process

(Concat), one data element (Msg 1), and four flows. The composite process. transfers data to and

16

10

15

20

25

30

WO 2004/036340 PCT/1L.2003/000824

- from its sub-process, Coneat using flows. Flows are graphically repfesented by arrows. Flows

govern the transmission of data between sub-processes and data elements, and the order of

_ execution of sub- -processes within a process. The behaVIor of a composrte process is determlned

by the behavior of its sub-processes and the flows between them.

Handle_Header 300 receives its input and transfers it to an lntermedlate data element ‘Msg

1' 310. The Sender field 311 of the input message is then transferred to ‘In 1’ 321, which is one of

“the triggers of Concat 320, and the Receiver field 312 to ‘In 2' 322, which is the other trigger of

Concat 320.

After receiving its two mandatory trigger inputs, the action of Concat 320 is initiated. The
result of Concat 320 then flows through Out exit 330 to the exit output 340 of Handle_Header 300.
The data model thet is exposed ‘through Out exit 330 of Concat 320 and the data model that is
exposed through the output exit 340 of Handle_Header 300 should both be of the same type.A *

Fig. 4 is an exemplary sch‘ematic. illustration of the Handle Execution 400 data manipulation
process model, a composite action . model, which starts with handling a received message,
constructed in accordance with the principles of the present invention. Handle Execution 400
receives a string buffe} In 410 containing the received message, and sends it “as is” to a parsing
action called Parse Message 420. Parse Message 420 receives a strlng buffer ‘In 2' 422 (the text to
be parsed) and a data model ‘In 1" 421 (the text's format definition), and executes the parse plug -in
which parses the string buffer 422 based on the formatting mformatlon of the data model 421. The
output 423 of Parse Message 420 is a data tree message 432 containing the parsed data 431 (a

composite tree structure).

The result of the parse action is transferred to Extract Details 430. Extract Details actlon
430 retrieves the important information from the data tree Msg 432 into-a new compact data

structure Details 433 containing only those data fields that are needed for further use. Details 433

_is then outputted through exit 434, and then used to continue processing the trade after an Exit 405

from the Handle Execution process 400.

Fig. 5 is a schematic illustration of a composite process model, ‘Parse Full Message 500,
which illustrates the use of the Switch plug -in, and is composed of three atomic process models:

17

10

15

20

25

30

WO 2004/03634Q ' PCT/1L.2003/000824

~ Parse Incoming Msg’510, Switch 520, Parse MT100 530, and one composite process model:

Extract MT 540, constructed in accordance.with the principles of the present invention

The SW|tch plug in is used for directing an object to one of several optional paths, i.e. to
determine how a process continues. The Switch plug-in receives two input data models, oneb
representing a string and the other representing the object flowing through the process.. It chooses
the exit from which to expose the input object by comparing the mput string to the choice value of
each exit. If an exit with the same value is found, the object is exposed from it; otherwxse the object is
exposed from the default exit. ‘

The composite process model Parse Full Message . 500 has one trlgger ‘In 1" 505, from
which it receives a string buffer that is sent to Parse Incoming Msg 510, which receives the buffer
as Data 511 along with a data model Model 512 describing the structure of that buffer, and executes
the Parse plug-in. The result of the parse atomic action 513, containing the parsed data, is
transferréd to Extract MT action 540 as Parsed .Data 541. Extract MT composnte action 540
receives Parsed Data 541 and extracts pieces of information from it, i.e. the MT field content
exposed through exit MT 542 and the text block field content exposed through exit Text Block 543,

~ which are both transferred to Switch action 520.

" Switch atomic action 520 receives the string MT 521 and a second input Data 522, and
executes the Switch plug-in. Each exit slot of Switch action 520 has the special property Choice

Value. The Switch plug-in compares the value of input string MT 521 to the choice value of each

exit slot, If a match is found, e.g. with the choice value "MT100" of exit 523 or the choice value

. “MT202" of exit 524, the action exposes its input Data 522 through the matched exit; if not, the input

Data 522 is exposed through the ‘default’ exit 525. A single match is allowed, e.g. with ‘MT100"
523, in which case exposure is made to Data slot 531 of Parse MT100.

In this example the Flow arrows in Fig. 5 originate from the input slots themselves, and not
from one of the data tree nodes as in previous examples, meaning that the whole data object that

flows through the slot is transferred, whether it is a complex data structure or a leaf.

Fig. -6 is an exemplary schematic illustration of the Sum process model 600, which is an
atomic action, which receiVes zero or more numbers 610 through its. repetitive trigger 620 and

executes its plug-in, constructed in accordance with the principles of the present invention. A

“generic Sum plug-in calculates the sum of the numbers received. A repetitive trigger can be

mandatory, in which case one or more inputs must be received, or it can be optionél, in which case
0 or more inputs are expected. Since the trigger 620 of the Sum action 600 is optional, then even if

18

10

15

20

25

WO 2004/036340 PCT/1L.2003/000824

no input is recieix)ed, the Sum process is invoked and executed. In this case the Sum plug-in
returns ihe result ‘0", ‘ '

A repetltlve slot is a slot that can receive more than one mput instance at runtime. - The
repetitive nature of trigger 620 is represented in the diagram by muitiple CIrcIes overlapplng each
other. A Repetmve mput slot can be the target of a single flow that occurs a number of times, of
multiple flows, or of any combination of these. At runtime, a process wnth a single repetitive trigger

can start as soon as all flows that are targeted at the trigger, and should occur are f|n|shed

Fig. 7 is an exemplary schematlc illustration of the repetltlve action model Extract Allocatlon
Details, whose instances are triggered by instances of a repetitive data model, constructed in

accordance with the pnngnples of the present lnventlon. ,

Handle Allocation.700 is a composite action model that receives an input data model In 710,

which contains arepetition of Allocations 725. Allocations 725 are transferred, one by one, to

iinstances of the Extract Allocatlon Details 730, which is a repetitive action. The flow from Allocations

720 to the trigger 731 of the action Extract Allocation’ Details 730 occurs many times, according to-the

number of instances of Allocations 725. Each time the flow occurs, an ihstance of Allocations data

model 725 is transferred to a new instance of E)étract Allocation Details 730. A new instance of

Allocation Data 732 is then created per each instance of Extract Allocation Details 730.- This newly
created instance of Allocation Data 732 is sent through exit 733 of the current instance of Extract
Allocation Details 730 to exit 734 of the‘ parent process 730, thus the instance of Extract Allocation

Details 730 finishes. The repetitive nature of Extract Allocation Details 730 is represented in the
" diagram by multiple rectangles overlapping each other. '

Note that repetition is an attribute of a sub-process in a certain context. In other words, a

repetition is an atiribute of the “process element’, the ‘occurrence of a process model as a sub

_process model of a specific parent process model. In the exa_mble of Fig. 7, Extract Allocations

Details 730 is repetitive in the context of Handle Aliocation 700, but the same process model can

appear as sub process model in another context, not necessarily as repetitive.

19

10

15

20

25

30

WO 2004/036340 PCT/1L.2003/000824

Fig. 8 is a schematic |llustrat|cn of a system model, constructed in accordance with the

pnncxples of the present lnventlon A system is a contlnuous process with no trlggers and without

alife cycle ie., an “endless” daemon -

The system ‘Simple System 800 of Flg 8 is composed of only lnput and output adapters. l.e,
it only receives a message through the Input Adapter sub-process 810 and sends it out through the
Output Adapter sub-process 820. " Input Adapter 810 and Output Adapter 820 are atomic systems.

' Messages sent from Input Adapter 810 are received by Output Adapter 820 through the asynchronous

input slot In 821. Unlike triggers, asynchronous input can receive data while a process is alive and
running. ' A

Fig. 9 is an exemplary schematic illustration of a small complete valid system model

‘System’ 900 composed of an input adapter ‘input Adapter’ 910, an output adapter ‘Output Adapter’

. 920, and a main process model ‘Handle Message' 930, constructed in accordance with the

principles of the present invention.

A main process is a process which is a direct child of a system. Main processes must be
repetltlve because they receive an unpredictable amount of messages as time passes. Each

message triggers an instance of the main process and is processed by it. In fig. 9, each message

- coming from Input Adapter 910 invokes a new instance of process Handle Message -:930. Each

instance of Handle Message 930 exposes a new output, which is transferred to Qutput Adapter

920. This example does not contain’ exception handling, therefore if an exception occurs, for

.example, an incoming message fails parsing; then the runtime engihe’s default exception handling

takes place.

Fig. 10 is an exemplaty schematic illustration of a typical asynchronous process model

Trade 1000, composed of a main data element ‘Main Data’ 1005, comprising Trade Details 1008,

and three sub-processes, constructed in accordance with the principles of the present invention.

The three sub-processes are Initialize 1010, which initializes Trade Details 1008, Conﬁrm 1020,

‘which prepares confirmation details to cont" irm that the execution message has been received, and

Update Status 1030, which updates the trade status ln varlous phases during the llfecycle of the

trade.

10°

15

20

25

30

WO 2004/036340 4 PCT/1L.2003/000824

Update Status 1030 updates the status of the trade only ‘after a confirmation message is

received. Since a confirmation is likely to be received after Trade 1000 is started, an asynchronous

_input slot is preferably used for that purpose. An asynchronous input slot, e.g. slot 1040, is the only
" kind of slot that enables a process to receive data after it has started. Trade 1000 ﬁn‘ishes after

Update Status 1030 is finished.

The main data of a proces_e is identified with the process and contains information that is:
important for managing the data of the process and its sub-proceeses. The main data can be

directly accessed by the process itself or by any of its sub-processes.

Fig. 11 is an exemplary schematic illustration of a process model 1100 utlllzmg the matching |
mechanism wherein a message is matched to an eXIstlng transaction in the system constructed in
accordance with the principles of the present invention. A matching process is generally composed
of a Find, which is an atomic rsynchronous process, and Addressing, which is achieved by applying (
an addressing clause to an asynchronous input slot. .

In the process of matching, a message, e.g. a confirmation message, is matched to an
existing transaction in the system,'i.e. to an existing instance of an asynchronous process, which
represents a transaction. l4n Fig. 11 a confirmation message 1111 enters the Handle Confirmation
process 1110. Then some of its fields 1112 are used as triggers 1113 of the Find action 11:1"'5.

- Triggers 1113 of Find action 1115 are necessarily fields that were modeled as Interesting
Fields of the process model whose instances are searched (‘Trade’ in this case). Fields that are
marked as interesting are kept in the database in an efficient way. Using all or some of the trade’s
interesting fields, Find action 1115 can efficiently look for an existing matching trade. The output
‘One’ 1116 of Find action 1115 is the main data 1121 of the found instance of Trade 1120 (if multiple
instances are found, they are outputted through the other exit of Find, labeled ‘Many’). |

Handle Confirmation process 1110 uses output ‘One’ 1116 of Find action. 1115, and enriches
it with the status 1117 from.incoming confirmation message 1111. The output 1119 of the Handle
Confirmation process 1110 is therefore the Confirmation data 1118, which is composed of main data
11181 retrieved. by -Find 1115 and additional information 11182 from the input message.
Conﬁrma‘uon data 1118 is distributed to the matching instance, or instances, of Trade 1120 for the
usage of an Update Status action 1123, Wthh is a.sub-process of Trade 1120.

10

WO 2004/036340 PCT/1L.2003/000824

The way Confirmation data 1118 is distributed is through the asynchronous input slot 11A24 of
Trade 1120. Input slot 1124 has an Addressmg Clause attached to it, used as a matchmg condition
(or distribution condition). Each lnstance of the output 1118 lS dlstnbuted to a matchlng instance of
Trade 1120, selected according to the addressing clause. The snmplest distribution ' condition
compares one of the fields of the data object received through input slot 1124 to the correspondmg
field in the main data 1121 of Trade 1120: . If they match, the instance of Confirmation data 1118

goee through input slot 1124 and enters the matching instance of Trade 1120. As a result, the flow

from lnput slot 1124 is executed and triggers the Update Status action 1123, which’ updates the
trade status to indicate that a Conf rmation Message 1118 has been received.

As mentloned the matching mechamsm is using the ‘interesting fields’ mechanism. A data’

model can contain ‘interesting fields,” which are kept in the database and are associated wnth a

15

20

25

30

process. When a modeler marks a fi eld as interesting he/she must provide the name of the table

column in which the interesting field will be stored. Based on this lnformatlon the fields can later be

retrieved from the database and be queried. lnterestlng fields are mamly used for matching and

monitoring purposes.

Addressing Clause is an optional attribute of an asynchronous input slot. An addressing -
clause is composed of an SQL query. At runtime the query is executed, and if a matchnis'found, ie.
if the query has non-null resuits, the input is placed on the asynchronous input slot of each relevant

process instance. The input can be placed on the asynchronous input slots of 0 or more instances of

“the process, i.e. there may be 0 or more matches.

Fig. 12 is an exemplary schematic illustration of a comblete system model System’ 1200,
constructed in accordance with the principles of the present invention'. When an execution
message arrives at trigger 1221 through Input Adapter 1210, a new instance of the Switch process
1220 is created. The message exits through the Exec exit 1223 of Switch process 1220, and flows
1225 through the In trigger 1231 of ‘Handle Exec.’ process 1230. A new instance of ‘Handle Exec."
1230 is created. ‘Handle Exec.’ process 1230 exiracts the relevant data from the message and
sends it via the Flow 1235 to a new trade instance of the Trade process 1240. Then a trade

~ confirmation message |s created by the Generate Confirmation process 1250, and it is sent out via

Output Adapter 1260.

o]
[S8)

10 -

15

20

25

30

WO V2004/036340 7 PCT/1L.2003/000824

~ Later on, when a confirmation message‘ arrives trigger 1221 through Input Adapter 1210,

again a new instance of Switch pro;:eés 1220 is created. This time the message exits through' the
. Confirm exit 1224 of Switch action 1220, and flows 1226 to the ‘In’ trigger 1271 of the Handle

Confirmation process 1270. A new instance of Handle Confirmation process 1270 is created.
Handle anﬂrmati'on process 1270 looks for an existing instance of the Trade process 1240. If such
an instance is found, it is retrieved and sent out through exit 1273. It then flows 1275 to the

asynchronous input slot 1242 of Trade process 1240, and links to the relevant instance of Trade

process 1240. The relevant instance is chosen by the Addressing Clause, which is defined on the -

asynchronous input slot 1242 of Trade process 1240.

Fig. 13 is an exemplary schematic illustration of ekception handling within a process model
1300, herein achieved by modeling a special fail exit 1315, and defining the flow from it, constructed

in accordahce with the principles of the present invention. Fail exit 1315 of the Divide action 1310

_catches exceptions of pre-defined types, e.g. division by 0, which are considered as business

exceptions, and thereafter the modeler is free to model the required exception behavior. Fail exit
1315 triggers a Report Error action 1320. If a process does not have a fail exit, and an exception
occurs, the exception floats up to the nearest fail exit. If no fail exit is found, the runtime engine

catches the exception and executes a default exception handling.

Modeling Language Components .
With these examples in mind, it will now be easier to present the modeling language in a
more formal manner. R '

The modeling language, its components and its semantics are described in details, as per a
certain specific embodiments théreof, so that the reader cén easily grasp the full extent of the
language’s capabilities, but these details are not be understood as a limitation to the invention as
defined by the appended claims. '

The modeling language is composed of basic entities named Models, which contain two

“types of other entities named Elements and Attributes. '

~ Models are the basic entities in the modeling language. A‘mddel is the only entity in the

modeling language that can be an autonomic unit. l.e. the model is independent and hence

Q]
L

10

15

20

25

30

WO 2004/036340 PCT/1L.2003/000824

reusable as nan of one or more other models. Alternatively, a model may Aonly be a part of one -
another model, i.e. dependent. .A model can be atomic, i.e. have no sub-models, or can be
composite, i.e. have at least.one sub-model. -

There are two model types:

_process model; and

data model.

A model of any type has the foilowmg attributes: 1D; Type; Independent Structure; Plug -In.
Class Name; and Read- -Only.

. A model of any type has the following elements: Data Element; and GUI Parameters

" Elements are components of models.” A model’é seméntic is determined by the model type
as well as the model's elements and attributes. Elements are by definition non-reusable, that is
belong exclusively to the containing model. The. existing elements are: Process Element; Data

Element; Slot; Flow; and GUI Parameters. Each element» has. several 'pre—deﬁned attributes: Role;

Mandatory, which is applicable only to some kinds of slots; and Model.

An Attribute is an inherent characteristic of a model or an element. Any attribute is

composed of a name and a value.

There are two types of attributes‘: . _

a pre-defined attribute is an essential part of fthe entity to which it belongs; the“-‘set of pre-
defined attributes is constant, and a pre-defined attribute cannot be omitted; these attributes are
common to all entities of fhe same type; and

a user-defined attribute is an additional attribute édded by the user.

A process model is a hierarchical definition of a process. There are three types of process
models: , ’

Process model of type Action represents a synchronous sequence of operations with a well-
defined beginning and end; an action cannot receive inputs after it has started, i.e. an action may

, not have Slots of type Asynchronous Input;

An Asynchronous Process represents asynchronous sequence of .operations; an
asynchronous process may receive inputs during its lifecycle; an asynchronous nrqcess has no
constraints on the number and kind of Slots it may have; and

A Process model of type System represents a continuous process without a life cycle, i.e. it
has no beginning or end. It is an “endless” daemon'; a system has no triggers.
A Process model is composed of: ' |

24

10 -

15

20

25

30

WO 2004/036340 ' PCT/1L.2003/000824

- Slots: Triggers; Asynchronous Input Slots; Exits; Fail Exits;

Flows;

- Process Elements and

Data Elements: the data element of the process model's main data and data elements of

intermediate data, including constants used in the process.

Process Models of all types have the following pre-defined attributes: -

Type can have one of the foIlownng values correspondmg to the types of process models:

Actron Asynchronous Process or System

ID;_ '

Plug -In Class Name and

Structure which has two valid values in the context of Process Model:

Atomic indicates that the process model has no process elements; an atomic

. process must have a plug-In Class Name; and o

Composite indicates that the process model has one or more process elements.

There are several constraints on process models:
A process model may not have two elements with the same role, wherein role is unique in the

context of the parent model;

"A process model of type Actlon may contain process models of type Action only, |e not of

type Asynchronous Process and System

" A process model of type Asynchronous Process may contam process models of type

Asynchronous Process and Action, i.e., not of type System; ‘ ‘ '

A repetltlve process element, i.e., a process element whose Repetitive attribute has the value
‘true,’ may not refer to a process model that has a repetitive trigger; :

A repetitive process element must refer to a process model that has at least one mandatory
trigger; ' '

A process element that refers to a process model of type System is never repetitive;

If a process model has an explicit fail exit, it preferably is a source of at least one flow;

A process model of type System cannot contain a trigger; and ' |

An atomic process model must have a plug-in.

25

10

156

20

25

30

_ Selectron

WO 2004/036340 PCT/1L.2003/000824

A

A Data Model contains semantic and optionally syntactic details about a piece of information
that is expected to be used in a process. A data model is composed of Data Elements.
- A data model has the following pre-defined attributes: ' '
ID; ' '

Structure which may have one of the followmg values: Leaf Concatenatron Collection; and

Type which may have one of the following values Regular XML — if this data model also

- contains XML-formattmg information; Non-XML — if this data model contains non-XML, formatted

information; Character Group —~ if this data model represents a character group; and Structure — if -
this data model represents a structure; ' ‘
V|$|ble if thls data model contains interesting fi elds,
XML Node Type, which may have one of the following values Root Element XML
Declaration; DOCTYPE Declaration,
Initial Value — the actual value initially assigned to instances of this data model;
IsConstant — ‘true’ if the initial value represents a constant‘ value that cannot be changed
later; and ‘false’ otherwise, which is the default value; | ,
Format Descriptor — Definition of the way data mstances of this data model should be
formatted, .
Minimum Lengthll\llaxrmum Length — the minimum and maxrmum length in characters of
data instances of this data model; ‘
Character Group — a reference to a data model of type ‘Character Group defining the set of
characters that may appear in instances of this data model; and
Structure — a reference to a data model of type ‘Structure,’ defining the syntactical
characteristics of formatting data instances of this data model.
Two types of data models have a compulsory predetermined construction:
Data model of type ‘Character Group' — a leaf data model; and
Data model of type ‘Structure’ — contains data elements with the followmg roles:
Empty Field Policy;
Left Padding;
Right Padding; and -
Separator, which refers to a data model which contains data elements with

the following roles: Separator String; Separator Right Context; Is Right Context Negative; Separator
Left Context; and Is Right Left Negative. -)

26

10

15

20

25

30

the following values:

WO 2004/036340 PCT/IL2003/000824

Modeling Constraints on data models are as follows:
" Data Mode! of type Leaf cannot contain any data element, and therefore cannot
contain any other data model; and ' ’

Non Leaf Data Models may not have a constant value or initial value

There are two types of elements process elements and data elements.
A Process Element which describes the usage of a sub process model within a.

specific parent model, has the following attributes: Role; Repetltlve; and Model.

A Data Element, which describes the usage of a data model within a process model
or as a sub data model of a parent data model has the following attributes: Role,
Mandatory, Max Occurrences; and Min Occurrences. '

in addltlon, a data element has the follownng pre—deﬁned attributes, which are only
applicable to data elements of a process model, i.e. not to data elements of composite data

models:

Type indicates the usage of the data by the process. Type may have one of

Main indicates the main data of the process;'
lntermediate indicates intermediate data that the process uses; and
Parent indicates a reference to the main data of'the parent:process;
and ! .) '
Composition Method is the method‘ by which an instance of the data model is |
dlstrlbuted 1t may have one of the following values:
By Value — if a new instance should be created whose value is copied from

the source; and

By Reference ~ If only a reference to the source instance should be created.

Modeling constraints on Data Elements are as follows:
If a data element of a process model refers to a constant value data model, its Type must be

‘Intermediate.’

A process model may have a single Data Element of type ‘Main’ and as many data elements

“of type ‘Intermediate’ as required.

A Slot functions as a gate to a’ process. Through Slots, processes can receive or send data.
There are four kinds of Slots: ‘ o

10

15

20

25

30

WO 2004/036340 . PCT/1L.2003/000824

- An Asynchronous input-Slot is a slot from which a process cén receive input after it has
started; ' ' ' }

A Trigger is a slot from which a brocess can reéei\'/e inbut only before it starts. When a .
trigger is mandatory, the procesé cannot start before input actually arrives 'through the slot; ‘

" An Exit is a slot from which a process can send output at any time during its life-cycle. If the

. exit is ‘terminating, i.e., the Terminating attribute value is ‘true’, the process terminates immediately

after the exit is charged; and ‘

Fail Exit is a slot from which an output is sent in case-of an exception. A fail exit is a special
kind -of an exit, which means that the process terrhinates immediately after the output is sent
through a fail exit. ' | '

 Slots have the following attributes:
Role;) ,) _ ,
Model, describing the type of the data flowinxgﬂthrough the slot (the value is a Model ID);
IsRepetitive, which is an indication whether the slot is repetitive or not. A repetitive slot can be
the source or target of multiple flows, and thus can receive or send multiple inputs or outputs;
‘Mandatory, which is relevant for triggers only. as all other kinds of slots are 6ptional by
dAeﬁnition. ‘ , A .
It indicates whether the inbut received at the slot is mandatory for the process. If a trigger is
mandatory, the process will not start unless the input is received;)
| Choice Value, which is relevant for éxits only. When modeling a switch-like process, this
attribute defines for which value of the “choice expression” result the exit should be charged.
Addressing Clause, which is relevant only for asynchronous input slo“csvof a repetitive
process. It contains a query on the interesting fields of the process. At runtime, only instances

which match the query receive the data from the slot. If this attribute is null, all instances receive

. the. data; and

Terminating, which is relevant only for exits. It indicates if the process should terminate

4 immediately after the exit is charged. When this attribute is ‘false’,.the process proceeds with its

task and will finish after completing all tasks or reaching a terminating exit.

Modeling constraints on Slots are as follows:
Terminating exits, and specifically slots of type- Fail, may-not be repetitive;
. The ‘Modefl attribute of a slot can refer ohly to an independent data model. l.e., only
instances of independent data models can travel through slots; and A

28 -

10

15

20

25

30

WO 2004/036340 . PCT/1L.2003/000824

The ‘Model’ attribute of a slot may not refer to a data model \rvith a constant value.

. A Flow defines the order of execution of processes the transmlssmn of data between
processes and data trees, or both. Flows have the followmg pre-defined attributes: —
Source, which identifies the slot or the data element from which the flow orlglnates
Target, which identifies the slot or the data element to which the flow is targeted;
Casting, which enables casting of the actual type of an object preduced at the source
to the type expected at the target; and | ‘ '
: Behavior, which defines the way that the flowing data is to be assigned at its target |
Behavior may have one of the following values:

‘Replace is used if an instance alr'eady‘ exists at the target. The new instance

overrides it; * -

Update is used if an mstance already exists at the target. The new instance
updates eXIstmg values of data elements;

Enrich is used if an instance already exists at the target. The new instance

' enriches non-existing values of data elements, but does not change existing values; and

Accumulate is used if the target is a repetitive object. The new instance -
results in the creation of a new instance of the repetitive target object.

The tollowing is a description of all attributes, listed in alphabetical order:

Addressing Clause: Applicable to asynchronous input slots of a repetitive proeess. It is an
SQL query' used to select specific instances of the containing process model; A ‘

Behavior: Defines the way that data flowing through a flow is to be assigned in its target.
Behavior may have one of the following values: Update, the default value; Replace; Accumulate;. and

Enrich.. Behavior is applicable to each flow whose target is a data element;

Choice Value: An attribute of an exit. When modeling a switch process, Choice Value deﬁnes

the value of the “choice expression” result for which the exit should be charged. It is applicable to
exits; ‘

29

10.

15

20

25

-30

WO 2004/036340 o PCT/1L.2003/000824

Constant Value: Detr ines a f xed value for a data model in a specific context. It is appllcable toA
data elements

Dependent: Indicates a model that can only be used by exactly one model, its parent. It is

appl'icable to process models and data models;

Distribution Method: Defines the way data is being distributed at runtime: By Value, if the data

instance is copied and the target contains a copy of the original instance; By Reference, if the original

data instance is distributed and no copy is created, thus any change |n the target affects the original

data instance. ltis appllcable to data elements

Format Descriptor: Deflnes the way that data should be formatted using a pre-defined syntax

similar to the syntax used by the C function “printf”. It is applicable to data models

4 ID: The unique identifier of a model. It is applicable to both dependent and independent
models: - ’

‘ Independent: Indicates a model that can be used in more than one .context, i.e. it can be '

referred by zero, one or more models. Itis applicable to process models and datamodels;_

Mandatory: Indicates whether an instance of the element must exist at runtime. If an element

-is mandatory, an instance of it should appear in runtime as many times as indicated by the attributes

‘Min Occurrences’ and ‘Max Occurrences’. " It is applicable to process elements, data elements and

slots of type Trigger;

Max Length/Min. Length: Define the maximum/minimum length in characters of a data value.
It is applicable to data models;

Max Occurrences/Min Occurrences: Define the maximum/minimum number of times that ‘a

data element can be instantiated in a certain context. it is applicable to data elements;

Model: Refers to the Model 1D of a model (e.g. when a slot refers to' a data model defining
the type of data flowing through the slot or when a process element refers to a sub process model).”
Itis applicable to process elements, data elements and slots; B

10

15

20

25

30

WO 2004/036340 ' PCT/1L.2003/000824

o

Plug-In Class Name: The name of the class that implements the functlonahty of a plug-in. Itis
apphcable to atomlc process models; ' ‘

Role: The name that identifies an element m the context of the Model to which it belongs.
Elements of the same parent should have dlfferent roles l.e., the role is unique in the context of the

. parent model. It is applicable to slots, process elements and data elements;

" Source: Identifies a slot or a data element in the context of a process mode“l. It has a value of
the path to the component at which the flow starts. A path is a string 'consisting of a series of roles
separated by the character /. The path starts at the flow's parent model (the process medel
cohtaining the flow) and includes all the roles leading in the model’'s hierarchy to the actual object
from which the flow originetes. It is applicable toAflows; o ‘

Structure: Defines whether a model is atomic or composite. An atomic model is a model with

‘no sub models. Atomic models must have a Plug-In Class Name. A composite model is.e model

containing one or more model elements. Each sub model can be atomic or composite. Structure

-has different legal value according to the specific model type: data model structure may be

‘Selection’, ‘Concatenation’, ‘Collection’ or ‘Leaf’, while process model structure can be ‘Atomic” or
‘Composnte’ It is applicable to process models and data models;

Target: Identiﬁes a slot or a data element in the context of a process modei. I\t has a value of
the path to the component which is the destination of the flow. A -path is a string consisting of a
series of roles separated by the character ‘. The path starts at the flow’s parent model (the process
model ‘containing the flow) and includes all the roles Ieadihg in the model's hierarchy to the actual
object that is the target of the flow. it is applicable to flows;

Terminating: An attribute of an exit that indicates whether‘the use (or “charge”) of the exit
terminates the process or not. The value of the aftribute is either ‘true’ or ‘false’. The term
‘terminating exit’ is used to describe a slot of type Exit for which the value of the Terminating attribute
is 'true’. It is applicable to slots of type. Exit; and 4 ‘ V

10

15

20

25

30

WO 2004/936340 _ ~ PCT/IL2003/000824

TYpe: Defines a type for some of the modellng language entities, i.e., all'models and

‘elements. The value space of the Type aftribute depends on the model or element to which it

apolies. Itis épplicable to process models, data models, data elements and slots.

Th‘e following section summarizes the serhantlcs of the modeling language' As models are .
executed by the runtlme engine, the semantics of the modeling language is tlghtly connected with
the way the runtlme engine works. On one hand, the runtlme englne executes models exactly
according to the semantic defined as part of the specification of the modeling language. On the
other hand, the exact behavior of the runtime engine illustrates and helps understandmg precisely
the exact semantics of the modeling language. In some cases, the execution will be explained in
terms of Trace Events, which are logical events that occur during the execution of a.model by the
runtime engine. They help describing in a well-defined way the behavior at runtime and enable a

trace—based technique for debugging and tracing.the actual execution of models.

, TheAterm ‘processing step’, when referrlng to the execution of a specific instance of a
process model, describes a set of operations carried oot sequentially wlthoot an interrupt. One
processing step of an action (a’ “synchronous process”) is defined as all the operations executed ’
from its beginning, its Started event, to its end, its Finished event. This is a recursive definition:
Action A can be composed of many other actions B1, B2,..., Bn. Nevertheless, the duration of the
execution of action A is gne processing steo, which comprises n processing stepé""‘as its sub-
processes. Since an action cannot receive inputs after it starts, any action is always executed as a
single processlng step. The plug-in of an action, if there is one, must obey certain rules that make it

synchronous as well.

An asynchronous process, on the other hand, which is aAprocess that may reoelve inputs
after starting, can start and finish in one or more processing steps. One processing steo of an
asynchronous process is defined as all the operations executed from the beginning of the process,
its Started event, to its end, its Finished event, or until it returns control to its oarent process, e.g.
due to a Wait event. The Process resumes after it gets back control. ‘The next processing step is
from resuming the process until the process ends or until it returns control to its parent once again.

There is no limit to the number of processing steps for an asynchronous process.

A System represents a process that has no life cycle, ie, it is a daemon that has no

beginning or end. Systems have no triggers. A sub-system can never be repétitive.

10

15

20

25

30

WO 2004/036340 PCT/IL2003/000824

The set of processes thet define a solution has a common, top level, system process that is
typically called ‘Topology.' Therefore the topology system is the ancestor of all other systems and
processes in a given solution. Each'modeled solution is aesoéiated' with one topology. There is no
special‘attri'bute for topology, whose identity is derived from the solution strucfu‘ré, i.e. from the fact

that it is a top-level model activated directly by the runtime engine.

, A non-system process which is a direct child of a system is called a Main Process. There is
no special attribute for a main process. This characteristic is. derived ffom the solution structure,

i.e. from the fact that it is a direct child of a system.

The main data model of a main .process model can contain v‘interestihg fields’ information,
which means that the modeler can point out some, or all, data fields of the main data of such a

process to populate the columns of a table in the database associated with the instances of this

_ process model. The effect of marking a set of ﬁe'lds as ‘interesting fields’ is the creation of a table in

the database (one per" a main process model), where each ‘interesting field’ defines a column in the
table. During runtime, when an instance of the proeess model is stored, it creates a record in this
table, and the content of the ‘interesting fields' populates the corresponding fields in the database
record. Whenever an updated version of the instance is made persistent, the corresponding
database record gets updated accordingly. 7 '

Flows define the order of execution of sub-processes and/or the transmissieﬁf of objects
between sub-proceeses and between data trees. Flows create dependencies between the
elements of a process model and these dependencies determine the actual order of execution in
run-time. .A flow always refers to two objects, the source object and the target object. An object
flows from the source of a flow to its target. If it is an empty object, it means that the flow just
defines Dependency between the source ahd the target, but no actual transmission of data. -
Dependency is achieved by the fact that the source must be ready before the flow. occurs.

Therefore the source will be ready before the target.

A flow is not associated with a single trace event. . There are two events that describe a flow,
Start and Finish. Between these two events, there are other events, related directly to the flow. All
the events that occur between the Start event and the Finish event are part of the flow sequence. If

more than one flow is ready to start, the runtlme algorithm determines which flow will occur first.

A When the target of a flow is a data model, the flow can assign. a value to‘ the target in four
different ways, as defined by the value of the flow’s Behavior attribute: |

(%)
(V%)

10

15

20

25

30

WO 2004/036340 - PCT/IL2003/000824

, Update: If a value already exists in the target, then the value of the new instance updates'
the existing value. l.e. it changes the values of existing sub-objects and assigns new values

if missing in the existing instance. Existing values are not deleted fromthe target even if

they do not appear in the new instance. If a.value does not exist in the target, the new .

instance is copied to the target;

Replace: If a value already exists in the target, it is replaced with the new instance. If a
value does not exist in the target, the new instance is copied to the target; |
Enrich: If a value already exists in the target; it is enriched by the new instance l.e., the
parts of the target data object that are missing in ‘the existing instance are added, but
existing 1nformat|on is not updated/replaced. If a ‘value does not exist in the target, the new
. instance is copied to the target and ’
“Accumulate: If the target is a repetltlve object, the new instance results in creatlng another
instangce of the target object.
Notice that: .
Update and Replace are identical for a leaf target object;
Accumulateis relevant for repetitive target objects only; and
.Update, Replace and Enrich are not relevant for repetitive target objects, ‘because if there
~ are several instances of the repetitive object at runtime, a choice cannot be made as to |
which instance should be updated/replaced/enriched.

Normally the type of the model at the source and the type of the model at the. target of a

‘Flow are the same, and any differences will cause the model to be invalid. In some cases it is

useful to allow such differences. E.g., when the source provides an object which is of a sub-type of
the objects expected at the target, a flow declares that casting is allowed, no vatidation error occurs
during modeling, and at runtime the runtime engine will try to cast the actual type to the target type.
If the instance is actually an instance of the source model, then the casting will succeed. In any
other case a runtime exception will be thrown.

Slots are used as gates to processes. Through Slots, a process can receive or send data.

- In most cases, each slot is associated with a data model, which indicates the type of data that can

flow through the slot. However, there might be a slot with no data model. A Slot that has no data
model associated with it serves only to mdxcate dependenc:les and timing of a process, as the sub-
process containing the source of a flow must exit through that slot before the sub- -process
contalnlng the flow’ s target may start.

10

15

20

25

30

WO 2004/036340 - PCT/IL2003/000824

There are four kinds of Slots:.

A Trigger is a slot through which a Process receives data before it starts. If the trigger is '
mandatory, the process cannot start before the trigger is charged. ~ A trigger can be repetitive. A .
mandatory repetitive trigger means that at least one object should be received before the process

can start. An optional repetitive trigger means that zero or more objects can be received before the

process starts;

A Process is ready as soon as all of its mandatory triggers are charged. Once the process
starts, it cannot receive any data through any of its triggers; ‘

An asynchronous input slot is a slot rhrough which a process can receive data after it has |
started and before it finishes. No data can be received through an asynchronous input slot before
the process starts. Only ‘systems and 'asynchronous processes can have asynchronous input slots.

An asynchronous input slot can be repetitive. Thrs means that zero or more objects can be

received through this slot while the process is runnmg

An asynchronous process can reach a waiting state in which it has no more acrivities to do
until an asynchronous input slot is charged. The process ¢an resume as soon as an asynchronous
input slot is charged. '

Data can be sent through an asynchronous input slot of a repetitive process to a particular
instance of the process model, some of its instances, or all of them. The way to determine the

desired behavior is by using the ‘addressing clause’ attribute of the slot. This attribute contains a

'SQL query construct referring to the interesting fields of the process. If there is no- addressing

clause, all the instances will receive the data. In any other case, ohly the instances that match the
query will receive the data;

An Exit is a slot through which a process can send data. If an exit is. marked ‘terminating,” the
process terminates immediately when the exit is charged. At runtime, only one of the terminating exits
can be charged for each instance of the process model. A non-terminating exit can” be repetitive,
sending out multiple data objects; and

A Fail Exit is a special- kind of an exit. Exiting through a fail exit indicates that a business
exception has occurred during the lifecycle of the process. A

10

15

20

25

30

WO 2004/036340 ‘) PCT/1L.2003/000824

Process models can contain data using data elements. Data elements of a process are

used for two purposes: to hold the main data of the process; and to hold intermediate data that may .
A be used during the lifecycle of the process itself. - The main data element contains the core
information of the process. A process can access its parent's main data directly, without the need to

explicitly receive it through an input slot, using a data element that refers to the parent's main data.

| Fig. 14 is an exemplary schematic illustration of the Handle Message process modej 1400,
wherein Trade Details is the main data element, constructed in accordance with the principles of the

present invention. Inside Handle Message process model 1400, the type of the Trade Details

- element 1403 is ‘Main’. Inside the Extract Details sub-process 1410, the type of the Trade Details

element 1405 is ‘Parent’. - Inside the Update Status sub-process 1420, the type of Trade Details
element 1407 is ‘Parent’ and the type of the Status element 1425 is 'Intermediate.’ Intermediate
data elements contain transient information that is used during the lifecycle of the process.

Intermediate data is éccessible only by the process itself, not by its children.

The behavior of some process models is coded through plug-ins. An atomic process must

have a plug-in. There are two 'basic types of plug-ins: synchronous and asynchronous.

_ Synchronous plug-ins define the behavior of synchronous processes, and they are relatively simple,

as a single method implements the action's logic from start to end Asynchronous plug -ins define
the behavior of asynchronous processes. In an asynchronous plug in," each processrng step is
implemented as a method, which must return control to the caller without delay. If the process
needs to wait, it should signal the fact that it is waiting, but it may not call 'sleep' or other blocking

operations like waiting on queues, listening to sockets, etc.

For example, a Timer plug-in, when started, simply writes a request for wake-up at a certain
time and returns in a Waiting status. A special component, the scheduler, notifies the runtime
engine at the right time, indirectly invoking the timer's Resume method, which changes the atomic
action's status to Finished and returns control to the runtime engine or the parent process. When
the plug-in gets a call to reéume, it resumes and returns control to the calling process. A plug-in
may resume more than once, based on the number of inputs that the asynchronous process
receives, or the number of internal events to which the process listens to. | .

When a flow is invoked, the target element determines the way it réce{ives the flowing data

‘object. It can receive the object in one of the following ways:

10

15

20

25

30

WO 2004/036340 o ' PCT/1L.2003/000824

By Velue, wherein a new instance of the source object is created at the target and its‘value

is copied from the source instance. The main disadvantage of this method ie that many
_instances are created, which may require a lot of memory; and -

By Reference wherein the target refers to the source instance. The main nsk of this method

is that an instance of one process can change an object in the scope of many other

processes and affect all references to it.

The way a target receives an object is an attribute of the target element. For all applicable
elements there are defaults: :
* A Slot Element receives objects by reference;
A Main Data Element of a process model receives objects by value;
An intermediate Data Element receives objects by reference; and
Other Data Elements recelve objects by value.
Objects are created on demand. As soon as an object is requxred it is created, elther asa

new instance or as a reference to an existing instance.

Exception hahdling includes business exceptions and’ internal exceptions. A business

exception can be handled by modeling. Each process may have a fail exit which catches business

‘exceptions, allowing a modeler to model the process behavior in case of a business exception. if a

process does not have a fail exit, and a business exception occurs, the exception flda’E's up to the
process’ ancestors until a fail exit is found. If none of the ancestors has a fail exit, the runtime
engine treats the business exception as an internal exception. An internal exception is an exception
which is not handled by modeling. The Runtime Engine has a default behavior'for an internal
exception.

Data is information used by a process during its lifecycle. Data is represented by trees.
Data instances contain both semantic and syntactic information. Semantic informatien, e.g. the
type of data that is stored in a data Instance, is always required. Syntactic information is required
for the purpose of “parsing"l and"‘serializing" data objects, and hence needs to be specified only if

data is used as input to a parsing or a serialization process.

. A buffer is parsed based on its syntactic attributes, e.g. Format Descriptor, Separatbr,
Character Group, and field length attributes. The.result of the parsing process is a data tree that

10

15

- 20

25

30

WO 2004/036340 _ . PCT/1L.2003/000824

confains data instances for each field that exits in the buffer.. The parsing process is implemgnted
by a plug-in. ’

A data tree is serialized based on its syntactic attributes. The result of the serialization
process is a buffer that contains the concatenated data from all data-fields within the source data
tree. This data is formatted based on the data’s syntactic attributes, e.g. leading and trailing
padding and separators are added as réquifed. The serialization process is also implemented és a

plug-in.

| A Constant is a data object with a fixed, pre-defined, value. Constants have at least two
usages: - 4 » ' '
The constaht is é process data element, such that the constant is used as an intermediate
data object with a pre-defined value. This is a value that is determined and set at'modeling
time, rather than at runtime. In most cases this data will be used as the source for
assignments; and . ' ‘
The constant is a data element of a composite data obj'ect. Constants are needed to define
formats, such as tags in some typés of structured messages. The constant value is used by
the parsing plug-in when parsing an incoming message, comparing the actual content to an
"expected value, and by the serialization plug-in when serializing an instance of data, adding

the constant’s value to the serialized content at the proper places.

“There are some d‘ata models that have a compulsory predetermined construction, wherein a certain
type of data model contains some known data elements with known roles. The modeling language has
fwo such data types. Both are used to hold syntactic information about the format 'of the data as follows:
Data model of type ‘Character Group’ is a leaf data model whose constan{ value is a string
of characters, defining the set of characters that may appear in instances of data models.
applying this character group. A data model may have an attribute ‘Character Grodp' which
refers to the appropriafé character group model; ‘
Data model of type 'Structure’ is a collection of the foIIowinAg data elements:
A Data element with the role 'Empty Field Policy.” This refers to a leaf data model whose

‘ 'c'onstant value is one of the following strings: ‘Must Appeari’ ‘Must Not’Appear;’ and ‘Appear as

Place Holder;’ A
A Data element with the role ‘Left Padding.’ This refers to a leaf data model whose constant
value is a single character that is used as left padding; '

10

15

20

25.

30

- WO 2004/036340 N PCT/1L.2003/000824

A Data element w1th the role ‘Right F’addmg This refers to a leaf data model whose

' constant value is a single character that is used as right padding; and

A Data element with the role ‘Separator.” This refers to a composite data model that holds

- information regarding separators between data elements, containing the following elements:

A Data element with the role ‘Separator String.” This refers to a leaf data model
whose constant value is the separator; '

A Data element with the role ‘Separator Right Context.’ This refers to a leaf data
mode! whose constant value contains a etring that should appear after the separator, or, if
‘Is Right Context Negatlve should not appear after the separator; ‘

" A Data element with the role ‘s Right Context Negative'. This refers to leaf data
model whose constant value is one of the following: ‘true;’ and ‘false;’ '

A Data element with the role ‘Separator Leéft Context’. This refers to a leaf data
model whose constant value that contains a string that should appear before the separator,
or, if ‘Is Left Context Negative’, should not appear before the separator; and

A Data element with the role ‘Is Left Negative” This refers to a leaf data model

whose constant value is one of the following: ‘true;’ and ‘false.’

Modeling Environment '
"The following section describes the modeling environment for defining and |mplementlng

software solutions defined in the modeling language the second major element of ‘the present
invention. -

The modellng enwronment compnses three main components:
a Graphical User Interface (GUI) tool, or “Modeling Tool,” which enables a user to visually
" create models, which are modeling language definitions of the components of the
developed solutions; .
a "Knowledge Base” consisting of a repository of models saved in a formal representation.
" In accordance with the preferred embodiment of the present invention, XML based
representatlons of models are used, but other formal representations such as binary
files or database records are possible as well; and
a runtime engine that interprets modellng language models and executes the solution they
define. The runtime engine is the main component of the runtlme environment,
enabling the execution of modeling language models. When used as part of the

modeling environment, the runtime engine allows users of the modeling tool to test

10

15

20

25

30

WO 2004/036340 ‘ . PCT/1L.2003/000824

their models as part-of the solution deyelopment process. Alternatively, a code-

generator may be used to generate machine or source code from the models.

The workspace of the modeling tool is an “infinite drawing board” for displaying hierarchies of
two dimensional diagrams, which are graphical- representations of corresponding hierarchies of

modeling language models. In addition, the modeling tool includes several menus, palettes and

‘toolbars that support the operations the user can perform. Users of the modeling tool can display

. existing models or any component thereof, create neyv models, modify existing models or test

models.
The modellng tool -represents the entities comprising- the modellng Ianguage as follows:
process models are displayed as process diagrams, which are various two dimensional shapes, e.g.

rectangles, diamonds, triangles, circles, etc. Sub process models are similarly displayed as process

- diagrams, each contained within- the process dlagram of its' parent process ‘model. . Slots are

Adlsplayed as slot diagrams, which are various two-dimensional shapes, e.g. circles, trlangles etc,,

situated on the edges of the process diagrams. Data models are represented by data tress, which -
are hierarchical tree structures. Data elements that are parts of process models are represented. as
data trees within pfocess diagrams. Flow rules are represented as flow arrows, which are arrows
connecting source slots or data elements to target slots or data elements. |

The “infinite drawing board” notion implemented by the modeling tool allows a user te zoom
in and out from a currently displayed part of the hierarchy of diagrams to any desired diagram,
thereby displaying the details of any model or any sub-model thereof at any required level. By
focusing on a certain dlagram the corresponding underlymg model component becomes available
for edmng .

. Users of the modeling tool create and edit modeling language models using various GUl
operations such as creating new process or data models through menu operations, adding
components to process or data models by dragging models from palettes of existing models,
modifying attributes of models and of model components, etc. The modeling tool prevents the user

from creating models that are inconsistent with the restrictions of the modeling language.

. Real Life Example

'Fig. 15 is a schematic illustration of a test case, demonstrating a typical software problem,
whose solution 1500 is to be modeéled in accordance with the prlnc1ples of the present invention.
Such a system is required by many U S. BrokerlDealers

40

WO 2004/036340 4 PCT/1L.2003/000824

" The software development task is to connect the Order Management System 1520 of a U.S.
Broker/Dealer 1510 to multiple Investment Managers 1530.. Order Management System 1520

‘ ~ knows to 'send and receive messages related to securities tradmg according to the FIX protocol,

10.

15

20

25

30

‘while the Investment Managers 1530 expect to interact with the Broker/Dealer accordlng to the

OASYS Direct protocol and through the OASYS Direct network 1540. OASYS Direct is a service
that enables U.S. Investment Managers and Broker/Dealers to exchange messages regarding
institutional securities trading. '

Software solution 1500 implements a Broker/DeaIer ‘Middle Office 1590, which should ‘
connect to Broker/DeaIers Order Management System 1520 on one side and to OASYS Direct
network 1540 on the other side, and should manage the lifecycle of trades, including the recelvmg of
financial messages from each side, tracking the status of each trade, generatlng output messages to
be sent to the other side, etc.

The technlcal interaction with Order Management System 1520 and OASYS Direct network
1540 is achleved through a standard FIX Engine 1550 and an OASYS Direct Adapter 1560
respectively, both common in the industry.” According to the present invention, there is no need tfo
write source code in any programming Ianguage in-order to implement the Middle Office system
1590. Instead, a modeler can model the specific business logic of the Middie Office solution using
the modeling tool of the current invention, with reference to Fig. 16 below, and the models are stored

in the Knowledge Base, or model repository, 1565.

Once modeled, the solution is executed by a runtime engine 1570, constructed in
accordance with the principles of the present invention. As runtime engine 1570 runs, it processes
inputs received from FIX Engine 1550 and OASYS Direct Adapter 1560, manages multiple securities
trades and send output messages to CASYS Direct Adapter 1560 and FIX Engine 1550. All
“interesting fields” of all trades are made persistent after any modification to an instance repository

1580, which is implemented as a set of relational database tables.

Users 1510 of the Order Management System 1520, as well as other users, can view the
details of each trade in the instance repository 1580 through a standard browser-based application,
a screen-shot of which is illustrated in Fig. 17. While the solution is running, these business users
are able to view the details of any trade, see how trades change, retrieve trades, and perform any

other operation as is common for records stored in a relational database.

41

10

15

20

25

30

WO 2004/036340 ' 4 PCT/1L.2003/000824

Fig. 16 is a screen-shot illuéfration of a -visual rﬁodeling tool 1600, constructed in
accordénce with the principles of the present invention. Fig. 16 shows the zoom-in transition from
a top—levél system modél 1610 4containing' a ‘Trade Managér'\ sub-system model 1620 to an
expanded display 1625 of the ‘Trade Manager’ system model. Employing this intuitive graphical
interface for further zooming into sub models of sub models allows the modeler an ‘“infinite

zooming capability” into any detail of any model.

Top-level system model 1610 defines the logic of Middle Office solution 1590 of Fig. 15. It
consists of five sub-system models: ' '
‘Input Adapter” 1630, modeling the receiving of messages from external éystéms;
‘Institutional Plug-ins’ 1640, containing a set of sub-models, each modeling the
 handling of messages received frbm a specific institutional securities trading system, e.g.
OASYS Direct, and the generation of output messages that shbuld be sent to this system; ,
‘Trade Manager’ 1620, modeling the core business logic of the Middle Office
sblution, including the creation of new trades, changing the status of trades based on variéus 4
events, etc.: 4 ' .
‘Front Office Plug-ins’ 1650, containihg a set of sub-models, each modeling the
handling of messages received from a specific front-office system, e.g. Order Management
Systém, and the generation of output‘messages that should be sent to this system; and

‘Output Adapter’ (1635), modeling the sending of messages to external systems.

Modeling tool screen-shot 1600 displays the hierarchy of models,‘ starting at top-level
system model 1610, in Workspace 16'60, which exposes pé.rt of the modeling tool's “infinite drawing
board.” Around this major component of the modeling fool there are: a menu 1670 of commonly
used operations; a palette 1680 of template models, slots and flow rules; a property sheet with the
properties of the currently displayed modeled (not displayed); and a palette of existing models in
the model repository (hot displayed).

The modeler may open any sub-model of the currently displayed model, e.g. ‘Trade
Manager' system model 1620, and zoom-in to its details. = Zoom-in display 1625 of “Trade
Manager' system model 1620 shows: sub-models of ‘Trade Manager’ 1620, e.g. repetitive brocess
model ‘Trade’ 1626, whose instances are the trades flowing through the solution. The user can

further zoom-in to sub-sub-models of the currently displayed model to any desired level in the
hierarchy of models. ‘ ’

- 10

WO 2004/036340 ‘ _ _ PCT/1L.2003/000824

Referring now to Fig.16a (and therein to Flgs 15 and 16), modeling the Middle: Office system

1.

15

20

25

30

. (1697}...

‘ (" 1590 can be carried out by the following series of modeling operations 1690:

Create a new'tob-level system model 1610 by dragging a system model template
from the palette-1680 (1691).

Create the ‘Input Adapter’ sub-model 1630 of 1610 by dragging a system model
template from the palette 1680 into the box of 1610 and setting its role to ‘Input -
Adapter.’ ‘Input Adapter’ 1630 models the receiving of messages from external

systems. lts details are modeled later (1692).

Create ‘Institutional Plug-ins’ 1640, which is a second sub-model of 1610, by
dragging: ay system model template %rom the palette 1680 .into the box of 1610 and
setting its role to ‘Institutional Plug—ins." ‘Institutional Plug-ins’ 1640 should contain a
set of sub-models, each modeling the handling of messages received from a specific
institutional securities trading system, e.g. OASYS Direct, and the generation of-
output messages to be sent to this system. The details of ‘Institutional Plug-ins’
1640 will also be modeled l_a"cer (1693).

Create ‘Trade Manager’ 1620, which is a third sub-model of 1610, by dragging a

system model tempiate from the palette 1680 into the box of 1610 and setting its role

to ‘Trade Manager’ ‘Trade Manager 1620 models the core business "-i‘bgic of the
Middle Office solution, including the creation of new trades, changing the status of

trades based on various events, etc (1694).

Double click on ‘Trade Manager’ model 1620 to open it and zoom into an‘expanded
display of it. At this early stage of modeling, there are no sub-models under ‘Trade
Manager’ 1620, as opposed to the expanded display 1625, which shows the “Trade
Manager' system when its modeling is finished (1695). '

Create the"Trade’ sub-model 1626 of ‘Trade Manager’ 1620 by dragging a process
model template from the palette 1680 into the box of “Trade Manager’ 1620, setting
its role to ‘Trade’, and setting it to be a repetiti\)e sub;process. The instances of
“Trade’ 1626 are the trades flowing through the Middle Office solution (1696).

WO 2004/036340 PCT/1L.2003/000824

To complete the typical example presented in Figs. 15, 16< and 16a, Fig. 17 is a screen-shot

‘ . illustration -of a typical browser-based application, showing a trade monitoring applicétion 1700 that

10.

15

20

25

30

enables users to view the “interesting fields” of trade instances saved ‘in an instance repository,
constructed in accordance with the principles of the present lnventlon While the -solution is
runnmg, business users are able to VIeW the details of any trade, see how trades change, retrieve
trades, and perform any other operatlon as is common for records stored in a relational database.

For example, the following is a partial list of user capabilities, provided the relevant

_information has been modeled to be saved in the instance repbsitory:

view all trades 1710 or query for specific trades by various criteria; -
see the list of trades autométically updated when a new trade is created,
monitor a trade as it progresses in its life cycle and its status field 1720 changes
accordingly; '
7 get a list of all incoming and outgoing messagés related to any trade; and

view the full history of any trade and errors associated with it.

Knowledge Base .

Returning to the modeling environment, the Knowledge Base is a repository of formal
representations of models that are provided by third parties or developed by the users of the
modeling tool. The formal representation of a model should contain all the details of the model, to
enable the modeling tool to retrieve the model for further usage and to enable the runtime engine to

execute it. It is possible to arrange the models in a hierarchy of packages, where eac,h package or

'sub-package contains models that -belong to a specific domain, a specific solution, or a specific

provider. ‘

In accordance with the preferred embodlment of the present invention, each independent
model is represented as an XML document whose schema depends on the type of model, in order to °
fit its structure and attributes. E.g. the structure of an XML document representing a process model
differs from that of an XML document representing a data‘model, The collection of XML documents

stored in the repository is saved as a set of files in a hierarchy of folders. Each folder represents a

package, thus enabling configuration management of - modeled = solutions using standard

configuration mahagement tools. It is also possible to use other formal representations of models,
e.g. representing model components as binary files or as records in a database.

In the context of the modeling environment, the runtime engine is used for testing solutions,
i.e. to execute models ,in order to verify that they properly define the required solution. The runtime

engine can be invoked by the modeling tool to execute a specific model, while external input is

44

10

15

20

25

30

‘objects.

WO 2004/036340) PCT/1L.2003/000824

simulated - by humé—n,input,‘by special-purpose simulators, or by retrieving previously saved data

Through the usége of records listing the trace events that have occurred during the

execution of a solution, as generatedv by the runtime engine, the modeling tool can be used as a

“visual debugger” to trace the execution of models by the runtime engine. To this end, the modeling

" tool can be switched from the regular modeling mode to a special tracé mode, in which instances of

the traced rhodel are presented by hierarchical diagrams in an identical manner to the presentation
of the model itself, but with additional information reflecting the current status of each instance.

Color coding is used to distinguish between stepé that have already been performed, steps that are

,currenﬂy active, etc.; textual data is used to présent the content of data elements; and dther

graphical means. are used to give the user full information on the full status of each instance. The
user can trace the execution step by step, set breakboints and conditional breakpoints, etc. The
user can also trace the details of execution of models after the execution has completed by viewing
and searching a detailed trace log that records all the trace events during the execution,\ thus

tracking the processing steps that have led to any desired status along the execution.

Runtime Engine .

The following section describes the design of an .exemplary embodimenf of the runtime
enginé, the third major element of the present invention. The term Runtime Engine describes the
routine, or the software program, that governs the execution of any process during runtime,
somewhat like the way an operating system runs different applications. The runtime engine is A

responsible for actually carrying out what the models define exactly as defined.

The architecture of the runtime engine comprises two main components:
- an interpreter that is responsible for processing data according to the logic defined in
the models; and t '
a scheduler that is responsible for activating the interpreter at the correct time,

- according to the same modeled logic..

Fig. 18 is a schematic block diagram of the architecturé of a4preferred embodiment 1800 of
the run-time engine in an Enterprise Java Beans (EJB) configuration, constructed in accordance -
with the principles of the present invention. | ,

Both the interpreter 1810 and the scheduler 1820'are written in Javé, and are compdsed of

various classes. Interpreter 1810 and scheduler 1820 can run within different threads in the same

45

10

15

20

25

30

WO 2004/036340 PCT/1L.2003/000824

process in a single Java Virtual Machine (JVM), or as separate processes, each with its own JVM. .

In accordance with this alternative embodlment interpreter 1810 runs as a Remote Method

’Invocatlon (RMI) server or as an Enterprise Java Beans (EJB) session within an apphcatlon server -

1805. Scheduler 1820 runs as a separate process.

Interpreter 1810 is the component responsible for the actual logic of the system. It receives
input from the environment, e.g. external systems 1830, and enacts any processing defined in the
models as read from the model repository 1840. Interpreter 1810 updates the state of processes in
a run-time database and performs external actions, such as sending messages via the models'
plug-ins. ‘ ‘ |

Scheduler 1820 is an auxiliary component that monitors a schedule table 1850 and activates
interpreter 1810 when the time comes to perform a certain action. Note that scheduler 1820 is not
always needed, e. 9. in some solutions wherein all processing is triggered by external input, and

there is no need to act on time-based events

- Fig.19is a schematic block diagram of the-interpreter 1810, eonstructed in accordance with
the principles of the present invention. Interpreter 1810 comprises the fellowing components, i.e., in
the preferred embodiment, Java classes: ' '

A Session Manager 1910, the 'front-end’ of the interpreter, having the followmg functlons
Receiving input 1912 from external sources or from the scheduler; '
Managlng database connections, either through an internal pool or usnng the EJB
.container's connection pool;
Retrieving the relevant 'Actlve Models' 1914 and 'Runtime Objects 1916,
Initiating logic processing by Active Models 1914,
Catehing and reporting exceptions; and .
Closing database ttransactions, commit on success, rollback on exception.
Each Active Model 1914 represents and enacts the logic embodied in a single model in the
model repository 1840. Active models 1914 manage the rules embodied in the models, such as flow
rules, sub-process invocations etc., as well as the logic to interpret these rules. Active Models 1914

form a composition hierarchy isomorphic tp the composition hierarchy represented by the model.

The term Active Model is used to express the fact that these representations of models are

used to support model execution rather than visual manipulation. Active models 1914 contain only

executable information, excluding visual information such as layout and graphics that are used by

46

10

15

20

25

-30

WO 2004/036340 A PCT/1L.2003/000824

the modeling tool. The executable inforrnation is held in data structures that optimize the run-time
behavior. E.g. flows are attached to their respective sources, as opposed to their symmetnc logical.
and vrsual representation in the modellng tool.) ‘

Plug-ins 1920 are Java classes that implement low level logic like addition, multiplication and
table lookup, as well as any other non-standard logic that is required in the solution. It is also '
possible to use plug-ins to wrap existirrg code that implements business specific functionality and
reuse it within an otherwise fully modeled solution. Eech active model 1914 that represents an
atomic process holds a reference to an instance of the relevant plug-in ¢class. Each plug-in instance
is initialized using data from the containing process

The Model Loader 1930 reads model from the model repository 1840, converts each model to
a correspondmg active model 1914, and maintains a first memory cache 1945 of active models that
are in-use: The Model Loader 1930 encapsulates all the logic related to finding the medels in
repository 1840 and handling their formal representation as stored in the repository.

Runtime Objects 1916 represent instances of process and of data models, where there may

be at any time any number of runtime objects instantiated from each model by the corresponding.

- active model:

The Runtime Object class is basically an ordered multi-map, where each object contains
components rdentiﬁed by the component's role, and where the components have a well defined
order; | N 4

Retrieval by role, and hence by path of roles, is ‘optimized using a hash mechanisrr{j"‘:'4

Each run-time object 1916 has: an ID; a reference to its model, signifying the type of the
object; a reference to its parent' object, srgnlfyrng the context of the object's creation; and a 'value'
that can hold any Java obJect '

For leaf data objects, the value holcls an instance of the data rnodel‘s plug-in class, typically a
String, a Boolean or a Number;

For composite data objects, the value is empty, i.e. null; and

For processes, the value holds the status of the process: Created; Active; Waiting; Finished;
or Terninated. ' ‘

The Persistence Manager 1950 manages the persistence aspects of run-time objects,
handling database storage and retrieval and in-memory caching;
Runtime Objects 1916 are stored in 2 formats: entire composite objects are serialized and -

stored in a binary format, allowing efficient retrieval cf composite structures by the persistence

47

.10

15

20

25

30

. WO 2004/036340 ' PCT/1L.2003/000824

manager, while 'interesting fields' are stored in parallel in a tabular format for efficient querying and-
for convenient read-only access by external tools, such as report generators;

Although the entire 'universe' of instances can be considered a. _single logical 'tree' or
hierarchy, where all runtime objects 1916 are descendents of the topology, thrs universe is broken ‘
‘down into smaller pieces for database storage, where each 'main process is stored with all of its
descendents in a database record of its own; .

This approach is backed by the following identification scheme: each instance in the instance
repository 1960 is identified by an ordered pair of integers where the first identifies the main object
and the second provides an identification of a node within the main objects. The 'node ID' of the
main object itself is always zero. |D’s for additional nodes are generated sequentially on demand
and are used for references across the hierarchy. Most nodes never have an ID assrgned

The mam processes are stored ina generrc table, each as a single record that contains a
binary serialization of its sub—hlerarchy, and the ID of the main object;

.In addition, if interesting fields are defrned for the process, these fields are stored in a specific
table, connected to the generic table; and ' | ‘ '

. Persistence manager 1950 'synchronizes' the database ' on demand,’ inserting and updating
records to represent the latest content of a second memory cache 1955. This happens either at the

-end of a session, after successfully processing an external input 1912, or before query operations,

~ either queries by plug-ins 1920 or implicit queries resulting from addressing operations.

Fig.‘20 is a flowchart of the process execution algorithm 2000, constructed in accordance
with the principles of the present invention. This algorithm is the core logic of the interpreter. The
key concepts of this algorithm are 'readiness' 2001 ,"aotivation’ 2002 and 'flow execution.'

A component of a process is called ‘ready’ 2010 when one of the following is true:
It is a sub-process that has not yet started and all of its mandatory inputs have been
received;

It is an asynchronous sub-process that had been waiting and then received an asynchronous

input or an internal input;

ltis a data element of the process (main, constant, or intermediate) and has been created
but not yet actrvated and

Itis an input of the process, either a trigger or an asynchronous input, and it is 'charged.'

48

10

15

20

25

30

WO 2004/036340 . PCT/1L.2003/000824

‘Components are aetivated according fo the folloWing logic: -

Sub-processes are started 2003 or resumed 2006. When a sub-process returns control,

. either by finishing 2040 or waiting for additional input 2070, all outgoing flows are executed. - If the

: sub-process throws an exception, the exception is either thrown further up, or, if there is a

corresponding fail exit, translated into an error report object used to charge the fail exit before

. returning control to the parent process;

For data elements, outgoing flows are executed, and the element is marked 'done,' i.e., it is
no Ionger ready; and -

For input slots either triggers or asynchronous input slots, outgomg flows are executed, and

the slot is discharged, i.e., it becomes empty and is no longer ready.

Flow execution means the following:
For each flow, all instances of the source component are selected; |
Each instance is 'sent’ to the target, meaning:
. For data elements, modifying the data element accordlng to the flow behawor ie.
| updating, enriching, replacing or accumulating; ‘ ‘ '
For input slots of sub-processes, chargmg the slot, i.e. maklng the sub-process
ready; ,
For input slots of repetitive sub-processes, either triggers or asynchronous input
slots, the behavior is more complex, see below; and o
4 For exits, charging the exit 2050. If a terminating exit is charged 2060, the process
finishes 2040.

: Flow into e trigger of a repetitive sub-process is performed as follows:

. If there are no instances of the sub-process yet, a special object called the 'input set' is
created. This object holds references to the inputs that are common to all instances of the sub-
process;

If the target trigger is mandatory, called “the generating trigger”, a new instance is created,
and its corresponding trigger is charged, and all the input objects in the input set are used to charge
the slots of the newly created instance; Otherwise, the input object is added to the "input set,’ as well
as to any instances of the sub-process that. have not yet started. As a result, the instances may
become ready. ' ‘

Flow into an asynchronous input of a repetitive sub-process is performed as follows:

49

-10

15

20

25

WO 2004/036340 o PCT/1L.2003/000824

The. relevant instances ‘are selected. This refers to all instances that have not yet‘ﬁnished
and that meet the conditions of the addressing clause. |f there is no addressing clause, all 'waiting’
instances are selected; . | ' ‘ o " ‘

If the slot is marked as 'unique target must be found’, and if the number of instances selected
is different from 1, an error is thrown; and ‘

For each instance, the input slot is charged, making the instance ‘ready.’

The Life Cycle of a process comprises the following states: ‘
1. Created: The first stage in a process’ life cycle is its creation. A process is created as a result
-of the following events:

If the process has no triggers, it is created as sbon_ as the parent process starts; and

If a flow, which contains one of the procesé’ triggeré as target, should occur, and the-
" process has not been created yet, it is created. The flow occurs after the creation of the

process;.
2. Ready: A Process.is ready when data is received through all of its mandatory triggers;

3. Started: A Process starts after‘it is ready. It is started accofding to the logic defined in the
model of ifs parent process; ; '

4, Wéiting: An asynchronous proceés can return control to its parent, or the runtime: engine, and
get into a waiting mode until it is resumed after an asynchronous input is received or after an

internal event occurs. A process gets into a waiting status in one of the following scenarios:

The process plug-in ‘waits for an internal event, e.g., the Timer plug-in waits for the

scheduler to wake it up; and
There are no more flows or sub-processes to activéte, but the probess has not terminated;

5. Internal: An asynchronous process that is currently in a waiting mode can receive an internal
event from the engine. As a result, the asynchronous process stops waiting and resumes its

processing;

6. Resumed: An asynchronous process may resume processing as a result of the following

events:

The process has received an internal event and the engine decides that the current process
_ is the next one to activate; ‘ -

50

10 .

15

20

25

30

WO 2004/036340 PCT/1L.2003/000824

. One or more asynchronous inputs have been received and the engihe decides that the

current process is the next one to work; and -

Some or all of the inputs have not been received, but there is no chance to receivé them in
the same prdcessing step, because the processes that should have populate them have
already finished with no relevant outputs, and there is at least one child process that-is
‘Ready’ tostart; A o ‘

7. Finished: ‘A process finishes in one 4of the folldwing scenaﬁos;
One of the terminating exits is ‘Charged;’ |
A Its fail exit is ‘Charged;’
| Its parent proceés has finished;

The process is a composnte action that has no sub-process in the ‘Ready state, i.e., all its

sub-processes are not ready or have flmshed and

The process is an atomic action and its plug-in code has terminated.

] As an alternative to a runtime engine, a code-generator may be used to generate machine
or source code from the models. . A

When this alternative is selected, there is no need to implement a runtime engine. Instead of
implementing a runtime engine that is capable of executing the logic embodied in m;odels, and
activate the runtime engine each time on a different hierarchy of models, the usage of a code-
generator produces code separately for each hierarchy of models.. The code generated from a
specific hierarchy of models performs exactly the same operations that would have been performed
by the runtime engine.when activated for the same hierarchy of models.

The advantage of code generation is also its disadvantage — once code is generated, it does
not change even if the models from which it has been generated are modified, as long as code -

generation is not performed again. This ensures stability, but reduces the responsivelness to

-change. In a preferred embodiment of the invention, a runtime engine is used, but choosing code

generation is logically equivalent. Both approaches substantially eliminate the need for writing code
in any programming language to implement a software application.

Having described the invention with 'ragard to certain specific embodiments thereof, it is to

be understood that the description is not meant as a limitation, since further modifications may now

51,

WO 2004/036340 PCT/1L.2003/000824

- suggést themselves to those skilled in the art, and it is intended to cover such modifications as fall

~ within the scope of the appended claims.

10

15

20

25

30

WO 2004/036340 ' PCT/1L.2003/000824

We claim:

1. A modeling method for defining sofiware applications’ usmg a VISuallzable computer
executable modeling language, said method comprising:

defining each of the software applications as a hierarchy of process models slots, data models
and flow rules '

cIassrfylng-some of said process models and said data models as atomic; ‘

classifying all other process models and data models as composite; A

defining each of said composite process models as a construct|on of at least one of sub
process models slots, data models and flow rules; ,

defining each of said composite data models as.a construction of at least one sub data model;
and .

defining each of said flow rules as connecting a pair}of said slots, data models and sub data

models, wherein said flow rules define both data flow and process flow.

2. A visualizable computer executable modeling language system operating in

accordance with the method of claim 1, for a substantially complete definition of the software
applications, said system comprising: ‘ ‘

process models, each of which may contain any number. of sub process models, slots, data
models and flow rules; ‘ o

data models, each of which may contain any number of sub data models; and

flow rules, each of which connecting a pair of said slots, ‘data models and sub data models
thereby defining data flow and process flow,

wherein said process models and data models and slots and flow rules are arranged in a
structural hierarchy conforming to a set of rigid composition rules, ensuring the language
system is rich enough and precise enough for a computer to execute an application model
defined in said modeling language.

3. The modeling language system of claim 2, further comprising at least one visual
representation.

4, The modeling language system -of claim 3, wherein said visual representation
comprises:

10

15

20

25

30

WO 2004/036340 PCT/1L.2003/000824

proc_ess ~diagrams * comprising various two dimeﬁsiohal shapes representing seid process
 models; ' A ' |
sub .process dragrams comprising” various. two dimensional shapes contarned within said
process diagrams, representing said sub process models;
slot diagrams comprising various two dimensional shapes situated on the edges of said
process dlagrams and said sub process diagrams, representmg 'said slots; -
* data trees comprising- hrerarchrcal tree structures contamed within . said. process diagrams,
representing said data models and said sub data models, and
flow arrows comprising arrows connecting pairs of ‘said slot diagrams, said data trees and
sub-trees of said data tress, said arrows representing said flow rules.

5 | The modeling language system of claim 2, wherein each of said slots is further
defined as having one of the following classifications: A
input slot; and
output slot (exit); ' ‘
and further defining each‘ of said input slots as having one of the following sub-
classifications: |
synchronous input slot (trigger); and
asynchronous input slot; ‘
and further defining each of said triggers as having one of the following sub-classifications:v
| mandatory; and ’ '
~ optional; ‘

and further defining some of said exits as having the sub-classification terminating.

6. The modelino language system of claim 2, wherein each of said slots is further
defined as having one of the following classifications:

input slot; and
output slot (exit)'

and further defining each of said flow rules contained in said composr:e process

model as connecting one source and one target; ,

and further defining the source of each of said flow rules to be one of the following:
an input slot of said composite process model;
an exit of a sub process model of s‘ai‘d composi‘re process model;
a data model of said composite process model; and ‘

54

10

15

20

25

30

WO 2004/036340 PCT/IL2003/000824

10.

.a sub data model of a data model of said composrte process model;
and further defining the target of each of said flow rules to be one of the foIIowmg:
an exit of said composite process model; ,
an input slot of a sub process model of said combosite prbcess quel;
a data model of said composite process model; and
a erb data model of a data model of said composite process model.

The modeling language system of claim 2; wherein:
. each of said process, models may further contarn a reference to a database table
(process table);
at least some of the sub data models of data models of said process mode! are
-marked as interesting fields; and
each of said interesting fields further contains a reference to a column of sard '
process table -

The modeling language system of claim 7, wherein:
a selection condition of an SQL query (addressing clause) may be attached to .an input slot
of said process model to select matching instances of said process model each trme data is
to be received by said instances through said input slot; '
said addressing clause is defined in terms of a matching condition between the interesting .
fields of said process model and the data model of said data to be received through said
input slot.

The modeling language'system of claim 2, wherein each of said process
models may further contain a reference to a computer code implementing the

function of said process model.

The modeling language system of claim 2, wherein:
each of said composite data models is composed of said sub data models by one of the
followmg structure means:

concatenation;

collection; and

selection,

55

10

13

20

25

30

WO 2004/036340 ‘ PCT/IL2003/000824

eacn of eaid sub data models having a classification as one of the folldwing:

mandatory; and | ‘ '

optional; : L

each of said sub data models may further be marked as recurring, with a further optional

indication of minimal and maximal number of. occurrenees;

each of said data models may further contain constraints on the data it deﬁnes, comprising
_at least one of the following:

legal cnaracterS' and

minimal and max1ma| Iength

each of said data models may further compnse a set of legal values and an initial value and

each of said data models may further comprise formatting directives.

11. A modeling system for defining software applications. using the visualizable

computer executable modeling language system of .claim 2, enabling users to
create, di‘splay, modify and test, in an integrated workspace, models of said
:modeling language, in accordance with the rules of said modeling language system,
wherein: A “ :
said modeling system comprises a graphical user interface tool (visual modeling tool)”
for creating, displaying, modifying and testing models of said modeling lanfguage in an
integrated workspace, ’ '
such that users of said modeling tool create and edit sald models usmg various graphical
user interface (GUI) operations.

12 The modeling system of claim 11, wherein each of said process models and

said data models is further defined as having one of the folloewing classifications:
dependent model: only exists as a sub model of a specific parent model; and

reusable model: may be reused as a sub model of multiple parent models, wherein

~ each of said reusable models is assigned a unique identifier.

The modeling system of claim 11, wherein models are formally represented
as one of the followmg '
ExtenSIble Markup Language (XML) documents '

structured database records; and
= _

.56

10

15

20

25

30

WO 2004/036340 ‘ PCT/1L.2003/000824

any other equivalent binary representation,

and wherein a repository of said representations of said models, arranged as a hierarchy of

packages and sub-packages (knowledge base), is used to maintain libraries of said models,

and wherein the modeling system displays said models whose said representations are

stored in said knowledge base, stores in said knowledge base said representations of new

said models that are defined by ‘;he users of the modeling system, and updates said

'representations of said models in said knowledge base according to modifications made to

14.

- 18.

said models by said users.

The modeling system of claim 11, further comprising at least th.e‘ beIoWing
editing capabilities: 4 |
selection of editing operations from menus; A
~ .adding components to said models through dragging of models'from paleﬁes of
existing models; and | |

modifying attributes of said models and components of said mpdels.

The 'modeling system of claim 11, wherein said workspace comprises a
virtually infinite drawing board for displaying hierarchies of two dimensional visual

diagrams, each representing a corresponding said hierarchy of models, and wherein -

" said users are able to zoom in and out from a currently displayed part of said

hierarchy of diagrams, enabling the display of the details of said model and any sub-

" model thereof at any desired level of said hierarchy of models.

16.

The modeling system of claim 11, further comprisingz

a software program (runtime .engine) to execute models defined in said modeling
language; and

a visual debugger for testing and debugging said models, wherein:

said runtime engine, as it executes said models, produces recordé listing the details
of said execution (trace events);] (

said trace events are used to record and store the history 'of said exec.ution; and

said visual debugger USés said stored trace events to display the current status of
instances of précesses, including the content of their data, as well as the brocessing
steps that have led to said currerit status. '

57

10

15

-.20

25

30

WO 2004/036340 A PCT/1L.2003/000824

17. A software program (runtime engine) to execute’ applieations defined in the
visualizable computer executable modellng language system of claim 2, whereln
each of the appllcatlons is deﬂned by a single said process model and a hlerarchy of its
sub- models and , 4 ,
the runtime engine executes the application exactly as. defined by said single process
model and said hierarchy of its sub-models, thus substantially eliminating the need for

’ wnting.eode in any programming language to implement the application.

18. ~ The runtime engine of claim 17, further comprising:

active models comprising objects responsible for representing and enactingl the
defi nltlons and rules embodied . in said models, where there is an actlve model
correspondlng to each of said process models and data models;

runtime objects comprising objects containing the runtime state of instances of said
- process models and data models, where there may be at any time any number of runtime
" objects 1nstant|ated from each of said process models and data models by the
corresponding said active model; and h ,

a model loader comprising an object responsible for loading said models from their }
formal representations stored in a repository, converting said loaded models to

‘corresponding said active models, and caching said active models.

19, The runtime engine of claim ‘17, wherein the runtime engine executes each

of said models as a series of processing steps, wherein:

each of said processing stepe is triggered by the receipt of an external input;

the runtime engine invokes at least one instance of at least one relevant process model
-to handle said received input, and executes sub-processes of said invoked processes. as
defined by the relevant said flow rules; and ,

a processing step ends when any further activities to be performed depend on the
receipt of other external inputs.

20. - The runtime engine of claim 17, wherein:

the runtime engine executes each of said models as a séries of processmg steps by

invoking at least one instance of said process models;

58

10

15

20

25

30

WO 2004/036340 PCT/1L.2003/000824

the full state of each of said at least one process instance is made persistent at the end
of each said processing step; A ' |

execution of each of said at Ieast one process mstance can resume from its stored state
at any relevant time; and ' »

a repository of all said-at least one process instances is available for queries and

retrieval by the runtime engine while executing said models or by external applications.

21. A software program (code generator) to generate the code of a software

program implementing the applications defined in the visualizable computer
executable modeling language system of claim 2, wherein:

each of the applications is defined by a single said process model and a hlerarchy of !tS
sub-models: and - ‘ ‘
) the code generator produces code in a general purpose programming language
implementing the ‘applicatidn exactly as defined by said single process mddel and said
hierarchy of its sub-models, thus substantially eliminating the need for writing code in any
programrhing language to implement the application.

22. The software program of. claim 21, wherein said general purpose
programming language is Java.

23. The software program of claim 21, wherein said general purpose programming
language is C++. ' ' ‘

24. A method for substantially overcomihg the need to write computer source code in
order to-develop software applications, comprising: '
creating models of the appiications in a visualizable ‘computer executable modeling
language system, using a visual modeling tool, comprising:
defining each of said software applications as a hierarchy of pro'cess models, slots,
data models and flow rules;
classifying some of said process models and said data models as atomic;
classifying all other process models.and data models as composite;
defining each of said composite process models as a construction.of at least one of
sub process models, slots, data models and flow rufes; V

. déﬁning each of said composite data models asa constfuction of at least one sub

59

10

15

.20

25

30

WO 2004/036340 ‘ PCT/1L.2003/000824

data model; and , _ h
defining each of said flow rules as connecting a pair of said slots, data models and
-sub data models, wherein said flow rules define both data flow and process flow; and

executing the logic defined by said crééted models.

i

25. The method of claim 24, wherein the executlon of the logic defined by said

models is made by a dedicated computer program (runtime engme)

26. The method of claim 24, wherein the implementation of the logic déﬁned by
said models is made by the code of a software program in a general purpose
programming language, which is generated by a dedicated computer program (code
generator). ' ' 4

27. A ‘software development platform for substantially overcoming the need to
" write computer source code in order to develop software applications, comprising: |
a visualizable computer executable modeling language for the definition of software
solutions, said definition compnsmg '
deﬁnmg each of said softwaré solutions as é hierarchy of process models,
slots, data models and flow rules; ‘
classifying some of said process models and said data models as atomlc
classifying all other process models and data models as composite;
defining each of said composite process models as a construction of at least
one of sub process models, slots, data modeis and flow rules; A
defining each of said composite data models as a consfcruétidn of at least one
sub data model; and
-defining each of said flow rules as connecting a péir of said slots, data
models and sub data models, wherein said flow rules define both data flow and
process flow; a ‘ ‘
a visual modeling tool for defining said software solutions by at least one user as
said hieyaréhies of models in said modeling language; and
a dedicated computer program to automatically eiecute said software solutions

according to the logic defined by said hierarchies.of models.

60

WO 2004/036340 PCT/1L.2003/000824

28. The software developfnent platform of claim 27, wherein said dedicated
computer program is a runtime engine that automatically executes said software
solutions at runtime, according to the logic defined by said hierarchies of models.

5 29. The software development platforrh of claim 27, wherein said dedicated
' . computer program is a code generator that automatically generates the code of a

- software program in a general purpose programming language implementing the
‘logic defined by said hierarchies of models. '

10

61

WO 2004/036340 PCT/1L.2003/000824
1/22

Trade Details (110)

Date | (111)

Buy/Sell Indicator (112)

Quantity ' (113)
Price (114)
Currency (115)

'Fig. 1a

WO 2004/036340 PCT/1L.2003/000824
2/22

'.Coricatt ‘ - B
. K‘ " : Out ;
onz >

- Fig. 1b

WO 2004/036340

210

3/22

PCT/1L.2003/000824

Log

Ihput St}ring

/200

Exit -

“Fig. 2

220

PCT/1L.2003/000824

WO 2004/036340

4/22

¢ b1

(443
[433
| | ol -
¢ Ui
I9AI908Y -
Au_ d . A lapus
| | HA \ L By
0Pt 11 %3
o , 1B0U0D /
| e | Ol
0z€ .
JlapesH s|pueH
00¢€

PCT/1L.2003/000824

WO 2004/036340

5/22

 :bid

SOv

X3

pEY

junowy [B}0] -

nuenp - ¢———————
uy - —
s|leyeq -

1op1e1] +

Junowry -
adAy - ,
oz1S - rzep

E.._. -

JopesH +

Bsiy/

ele(] pesied

siieje JoeX3

()37

K54

€Ty

o

cul

]

obessal asied

-0y

(444

(1epow eleQ pejewo-)
uoinNoexy +

uonnoaxyg s|pueH

00%

01y

PCT/1L.2003/000824

WO 2004/036340

6/22

Gb4

\ 0¢s

A_x 19410

Jun e

Scs

(443

[AUAR)

11

00LLW

, /mmm ‘ ,so:\s.m,

L \ S
€jed %00l XL ejeq
1Zs - eleg (e1eg pesied)
. pesied indino
//‘»\A I 19pow
. iN .
LN 19BAXT Bsyy Bulwoou| esied

IS S0S

00l LIN ssied

Ies .

0TS \ (4%

ovs k

oﬁm\

(12poN ele@ penewlo)
X LW+

obessay |4 osied

00S

WO 2004/036340 PCT/1L.2003/000824
7/22

Sum

610 <

AN

- Fig. 6

PCT/1L.2003/000824

WO 2004/036340

8/22

VEL

JUNOJOY -
saleys Jo WnN -
ejeq uopesolly -

CEL

" 'g|lejep aIoW +

UOISSILULLIOD) -
JUNO22Y -
saleys Jo Wnp -
© uopeodojy -

sliejo(UoESo|ly 1oBIXg

Omm\

0LL
TEL

~ Jojell +
“'s|iejap a0 +
uoISSILIWOY -
JUN022Y - STL
saleys Jo Wn -
(annyedal) suoleoo(ly -

JopesH +

OQ% ‘
. SUONEIO|Y -

UOJE20]|Y S|pUEH

OE\

PCT/1L.2003/000824

WO 2004/036340

9/22

18

p—
—

gmam_u(ndino

/AN

028 \

Jmo.

Jaydepy nduj

O;K

wolsAg s|dwig

oow\

PCT/1L.2003/000824

WO 2004/036340

10/22

6 b4

iaydepy

+— 4+—<] 1o

X3

jojely +

Junowy [gjo -

junowy - «——— junowy -
odA| - «—— odhL-

Amuenp - «————— 92s-

o urL - 4¢————— ull-

. _‘ uj OA|AT sjieaQq - 1opesH +
azijeues EN

Indino

omm\ |

ejeq pasied

wiouel

(A

H_ biale) L y] C_

abessa|y

osied uonnoexg +

abessa|\ s|pueH

o

leydepy
ndu|

0€6 k

oom\

PCT/1L.2003/000824

WO 2004/036340

11/22

01 61

4—

zul

LUl @e—
sn)e)s sjepdn

oot

00T

CHENOS

WLILUOD

.omoﬂk

 smeis-

20ld -
goor < fwueno -
OId) NYL -
s|ielsq spe.] -

L

.SO o eleq ulepy

N7 \

{ c_‘?mu'”.@,

az|[enu|

o::L

ZEAN

\V4 ,
. l\\\\\\\ OOOHI\\M
: . -S001 .

opeil

PCT/1L.2003/000824

WO 2004/036340

12/22

] o ! ___.A
Y wiguog
2 u]
Iyl M_ U @<«
snje}s ajepdn snjeis - .
aoud - azieipu
, fipuenp - : 0cCI1
//mNﬂﬁ (Md) NYL- \
spie}jag apelt] -
. eell 1 G, meguep LD . apesy
fA \V
: A
#N:r\&
| 18111 Z8111 S
sniers - -
y_o apes) + LTI ™
. uoNBUWIHUOD -
_/ z 488!
‘ snjes -
6111 8II1 fuen i CMeO—
fnuenp Anuenp -
uojjdeaoxgy ajpuey funoe | Aunsesg -
’ S m:.ﬂmo Bsi -
9111
purd
uolle WIIjUOD djpueH

)

oo:K S:\.

PCT/1L.2003/000824

WO 2004/036340

13/22

21 ‘b1

1ecl
_ no uj
. || 99X S[pueH
9% b STl \ €Tel
- 0€T1-)
zu Z1o
[N SN ST Vi
. mmﬁ\\. 0
x //ovﬁ « o—<]
il I ul o
ILTT wyuoy
® omﬁ&
H_ no) u| H_ el
uopewIyuo) \ "o .
Jejdepy ‘ ﬁ S SLTI || wuuod sjpueH 9zl | Isydepy
indino 0szl K u - \ nduy
. ooﬁK _ Ocet oﬁﬁk
wajsAs

PCT/1L.2003/000824

WO 2004/036340

14/22

€1 b1

Aousuiny -
junowy -
ojul lepeay +
‘ BleQ sseo0id -

l1oi1g plode y

M_ 10SIAIP

asn utjunowy

apIAlQ
oﬁmﬁ\

0CEl K |

PCT/1L.2003/000824

WO 2004/036340

15/22

1 b1

snjels -

syieyaq epeil +

snjejs ayepdn

,. ONE,K

STHT
«]
sjiejaQ epell +— - snejg -
s|iela(g Joelixg xel -
0TH1 .\ \ | 19A1829Y -
LObT- lapuag - .
SOVl s|ieyeQ epes] -

“€ovl I\\\

abessal\ s|pueH

0ovI \\

PCT/1L.2003/000824

WO 2004/036340

16/22

Gl 614

0csh

=
e

0151

Jojea/is)oig

omﬁ/ ommr/
R)
L »! suibug eidepy |
Xl Jo211d SASVYO
A Z)
v
o - (g9s1)
-Moyisodey | Alojisoday
sougsy] [€ [2PON
suibug
welsAs swiuny
Juswebeue)y //
BpI0 085} a0 elppIN
(4esmolg gspn)
. J8s ssauishg ,
065}

leBeuep
JUSWISOAU|

T 0es1

Jaiq
SASVO

WO 2004/036340

- 1670 L o

PCT/1L.2003/000824

1660

Of;ﬁce

. Pil‘:g-ins

SUNGARD Knowledge:

»
i
T

. Frénii.fofﬁce< .

Pl

WO 2004/036340 PCT/1L.2003/000824
18/22

«— 1890

Create a neW top-level system m_odél 1610 by dragging a
system model template from the palette 1680 (1691)

v

 Create the ‘Input Adapter’ sub-model 1630 of 1610 by dragging a system model template from
the palette 1680 into the box of 1610 and setting its role to ‘Input Adapter;’ ‘Input Adapter’ 1630
models the receiving of messages from external systems; its details are modeled later (1692)

\ A

" Create ‘Institutional Plug-ins’ 1640, which is a second sub-model of 1610, by dragging a system
‘model template from the palette 1680 into the box of 1610 and setting its role to ‘Institutional
Plug-ins;’ ‘Institutional Plug-ins’ 1640 should contain a set of sub-models, each modeling the

handling of messages received from a specific institutional securities trading system, e.g.
OASYS Direct, and the generation of output messages to be sent to this system; details of
‘Institutional Plug-ins’ 1640 will also be modeled later (1693)

v

Create'Trade Manager’ 1620, which is a third sub-model of 1610, by dragging a system model
~ template from the palette 1680 into the box of 1610 and setting its role to ‘Trade Manager;” ‘Trade
Manager’ 1620 models the core business logic of the Middle Office solution, including the creation
' of new trades, changing the status of trades based on various events, etc (1694)

v

Double click on “Trade Manager’ model 1620 to open it and zoom into an expahded display; at
this early stage of modeling, there are no sub-models under ‘Trade Manager’ 1620, as opposed to
the expanded display 1625, which shows the finished ‘Trade Manager' system (1695)

Ly

Create ‘Trade’ sub-model 1626 of ‘Trade Manager' 1620 by dragging a process model template
from palette 1680 into box of ‘Trade Manager’ 1620, setting its role to ‘Trade,’ and setting it to be a
repetitive sub-process; instances of “Trade’ 1626 flow through the Middle Office solution (1696)

l

e (1697)

- Fig. 16a

PCT/1L.2003/000824

WO 2004/036340

19/22

Uy sapeily/de

SUBSTITUTE SHEET (RULE 26)

- 0111

WO 2004/036340 PCT/1L.2003/000824
20/22

1800

P

Application Ser\feri(EJB Container) : . A -

/1 830 (1805)

A ETterqal) " Interpreter « ,
‘D'fi'dcaatg:) (EJB Session Bean) - - Scheduler
p (1810) (1820)

Model 1 Instance

i Repository !

(File System)|
1840 | f

| Repository -
(RDBMS) |

Schedule |
Requests

1850

Fig. 18

PCT/1L.2003/000824

1810

WO 2004/036340
21/22
1920
1912 / -2
’ V ‘ / o Interpreter
Extornal - , R T
Triggers , T Sassion Manager - (1910)
- I N S 7
JExternal j {i Actif; ' =
P HFug-ns] VE T il Runtime
._',5"“0”5 Bix bl Models Objects
S - 3 - —1950
1914 TN 916 . o
Model Loader {Persistznce Manaper
Cache [~ | 1930 ‘ [cache |
A tess {w
Model Inetance | g"’"” Ty
Repositary iﬂepns;imry" 1 Ehsdie |
© (840) ; | (1960) J | { _F%equests t

Fig 19

WO 2004/036340 PCT/1L.2003/000824
22/22

2000

- Create main dajta
and congants

Isthé proey
sndronous?

»(Return (‘waiting

12070

2001—_

Seled the firsgt .
ready@mnponent . Charge the |

disonneded ext

(bytopological (if exds

order)

1° v 1 2080
Adivate the.
s=leded :
onponent

2002

Terminated?

Y

Return 'Finishe

2060

Fig. 20

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

