7030382 A2 | P00 O O

o

00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 March 2006 (23.03.2006)

KWSQWWWWMWWWWWWWWWWWWMW

(10) International Publication Number

WO 2006/030382 A2

(51) International Patent Classification:
GOGF 12/00 (2006.01)

(21) International Application Number:
PCT/IB2005/053000

(22) International Filing Date:
13 September 2005 (13.09.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/940,121 14 September 2004 (14.09.2004) US

(71) Applicant (for all designated States except US):
FREESCALE SEMICONDUCTOR, INC. [US/US];
7700 West Parmer Lane, Austin, TX 78729 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PELED, Itay
[TL/IL]; mishol ekron 25, 84807 beer-sheva (IL). AN-
SCHEL, Moshe [IL/IL]; Shalom Halihem 24, 44418
Kafr-Sabe (IL). EFRAT, Yacov [IL/IL]; Bik’at Beit
Hanetofa 13A, Kfar-Saba (IL). ELDAR, Alon [IL/IL];
Hertsel 78, 43354 Ra’anana (IL). ZAMSKY, Ziv [IL/IL];
Chashmona’im 37, 43256 Ra’anana (IL).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR FETCHING INFORMATION IN RESPONSE TO HAZARD INDICATION INFOR-

MATION

o (57) Abstract: A method for fetching information in response to hazard indication information, the method includes: (i) associating
hazard indication information to at least one information unit that is being fetched to the cache module; (ii) receiving a request to
perform a fetch operation; and (iii) determining whether to fetch at least one information unit to the cache module in response to the
hazard indication information and in response to dirty information associated with the at least one information unit.

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

SYSTEM AND METHOD FOR FETCHING INFORMATION
IN RESPONSE TO HAZARD INDICATION INFORMATION

FIELD OF THE INVENTION

The present invention relates to methods and systems for
fetching information in response to hazard indication
information, and especially to methods and apparatuses
for retrieving data at a cache module that supports

speculative fetch and write through policy.

BACKGROUND OF THE INVENTION

Cache modules are high-speed memories that facilitate

- fast retrieval of information including data and

instructions. Typically, cache modules are relatively
expensive and are characterized by a small size,
especially in comparison to higher-level memory modules.
The performance of modern processor-based systems usually
depends upon the cache module performances and especially
to a relationship between cache hits and cache misses. A
cache hit occurs when an information unit that is present
in a cache module memory 1is reguested. A cache miss
occurs when the requested information unit is not present
in the cache module and has to be fetched from a another
memory that is termed a higher-level memory module.
Various cache module modules and processor architectures,
as well as data retrieval schemes, were developed over
the years, to meet increasing performance demands. These
architectures included multi-port cache modules, multi-
level cache module architecture, super scalar type
processors and the like.

The following U.S patents and patent applications, all
being incorporated herein by reference, provide a brief
summary of some state of the art cache modules and data

fetch methods: U.S. patent 4853846 of Johnson et al.,

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

titled “Bus expander with logic for virtualizing single
cache control into dual channels with separate
directories and prefetch for different processors”; U.S.
patent application 20020069326 of Richardson et al.,
titled “Pipelines non-blocking level two cache system
with inherent transaction collision-avoidance”; U.S.
patent 5,742,790 of Kawasaki titled “Detection circuit
for identical and simultaneous access 1in a parallel
processor system with a multi-way multi-port cache”; U.S.
patent 6,081,873 of Hetherington et al., titled “In-line
bank conflict detection and resolution in a multi-ported
non-blocking cache”; U.S and U.S. patent 6,272,597 of Fu
et al., titled “Dual-ported, pipelined, two level cache
system”.

Processors and other information requesting components
are capable of reguesting information from a cache module
and, alternatively or additionally, from another memory
module that can be a higher-level memory module. The
higher-level memory module can also be a cache memory,
another internal memory and even an external memory.

There are various manners to write information into a
cache module or a higher-level memory module. Write-
through involves writing one or more information units to
the cache module and to the higher-level memory module
substantially simultaneously. Write-back involves writing
one or more information units to the cache module. The
cache module sends one or more updated information units
to the high-level memory once that one or more updated
information units are removed from the cache. The latter
operation is also known in the art as f£lushing the cache.

Some prior art cache modules include multiple lines that
in turn are partitioned to segments. Each segment 1is
associated with a validity bit and a dirty bit. A valid

bit indicates whether a certain segment includes wvalid

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

information. The dirty bit indicates 1if the segment
includes wvalid information that was previously updated
but not sent to the higher-level memory module. If a
write back policy is implemented only the segments that
are associated with an asserted dirty bit are written to
the high-level memory module.

Some prior art cache modules perform mandatory fetch
operations and speculative fetch operations. The latter
are also known as pre-fetch operations. A mandatory fetch
operation involves fetching an information wunit that
caused a cache miss. The speculative fetch operations are
aimed to reduce cache miss events, and replace not-valid
segments with valid segments.

When applying both speculative fetch operations and
write-through policy the high-level memory module can
replace an updated segment residing in the cache memory
with a non-updated segment.

There 1is a need to provide an efficient method and

apparatus for fetching information to a cache module.

SUMMARY OF THE PRESENT INVENTION

The invention utilizes hazard indication information to
prevent a replacement of an updated segment of
information residing in a cache memory with a non-updated
segment that 1is speculatively fetched from another
memory . Conveniently, hazard indication information
indicates that the cache includes wupdated information
that was not yet sent to another memory, so that it is
not replaced by speculatively fetched information £from
that memory.

An apparatus for fetching information in response to
hazard indication information, the apparatus includes:
(i) a cache module; (ii) hazard indication logic for

associating hazard indication information to at least one

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

information wunit that 4is being fetched to the cache
module; and (iii) a controller, coupled to the hazard
information logic and to the cache module, for initiating
a fetch operation in response to the hazard indication
information and in response to dirty information
associated with the at least one information unit.

A method for fetching information in response to hazard
indication information, the method includes: (i) fetching
to the cache module, from another memory module, a first
information unit; (ii) initiating a process of writing an
updated information unit to the cache module and to a
other memory module and wupdating hazard indication
information to reflect a progress of the writing process
to the second memory; (iii) receiving a request to
retrieve the updated information unit; and (iv)
retrieving the wupdated information unit in response to
the hazard indication information.

A method for fetching information in response to hazard
indication information, the method includes the stages
of: (i) associating hazard indication information to at:
least one information unit that is being fetched to the
cache module; (ii) receiving a request to perform a fetch
operation; and (iii) determining whether to fetch at
least one information wunit to the cache module in
response to the hazard indication information and in
response to dirty information associated with the at

least one information unit.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood and appreciated
more fully from the following detailed description taken
in conjunction with the drawings in which:

FIG. 1 is a schematic diagram of an apparatus, according

to an embodiment of the invention;

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

FIG. 2 is a schematic diagram of a sub-system, according
to an embodiment of the invention;

FIG. 3 is a schematic illustration of a data cache
module, according to an embodiment of the invention;

FIG. 4 1is a schematic illustration of cache logic,
according to an embodiment of the invention;

FIG. 5 is a schematic illustration of a structure of the
data cache module, according to an embodiment of the
invention;

FIG. 6 1is a detailed description of the data cache
module, according to an embodiment of the invention;

FIG. 7 is a schematic illustration of a hazard indication
logic, according to an embodiment of the invention;

FIG. 8 1is a flow <chart of a method for fetching
information in response to hazard indication information,
according to an embodiment of the invention; and

FIG. 9 is a flow chart of a method for fetching
information in response to hazard indication information,

according to an embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The following description related to data fetch
operations and to a data cache module. Those of skill in
the art will appreciate that the disclosed systems and
methods can be applied mutates mutandis to instruction
retrieval, instruction cache module, and even to a
combination of data and instruction retrieval and to
cache modules that store both instructions and data.
According to an embodiment of the invention hazard
indication information is aésociated with information
units, such as Basic Information Units (BDUs), that are
being fetched. Once a new fetch operation is requested
the hazard indication information and dirty information

are examined to determine whether to fetch one or more

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

data information wunits. Thus, the method and system
facilitate aborting fetch operations 1f the hazard
indication information indicates that data mismatch can
occur.

According to an embodiment of the invention there is no
need to block speculative fetch operations of information
units that ©belong to a partially wvalid 1line of
information units. There is no need to block speculative
fetching operations of valid information wunits, thus
increasing the efficiency and throughput of the
speculative fetch operations.

FIG. 1 illustrates an apparatus 10 according to an
embodiment of the invention. Apparatus 10 includes a sub-
system 100 that in turn includes a first requesting
component such as first processor 110 and also includes a
multi-port data cache module (denoted 200 in FIG. 2).
Apparatus 10 further includes a system bus 60 that is

connected to: (i) a second requesting entity such as
second processor 20, (ii) high-level memory module 50,
(iii) sub-system 100, (iv) peripherals 70, and (v) an

external system I/F 80.
The high-level memory module 50 is an example of another

memory module that is accessible by processor 110. It

usually stores programs and data for the wvarious

processors. It can also be a second level cache memory
module supporting off-chip memories, but this is mnot
necessarily so. If a cache miss occurs the data can be
fetched from the high-level memory module 50 or from
other memory modules.

System bus 60 1is connected to sub-system 100, via a
gasket (also referred to as interface) 380. Various fetch
operation utilize intexrface 380.

Apparatus 10 also includes a DMA system bus 90 that is

connected to a DMA controller 30, to multiple peripherals

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

40 and to the shared memory module 370, via DMA interface
382. The DMA system bus 90 can be used by external
components, such as processor 20 to access the shared

memory module 370.

FIG. 2 illustrates a sub-system 100 of apparatus 10,
according to an embodiment of the invention. Sub-system
100 includes a processor 110, a data channel 130, a
Memory Management Unit (MMU) 300, an instruction channel
340, a level-one RAM memory 370 as well as an interface
unit 380.

Processor 110 and the instruction channel 340 are
connected to program bus 120. The instruction channel 340
includes .an instruction cache module 350 and an
Instruction Fetch Unit (IFU) 360 that is responsible for
instruction fetching and pre-fetching for the instruction
cache module 350.

Processor 110 has a first data port 116 and a second data
port 118. The first data port 116 is connected, via first
data bus (XA) 122 to a first port 132 of the data channel
130, to the MMU 300 and to the level-one RAM memory 370.
The second data port 118 is connected, via second data

bus (XB) 124 to a second port 134 of the data channel

130, to the MMU 300 and to the level-one RAM memory 370.
Processor 110 is capable of generating two data addresses
per cycle.

The data channel 130 is connected, via data fetch bus
126, to an interface 380 that in turn is connected to one
or more additional memories such as the high-level memory
50. Additional memories can be a part of a multi-level
cache architecture, whereas the data cache module 200 is
the first level cache module and the other memories are

level two cache memories. They can also be a part of an

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

external memory that is also referred to as a main
memory .

MMU 300 includes a hardware protection unit 320 for
supplying program and data hardware protection, and a
translation unit 310 for high-speed virtual address to
physical address translation. MMU 330 is also capable of
providing wvarious cache and bus control signals. The
virtual address 1is an address that 1is generated by
processor 100 and as viewed by code that is executed by
processor 110. The physical address is used to access the
various memory banks.

Data channel 130 includes a data cache module 200, and
multiple supporting units such as Write Through Buffer
(WTB 155), Trace Write Buffer (TWB) 160, a Data Fetch
Unit (DFU) 170, a Write Back Buffer (WBB) 180 and Data
Control Unit (DCU) 150. TWB 160 temporarily saves trace
data. DFU 170 is responsible for data fetching and pre-
fetching. Data fetching operations can include mandatory
fetching operations and speculated fetching operations.
Mandatory fetching operations include retrieving a data
unit that caused a cache miss. Speculated fetching (also
termed pre-fetching) operations include retrieving data
units that did not cause a cache miss. Usually this
latter type of data is expected to be used soon after the
pre-fetch. This expectation is wusually based on an
assumption that many data requests are sequential in
nature.

It is assumed that each fetch operation involves fetching
a single basic data unit (BDU). Accordingly, a BDU that
is fetched during a mandatory fetch operation is referred
to as a mandatory BDU and a BDU that is fetched during a
speculated fetch operation is referred to as a speculated
BDU. It is further noted that the size of BDU can depend

upon the memory module from which it is initially

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

fetched, but for simplicity of explanation it is assumed
that all the BDUs have the same size.

WBB 180 temporarily saves data written into the main
memory in a write-back operation. Write back operation
occurs when data that was previously written into the
data cache module 200 is replacedf

Processor 110 is capable of issuing two data requests
simultaneously, via buses XA 122 and XB 124. The data
channel 130 processes these requests to determine if one
or more cache hit occurred. Basically, the data channel
130 can decide that the two data requests resulted in a
cache hit, the both request resulted in a cache miss or
that one request resulted in a cache hit while the other
resulted in a cache miss.

According to an embodiment of the invention processor 110
is stalled until it receives all the data it requested,
but this is not necessarily so. For example, according to
another embodiment of the invention, only portions of the
processor are stalled.

There are various manners for starting and ending the
stalling stage. A cache miss can trigger entrance to such
a stage. It is assumed that processor 110 enters a
stalled stage once it receives a cache miss indication
from data channel 130. Processor 110 exits the stall
stage once it receives an indication from the data
channel 130 that the requested data 1is available. Line
302, connecting between processor 110 and data channel
130 conveys a stall signal that can cause processor 110
to enter a stalled stage and exit such a stage.

FIG. 3 is a schematic illustration of data cache module
200, according to an embodiment of the invention. Data
cache module 200 includes logic, such as cache logic 210
and cache memory bank 250. The cache memory bank 250

includes one hundred and twenty eight lines 250(0) -

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

250(127), each line includes sixteen 128-bit long basic
data units. These basic data units (BDUs) are denoted
252(0,0) - 252(127,15). A cache hit or cache miss is
determined on a BDU basis. It is noted that the logic can
be located outside the cache module, but this is not
necessarily so.

FIG. 4 is a gchematic illustration of cache logic 210,
according to an embodiment of the invention. The cache
logic 210 1s capable of managing two data requests
simultaneously and includes two identical portions, 212
and 214, each is capable of determining whether a single
cache hit or cache miss has occurred. For simplicity of
explanation only a first portion 212 of the cache logic
210 is illustrated in detail.

The cache logic 210 includes eight ways denoted WAY0 -
WAY7 220(0)- 220(7). Each way stores address and status
information that is associated with sixteen lines. The
address information includes a tag address and the status
information includes BDU validity and update information.
For simplicity of information only WAY0 220(0) is
illustrated in detail, while the other ways are
represented by boxes 220(1)-220(7).

Each line is associated with an extended tag value and
with sixteen BDU wvalidity bits, representative of a
validity of each BUD within that line. WAYO 220 stores
sixteen extended tag addresses 220(0) - 220(15), as well
as sixteen sets of sixteen BDU validity flags 220(0,0) -
220(15,15) .

Each BDU can also be associated with dirty bits that
indicate if a BDU was modified without being written to
the higher-level memory module.

Once processor 110 provides a address 400 over the first
data bus XA 122 the first portion 212 of cache logic 210

processes this addressto determine whether the requested

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

data is stored at the cache module (cache hit) or not
(cache miss). If a cache hit occurs the requested data is
sent to processor 110 over an appropriate data bus out of
XA 122 or XB 124. Else, the DFU 170 is notified about the
cache miss.

Address 400 is partitioned to a 20-bit tag address 402
that includes the twenty most significant bits of address
400, a 4-bit line index 404, a BDU offset 405 and a 4-bit
byte offset 408. The 4-bit byte offset is used for data
retrieval from the cache memory bank 250. The cache
module 200 can be addressed by virtual addresses, while
the higher-level memory module is accessed by physical
addresses. Accordingly, the MMU 300 performs address
translation only when BDUs are fetched from the high-
level memory module 50.

Each of the sixteen tag addresses 220(0) - 220(15) stored
within WAY0 220 is compared, in parallel, to an extended
28-bit tag address 410 that includes the 20-bit tag
address 402 as well as an 8-bit DID 414. Those of skill
in the art will appreciate that such a comparison takes
place at all ways in parallel.

In addition, the BDU offset 408 and the 4-bit line index
404 are used to retrieve a validity flag that corresponds
to the requested BDU. The 4-bit line index 404 is used
for selecting a set of BDU wvalidity flags out of the
sixteen sets of WAYO, while the 4-bit BDU offset 408 is
used for selecting a validity flag out of the selects set
of BUD validity flags.

A cache hit occurs if there is a match between one of the
stored tag addresses and the extended tag address and if
the selected BDU ig valid.

DFU 170 receives an indication of a cache hit and a cache
miss. If both data requests resulted in a cache hit the

DFU 170 is not required to perform a mandatory fetch. If

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

only one of the data requests resulted in a cache miss
the DFU 170 is required to perform a single mandatory
fetch. If both data requests resulted in a cache miss the
DFU 170 is required to perform one or more mandatory
fetches.

According to an embodiment of the invention DFU 170
receives fetch <characteristics that may affect the
mandatory fetch operations. The fetch characteristics may
include the size of a data that can be retrieved at a
single fetch operation, the size of fetch bursts and the
like.

These characteristics can reflect the size of buses on
which data transfer occurs, the arrangement of external
memory banks and the like. For example, a DRAM memory is
typically arranged in DRAM rows. The content of a whole
DRAM row can be fetched by a single fetch operation, thus
fetching the content of a whole line can be useful. It is
noted that sub-systeml00 can be connected to multiple
memory banks, via multiple buses, each having its own
fetch characteristics.

Fetch bus 126 allows fetching a single BDU per fetch
operation. A typical fetch burst includes four
consecutive fetch operations, thus a total of four BDUs
can be retrieved during a single fetch burst.

Typically, memory modules that are adapted to perform
fetch burst are partitioned to fixed sized data unit
sets. A fetch burst that includes a request to receive a
certain data unit will amount in a retrieval of that set.
The order of fetched data units depends upon the specific
requested data set.

Sub-system 100 is configured in a manner that a £fetch
burst cannot be interrupted. Thus, if more than a single
cache miss occurs simultaneously, there 1is a great

benefit in retrieving more than one mandatory BDU during

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

a single fetch burst. This efficient fetching scheme can
reduce the processor stall period, especially as
processor 110 is stalled until it receives both mandatory
BDUs.

Once two cache miss events occur at the same time the DFU
170 has to determine if Dboth mandatory BDUs can be
fetched during a single fetch burst. If the answer is
positive then such a fetch burst is initiated. Once the
burst ends the mandatory BDUs are sent to processor 110,
the processor 110 can exit the stall state.

FIG. 5 is a schematic illustration of the structure of
the data cache module, according to an embodiment of the
invention. FIG. 5 illustrates a data cache module 200
that includes a controller, although other configuration
can be provided, such a configuration in which the
controller is not a part of the data cache module. The
data cache module can be connected to one or wmore
controller.

The cache module 200 is divided to two groups 200(1) and
200(2) . The first group 200(1) includes four memory banks
201 (2), 201(4), 201(6) and 201(8), each bank including
two +wvirtual memory banks (202(1), 202(2)), (202(3),
202(4)), (202(5), 202(6)), and (202(7), 202(8)),
respectively and a first I/O interface module 204.

The second group 200(2) includes four memory banks
211(2), 211(4), =211(6) and 211(8), each bank including
two virtual memory banks (212(1), 212(2)), (212(3),
212(4)), (212(5), 212 (6)), and (212(7), 212(8)),
respectively and a second I/O interface module 214.

Each memory bank is arranged as an array that includes
sixty-four 256-bit wide rows. The addresses of the four

memory banks that form each group are interleaved to

-reduce memory contentions. The addresses of pairs of

WO 2006/030382 PCT/IB2005/053000

10

i5

20

25

30

virtual memory banks that belong to the same memory bank
are not interleaved.

The first I/0 interface module 204 1s connected in
parallel, by two buses, to four memory banks 201(2) -
201(8) and the second I/O0 interface module 214 1is
connected in parallel, by two buses, to memory banks
211(2) - 211(8).

A data cache module 200, as well as sub-system 100 has a
finite capability of managing simultaneous information
transfers. For example, data cache module contention may
occur when the module receives two simultaneous access
requests to different addresses within the same virtual
memory bank. The access requests can be a part of read or
write operations. In such a case one of the access
requests 1is serviced after the other. This may cause
processor 110 to stall. The finite capability is also
expressed by the need to arbitrate between various bus
requests, as implemented by the DCU 150. It this case the
core can also be stalled.

The data cache module 200, and especially the cache logil
210, is connected to a controller, such as DFU 170, to
provide indications ébout two cache events, by signals
CACHE_A_HIT/MISS 201 and CACHE_B_HIT/MISS 203. The DFU
170 in turn may determine which fetch operations to
execute and the like. The requests of the DFU 170, as
well as requests from various supporting units, such as
the WBB 180 to complete write back opérations, and sent
to DCU 150 that arbitrates between the various requests.
These various components exchange fetch request and fetch
acknowledgement signals. The CACHE A HIT/MISS 201 signal
is asserted in response to an occurrence of a cache miss
event associated with a request to retrieve data over the
first data bass XA 122. This signal is negated when a

corresponding cache hit event occurs . The

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

CACHE B HIT/MISS 203 signal is asserted in response to an
occurrence of a cache miss event associated with a
request to retrieve data over the second data bass XB
124. This signal is negated when a corresponding cache
hit event

The data cache module 220 may also include buffering
means connected to the first data bus XA 122, to the
second data bus 124 and/or to the data fetch bus 126.

FIG. 6 is a schematic illustration of wvarious components
of the data channel 130 according to an embodiment of the
invention. The wvarious components of the data channel
130, including data cache module 200, WTB 155, TWB 160,
DFU 170 and WBB 180 can access a bus the is connected to
other memory modules, such as high-level memory module
50, bus issuing Dbus requests to the DCU 150 that
arbitrates between the bus requests.

The data cache module 200 is connected to a controller,
such as DFU 170, that is connected to cache logic 210, to
receive indications about two cache events, by signals
CACHE_A HIT/MISS 201 and CACHE_B_HIT/MISS 203.
CACHE A HIT/MISS 201 signal is asserted in response to an
occurrence of a cache miss event associated with a
request to retrieve data over the first data bass XA 122.
This signal is negated when a corresponding cache hit
event occurs. The CACHE B HIT/MISS 203 signal is asserted
in response to an occurrence of a cache miss event
associated with a request to retrieve data over the
second data bass XB 124. This signal is negated when a
corresponding cache hit event occurs.

The DFU 170 is capable of determining a fetching scheme
that in turn can include mandatory fetch operations as
well as speculative fetch operations. The speculative

fetch operations associated with different mandatory

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

information units can be interlaced, but this is not
necessarily so.

WBB 180 has eight entries of 256-bit each, for storing up
to sixteen BDUs at a time. It has an input bus and an
output bus.

WBB 180 is adapted to receive information units from the
cache module 200 and send the information units to the
high-level memory module 50. WBB 180 has a limited
buffering capabilities and 1is capable of separating
between a reception of information units from the cache
module 200 and between writing the information units to
the high-level memory module 50. Usually, before new BDUs
are written to the cache module 200 the cache module 200
automatically transfers BDUs that have a lower
probability of being re-read (usually older BDUs). It is
noted that a BDU can be cache-locked, meaning that it is
not thrashed.

WBB 180 is capable of generating a high-priority bus
request and a low priority-bus request for sending at
least one information wunit to the high-level memory
module 50. High-priority bus requests are gJenerated in
various scenarios, such as a reception of a flush
instruction, full or almost full WBB state, and possible
WBB incoherency event. A flush instruction forces the
entire content of the WBB 180 to be sent to the high-
level memory module 50.

A WBB incoherency event may occur when a processor
requests an information unit that is stored within WBB
180. This information was flushed from the cache module
200 thus it can cause a cache miss event. A mandatory
fetch operation to retrieve that information unit can
eventually send an obsolete information wunit to the
processor 110. Instead, once WBB 180 detects that such an

event can occur it sends its content to the high-level

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

memory module 50, waits wuntil the high-level memory
module 50 is updated, and allows the high-priority memory
module 50 to send the updated information wunit to the
processor 110.

The WTB 155 facilitates write through operations. It
includes four entries. It is connected to the first and
gsecond data buses XA 122 and XB 124. It also has an
output data bus. It is adapted to receive a single entry
at a time, thus two entries are written one after the
other. It is capable of issuing high priority and low-
priority bus requests. High-priority bus requests are
igssued of the WIB 160 is full or if the processor 110 is
stalled until the write through operation is completed.
The processor 110 can execute various coherency related
operations including address range invalidation, address
range synchronization and address range £lush. Address
range invalidation may involve resetting the valid and
dirty bits associated with the relevant BDUs.

According to an embodiment of the invention processor 110
may define the data memory policy for each cache memory
set of 1lines. This cache memory set of 1lines may
correspond to a way but this is not necessarily so. A
cache write-back policy is conveniently applied to data
that is to be re-used by a program. In such a case
multiple write operations to the cache do not necessarily
amount in multiple transaction to the high-level memory
module 50. .0On the other hand, i1f there is a low
probability that certain data segment will be re-used
then the write through policy can be implemented.

There are various well-known manners to convey the data
memory policy. It is assumed that the data memory policy
is implemented by processor 110 that inserts appropriate
values 1in a certain control register . MMU 300 in turn

sends control signais that define the manner in which

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

data unit is written to the data channel 130. Such a
control register can include two bits that define if the
data memory policy is cacheable write through, cacheable
write back or non-cacheable write through . The MMU 300
in turn sends appropriate control signals to the various
buffers and cache, including the WBB 180 and the WIB 155.
The content of the certain control register may be
varied, according to the cache memory set of line that is
involved.

When applying a cacheable write back policy data that is
written to the data cache module 200 is sent to the high-
level memory module 50 only through the WBB 180. When
applying cacheable write through policy processor 110 is
not stalled, unless a hazard is detected, and data is
written both to the data cache module 200 and to the WTB
155. Data 1is not written to the data cache module 200
until its corresponding DBU is valid. The processor 110
can be stalled when applying a non-cacheable write
through policy. Those of skill in the art will
appreciate that other data memory policies can be
applied, without departing from the scope of the
invention.

DCU 150 arbitrates between various bus requests initiated
by various components of the data channel 130, including
the DFU 170, the WTB 155, the TWB 160 and the WBB 180.
DCU 150 can apply various well-known arbitration schemes.
Usually, the DCU 150 will arbitrate between various bus
requests according to the following priority: high-
priority bus requests from the TWB 160; high-priority bus
requests from the WBB 180; previous information unit bus
requests from the WIB 155, mandatory fetch requests from
the DFU 170; low-priority bus requests from the WIB 155;
speculative fetch requests from the DFU 170 and finally
low-priority bus requests from the WBB 180.

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

The data cache module 200 can further include fetch write
buffers, as well as first and second data bus write
buffers, for implementing a very short fetch and data
retrieval pipe-line.

FIG. 7 is a schematic illustration of hazard indication
logic 430, according to an embodiment of the invention.
The hazard indication logic 430 includes at least one
hazard indication register 440 that has a first portion
that stores an address of a cache line of which one or
more of its BDUs are being fetched. The hazard indication
register 430 has a second portion for storing multiple
hazard indication bits, each associated with a single BDU
of that cache line. Multiple hazard indication registers
can be allocated for tracking after multiple cache lines.
The first portion includes bits 440(47)- 430(16), while

second portion includes bits 440(15)- 440(0).

A controller 450 within the DFU 170 writes the address
of the relevant line, as well as sets any of the hazard
indication bits whenever it decides to fetch a BDU. Once
the fetch operation of a certain BDU ends the associated
hazard indication bit is reset.

Assuming that the processor 110 applies a write allocate
policy, a BDU can be written by the processor 110 only if
that BDU is valid. Thus, if the processor 110 writes to a
non-valid BDU the data cache module 200 first reads the
data from the high-level memory module 50 and just then
writes the updated data to the valid BDU.

The controller 450 receives the address of each BDU that
is being written to the cache, as well as corresponding
valid bits from the cache logic 210 and is aware of the
BDUs that are being fetched. Accordingly, it can set an
appropriate hazard indication bit and prevent fetch
operations to BDUs that are associated with a set hazard

indication bits.

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

According to an embodiment of the invention the length of
the hazard indication register 440 is proportional to the
amount of BDUs that are subjected to fetch operations.
The amount of hazard indication bits can be responsive to
a length of fetch bursts. A BDU that is being fetched is
a BDU that the data channel 130 or one of its components
decided to fetch, but the fetching process did not end.
The process ends once the DBU 1is written to the cache
memory .

The hazard indication mechanism is implemented in
addition to the dirty bit mechanism that prevents
fetching BDUs that are scheduled to be sent to the high-
level memory module 50 through WBB 180.

FIG. 8 is a flow chart of a method 600 for fetching
information in response to hazard indication information,
according to an embodiment of the invention. Method 600
starts by stage 610 of associating hazard indication
information to at least one information wunit that is
being fetched to the cache module. Referring to the
example set forth in FIG. 7, the controller 450
determines the content of the hazard indication register
440.

Stage 610 is followed by stage 620 of receiving a request
to perform a fetch operation. Referring to the previous
example, the request can be a mandatory fetch request
resulting from a cache miss event or can be a speculative
fetch operation request generated by the DFU 170 itself.
Stage 620 is followed by stage 630 of determining whether
to fetch at least one information wunit to the cache
module in response to dirty information associated to the
at least one information unit and in response to hazard
indication information. Referring to the previous
example, dirty bit mechanism prevents fetching BDUs that

were updated by the processor 110 but did not complete

WO 2006/030382 PCT/IB2005/053000

10

15

20

their write back process. The hazard indication
information prevents a scenario in which a non-dirty BDU
is updated by the processor 110 but does not reside in
the high-level memory module 50 and there is a request to
fetch that BDU from the high-level memory module.

TABLE 1 illustrates various signals and commands that can

result in a hazardous situation:

Operation A|B|C|D|E|F| G |H

Tl | Read C - Cache miss- M
Mandatory fetch of C

T2 | Initiate speculative S

fetch sequence of C - H.

T3 | Speculative fetch of F S

T4 | Initiate write-through of S| IWT
G

TS | Hazard- conflict between X

pre-fetch of G and non-
completed write-through

operation of G

The letters A-H denote six BDUs that belong to a certain
cache line. It is assumed that the third till seventh
BDUs represented by C-G are valid as a result of fetch
operations that are not represented in TABLE 1.

At a first clock cycle Tl processor 110 decided to read
the third BDU (denoted by C) of a certain line. A cache
miss event occurs and the DFU 170 performs a mandatory
fetch operation and fetches the third BDU, as indicated
by the letter M that is written at the first row.

At another clock cycle (T2) the DFU 170 initialized a
sequence of speculative fetch operations for fetching the
fourth till seventh BDUs of that certain cache line.

During that clock cycle the fourth BDU (denoted by D) is

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

speculatively fetched, as indicated by the letter S that
is written at the second row.

During the third clock cycle (T3) a speculative fetch
operation of the fifth BDU (denoted by E) is completed,
as illustrated by the letter S that appears at the third
row of the table.

At the fourth «clock c¢cycle (T4) the processor 110
initializes a write through process to the seventh BUD
(Denoted by G), as 1illustrated by the letters “IWT”
appearing at the fourth row of the table, and a
speculative fetch operation of the sixth BDU (denoted by
F) is completed, as illustrated by the letter S appearing
at that forth row. It is assumed that for various
reasons, such as but not limited to the depth of the WTB
155, arbitration of bus requests by the DCU 150 that the
write beck is not completed during at least the forth and
fifth clock cycles. It is noted that as G was written to
the WTB 155 its dirty bit is not set.

At the fifth clock cycle (T5) a hazard may occur as a
speculative fetch operation for fetching the seventh BDU
is schedule to occur. This fetch operation will fetch a
non-updated seventh BDU, as the updated seventh BDU is
stored at the WTB 155 and did not reach the high-level
memory module 50 from which the fetch operation should

take place. This possible hazard is represented by the

. letter X. This hazard is prevented as the hazard

indication logic 430 will prevent the speculative fetch
operation to be executed.

FIG. 9 is a flow chart of a method 700 for fetching
information in response to hazard indication information,
according to another embodiment of the invention.

Method 700 starts by stage 710 of fetching to the cache

module, from another memory module, a first information

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

unit. The fetching operation can be either a speculative
or mandatory fetch operation.

Stage 710 is followed Dby stage 720 of initiating a
process of writing an updated information wunit to the
cache module and to another memory module and updating
hazard indication information to reflect a progress of
the writing process to the second memory. Referring to
the example set forth in FIG. 2 and in FIG. 7, a BDU can
be sent to the data cache module 200 and to the WTB 155.
If a write allocate policy is applied it is assumed that
that the BDU is wvalid. In response - the hazard
indication logic 430 updates the content of the hazard
logic register 440.

Stage 720 is followed by stage 740 of receiving a request
to retrieve the updated information unit. Referring to
the example set forth in FIG. 2, this request can be a
speculative fetch request initiated by DFU 170.

Stage 740 is followed by stage 750 of retrieving the
updated information wunit in response to the hazard
indication information. Referring to the example set

forth in FIG. 7 the hazard indication logic 440 can
prevent a speculative fetch if the updated BDU is still
stored at WIB 155.

Variations, modifications, and other implementations of
what is described herein will occur to those of ordinary
skill in the art without departing from the spirit and
the scope of the invention as claimed. Accordingly, the
invention is to be defined not by the preceding
illustrative description but instead by the spirit and

scope of the following claims.

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

WE CLAIM

1. A method for fetching information in response to
hazard indication information, the method comprises:
associating hazard indication information with at
least one information unit that is being fetched to the
cache module;
receiving a request to perform a fetch operation;
determining whether to fetch at least one
information unit in response to the hazard
indication information and ip response to dirty
information associated with the at least one

information unit.

2. The method of claim 1 wherein the stage of
associating comprises storing address information of at
least one information unit that is being fetched.

3. The method of claim 2 wherein the stage of
determining comprises comparing the stored address
information to address information associated with the
reéeived request to perform a fetch operation.

4. The method of claim 1 wherein the stage of
associating comprises allocating a register for each
cache line that comprises an information unit that is
being fetched.

5. The method of claim 1 wherein the fetch operation
comprises a speculative fetch operation.

6. The method of claim 1 wherein the fetch operation
comprises fetching at least one information unit from
another memory module.

7. The method of claim 1 wherein multiple information
units are fetched in fetch bursts.

8. The method of claim 1 wherein speculative
information units associated with different mandatory

information units are fetched in an interlaced manner.

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

30

9. The method of c¢laim 1 wherein the stage of
associating comprising assigning at least one hazard
indication bit to each information unit that is being
fetched.
10. A method for fetching information in response to
hazard indication information, the method comprising the
stages of:
fetching to the cache module, from another memory
module, a first information unit;
initiating a process of writing an updated
information unit to the cache module and to another
memory module and updating hazard indication
information to reflect a progress of the writing
process to the other memory module;
receiving a request to retrieve the updated
information unit; and
retrieving the updated information unit in response
to the hazard indication information.
11. The method of claim 10 wherein the hazard indication
information is associated with address information of at
least one information unit that is being fetched.
12. The method of claim 11 wherein the stage of
retrieving is responsive to a comparison between the
stored address information to address information
associated of the updated information unit.
13. The method of claim 10 wherein the stage of updating
is preceded by a stage of allocating a register for each
cache line that comprises an information unit that is
being fetched.
14. The method of claim 10 wherein the fetch operation
comprises a speculative fetch operation.
15. The method of claim 10 wherein the fetch operation
comprises fetching at least one information unit from

another memory module.

WO 2006/030382 PCT/IB2005/053000

10

15

20

25

16. The method of claim 10 wherein multiple information
units are fetched in fetch bursts.
17. The method of claim 10 wherein speculative
information units associated with different mandatory
information units are fetched in an interlaced manner.
18. An apparatus for fetching information in response to
hazard indication information , the apparatus comprises:
a cache module;
hazard indication logic for associating hazard
indication information to at least one information
unit that is being fetched to the cache module; and
a controller, coupled to the hazard information
logic and to the cache module, for determining fetch
operation in response to the hazard indication
information and in response to dirty information
associated with the at least one information unit.
19. The apparatus of claim 18 wherein the controller is
further responsive to cache miss events.
The apparatus of claim 18 wherein the controller is
adapted to determine to initialize speculative fetch
operations.
20. The apparatus of claim 18 wherein the hazard
indication logic comprises at least one hazard indication
register.
21. The apparatus of claim 18 wherein the hazard
indication register comprises multiple hazard indication
registers, each associated with a cache line that
comprises at least one information unit that is being

fetched.

PCT/IB2005/053000

WO 2006/030382

1/8

[D1A

o1 00T —1 WILSAS-8NS
405S3004d
15414
o11°
0/ 08 JOVAHIUNT
WYIHAIYId 4/1 WALSAS
TYNYALX3 0ge >
_ 1
! 09
(S8 H3LSAS
-
~ o >
NG WILSAS YA
%mmﬁ :%mz 3 Y3TIONINOD 40SS3004d
TIATT-HITH YAa N0D3S
05° — N\ o 0z

4
STVYIHdIY3d

PCT/IB2005/053000

WO 2006/030382

2/8

G 1A

001 —
—_ oIl
78X 511
Z07) Sng WYH904d
e I
OFE T3MNYHO 00 vET 2er
NOLLONMLSNI
__ — — — %I 040
0¢ 05€ 0ce 002 TINNYHD
ETLH NOILLO3L0Yd iy
JINAON NOTLONYLSNI B
AHONIN ¥1YQ aml L
QVHS — 206
— ore 091~
09¢ NOTLYTSNVYL
1E §S3yaay aam naa aim
091> 0ST°> GST°
g0
SR &
VN3N
Al | oraam

28¢°

PCT/IB2005/053000

WO 2006/030382

3/8

vET
140d ON0O3S

2€T
140d 1S¥I4
(0°0)252 (r1°0)25z | (S1°0)2se
nag nag nag
012
91907 HIYD
(0°9z1)252 (¥1°921)252 | (S1°921)252
nag nag nag
(0°/21)252 (b1°/21)252 | (ST°L21)252

nag

nee

nag

PCT/IB2005/053000

WO 2006/030382

4/8

. NV ANONIN
Z OLA I oL

— 807 135440 | 907 135440 | PO xanT | <0F
cre 1148 nag NI Il
| A
J 00%
AA HOLYIN 9Y1 D sSyaay
VLI HJE; _ ./
/ HOLTHS ¢
| HOLVAYANOD
HOLTHS —
N\ , | |
(00575 — L _______ .@@ﬁw. Lo T 171 (Woze
(ozz, | - (S1°0)022 _
(2)022~ 4 14 914 914 —_— _
E%WNN | | ALIGTVA | .. ALTQTTYA | ALIGTTVA ol o | |
o LZ_ N i naa am_ am__ i
oz, ;111 L] e ol
(Wozzo y 111 L o |
B R e
I B v e ™
I T A -
T R 7 /O 3
oY Sy _ - - - -~~~ ____ T
e T T T T T - T
\ Wy _Z - TTTTTTTTTTIIIIIIIIIIIIIIICE Cl

WO 2006/030382

5/8

r—_—— J‘ —— e -

|| uevory Bank | 201(2)
, 202(1)] |
= !
| [MENORY BANK] |
| ZL(Z) |
b e —— = 4
Fre - 'I‘ —_——— -

! |vewory sk | M-201(4)
202(3)| |
—] |
' [MEMORY BANK | |
, 202(9)] |
I

! |ueoRY Bank | I 201(6)
| 202(5)| |
] |
| [MENORY BANK | |
, 202(6)| |
LV'_ ______ J
S G

! [MENORY BANK | 1~ 201(8)
— [

| ete |202(8)
| | MEMORY BANK |
L — — — J

.

200(1)

FIRST I/0 INTERFACE

204

XA 122+

PCT/IB2005/053000

I

MEMORY BANK| |
212(1) |

|

MEMORY BANK :
22(2)| |

I

l'_—_'L—__'l

MEMORY BaNk | h-211(4)
212(3)

MEMORY BANK
212(4)

.

I

MEMORY BANK | T-211(6)
212(5)

MEMORY BANK
212(6)

r

l'"_'—‘_l_""_'l

: MEMORY BANK | F211(8)
| 212(7)

MEMORY BANK
212(8)

SECOND I/0 INTERFACE
211 |

200(2)

XB 124 5

DATA FETCH BUS 126+

THRASH BUS 125 -

F7G. 5

200

PCT/IB2005/053000

6/8

A

0€T
; S v
L , Sy ax
y y AR
S6T 091 08T 002 0/T
KEEE(I: 4344nd d344nd < IV VLY 1IND
HONOWHL 3LTYM JLTHN 0L AvE JLTHM HO134 YLva
) x A /) A
		l	
L — - I			
_ vy _ _			
I —_— [I			
0sT _ _			
Lo — — S —>» ._.HZD «— — — — — 4			
TO4INOD V1IVQ			
3 |
< \ \

WO 2006/030382

<971 Sng HOL34 YLva

PCT/IB2005/053000

WO 2006/030382

7/8

0€9

NOILVWYOINI NOILVIIONI Q¥VZVYH 01 3SNOJS3H
NI ONY LINN NOILYWMOINI 3NO ISv31 1V 3HL
01 @3LYIJ0SSY NOILYWYOINI ALYIQ OL- 3SNOSIY
NI 3InQON 3HOVD 3HL O1 LINN NOILVAYOJNI
INO 1SY3T 1V HOL34 OL ¥3HI3HM ONININY3L3d

A

029 —1

NOILVY3dO0
HOL34 ¥V WYO3d OL 1S3NDIY V ONIAIIORY

)

019

FNCON 3HOVD FHL 0L HOL34 ONIHE
SI IVHL LINN NOILYWYOINI N0 1SY3T Lv OL
NOILYWYOINI NOILYOIONI QdvZvH (Q3LYIJ0SSY

£ DL

Ovy ¥ILSIO NOILVOIONI QYVZVH

(0)ooy - (sl)ory g
\\&5%E§Zeﬁé .

E 1A

009

05
YITI0HINOD

(91)0vv - (L¥)0bY
SSINAQY NI

WO 2006/030382 PCT/IB2005/053000

8/8

FETCHING TO THE CACHE MODULE, FROM ANOTHER MEMORY
MODULE, A FIRST INFORMATION UNIT

L~ 710

INITIATING A PROCESS OF WRITING AN UPDATED INFORMATION
UNIT TO THE CACHE MODULE AND TO ANOTHER MEMORY MODULE
AND UPDATING HAZARD INDICATION INFORMATION TO REFLECT

A PROGRESS OF THE WRITING PROCESS TO THE SECOND MEMORY

L~ 720

4

RECEIVING A REQUEST TO RETRIEVE THE UPDATED
INFORMATION UNIT

L~ 740

RETRIEVING THE UPDATED INFORMATION UNIT IN RESPONSE
TO THE HAZARD INDICATION INFORMATION

L~ 750

700

FlG. 9

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

