wo 2012/089701 A1 | I 000 00T OO O O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau —/

=

(10) International Publication Number

WO 2012/089701 A1l

S July 2012 (05.07.2012) WIPO I PCT

(51

eay)

(22)

(25)
(26)
(30)

1

International Patent Classification:
GO6F 11/10 (2006.01)

International Application Number:
PCT/EP2011/074035

International Filing Date:
23 December 2011 (23.12.2011)

Filing Language: English
Publication Language: English
Priority Data:

61/427,330 27 December 2010 (27.12.2010) US
61/427,377 27 December 2010 (27.12.2010) US

Applicant (for all designated States except US): AMPL-
IDATA NV [BE/BE]; Antwerpsesteenweg 19, B-9080 Lo-
christi (BE).

(72) Inventors; and

(75) Inventors/Applicants (for US ornly): DE SCHRIJVER,
Frederik [BE/BE]; Manitobawijk 29, B-8420 Wenduine
(BE). SLOOTMAEKERS, Romain Raymond Agnes
[BE/BE]; Pakenstraat 36, B-3001 Heverlee (BE). STOU-
GIE, Bastiaan [BE/BE]; Hof ter beuken 20, B-9090 Melle
(BE). DAMAD, Joost Yervante [BE/BE]; Bertelsbroek-
straat 60, B-2235 Hulshout (BE). DE WISPELAERE,
Wim [BE/BE]; Patijntjestraat 1, B-9000 Gent (BE). VAN
EETVELDE, Wouter [BE/BE]; Antwerpsesteenweg 571,
B-9040 Sint-Amandsberg (BE). DE VYLDER, Bart
[BE/BE]; Keizerstraat 2C, B-9112 Sinaai (BE).

(74) Agent: PLAS, Axel Ivo Michel; Hubert Frére-Orbanlaan
329, B-9000 Gent (BE).

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

[Continued on next page]

(54) Title: A DISTRIBUTED OBJECT STORAGE SYSTEM COMPRISING PERFORMANCE OPTIMIZATIONS

1ofE—T—]

510 OBJ.ID 500
OBJ.DATA (64MB) |

520
N\

430 <]

r=k/n=10/18; XT: 10*800=8000

.
]
i

L]
' l:l 600 800 - %Zg//,f 6oy %4%
—=" 600.8000 %%/////4&%%///////

301
\
v N
\ e —~510 ~600.1 ~
\ 7’ ‘) N
\w/ OBJ.ID \
‘. || SUBBLOCK.DATA(8kB) [f(1) (16bit) /)
~ ,,
~ -
Fig. 6

(57) Abstract: The invention concerns a distributed object stor-
age system (1) that comprises several performance optimizations
with respect to storing very small data objects, very large data ob-
jects and CRC calculations.

WO 2012/089701 A1 |IIWAIK 00T 00O

84)

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,

RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

of inventorship (Rule 4.17(iv))

Published:

with international search report (Art. 21(3))

10

15

20

25

30

WO 2012/089701 -1- PCT/EP2011/074035

A DISTRIBUTED OBJECT STORAGE SYSTEM COMPRISING PERFORMANCE
OPTIMIZATIONS

Field of the Invention

[01] The present invention generally relates a distributed data storage system.
Typically, such distributed storage systems are targeted at storing large amounts of
data, such as objects or files in a distributed and fault tolerant manner with a
predetermined level of redundancy. The present invention relates more particularly to

a distributed object storage system.

Background of the Invention

[02] The advantages of object storage systems, which store data objects
referenced by an object identifier versus file systems, such as for example
US2002/0078244, which store files referenced by an inode or block based systems
which store data blocks referenced by a block address in terms of scalability and
flexibility are well known. Object storage systems in this way are able to surpass the
maximum limits for storage capacity of file systems in a flexible way such that for
example storage capacity can be added or removed in function of the needs, without
degrading its performance as the system grows. This makes such object storage

systems excellent candidates for large scale storage systems.

[03] Such large scale storage systems are required to distribute the stored data
objects in the object storage system over multiple storage elements, such as for
example hard disks, or multiple components such as storage nodes comprising a
plurality of such storage elements. However as the number of storage elements in
such a distributed object storage system increase, equally the probability of failure of
one or more of these storage elements increases. To cope therewith it is required to
introduce a level of redundancy into the distributed object storage system. This
means that the distributed object storage system must be able to cope with a failure
of one or more storage elements without data loss. In its simplest form redundancy is
achieved by replication, this means storing multiple copies of a data object on

multiple storage elements of the distributed object storage system. In this way when

10

15

20

25

30

WO 2012/089701 -2- PCT/EP2011/074035

one of the storage elements storing a copy of the data object fails, this data object
can still be recovered from another storage element holding a copy. Several
schemes for replication are known in the art. In general replication is costly as the
storage capacity is concerned. This means that in order to survive two concurrent
failures of a storage element of a distributed object storage system, at least two
replica copies for each data object are required, which results in storage capacity
overhead of 200%, which means that for storing 1GB of data objects a storage
capacity of 3GB is required. Another well-known scheme is referred to as RAID
systems of which some implementations are more efficient than replication as
storage capacity overhead is concerned. However, often RAID systems require a
form of synchronisation of the different storage elements and require them to be of
the same type and in the case of drive failure require immediate replacement,
followed by a costly and time consuming rebuild process. Therefor known systems
based on replication or known RAID systems are generally not configured to survive
more than two concurrent storage element failures. Therefor it has been proposed to
use distributed object storage systems that are based on erasure encoding, such as
for example described in W0O2009135630 or US2007/0136525. Such a distributed
object storage system stores the data object in encoded sub blocks that are spread
amongst the storage elements in such a way that for example a concurrent failure of
six storage elements out of minimum of sixteen storage elements can be tolerated
with a corresponding storage overhead of 60%, that means that 1GB of data objects

only require a storage capacity of 1.6GB.

[04] Current erasure encoding based distributed object storage system for large
scale data storage are well equipped to efficiently store and retrieve large data
objects, however when small data objects need to be stored or retrieved, the latency
generated by the encoding technology can become too large, especially if small data
objects need to be stored in large quantities. The same holds for large data objects
when only a smaller section of the data needs to be retrieved, because in traditional
distributed object storage systems the data object can only be retrieved in its entirety

and retrieval can only start after the data object was entirely stored.

10

15

20

25

30

WO 2012/089701 -3- PCT/EP2011/074035

[05] Therefor there still exists a need for a simple configuration facility that is able
to cope with small data objects and data fragments of large data objects in a more

efficient manner.

Summary of the Invention

[06] According to a first aspect of the invention, there is provided a distributed

object storage system which, according to a first storage and retrieval option,

comprises:

¢ a plurality of redundant storage elements, operable to store and retrieve a data
object comprising a data object identifier in the form of a predetermined number of
redundant sub blocks comprising said data object identifier, said predetermined
number corresponding to a predetermined multiple of a desired spreading width,
which consists of the sum of:

e a minimal spreading requirement, corresponding to the minimal number of
storage elements that must store sub blocks of said data object and are not
allowed to fail; supplemented with

¢ a maximal concurrent failures tolerance, corresponding to the number of storage
elements that must store sub blocks of said data object and are allowed to fail
concurrently;

e each one of said redundant sub blocks comprising:

e encoded data of equal size of the data object divided by a factor equal to said
predetermined multiple of said minimal spreading requirement; and

¢ decoding data, such that said data object can be decoded from any combination
of said redundant sub blocks of which the number corresponds to
predetermined multiple of said minimal spreading requirement;

¢ a plurality of storage nodes each comprising a share of said plurality of redundant
storage elements; and

e at least one controller node, operably connected to or comprised within said
storage nodes when storing or retrieving said data object, comprising:

e an encoding module operable to disassemble said data object into said

predetermined number of redundant sub blocks;

10

15

20

25

30

WO 2012/089701 -4 - PCT/EP2011/074035

e a spreading module operable to store said predetermined number of said
redundant sub blocks on a number of said storage elements being larger or
equal to said desired spreading width;

¢ a clustering module operable to retrieve at least said predetermined multiple of
said minimal spreading requirement of said redundant sub blocks from a
plurality of said storage elements; and

¢ a decoding module operable to assemble said data object from any combination
of said redundant sub blocks of which the number corresponds to said
predetermined multiple of said minimal spreading requirement,

CHARACTERIZED IN THAT
according to a second storage and retrieval option of said distributed object
storage system:

e said plurality of redundant storage elements, are further operable to store and
retrieve said data object comprising a data object identifier in the form of a
predetermined plurality of replication copies of said data object comprising said
data object identifier, said predetermined plurality corresponding to said desired
spreading width, each one of said replication copies comprising an exact copy of
said data object;

¢ said encoding module is further operable to replicate said data object into said
predetermined plurality of said replication copies;

¢ said spreading module is further operable to store said predetermined plurality of
said replication copies on a corresponding plurality of said storage elements;

e said clustering module is further operable to retrieve at least one of said
predetermined plurality of said replication copies from said corresponding plurality
of said storage elements; and

¢ said decoding module is further operable to provide said data object from any one
of said replication copies, and

said distributed object storage system is operated according to said first

storage and retrieval option if the size of said data object is equal to or larger than a

predetermined lower data object size threshold, and is operated according to said

second storage and retrieval option if the size of said data object is smaller then said

predetermined lower data object size threshold.

10

15

20

25

30

WO 2012/089701 -5- PCT/EP2011/074035

[07] This enables a distributed object storage system with a configuration that
allows an increase in performance with regards to the storage of small data objects
by a hybrid approach that differentiates the storage technology used on the basis of

the size of the data object.

[08] According to an embodiment said lower data object size threshold is 2

Megabyte or lower, preferably 1 Megabyte.

[09] According to a further embodiment said plurality of redundant storage
elements, each comprise a distributed key value store, and in that said replication
copies are stored in said distributed key value store. This enables a simple
mechanism for storing the replication copies aside from the sub blocks, which in

some distributed object storage systems is already available.

[10] Preferably said distributed key value store further comprises metadata of said
data objects stored on said storage element, said metadata comprising:
¢ said data object identifier;
o a list of identifiers of the storage elements on which sub blocks or replication
copies of said data object are stored; and
e an identifier for the type of storage and retrieval option that was used to store

said data object.

[11] Next to functioning as a suitable storage facility for small data objects, the key
value store allows for a further performance optimization by means of its function as

a metadata storage facility.

[12] According to a further embodiment according to a third storage and retrieval

option of said distributed object storage system:

¢ said encoding module is further operable during a storage operation to split said
data object into a plurality of sequential data objects of which the respective data
object identifier comprises said data object identifier and a data object offset
identifier, each of said sequential data objects subsequently being stored

according to said first storage option;

10

15

20

25

30

WO 2012/089701 -6- PCT/EP2011/074035

e said decoding module is further operable during a retrieval operation to
concatenate said plurality of sequential data objects in the correct order by means
of said respective data object offset identifier such that they form said data object,
each of said sequential data objects previously being retrieved according to said
first retrieval option.

said distributed object storage system is operated according to said third
storage and retrieval option if the size of said data object is larger than a

predetermined upper data object size threshold.

[13] This allows still a further performance optimization of the storage and retrieval
operation as also the approach for large data objects is differentiated in a way that

allows for parallel processing of the requests.

[14] Preferably, said upper data object size threshold is equal to or larger than 8

Megabyte, preferably equal to or larger than 32 Megabyte.

[15] According to a preferred embodiment, according to said third storage and

retrieval option of said distributed object storage system:

¢ during a storage operation, a plurality said sequential data objects are being stored
in parallel according to said first storage option; and

e during a retrieval operation, a plurality of said sequential data objects are being

retrieved in parallel according to said first retrieval option.

[16] Optionally according to said third storage and retrieval option of said
distributed object storage system is operable to store and/or retrieve a specific

selection of said sequential data objects by means of said data object offset identifier.

[17] All the aforementioned embodiments allow for still a further performance

optimization of the storage and retrieval operation.

[18] According to still a further embodiment according to said first storage and

retrieval option of said distributed object storage system:

10

15

20

25

30

WO 2012/089701 -7 - PCT/EP2011/074035

¢ said encoding module is further operable to generate a predetermined number of
CRCs of said redundant sub blocks, when disassembling said data object into said
predetermined number of redundant sub blocks;

¢ said spreading module is further operable to store said predetermined number of
CRCs together with their corresponding redundant sub blocks on said storage
elements,

CHARACTERISED IN THAT

¢ said encoding module is operable to calculate said redundant sub block by means
of a predetermined combination of XOR operations on intermediate data blocks,

e said encoding module is further operable to generate a CRC for each of said
intermediate data blocks; and

e said encoding module is further operable to calculate said CRC of said redundant
sub block by applying said predetermined combination of XOR operations to the

respective CRCs of said intermediate data blocks.

[19] In traditional systems, the CRC calculation would be performed fully on the
concatenated dataset even when the CRCs on subsets of the dataset are known. As
the CRC calculation is an expensive calculation, this requires additional CPU cycles,
and this takes longer. The system according to the invention optimizes the
calculation of a CRC by correctly combining the known CRC’s of the subsets. This
method results in less CPU cycles and thus a faster CRC calculation which even

further optimizes the performance of the storage and retrieval operation.

[20] According to an embodiment according to said first storage and retrieval
option of said distributed object storage system:
e said clustering module is further operable to retrieve said respective CRCs of
said redundant sub blocks; and
e said decoding module is further operable to assemble said data object from
intermediate data blocks which are generated from said redundant sub blocks
by means of a predetermined combination of XOR operations; and
e said decoding module is further operable to calculate the CRC of said
intermediate data blocks by applying said predetermined combination of XOR

operations to the respective CRCs of said redundant sub blocks.

10

15

20

25

30

WO 2012/089701 -8- PCT/EP2011/074035

[21] Optionally according to said first storage and retrieval option of said distributed
object storage system:
e Said decoding module is further operable to form said data object from a
concatenation of a plurality of said intermediate data blocks; and
e Said decoding module is further operable to calculate the CRC of said data

object from the CRCs of the respective intermediate data blocks.

[22] According to a further optional embodiment according to said third storage and
retrieval option of said distributed object storage system, said decoding module is
further operable, during a retrieval operation, to calculate the CRC of said data object

from the respective CRCs of said plurality of sequential data objects.

[23] According to a second aspect of the invention there is provided an apparatus
for storage or retrieval of a data object on a storage medium, which is unreliable, said
storage medium,
CHARACTERISED IN THAT
Said apparatus is operable to store and retrieve on said storage medium a data
object comprising a data object identifier in the form of a predetermined number of
redundant sub blocks comprising said data object identifier, said predetermined
number corresponding to a predetermined multiple of a desired spreading width,
which consists of the sum of:
¢ a minimal spreading requirement, which when multiplied with said predetermined
multiple, corresponds to the minimal number of sub blocks of said data object
which are not allowed to fail; supplemented with
e a maximal concurrent failures tolerance, which when multiplied with said
predetermined multiple, corresponds to the number of sub blocks of said data
object which are allowed to fail concurrently,
each one of said redundant sub blocks comprising:
e encoded data of equal size of the data object divided by a factor equal to said

predetermined multiple of said minimal spreading requirement; and

10

15

20

25

30

WO 2012/089701 -9- PCT/EP2011/074035

¢ decoding data, such that said data object can be decoded from any combination
of said redundant sub blocks of which the number corresponds to
predetermined multiple of said minimal spreading requirement,
said apparatus operably being connected to said storage medium when storing or
retrieving said data object, comprising:
e an encoding module operable to disassemble said data object into said
predetermined number of redundant sub blocks;
e a spreading module operable to store said predetermined number of said
redundant sub blocks on said storage medium;
¢ a clustering module operable to retrieve at least said predetermined multiple of
said minimal spreading requirement of said redundant sub blocks from said
storage medium; and
¢ a decoding module operable to assemble said data object from any combination
of said redundant sub blocks of which the number corresponds to said

predetermined multiple of said minimal spreading requirement.

[24] According to an said embodiment said storage medium is segmented into at
least said desired spreading width of different sections,

said spreading module further being operable to store said predetermined number of
said redundant sub blocks on a number of said sections of said storage medium
being larger or equal to said desired spreading width,

said clustering module further being operable to retrieve at least said predetermined
multiple of said minimal spreading requirement of said redundant sub blocks from

said sections of said storage medium.

[25] This advantageously applies the teachings of a distributed object storage
system in order to improve the robustness of an unreliable storage medium, in which
optionally the storage medium can be segmented in different sections which will be
treated as if they were virtual storage elements of a distributed object storage

system.

Brief Description of the Drawings

10

15

20

25

30

WO 2012/089701 -10 - PCT/EP2011/074035

[26] Fig. 1 illustrates a distributed object storage system according to the invention;
[27] Fig. 2 schematically illustrates a storage node of the distributed object storage
system of Fig. 1;

[28] Fig. 3 schematically illustrates a controller node of the distributed object
storage system of Fig. 1;

[29] Fig. 4 schematically illustrates some elements of the controller node of Fig. 3
in more detail;

[30] Fig. 5 schematically illustrates a storage operation according to the first option;
[31] Fig. 6 schematically illustrates a retrieval operation according to the first
option;

[32] Fig. 7 schematically illustrates a storage operation according to the second
option;

[33] Fig. 8 schematically illustrates a retrieval operation according to the second
option;

[34] .Fig.9 schematically illustrates a storage operation according to the third
option;

[35] Fig. 10 schematically illustrates a retrieval operation according to the third
option; and

[36] Fig. 11-15 schematically illustrate several embodiments for optimized CRC

calculation during storage and retrieval operations according to the invention.

Detailed Description of Embodiment(s)

[37] Figure 1 shows a distributed object storage system 1 according to the
invention. It is connected to an application 10 for transferring data objects. This
connection could be implemented as a suitable data communication network. Such
an application could for example be a dedicated software application running on a
computing device, such as a personal computer, a lap top, a wireless telephone, a
personal digital assistant or any other type of communication device, that is able to
interface directly with the distributed object storage system 1, but said application 10
could alternatively comprise a suitable file system which enables a general purpose
software application to interface with the distributed object storage system 1 or an
Application Programming Interface library. As further shown in Figure 1 the

distributed object storage system comprises a controller node 20 and a plurality of

10

15

20

25

30

WO 2012/089701 -11 - PCT/EP2011/074035

storage nodes 30.1 — 30.40 all interconnected in a suitable way for transferring data,
for example by means of a conventional data communication network such as a local
area network (LAN), a wide area network (WAN), a telephone network, such as the
Public Switched Telephone Network (PSTN), an intranet, the internet, any other
suitable network or combination of networks. Controller nodes 20, storage nodes 30
and the device comprising application 10 may connect to said data communication

network by wired, wireless and/or optical connections.

[38] According to alternative embodiments of the distributed object storage system
could comprise any other suitable number of storage nodes 30 and for example two
three or more controller nodes 20 also connected to these storage nodes 20. These
controller nodes 20 and storage nodes 30 can be built as general purpose
computers, however more frequently they are physically adapted for arrangement in
large data centres, where they are arranged in modular racks 40 comprising standard
dimensions. Particular controller nodes 20 and storage nodes 30, such as for
example the Amplistor AS20 storage node as manufactured by Amplidata, are
dimensioned to take up a single unit of such rack 40, which is generally referred to as
1U.

[39] As shown in Figure 1 several storage nodes 30 can be grouped together, for
example because they are housed in a single rack 40. For example storage nodes
30.1-30.4; 30.5-30.8; ...; and 30.7-30.40 each are respectively grouped into racks
40.1, 40.2, ... 40.10. Controller node 20 could for example be located in rack 40.2.
These racks are not required to be located at the same location, they are often
geographically dispersed across different data centres, such as for example rack
40.1-40.3 can be located at a data centre in Europe, 40.4-40.7 at a data centre in the
USA and 40.8-40.10 at a data centre in China.

[40] Figure 2 shows a schematic representation of one of the storage nodes 30.
Storage node 30.1 may comprise a bus 310, a processor 320, a local memory 330,
one or more optional input units 340, one or more optional output units 350, a
communication interface 360, a storage element interface 370 and a plurality of
storage elements 300.1-300.10. Bus 310 may include one or more conductors that

permit communication among the components of storage node 30.1. Processor 320

10

15

20

25

30

WO 2012/089701 -12 - PCT/EP2011/074035

may include any type of conventional processor or microprocessor that interprets and
executes instructions. Local memory 330 may include a random access memory
(RAM) or another type of dynamic storage device that stores information and
instructions for execution by processor 320 and/or a read only memory (ROM) or
another type of static storage device that stores static information and instructions for
use by processor 320. Input unit 340 may include one or more conventional
mechanisms that permit an operator to input information to said storage node 30.1,
such as a keyboard, a mouse, a pen, voice recognition and/or biometric
mechanisms, etc. Output unit 350 may include one or more conventional
mechanisms that output information to the operator, such as a display, a printer, a
speaker, etc. Communication interface 360 may include any transceiver-like
mechanism that enables storage node 30.1 to communicate with other devices
and/or systems, for example mechanisms for communicating with other storage
nodes 30 or controller nodes 20 such as for example two 1Gb Ethernet interfaces.
Storage element interface 370 may comprise a storage interface such as for example
a Serial Advanced Technology Attachment (SATA) interface or a Small Computer
System Interface (SCSI) for connecting bus 310 to one or more storage elements
300, such as one or more local disks, for 2TB SATA-II disk drives, and control the
reading and writing of data to/from these storage elements 300. In one exemplary
embodiment as shown in Figure 2, such a storage node 30.1 could comprise ten 2TB
SATA-II disk drives as storage elements 300.1-300.10 and in this way storage node
30.1 would provide a storage capacity of 20TB to the distributed object storage
system 1. According to the exemplary embodiment of Figure 1 and in the event that
storage nodes 30.2-30.40 are identical to storage node 30.1, the distributed object

storages system 1 would then have a total storage capacity of 800TB.

[41] Taking into account Figure 1 and 2 the distributed object storage system 1
comprises a plurality of redundant storage elements 300. The storage nodes 30 each
comprise a share of these storage elements 300. As shown in Figure 1 storage node
30.1 comprises ten storage elements 300.1-300.10. Other storage nodes 30 could
comprise a similar amount of storage elements, but this is however not essential.
Storage node 30.2 could for example comprise eight storage elements 300.11—
300.18. As will be explained in further detail below with respect to Figures 5 and 6,

the distributed object storages system 1 is operable to store and retrieve a data

10

15

20

25

30

WO 2012/089701 -13 - PCT/EP2011/074035

object 500 comprising data 520, for example 64MB of binary data and a data object
identifier 510 for addressing this data object 500, for example a universally unique
identifier such as a globally unique identifier (GUID). Storing the data offered for
storage by the application 10 in the form of a data object, also referred to as object
storage, has specific advantages over other storage schemes such as conventional
block based storage or conventional file based storage, such as scalability and
flexibility, which are of particular importance in a distributed object storage system 1
that is directed to large scale redundant storage applications, sometimes also

referred to as cloud storage.

[42] The storage elements 300 are redundant and operate independently of one
another. This means that if one particular storage element 300 fails its function can
easily be taken on by another storage element 300 in the distributed storage system.
However as will be explained in more detail further below, there is no need for the
storage elements 300 to work in synchronism, as is for example the case in many
well-known RAID configurations, which sometimes even require disc spindle rotation
to be synchronised. Furthermore the independent and redundant operation of the
storage elements 300 allows to use any suitable mix of types storage elements 300
to be used in a particular distributed object storage system 1. It is possible to use for
example storage elements with differing storage capacity, storage elements of
differing manufacturers, using different hardware technology such as for example
conventional hard disks and solid state storage elements, using different storage
interfaces such as for example different revisions of SATA, PATA and so on. All this
results in specific advantages for scalability and flexibility of the distributed object
storage system 1 as it allows to add or remove storage elements 300 without
imposing specific requirements to their design in correlation to other storage

elements 300 already in use in that distributed object storage system 1.

[43] Figure 3 shows a schematic representation of the controller nodes 20.
Controller node 20 may comprise a bus 210, a processor 220, a local memory 230,
one or more optional input units 240, one or more optional output units 250. Bus 210
may include one or more conductors that permit communication among the
components of controller node 20. Processor 220 may include any type of

conventional processor or microprocessor that interprets and executes instructions.

10

15

20

25

30

WO 2012/089701 -14 - PCT/EP2011/074035

Local memory 230 may include a random access memory (RAM) or another type of
dynamic storage device that stores information and instructions for execution by
processor 220 and/or a read only memory (ROM) or another type of static storage
device that stores static information and instructions for use by processor 320 and/or
any suitable storage element such as a hard disc or a solid state storage element. An
optional input unit 240 may include one or more conventional mechanisms that
permit an operator to input information to said controller node 20 such as a keyboard,
a mouse, a pen, voice recognition and/or biometric mechanisms, etc. Optional output
unit 250 may include one or more conventional mechanisms that output information
to the operator, such as a display, a printer, a speaker, etc. Communication interface
260 may include any transceiver-like mechanism that enables controller node 20 to
communicate with other devices and/or systems, for example mechanisms for
communicating with other storage nodes 30 or controller nodes 20 such as for

example two 10Gb Ethernet interfaces.

[44] According to an alternative embodiment the controller node 20 could have an
identical design as a storage node 30, or according to still a further alternative
embodiment one of the storage nodes 30 of the distributed object storage system
could perform both the function of a controller node 20 and a storage node 30.
According to still a further embodiment the device on which the application 10 runs is

a controller node 30.

[45] As schematically shown in Figure 4, controller node 20 comprises four
modules: an encoding module 400; a spreading module 410; a clustering module
420; and a decoding module 430. These modules 400, 410, 420, 430 can be
implemented as programming instructions stored in local memory 230 of the

controller node 20 for execution by its processor 220.

[46] The functioning of these modules 400, 410, 420, 430 will now be explained to
Figures 5 and 6. The distributed object storage system 1 stores a data object 500
offered by the application 10 in function of a reliability policy which guarantees a level
of redundancy. That means that the distributed object storage system 1 must for
example guarantee that it will be able to correctly retrieve data object 500 even if a

number of storage elements 300 would be unavailable, for example because they are

10

15

20

25

30

WO 2012/089701 -15- PCT/EP2011/074035

damaged or inaccessible. Such a reliability policy could for example require the
distributed object storage system 1 to be able to retrieve the data object 500 in case
of six concurrent failures of the storage elements 300 it comprises. In large scale
data storage massive amounts of data are stored on storage elements 300 that are
individually unreliable, as such redundancy must be introduced into the storage
system to improve reliability. However the most commonly used form of redundancy,
straightforward replication of the data on multiple storage elements 300 is only able
to achieve acceptable levels of reliability at the cost of unacceptable levels of
overhead. For example, in order to achieve sufficient redundancy to cope with six
concurrent failures of storage elements 300, data objects 500 would need to be
replicated six times and stored on redundant storage elements 300. This means that
next to the master copy of a data object 500 stored on one storage element 300, six
replica’s must be stored on six other storage elements. As such storing 1GB of data
objects in this way would result in the need of 7GB of storage capacity in a
distributed object storage system, this means an increase in the storage cost by a
factor of seven or an additional storage overhead of 600%. Therefor the distributed
object storage system 1 according to the invention makes use of erasure coding
techniques in order to achieve the requirements of the reliability policy with
considerably less storage overhead. As will be explained in further detail below when
using an erasure encoding with a rate of encoding r=10/16 six concurrent failures of
storage element 300 can be tolerated, which only require a storage overhead of 60%
or a storage cost by a factor of 1.6. This means that storing 1GB of data objects in
this way only results in the need of 1.6GB of storage capacity in the distributed object
storage system 1. Some erasure encoding techniques make use of Reed-Solomon
codes, but also fountain codes or rateless erasure codes such as online codes,

LDPC codes, raptor codes and numerous other coding schemes are available.

[47] Figure 5 shows a storage operation according to a first storage and retrieval
option performed by an embodiment of the distributed object storage system 1 that is
able to tolerate six concurrent failures of a storage element 300. The data object 500
is offered to the distributed object storage system 1 by the application 10 requesting
a storage operation. In this embodiment the data object 500 comprises an object
identifier 510, such as for example a GUID, and object data 520, for example

consisting of 64MB of binary data. This data object 500 is offered to the encoding

10

15

20

25

30

WO 2012/089701 -16 - PCT/EP2011/074035

module 400 of the controller node 20. The encoder module 400 will disassemble the
data object 500 into a predetermined number x*n=16*800=12800 of redundant sub
blocks 600, which also comprise the data object identifier 510. This predetermined
number x*n=16*800=12800 corresponds to a predetermined multiple x=800 of a
desired spreading width n=16. This desired spreading width n=16=k+f=10+6 consists
of the sum of a minimal spreading requirement k=10 and a maximal concurrent
failures tolerance f=6. This maximal concurrent failures tolerance f=6 corresponds to
the number of storage elements 300 that store sub blocks 600 of said data object
500 and are allowed to fail concurrently as determined by the reliability policy. The
minimal spreading requirement k=10, corresponds to the minimal number of storage
elements 300 that must store sub blocks 600 of said data object 500 and are not
allowed to fail. The encoder module 400 makes use of an erasure encoding scheme
to produce these predetermined number x*n=16*800=12800 redundant sub blocks
600.1 — 600.12800. In this way each one of these redundant sub blocks 600, such as
for example sub block 600.1 comprises encoded data of equal size of the data object
500 divided by a factor equal to said predetermined multiple of said minimal
spreading requirement x*k=800*10=8000. This means that the size of sub block
600.1 in the example above with a data object of 64MB will be 8kB, as this
corresponds to 64MB divided by x*k=800*10=8000. Sub block 600.1 will further
comprise decoding data f(1), such that said data object 500 can be decoded from
any combination of said redundant sub blocks 600 of which the number
x*k=800*10=8000 corresponds to said predetermined multiple x=800 of said minimal
spreading requirement k=10. To accomplish this the encoder module 400 will
preferably make use of an erasure encoding scheme with a rate of encoding
r=k/n=10/16 which corresponds to the minimal spreading requirement k=10 divided
by the desired spreading width n=16. In practice this means that the encoder module
400 will first split the data object 500 of 64MB into x*k=800*10=8000 chunks of 8kB,
subsequently using an erasure encoding scheme with a rate of encoding of
r=k/n=10/16 it will generate x*n=800*16=12800 encoded redundant sub blocks
600.1-600.12800 which comprise 8kB of encoded data, this means encoded data of
a size that is equal to the 8kB chunks; and decoding data f(1)—f(12800) that allows
for decoding. The decoding data could be implemented as for example be a 16 bit
header or another small size parameter associated with the sub block 600, such as

for example a suitable sub block identifier. Because of the erasure encoding scheme

10

15

20

25

30

WO 2012/089701 -17 - PCT/EP2011/074035

used, namely a rate of encoding r=k/n=10/16, the sub blocks 600.1-600.12800 allow
the data object 500 to be decoded from any combination of sub blocks 600 which
corresponds to the predetermined multiple of the minimal spreading requirement
x*k=800*10=8000, such as for example the combination of sub blocks 600.1-
600.4000 and sub blocks 600.8001-600.12000. The storage cost of such an erasure
coding scheme is inversely proportional to the rate of encoding and in this particular
embodiment will be a factor of 1/r=1/(10/16)=1.6. This means that according to this
embodiment of the distributed object storage system 1 of the invention 1GB of data

objects 500 will result in a need for a storage capacity of 1.6GB.

[48] Subsequently, as shown in Figure 5, the spreading module 410 will store the
predetermined number x*n=800*16=12800 of encoded redundant sub blocks 600.1-
600.12800 on a number of storage elements 300 which corresponds to said desired
spreading width n=16, such as for example storage elements 300.1-300.16. The
spreading module 410 will store on each of these storage elements 300.1-300.16
said predetermined multiple x=800 of these sub blocks 600. As shown in Figure 5
sub blocks 600.1-600.800 are stored on storage element 300.1, the next x=800 of
these sub blocks are stored on storage element 300.2 and so on until the last x=800
of these sub blocks 12001-12800 are stored on storage element 300.16. As shown in
Figure 5 storage elements 300.1-300.10 are arranged in storage node 30.1 and

storage elements 300.11-300.16 are arranged in storage node 30.2.

[49] According to an alternative embodiment the sub blocks could be spread by the
spreading module 410 on a number of storage elements 300 which is larger than
said desired spreading width n=16, for example n+1=16+1=17 storage elements 300.
This could be implemented by for example storing sub blocks 600.12001-600.12400
on storage element 300.16 and storing sub blocks 600.12401-12800 on storage
element 300.16. It is clear that this would still allow for the storage system 1 to cope
with f=6 concurrent failures of storage elements 300. Alternative methods for
determining the share of sub blocks to be stored on specific storage elements 300
are well known to the person skilled in the art and are for example described in
W02009135630.

10

15

20

25

30

WO 2012/089701 -18 - PCT/EP2011/074035

[60] It is clear that according to alternative embodiments of the invention other
values could have been chosen for the parameters x, f, k, n=k+f and r=k/n mentioned
in embodiment above, such as for example x=400, f=4, k=12; n=k+f=12+4=16 and
r=12/16; or any other possible combination that conforms to a desired reliability policy
for redundancy and concurrent failure tolerance of storage elements 300 of the

distributed object storage system 1.

[61] According to still a further alternative there could be provided a safety margin
to the number of concurrent failures f that a distributed object storage system 1
needs to be able to cope with. In such an embodiment some of the efficiency is
traded in for some additional redundancy over what is theoretically required. This
preventively increases the tolerance for failures and the time window that is available
for a repair activity. However according to a preferred embodiment this safety margin
will be rather limited such that it only accounts for an increase in sub blocks that must
be generated and stored of for example approximately 10% to 30%, such as for

example 20%.

[62] Figure 6 shows the corresponding retrieval operation according to this first
storage and retrieval option performed by the embodiment of the distributed object
storage system 1 as described for the storage operation of Figure 5 that is able to
tolerate six concurrent failures of a storage element 300. The data object 500 is
requested from the distributed object storage system 1 by the application 10
requesting a retrieval operation. As explained above, in this embodiment the
requested data object 500 can be addressed by its object identifier 510. In response
to this request for a retrieval operation the clustering module 420 of the controller
node 20 will initiate the retrieval of the sub blocks 600 associated with this data
object identifier. It will try to retrieve the predetermined number x*n=16*800=12800 of
redundant sub blocks 600.1-600.12800 that were stored on the storage elements
300.1-300.16. Because of the encoding technology used and the corresponding
decoding techniques available, it is sufficient for the clustering module 420, to
retrieve said predetermined multiple of said minimal spreading requirement
x*k=800*10=8000 of said redundant sub blocks 600 from these storage elements
300.1-300.16. This could be the case when for example there is a problem in network

connectivity between the controller node 20 and storage node 30.2 as indicated in

10

15

20

25

30

WO 2012/089701 -19 - PCT/EP2011/074035

Figure 6. In that case the retrieval operation of the clustering module will be able to
retrieve the sub blocks 600.1-600.8000 which corresponds to said predetermined
multiple of said minimal spreading requirement x*k=800*10=8000. The retrieved sub
blocks 600.1-600.8000 allow the decoding module 430 to assemble data object 500
and offer it to the application 10. It is clear that any number in any combination of the
redundant sub blocks 600 corresponding to said data object 500, as long as their
number is equal to or larger than the predetermined multiple of the minimal spreading
requirement x*k=800*10=8000, would have enabled the decoding module 430 to

assemble the data object 500.

[63] The first storage and retrieval option as described above is optimal for storing
large data objects such as for example multimedia files containing audio and/or video
content, which have a size of several Megabytes up to several Gigabytes. However
when applying this distributed encoding and decoding scheme to smaller data
objects, especially when a large number of these smaller data objects needs to be
stored or retrieved, there exists the risk that, when they are stored according to the
first storage and retrieval option the encoding and decoding process will introduce a
large computational overhead of which the latency will start to outweigh the
advantages with respect to storage cost when compared to replication. Furthermore
also the decoding data f(1)-f(12800) will start to have an impact on the storage cost.
If for example the decoding data would require 16 bit as explained above for every
sub block 600, then this would amount to about 49600 Bytes for the embodiment
described above with x*n=16*800=12800 sub blocks 600. If the data object 500 to be
stored is smaller than 1 or 2 Megabytes, for example 500kB, then this additional
storage cost of about 50kB can no longer be neglected. In alternative embodiments
where the decoding data requires for example 20 Bytes, generating 12800 sub
blocks 600 would mean an additional storage cost of about 256kB, which in the case
of a 500kB data object 500 cannot be neglected. Therefor as shown in Figure 7 the
distributed object storage system 1 according to the invention is operated according
to the first storage and retrieval option described above only if the size of the data
object 500 is equal to or larger than a predetermined lower data object size
threshold. This predetermined lower data object size threshold is for example 2
Megabyte or lower, preferably 1 Megabyte. If the size of the data object 500 is

smaller than this predetermined lower data object size threshold then the distributed

10

15

20

25

30

WO 2012/089701 -20 - PCT/EP2011/074035

object storage system 1 according to the invention is automatically operated
according to a second storage and retrieval option which is illustrated in Figures 7
and 8 for the embodiment of the distributed object storage system 1 shown in Figures
5 and 6. The storage operation of a data object 500 of 500kB, which is smaller than
the predetermined data object size threshold of for example 1 MB according to the
second storage and retrieval option. It will be clear from Figures 5 and 6 that the
plurality of redundant storage elements 300.1-300.16 according to the invention are
also capable of storing and retrieving the data object 500 identified by its data object
identifier 510 in the form of a predetermined plurality of replication copies 900.1-
900.16 of this data object 510, which are also identifiable by means of this data
object identifier 510 during a storage and retrieval operation. In order to fulfil the
requirements of the redundancy policy as described above, the number of replication
copies 900.1-900.16 generated corresponds to the desired spreading width, which
according to this embodiment of the invention was n=16. As such the encoding
module 400 will generate n=16 of these replication copies 900.1-900.16, each
comprising an exact copy of the data object 500, which are subsequently offered to
the spreading module 410 which subsequently stores them a corresponding number
n=16 of storage elements 300.1-300.16. The computational overhead for the
encoding module 400 is much lower than in the first storage and retrieval option,
because no calculations needs to be performed in order to encode the data object
500 into a plurality of sub blocks 60. The only operation to be performed by the
encoding module is to instruct the spreading module 410 to store a required number
of replication copies 900 of the data object 500 on the storage elements 300.
Therefor the latency for storing these smaller data objects 500 is considerably lower
during a storage operation. In this way the distributed object storage system 1
enables a storage operation with an optimal level of responsiveness when
processing small data objects 500 by means of replication, while limiting the impact
on the storage cost of the overall system by using a redundant encoding scheme for

larger data objects 500.

[64] Figure 8 shows the corresponding retrieval operation according to this second
storage and retrieval option performed by the embodiment of the distributed object
storage system 1 as described for the storage operation of Figure 7 that is able to

tolerate six concurrent failures of a storage element 300. The data object 500 is

10

15

20

25

30

WO 2012/089701 -21- PCT/EP2011/074035

requested from the distributed object storage system 1 by the application 10
requesting a retrieval operation of the requested data object 500 which can be
addressed by its object identifier 510. In response to this request for a retrieval
operation the clustering module 420 of the controller node 20 will initiate the retrieval
of the replication copies 900 associated with this data object identifier 510. It will try
to retrieve at least one of the replication copies 900.1-900.16 that were stored on the
storage elements 300.1-300.16. Because in this case replication was used, it is
sufficient for the clustering module 420, to retrieve at least one of said replication
copies 900.1-900.16 from these storage elements 300.1-300.16. As explained above
with reference to Figure 6, there could be a problem in network connectivity between
the controller node 20 and storage node 30.2 as indicated in Figure 8. In that case
the retrieval operation of the clustering module 420 will be able to retrieve at least
one of the replication copies 900.1-900.10. Optionally, the clustering module 420 will
to retrieve a replication copy with a certain preference for a specific storage element
300, such as for example the geographically closest storage element or the most
responsive storage element 300. The retrieved replication copy 900 will allow the
decoding module 430 to provide the data object 500 and offer it to the application 10

with a very low computational overhead as no decoding operation is required.

[65] According to a preferred embodiment of the distributed object storage system
1, each of the storage elements 300 comprises a distributed key value store in which
the replication copies 900 are stored. This is advantageous as such a distributed key
value store is also suited to store metadata for the data objects 500 stored in the
distributed object storage system 1 in order to allow for efficient storage and retrieval
of the data object. During a storage operation the encoding module 400 and/or the
spreading module 410 add for every data object 500 they store a respective entry for
its data object identifier, which can subsequently be consulted by the clustering
module 420 and/or the decoding module 430 during a retrieval operation.
Furthermore, because the distributed key value store is distributed over the storage
elements 300 and it preferably stores metadata for the data objects 500 stored on the
respective storage element 300, in this way the metadata is stored according to the
same reliability policy as the corresponding data object 500. According to an
embodiment this metadata could for example comprise for each data object 500

stored on the storage element 300 its data object identifier 510, a list of identifiers of

10

15

20

25

30

WO 2012/089701 -22 - PCT/EP2011/074035

the storage elements 300 on which sub blocks 600 or replication copies 900 of this
data object 500 are stored and an identifier for the type of storage and retrieval
option that was used to store said data object 500. In the particular case that the data
object 500 is stored according to the second storage and retrieval option, this could

then be supplemented by an entry which comprises the replication copy 900 itself.

[66] According to still a further embodiment as shown in Figure 9 the distributed
object storage system can further be operated according to a third storage and
retrieval option in order to handle very large data objects 500 more efficiently. The
distributed object storage system 1 will then be operated according to this third
storage and retrieval option if the size of the data object 500 is larger than a
predetermined upper data object size threshold. This upper data object size
threshold could for example be equal to or larger than 8 Megabyte, preferably equal
to or larger than 32 Megabyte, as such the upper data object size threshold could for
example be 8 Megabyte, 16 Megabyte, 32 Megabyte, 64 Megabyte or 128 Megabyte,
but could equally be for example 1 or 2 Gigabyte. Such data object 500 could for
example be a digital version of a movie which comprises 6GB of data. As shown in
Figure 9 the application 10 offers a data object 500 to encoding module 400, which
comprises data 520 with a size of 192MB. Now the encoding module 400 first splits
this data object 500 into a plurality of sequential data objects 500a, 500b and 500c, in
this particular case it concerns three sequential data objects 500a, 500b and 500c
each comprising an sequential part of the data 520 of data object 500. This means
that data object 500a comprises object data 520a which corresponds to the first
64MB of the data 520 of data object 500, data object 500b comprises object data
520b that corresponds to the subsequent 64MB of the data 520 of data object 500
and data object 500c comprises object data 520c that corresponds to the final 64MB
of the data 500 of data object 500. As such the sequence of the object data 520a,
520b, 520c of these data objects 500a, 500b, 500c corresponds to the data 520 of
the data object 500.

[67] Each of the sequential data objects 500a, 500b and 500c¢ further comprises a
data object identifier 510a, 510b and 510c. These data object identifiers 510a, 510b,
510c each comprise the data object identifier 510 of the data object 500 and a data
object offset identifier 530a, 530b, 530c. The data object identifiers 510a, 510b and

10

15

20

25

30

WO 2012/089701 -23 - PCT/EP2011/074035

510c in this way allow for identification by means of the data object identifier 510 of
the data object 500 and also allow tracking of their sequential position by means of
the data object offset identifiers 530a, 530b and 530c. According to a simple
implementation data object identifier 510a could comprise the same GUID that forms
the data object identifier 500 supplemented by a data object offset identifier 510a
which is a suitable binary representation of the numerical value “0”. The data object
identifier 510b equally comprises as a data object identifier 510b the same GUID that
forms the data object identifier 500, but is now supplemented by a data object offset
identifier 510b which is a suitable binary representation of the numerical value “1”
and similarly the data object offset identifier 510c will be a suitable binary
representation of the numerical value “2”. Alternatively the data object offset identifier
could be any other suitable identifier that enable to identify the correct sequence of
the sequential data objects 500a, 500b and 500c. As further shown in Figure 9, each
of said sequential data objects 500a, 500b and 500c is subsequently being stored
according to the first storage option as for example shown in Figure 5. This means
that each of the sequential data object 500a, 500b and 500c is stored as an amount
of encoded sub blocks 600 that are stored on a plurality of storage elements 300 as
explained above. According to an advantageous embodiment shown in Figure 9,
each of the sequential objects 500a, 500b and 500c¢ can be processed in parallel by
a storage operation of the first type by means of their respective instance of the
encoder module 400 and spreading module 410. In this way each of storage
operation of the first type of the respective sequential data objects 500a, 500b, 500c
progresses independent from the storage operation the other sequential data objects
and as such the storage operation is more robust and allows to initiate already
retrieval operations on some specific sequential data objects that were stored,

without the necessity for all of the sequential data objects to be stored.

[68] It will be clear to a person skilled in the art that a number of alternative policies
are available for splitting the data object 500 into a number of sequential data
objects. A preferred alternative is shown in the embodiment of Figure 9, in which the
data object 500 is split into an integer number of sequential data objects 500a, 500b
and 500c with a predetermined size of 64MB, of course other suitable sizes could be
possible. In such a case when the data object 500 to be split is not an exact integer

multiple of this predetermined size, the last of the sequential data objects could

10

15

20

25

30

WO 2012/089701 -24 - PCT/EP2011/074035

optionally be padded until it for example comprises a multiple of x*k=800*10=8000
Bytes. The fact that a large portion of the sequential data objects comprise a fixed
size offers the additional advantage that this allows for optimizing for example
memory allocation and low level algorithms during the encoding and decoding stage
of the storage and retrieval operation of the first type. It is further also preferred to set
the upper data object size threshold equal to this predetermined size of the
sequential data objects, which according to the embodiment described above would
be 64MB. as then the first storage and retrieval option is particularly suited to store

and retrieve these sequential data objects efficiently.

[69] During the corresponding retrieval operation for retrieving the data object 500
stored during the storage operation according to the third storage and retrieval
operation as shown in Figure 10, the client 10 issues a retrieval request to the
distributed object storage system 1. As explained above, in this embodiment the
requested data object 500 can be addressed by its object identifier 510. In response
to this request for a retrieval operation the clustering module 420 of the controller
node 20 will initiate the retrieval of the sub blocks 600 associated with this data
object identifier 510 as comprised within the data object identifiers 510a, 510b and
510c of the sequential data objects 500a, 500b and 500c. Preferably there will be
provided an instance of the clustering module 420 for a plurality of these sequential
data objects in parallel. The sequential data objects 500a, 500b and 500c are
retrieved according to the first storage and retrieval option as described above. This
means that for each of the sequential data objects the clustering module 420 will try
to retrieve at least the predetermined multiple of the minimal spreading width
x*k=800*10=8000 of the redundant sub blocks 600 that were stored on the storage
elements 300. The retrieved sub blocks 600 allow the decoding module 430 to
assemble the sequential data object 500a, 500b and 500c, preferably as shown in
Figure 10 each of the sequential data objects is decoded by a separate instance of
the decoding module 430. Subsequently the decoding module will be able to assess
the correct order of the sequential data objects 500a, 500b and 500c by means of
their data object offset identifier 530a, 530b and 530c. This will allow the decoding
module 430 to concatenate the sequential data objects 500a, 500b, 500c in the
correct order such that they form the data object 500 which is subsequently offered to

the application 10.

10

15

20

25

30

WO 2012/089701 -25- PCT/EP2011/074035

[60] Although for the embodiment described in Figures 9 and 10 the upper data
object size threshold has been chosen to be 64MB, it can be chosen to be another
convenient value, but in order to achieve notable beneficial effects it has been
determined that it should be equal to or larger than 8 Megabyte, preferably equal to
or larger than 32 Megabytes. As such the upper data object size threshold could for
example be 8 Megabyte, 16 Megabyte, 32 Megabyte, 64 Megabyte or 128 Megabyte,
but could equally be for example 1 or 2 Gigabyte.

[61] According to a specifically advantageous embodiment of the distributed object
storage system 1 as shown in Figures 9 and 10, it is possible to store and/or retrieve
a specific selection of the sequential data objects 500a, 500b and 500c. For example,
during a retrieval operation of a data object 500 which represents a digital movie
comprising data 520 of several GB. The application 10, which for example displays
the content of this movie on a suitable device, could request to retrieve a specific part
of this movie, for example in order to start playback at a particular part of the movie
or to playback a particular scene. In such a case the application 10 will provide, next
to the data object identifier of the data object it wants to retrieve, an indicator for the
specific section of the data it wants to retrieve to the distributed object storage
system 1. This can for example be implemented by means of for example providing
an offset and the size of the data section, for example in the case of the digital movie
the application could be interested in a specific data section which starts at an offset
of 1GB and has a size of 256MB. It is clear that the distributed object storage system
1 will be able to calculate which particular sequential data objects hold the requested
data section and is able to initiate a specific retrieval operation for this selection of
sequential data objects by means of their data object offset identifier. Similarly also
during a storage operation it is sometimes beneficial to store only a specific data
section, for example if only a specific part of the data of a data object was updated,
the distributed object storage system 1 will only need to update the corresponding
sequential data objects, which can be selected by means of their data object offset

identifier.

[62] According to a further embodiment of the distributed object storage system 1

as shown in Figure 11 the encoding module will 400 will generate a Cyclic

10

15

20

25

30

WO 2012/089701 - 26 - PCT/EP2011/074035

Redundancy Check also referred to as CRC for each of the sub blocks 600. As such
there will now be available a predetermined number of sub blocks 600 and a
predetermined number of CRCs of these sub blocks 600. The spreading module 410
subsequently stores this predetermined number of CRCs together with their
corresponding redundant sub blocks 600 on the storage elements 300. These CRCs
now allow to assess data consistency of the sub blocks 600 stored in the distributed
object storage system. It is clear that during the encoding operation a lot of CRCs will
need to be calculated and that during a subsequent decoding operation a lot of CRCs
will need to be verified. Further adding to this, as for example shown in Figure 12 and
described in W02009/135630, is that during the encoding process sub blocks 600
are generated on the basis of intermediate data blocks 700, each of which is
preferably provided with a CRC during the encoding process itself in order to verify
these intermediate data blocks for data consistency. According to a preferred
embodiment of the distributed object storage system 1 the encoding and decoding
operation during a storage and retrieval operation of the first type can be performed
more efficiently, especially with regard to the aspect of the generation and verification
of CRCs. According to this embodiment the encoding module 400 is operable to
calculate the redundant sub blocks 600 by means of a predetermined combination of
XOR operations on intermediate data blocks 700. This is shown in more detail in
Figure 11, where in Step 1 the data 520 of the data object 500 of for example 64MB
is split into x*k=800*10=8000 first level intermediate data blocks 710 by the encoding
module 400 by splitting the data object 500 into x*k=800*10=8000 parts of 8kB.
Optionally if the data 520 can be padded until it comprises a multiple of
x*k=800*10=8000 Bytes. For each of these first level intermediate data blocks 710.1
— 710.8000 a corresponding CRC is calculated by the encoding module. In Step 2
x*f=800*6=4800 equally sized second level intermediate data blocks 720.1-720.4800
are calculated by means of suitable XOR operation of one or more first level
intermediate data blocks 710. Intermediate data block 720.1 could for example be the
XOR operation of intermediate data block 710.1 and 710.5. Also for these second
level intermediate data blocks the encoding module will generated a corresponding
CRC. The first level and second level intermediate data blocks 710 and 720 in this
way form already a set of the predetermined number x*n=800*16=12800
intermediate data blocks 700 with a size of 8kB. Subsequently in Step 3 the encoding
module 400 will generate sub blocks 600.1-600.12800 by applying suitable XOR

10

15

20

25

30

WO 2012/089701 - 27 - PCT/EP2011/074035

operations on the intermediate data blocks 700 generated in the previous steps. Sub
blok 600.1 could for example be generated by an XOR operation of intermediate data
block 710.2 and 710.10 and 720.3. As indicated above also for these sub blocks 600
the encoding module 400 generates a corresponding CRC. The way in which these
XOR operations are to be performed on the intermediate data blocks 700 in order to
generate suitable sub blocks 600 are well known to the person skilled in the art which
is aware of erasure encoding and decoding implementations. As such each sub block
600 can be seen as the result of a combination of XOR operations performed on a
plurality of intermediate data blocks 700. In prior art systems the encoder module will
calculate the CRC of the sub blocks 600 on the basis of the data they comprise.
According to this preferred embodiment of the invention however the CRC of a sub
block 600 can be calculated without processing the data of the sub block 600. This is
can be accomplished as the intermediate data blocks 700 all have the same size,
8kB in this example, and then there is known that the CRC of the result of an XOR
operation on a plurality of these intermediate data blocks 700 will be equal to the
result of that same XOR operation applied to the CRCs of these intermediate data
blocks 700. It is clear that the XOR operation on the CRCs of the intermediate data
blocks 700 can be executed far more efficiently then the calculation of the CRC
based on the data of a sub block 600 as less data is to be processed and less
calculations are to be performed. Therefor according to this embodiment the
encoding module 400 will calculate the CRC a redundant sub block 600 by applying
the predetermined combination of XOR operations to the respective CRCs of the
intermediate data blocks 700, that corresponds to the predetermined combination of
XOR operations that was performed on these intermediate data blocks 700 in order
to generate the sub block 600. The same could also be applied to the calculation of
the CRCs for the second level intermediate data block 720, which could also be
calculated by applying the predetermined combination of XOR operations to the
respective CRCs of the first level intermediate data blocks 710 which were used to
generate this second level data block 720. As such the only CRCs that need to be
calculated based on the data itself are the CRCs of the first level intermediate data
blocks 710, all other CRCs can be calculated on the basis of other CRCs. Optionally
the XOR operations can be further optimised by prepending or appending the CRC to

the intermediate data blocks 700 during the XOR operations performed thereon. In

10

15

20

25

30

WO 2012/089701 -28 - PCT/EP2011/074035

this way the CRCs can be calculated making use of the same XOR operation that is

performed on these intermediate data blocks 700 during the encoding process.

[63] As known from for example “Everything we know about CRC but afraid to
forget’”, Andrew Kadatch, Bob Jenkins, September 3, 2010, the CRC of a
concatenated data block which is the concatenation of two data blocks for which the
CRC is available can be efficiently calculated without accessing the contents of the
concatenated data block. For the sake of brevity we will refer to such functionality as
a concatenated CRC generator. Therefore, according to a further embodiment as
shown in Figure 13, similar to that of Figure 12, with the addition of the fact that the
sub blocks 600 now are supplemented with a header 610 which for example
comprises for example the data object identifier 510, decoding data f(i), other suitable
identifiers and/or status information. The sub block 600 as such is a concatenation of
the header 610 and the 8kB of data of the sub block 600 that is calculated by means
of XOR operations on the intermediate data blocks 700 as explained above. The
CRC of the header, which often has a limited size of for example 16 bits to about 32
bytes can be calculated efficiently on the basis of its data. The CRC of the 8kB of
data can be calculated efficiently from the CRCs of the intermediate data blocks 700
as explained above. The CRC from the entire sub block 600 can then subsequently
be calculated from the CRC of the header 610 and the CRC of the 8kB of data by

means of the concatenated CRC generator.

[64] According to still a further embodiment of the distributed object storage system
1 the invention as shown in Figure 14, the processing of CRCs during a retrieval
operation according to the first storage and retrieval option is also optimized using
these concepts. As explained above during such a retrieval operation the clustering
module 420 will retrieve the required sub blocks 600 from the storage elements 300.
Along with these sub blocks 600 it will further also retrieve the respective CRCs of
these redundant sub blocks 600. Subsequently the decoding module 430, as
explained above, will assemble the data object 500 from a sufficient number of
redundant sub blocks 600. As will be clear to a person skilled in the art when the
XOR based erasure encoding scheme was used for encoding the data object 500
then there are available similar XOR based decoding schemes for decoding the data

object 500 from these sub blocks 600. The way in which these XOR operations are to

10

15

20

25

30

WO 2012/089701 -29- PCT/EP2011/074035

be performed on the sub blocks 600 in order to generate suitable intermediate data
blocks 700 are well known to the person skilled in the art which is aware of erasure
encoding and decoding implementations. As explained above with reference to the
encoding operation the decoding module 430 will be able to calculate the CRCs of
the intermediate data blocks 700 from the CRCs of the sub blocks 600 by applying
this predetermined combination of XOR operations to the respective CRCs of the
redundant sub blocks 600.

[65] As further shown in Figure 14 the decoding module forms the data object 500
retrieved according to the first storage and retrieval option from a concatenation of a
plurality of these intermediate data blocks 700. As such the decoding module 430 will
be able to efficiently calculate the CRC of said data object 500 from the CRCs of
these respective intermediate data blocks 700 by means of the concatenated CRC
generator as explained above. The processing of the CRCs by means of the
concatenated CRC generator can proceed in a linear fashion, this means that the
concatenated CRC generator first processes the CRC for the concatenation of the
first and second intermediate data block and subsequently processes this CRC with
the CRC of the third intermediate data block in the sequence in order to calculate the
CRC of the sequence of the concatenation of the first, second and third intermediate
data block, and so on until the CRC of the concatenation of all intermediate data
blocks forming the data 520 of the data object 500 is calculated. Alternatively the
calculation could also be performed in a parallel way, this means that in a plurality of
parallel instances of the concatenated CRC generator, for example first the CRC is
calculated for the concatenation of the first and second intermediate data block and
in parallel the CRC is calculated for the concatenation of the third and fourth
intermediate data block, subsequently the CRC for the concatenation of the first to
the fourth intermediate data block based on the CRCs calculated in the previous step
and so on until the CRC for the concatenation of all intermediate data blocks which
form the data 520 of the data object 500 is calculated.

[66] According to a further alternative embodiment as shown in Figure 15, when a
plurality of sequential data objects 500a, 500b, 500c have been retrieved according
to the first storage and retrieval option in order to assemble a data object 500

according to the third storage and retrieval option. The decoding module 430 is able

10

15

20

25

30

WO 2012/089701 -30 - PCT/EP2011/074035

to calculate the CRCs of the sequential data objects as described above with
reference to Figure 14. The decoding module 430 is then subsequently able to
calculate the CRC this data object 500 from the respective CRCs of the plurality of
sequential data objects 500a, 500b, 500c by means of the concatenated CRC

generator.

[67] According to still a further embodiment it is possible, as for example described
in “Everything we know about CRC but afraid to forget’”, Andrew Kadatch, Bob
Jenkins, September 3, 2010, to calculate the CRC of a message of which a part has
been modified from the CRC of the original message efficiently. As such if for
example one or more of the sequential data objects 500a, 500b, 500c constituting a
data object 500 are updated, or if one or more of the intermediate data blocks 700 for
forming the data object 500 are updated the CRC of the update data object 500 can
be calculated by means of the CRC of the data object 500 before the update as
indicated above. According to a further alternative the CRC can be calculated by
using the concatenated CRC generator in a linear or parallel fashion on the CRCs of

the updated regions and the CRCs of the regions which have remained unchanged.

[68] According to still a further advantageous embodiment in the case of the first
storage and retrieval option the CRC of the data object 500 could be calculated
directly from the CRCs of the intermediate data blocks 700 or the CRCs of the sub
blocks 600. The CRC of this data object 500 can then be checked in order to detect if
there is any data corruption. If data corruption is detected then in a second phase the
more intense process of checking the CRCs of the sub blocks 600 or the
intermediate data blocks 700 is initiated. The corrupt sub blocks 600 are eliminated,
replaced by new sub blocks 600 or the intermediate data blocks 700 and the

aforementioned retrieval operation is repeated.

[69] According to still a further aspect of the invention the concepts of the
distributed object storage system can be applied to provide for sufficient redundancy
when making use of a storage medium which is inherently unreliable. Such an
apparatus is suitable to store and retrieve on such a storage medium a data object
500 in the form of a predetermined number of redundant sub blocks 600 as explained

with reference to the distributed object storage system. In this case the minimal

10

15

20

25

30

WO 2012/089701 -31- PCT/EP2011/074035

spreading requirement will when multiplied with the predetermined multiple
correspond to the minimal number of sub blocks 600 that are not allowed to fail. The
maximal concurrent failures tolerance will, when multiplied with the predetermined
multiple, correspond to the number of sub blocks 600 of said data object 500 which
are allowed to fail concurrently. The encoding module 400 and decoding module 430
will operate as described above with reference to the distributed object storage
system. The spreading module 410 will to store the predetermined number of
redundant sub blocks 600 on the storage medium and the clustering module 420 will
be configured to retrieve at least the predetermined multiple of said minimal

spreading requirement of the redundant sub blocks (600) from said storage medium.

[70] According to a further embodiment Instead of spreading the data objects 500
in encoded form amongst a plurality of storage elements they are spread amongst a
plurality of specific sections of the storage medium. The storage medium will for this
purpose be segmented in to a plurality of different sections. If the storage medium is
for example a 16GB Flash drive and the desired spreading width n=16, then the
storage medium can be segmented in for example at least n=16 different sections of
1GB. The spreading module 410 will then store the predetermined number of
redundant sub blocks 600 on a number of these sections of said storage medium
being larger or equal to said desired spreading width n=16. The clustering module
420 will in this case further be able to retrieve at least said predetermined multiple of
said minimal spreading requirement x*k=800*10=8000 of redundant sub blocks 600

these sections of said storage medium.

[71] Such storage media could for example be a flash drive which is prone to cell
failures after a predetermined number of read or write cycles. But also other storage
media such as a magnetic storage medium, such as a magnetic tape or disk drive,
an optical storage medium, such as cd or dvd, a holographic storage medium; or a
quantum information storage medium exhibit unreliable behaviour because of some
inherent instability of the basic elements of their storage technology. In order to cope
with this inherent instability said apparatus comprises a distributed object storage
system 1 which executes a storage and retrieval operation of the first type as

described above on the virtual storage elements.

10

15

20

25

30

WO 2012/089701 -32 - PCT/EP2011/074035

[72] Although the present invention has been illustrated by reference to specific
embodiments, it will be apparent to those skilled in the art that the invention is not
limited to the details of the foregoing illustrative embodiments, and that the present
invention may be embodied with various changes and modifications without
departing from the scope thereof. This is especially the case for the exemplary
mentioning of all the sizes of data and numbers that have been described as
parameters, they can easily be adapted to other suitable values and have only been
mentioned in order to improve the clarity of the examples. The present embodiments
are therefore to be considered in all respects as illustrative and not restrictive, the
scope of the invention being indicated by the appended claims rather than by the
foregoing description, and all changes which come within the meaning and range of
equivalency of the claims are therefore intended to be embraced therein. In other
words, it is contemplated to cover any and all modifications, variations or equivalents
that fall within the scope of the basic underlying principles and whose essential
attributes are claimed in this patent application. It will furthermore be understood by
the reader of this patent application that the words "comprising" or "comprise" do not
exclude other elements or steps, that the words "a" or "an" do not exclude a plurality,
and that a single element, such as a computer system, a processor, or another
integrated unit may fulfil the functions of several means recited in the claims. Any
reference signs in the claims shall not be construed as limiting the respective claims
concerned. The terms "first", "second", third", "a", "b", ""¢", and the like, when used in
the description or in the claims are introduced to distinguish between similar
elements or steps and are not necessarily describing a sequential or chronological
order. Similarly, the terms "top", "bottom", "over", "under", and the like are introduced
for descriptive purposes and not necessarily to denote relative positions. It is to be
understood that the terms so used are interchangeable under appropriate
circumstances and embodiments of the invention are capable of operating according
to the present invention in other sequences, or in orientations different from the

one(s) described or illustrated above.

10

15

20

25

30

WO 2012/089701 -33- PCT/EP2011/074035

CLAIMS

1. A distributed object storage system (1) which, according to a first storage
and retrieval option, comprises:
¢ a plurality of redundant storage elements (300), operable to store and retrieve a

data object (500) comprising a data object identifier (510) in the form of a

predetermined number of redundant sub blocks (600) comprising said data object

identifier (510), said predetermined number corresponding to a predetermined
multiple of a desired spreading width, which consists of the sum of:

e a minimal spreading requirement, corresponding to the minimal number of
storage elements (300) that must store sub blocks (600) of said data object
(500) and are not allowed to fail; supplemented with

¢ a maximal concurrent failures tolerance, corresponding to the number of storage
elements (300) that must store sub blocks (600) of said data object (500) and
are allowed to fail concurrently;

e each one of said redundant sub blocks (600) comprising:

e encoded data of equal size of the data object (500) divided by a factor equal to
said predetermined multiple of said minimal spreading requirement; and

e decoding data, such that said data object (500) can be decoded from any
combination of said redundant sub blocks (600) of which the number
corresponds to predetermined multiple of said minimal spreading requirement;

e a plurality of storage nodes (30) each comprising a share of said plurality of
redundant storage elements (300); and

¢ at least one controller node (20), operably connected to or comprised within said
storage nodes (20) when storing or retrieving said data object (500), comprising:

¢ an encoding module (400) operable to disassemble said data object (500) into
said predetermined number of redundant sub blocks (600);

¢ a spreading module (410) operable to store said predetermined number of said
redundant sub blocks (600) on a number of said storage elements (300) being
larger or equal to said desired spreading width;

e a clustering module (420) operable to retrieve at least said predetermined
multiple of said minimal spreading requirement of said redundant sub blocks

(600) from a plurality of said storage elements (300); and

10

15

20

25

30

WO 2012/089701 -34 - PCT/EP2011/074035

¢ a decoding module (430) operable to assemble said data object (500) from any
combination of said redundant sub blocks (600) of which the number
corresponds to said predetermined multiple of said minimal spreading
requirement,
CHARACTERIZED IN THAT
according to a second storage and retrieval option of said distributed object

storage system (1):

¢ said plurality of redundant storage elements (300), are further operable to store and
retrieve said data object (500) comprising a data object identifier (510) in the form
of a predetermined plurality of replication copies (900) of said data object (510)
comprising said data object identifier (510), said predetermined plurality
corresponding to said desired spreading width, each one of said replication copies
(900) comprising an exact copy of said data object (500);

¢ said encoding module (400) is further operable to replicate said data object (500)
into said predetermined plurality of said replication copies (900);

e said spreading module (410) is further operable to store said predetermined
plurality of said replication copies (900) on a corresponding plurality of said
storage elements (300);

e said clustering module (420) is further operable to retrieve at least one of said
predetermined plurality of said replication copies (900) from said corresponding
plurality of said storage elements (300); and

¢ said decoding module (430) is further operable to provide said data object (500)
from any one of said replication copies (900), and

said distributed object storage system (1) is operated according to said first
storage and retrieval option if the size of said data object (500) is equal to or larger
than a predetermined lower data object size threshold, and is operated according to
said second storage and retrieval option if the size of said data object (500) is smaller

then said predetermined lower data object size threshold.

2. A distributed object storage system according to claim 1, characterised in
that said lower data object size threshold is 2 Megabyte or lower, preferably 1

Megabyte.

10

15

20

25

30

WO 2012/089701 -35- PCT/EP2011/074035

3. A distributed object storage system according to claim 1 or 2, characterised
in that said plurality of redundant storage elements (300), each comprise a
distributed key value store, and in that said replication copies (900) are stored in said

distributed key value store.

4. A distributed object storage system according to claim 3, characterised in
that said distributed key value store further comprises metadata of said data objects
(500) stored on said storage element (300), said metadata comprising:

¢ said data object identifier (510);

o a list of identifiers of the storage elements (30) on which sub blocks (600) or
replication copies of said data object (500) are stored; and

e an identifier for the type of storage and retrieval option that was used to store
said data object (500).

5. A distributed object storage system according to any of the preceding
claims, characterised in that according to a third storage and retrieval option of said
distributed object storage system (1):
¢ said encoding module (400) is further operable during a storage operation to split

said data object (500) into a plurality of sequential data objects (500a, 500b, 500c)
of which the respective data object identifier (510a, 510b, 510c) comprises said
data object identifier (510) and a data object offset identifier (530a, 530b, 530c),
each of said sequential data objects (500a, 500b, 500c¢) subsequently being stored
according to said first storage option;

e said decoding module (430) is further operable during a retrieval operation to
concatenate said plurality of sequential data objects (500a, 500b, 500c) in the
correct order by means of said respective data object offset identifier (530a, 530b,
530c¢) such that they form said data object (500), each of said sequential data
objects (500a, 500b, 500c) previously being retrieved according to said first
retrieval option.

said distributed object storage system (1) is operated according to said third
storage and retrieval option if the size of said data object (500) is larger than a

predetermined upper data object size threshold.

10

15

20

25

30

WO 2012/089701 - 36 - PCT/EP2011/074035

6. A distributed object storage system according to claim 5, characterised in
that said upper data object size threshold is equal to or larger than 8 Megabyte,

preferably equal to or larger than 32 Megabyte.

7. A distributed object storage system according to claim 5 or 6, characterised
in that according to said third storage and retrieval option of said distributed object
storage system (1):

e during a storage operation, a plurality said sequential data objects (500a, 500b,
500c) are being stored in parallel according to said first storage option; and
¢ during a retrieval operation, a plurality of said sequential data objects (500a, 500b,

500c) are being retrieved in parallel according to said first retrieval option.

8. A distributed object storage system according to any of the claims 5 to 7,
characterised in that according to said third storage and retrieval option of said
distributed object storage system (1) is operable to store and/or retrieve a specific
selection of said sequential data objects (500a, 500b, 500c) by means of said data
object offset identifier (530a, 530b, 530c).

9. A distributed object storage system according to any of the preceding
claims, characterised in that according to said first storage and retrieval option of said
distributed object storage system (1):

e said encoding module (400) is further operable to generate a predetermined
number of CRCs of said redundant sub blocks (600), when disassembling said
data object (500) into said predetermined number of redundant sub blocks (600);

e said spreading module (410) is further operable to store said predetermined
number of CRCs together with their corresponding redundant sub blocks (600) on
said storage elements (300),

CHARACTERISED IN THAT

¢ said encoding module (400) is operable to calculate said redundant sub block (600)
by means of a predetermined combination of XOR operations on intermediate data
blocks (700),

e said encoding module (400) is further operable to generate a CRC for each of said

intermediate data blocks (700); and

10

15

20

25

30

WO 2012/089701 -37 - PCT/EP2011/074035

e said encoding module is further operable to calculate said CRC of said redundant
sub block (600) by applying said predetermined combination of XOR operations to
the respective CRCs of said intermediate data blocks (700).

10. A distributed object storage system according to claim 9, characterised in
that according to said first storage and retrieval option of said distributed object
storage system (1):

e said clustering module (420) is further operable to retrieve said respective CRCs
of said redundant sub blocks (600); and

¢ said decoding module (430) is further operable to assemble said data object
(500) from intermediate data blocks (700) which are generated from said
redundant sub blocks (600) by means of a predetermined combination of XOR
operations; and

¢ said decoding module (430) is further operable to calculate the CRC of said
intermediate data blocks (700) by applying said predetermined combination of

XOR operations to the respective CRCs of said redundant sub blocks (600).

11. A distributed object storage system according to clam 9 or 10,
characterised in that according to said first storage and retrieval option of said
distributed object storage system (1):

e Said decoding module is further operable to form said data object (500) from a
concatenation of a plurality of said intermediate data blocks (700); and

e Said decoding module is further operable to calculate the CRC of said data
object (500) from the CRCs of the respective intermediate data blocks (700).

12. A distributed object storage system according to claim 9 to 11, when
dependent on claim 5, characterised in that according to said third storage and
retrieval option of said distributed object storage system (1), said decoding module
(430) is further operable, during a retrieval operation, to calculate the CRC of said
data object (500) from the respective CRCs of said plurality of sequential data
objects (500a, 500b, 500c).

10

15

20

25

30

WO 2012/089701 -38 - PCT/EP2011/074035

13. An apparatus for storage or retrieval of a data object on a storage medium,
which is unreliable, said storage medium,
CHARACTERISED IN THAT
Said apparatus is operable to store and retrieve on said storage medium a data
object (500) comprising a data object identifier (510) in the form of a predetermined
number of redundant sub blocks (600) comprising said data object identifier (510),
said predetermined number corresponding to a predetermined multiple of a desired
spreading width, which consists of the sum of:

¢ a minimal spreading requirement, which when multiplied with said predetermined
multiple, corresponds to the minimal number of sub blocks (600) of said data
object (500) which are not allowed to fail; supplemented with

e a maximal concurrent failures tolerance, which when multiplied with said
predetermined multiple, corresponds to the number of sub blocks (600) of said
data object (500) which are allowed to fail concurrently,

each one of said redundant sub blocks (600) comprising:

e encoded data of equal size of the data object (500) divided by a factor equal to
said predetermined multiple of said minimal spreading requirement; and

e decoding data, such that said data object (500) can be decoded from any
combination of said redundant sub blocks (600) of which the number
corresponds to predetermined multiple of said minimal spreading requirement,

said apparatus operably being connected to said storage medium when storing or
retrieving said data object (500), comprising:

¢ an encoding module (400) operable to disassemble said data object (500) into
said predetermined number of redundant sub blocks (600);

¢ a spreading module (410) operable to store said predetermined number of said
redundant sub blocks (600) on said storage medium;

e a clustering module (420) operable to retrieve at least said predetermined
multiple of said minimal spreading requirement of said redundant sub blocks
(600) from said storage medium; and

¢ a decoding module (430) operable to assemble said data object (500) from any
combination of said redundant sub blocks (600) of which the number
corresponds to said predetermined multiple of said minimal spreading

requirement.

10

15

20

WO 2012/089701 -39- PCT/EP2011/074035

14. An apparatus according to claim 13, characterised in that said storage
medium is segmented into at least said desired spreading width of different sections,
said spreading module (410) further being operable to store said predetermined
number of said redundant sub blocks (600) on a number of said sections of said
storage medium being larger or equal to said desired spreading width,
said clustering module (420) further being operable to retrieve at least said
predetermined multiple of said minimal spreading requirement of said redundant sub

blocks (600) from said sections of said storage medium.

15. An apparatus according to claim 13 or 14, characterised in that said
storage medium is any one of the following:
e a magnetic storage medium, such as a magnetic tape or disk drive;
e aflashdrive;
e an optical storage medium, such as cd or dvd;
¢ a holographic storage medium; or

¢ a quantum information storage medium.

WO 2012/089701 PCT/EP2011/074035
1/11
N 10
Application
1

- ,._._._._._._._._._.::_.___.___.___.___ S Bt -

: L 20

i[ControIIer Node}f
| | o 1 ; 1
Storage Node }"301 Storage Node }“ 3; = | Storage Node o
! | P | : L | 7
Storage Node ,30'52 Storage Node }" 39 6 i | Storage Node H
> | L | : i > | 7
Storage Node 530‘.3 Storage Node }1‘ 3:0'7 i | Storage Node 1
' ' L p ' l i : | ~
. | Storage Node 30:4 Storage Node }I‘ 3:0'8 . | Storage Node [

&

300.2

T

300.4 300.6

300

i

g

300.9
300.8

300. 1

Fig. 2

WO 2012/089701

2/1

PCT/EP2011/074035

230-]

400-]

430-]

410-]

420-]

WO 2012/089701 PCT/EP2011/074035

3/11

510 500

520

400 JE]

N
r=k/n=10/16; x*n=16*800=12800

[|
g, -600.1 600.8001
-) rE
Re Dj— 600 7201 st 600.12001
g 7] 1] []
I P P P P
1
1 |
1 [] 600. 800 L] L] 600. 8800
: = = o
! 600.8000 600.1280
1 e
1 _
1 410] J
: k
| /_
| .
30 EINGY; R/ J J
]
]
|] | r ' 1
\ 300.1 30010 30011 302 300.16
\
v e e
\ e TT=~ -~
\ - NN\
N <Jr~510 _~600.1 \\
\\l/ OBJ.ID \
' SUBBLOCK.DATA (8kB) f(1) (16Dbit) ,
\\ ,,,

— -
~— —
-y —
e e o mm o e =

WO 2012/089701 PCT/EP2011/074035

4/11

T SN
i

510 OBJ.ID 500
_ OBJ.DATA (64MB)

520
AN

430 JE]

r=k/n=10/16; x*k=10*800=8000

' l !
\ 300.1 30010 30011 302 300.16
\
v mmmm—e
S T
\ ,” - 510 N\\
N J\ _~600.1 .
\\l/ OBJ.ID \
\ SUBBLOCK_.DATA (8KB) (1) (16Dit) ,
\\ ,,,

-~ -
~ - -
-~ _—
—--—_—_——_

WO 2012/089701 PCT/EP2011/074035

5/11

510 500

520

. |
o 900 1 900.11
) = — — —
7 4
/210 J J
II ~
,’ /
o
1 30.1 R R/ 2 /7
]
I
1
1 \ ,
] r l ! |
] 300.1 30010 30011 302 300.16
\
r e e -
\ B ~
\ ,” ~~N\
N et ~510 (9001 .
N OBJ.ID¥ \
»l |
' OBJ DATA (500kB) ,
\\ /,,

—
bl ——_—
O o e o =

Fig. 7

WO 2012/089701 PCT/EP2011/074035

6/11

510 500

520

[A
e -900.1
Y) ..
,/ \Ig:f’— 900.10
’ /\ 2\
/ s
/ L
1420 S|
1 (.
! (]
! 30.1-]
1
1
1
i - |)
i
\\ 300.1 300.10 300.11 30.2 300.16
\
L e I
\ - - RN ~
' e ~510 —900.1 DN
\ /’ ‘_) = \
\“/ OBJ.ID \
' OBJ.DATA (500kB) ,
\\ /,,

-~ -
o __——
e e o mm o e =

Fig. 8

PCT/EP2011/074035

WO 2012/089701

7M1

510 520
OBJ.ID)

500

10 —c_L B,:> OBJ.DATA (192MB)

r=k/n=10/16: r=k/n=10/16: r=k/n=10/16:
x*n=16*800=12800 Xx*n=16*800=12800 x*n=16*800=12800
[| | I | A
e 600.1 600.12801 600.25601
A [::fs e _YE::] [::jf— - _f[::] [::jj_ e
/' TTTTT600.12800 600.25600 600.38400
! _ _ -
I
i
1410 410 410
|
|
] v Vv Vv
\ e .
\
\ = mT T T TT T T~
\ - - -~ -~
\ - S o
N e —~510a ~600.1 ~.
N\ / =~ \
ol OBJ.ID(OFF.ID)+ \
' SUBBLOCK.DATA (8kB) [f(1) (16bit) /
S ’,’

PCT/EP2011/074035

WO 2012/089701

8/11

510 520
OBJ.ID j

500

10 —c_L K# OBJ.DATA (192MB)

r=k/n=10/16; r=k/n=10/16; r=k/n=10/16;
x*n=16*800=12800 X*n=16*800=12800 x*n=16*800=12800
| | | I | | |
P ik 600.1 600.12801 600.25601
AL "600.12800 600.25600 600.38400
N\

D - -

\ L
\ -
\ - ~
N e —~510a ~600.1 ~o
N\ / =~ \
ol OBJ.ID(OFF.ID)+ \
\ SUBBLOCK.DATA (8kB) [f(1) (16bit) /
S ’,/

WO 2012/089701 PCT/EP2011/074035

9/11

510 500

520

400 JE]

N
r=k/n=10/16; x*n=16*800=12800

| |
e =600.1 600.8001
AT .. B [T A7

------ = 60012001
/ 8007201 " [
/
1
I %600.800 % ||:_%—600.8800
]
i - 600.8000— _ B 600.12800~ _
1
[] g
! 410
! _
1
1
! (
L 301 RS R/ J J
]
1
\ _
]
\ | | f 5 |
\ 3001 30010 30011 302 300.16
\
e L
\ == T T -
\ - ~o
v et ~510 (6001 .
\‘(/ OBJ.ID¥
' SUBBLOCK.DATA (8kB) f(1) (16bit)
Ve
~ »~

-~
-~ — -
- -
e o e e me wm em

WO 2012/089701

PCT/EP2011/074035

10/11
BJ.ID 500
| OBJ.DATA (64MB)
=
700, @ 700\/\
7101 — B2 | {,] E> L)
710. 2(/) 710.4 710.8000 720. 1H 720 4800
710.3
(8kB
600.1— | {,] \,] {,)
600.2 L) 600. 600.12800
600.3
Fig. 12
BJ.ID 500
| OBJ.DATA (64MB)
=
700, {} 700\/\
(8kB
7101— | {,] E> L]
710. 2(/] 710.4 710.8000 720. 1L) 720.4800
710.3

’—_______@ ——————— - ”’—__-h\\\

.~ -~ 'd ~
d—__!-- \
¢ —ekg] / 00~
600.1 -1 ' o
. l,) \,) . | DATA (8kB) |
‘ 5

600.2 600 4 600.12800 \ ,

600.3 ~e 610,

Fig. 13

WO 2012/089701

PCT/EP2011/074035

11/11
BJ.ID 500
| OBJ.DATA (64MB)
52 =~
700~ —l]j 700~
7104 — B8 {’)' L] L] <j '\,)' L)
710.2(/) 710.4 710.8000 720.1% 720.4800
710.3 720.2
6001 — B {,] ' {,] {,)
600.2 | 600.4 600.12800
600.3
Fig. 14
500

BJ.ID

. OBJ.DATA (192MB)

| OBJ.DATA (64MB)

_ OBJ.DATA (64MB)

Fig. 15

| OBJ.DATA (64MB)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2011/074035

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/10
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

18 December 2008 (2008-12-18)
abstract; figures 2,3
paragraphs [0004] - [0010],
[0026], [0028], [0040]

19 May 2009 (2009-05-19)
abstract

figures 4,5

column 5, lines 14-47

AL) 2 October 2003 (2003-10-02)
abstract

paragraphs [0019], [0053],

A US 2008/313241 Al (LI JIN [US] ET AL)

[0023],

A US 7 536 693 B1 (MANCZAK OLAF [US] ET AL)

column 9, Tine 19 - column 11, Tine 63

A US 2003/188097 Al (HOLLAND MARK C [US] ET

[0060]

1-15

1-15

1-15

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
merr:ts, such combination being obvious to a person skilled
inthe art.

"&" document member of the same patent family

Date of the actual completion of the international search

23 February 2012

Date of mailing of the international search report

23/03/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Weber, Vincent

Form PCT/ISA/210 (second sheet) (April 2005)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2011/074035
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2008313241 Al 18-12-2008 US 2008313241 Al 18-12-2008
WO 2008157081 A2 24-12-2008
US 7536693 Bl 19-05-2009 NONE
US 2003188097 Al 02-10-2003 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - wo-search-report
	Page 54 - wo-search-report

