Office de la Propriete Canadian CA 2948700 A1 2017/02/11

Intellectuelle Intellectual Property
du Canada Office (21) 2 948 700
= argensme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2016/08/11 (51) Cl.Int./Int.Cl. HO4L 12/26 (2006.01)
(41) Mise a la disp. pub./Open to Public Insp.: 201/7/02/11 (71) Demandeur/Applicant:

TAMQ, INC., US

(72) Inventeur/Inventor:
BARTLEYWOOD, ALLAN, US

(74) Agent: FINLAYSON & SINGLEHURST

(30) Priorite/Priority: 2015/08/11 (US62/203,713)

(54) Titre : SYSTEMES ET METHODES D'ANALYSE DES MESURES DE RENDEMENT MQ DE LA WEBSPHERE
(54) Title: SYSTEMS AND METHODS FOR WEBSPHERE MQ PERFORMANCE METRICS ANALYSIS

MQ Message
Network

'odend'en &L

Iin, " e g oy

’ .
A e T L e T S
A o A~ R R Sy e paE g s g ana
o e SR e o KT
S IO O e S O
p

- IS 5 10T =
i sasssssi ® -
; , . o
- L .
‘ L
“Bmasatis o
- 1 Cp el
A pn shise
£
HERE
- e w 0 r ' Rt
] N ‘ - - -
e s R eyt S e
e R eI R It o o SR e,
e T M AORNCA T (B ey e
i R T T I 2 N Rt '.Fcr.'.."o. ‘,:.'.E:‘{_,'.' B .0.00m 00 8o smm
AL !"i.’.. P I TR L
- e = .4t = L.a . .e e M bes ssscsam
Celh G '
S O LA L L A

peare P
.lu.-.:,v:f' JJJJJJJJ

MG /B
Netwe rk

(57) Abregeé/Abstract:
Systems and methods for the computer-automated mining and profiling of server monitoring data and related information are

disclosed. Performance monitoring is performed through system commands and queries against particular software components
arranged In a particular way that provides comparative information for the management and optimization of server and software
resources through the identification of constraints and bottlenecks. Further, the present disclosure relates to the analysis and

.,;',;.
S
B SSNIRR - e

. S At .i‘: .
~ .4'.‘." 5y

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca CIPO

OPIC - CIPO 191

CA 2948700 A1 2017/02111

ey 2948 700
(13) A1

(57) Abrege(suite)/Abstract(continued):
comparison of a current running profile of a server against previous or archived profiles. The profiles characterize the utilization and
usage of server resources, or prior systems performance history for the purpose of performance tuning and resource optimization
of the middleware messaging software.

10

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

ABSTRACT

Systems and methods for the computer-automated mining and profiling of server monitoring
data and related information are disclosed. Performance monitoring is performed through system
commands and queries against particular software components arranged in a particular way that
provides comparative information for the management and optimization of server and software
resources through the identification of constraints and bottlenecks. Further, the present disclosure
relates to the analysis and comparison of a current running profile of a server against previous or
archived profiles. The profiles characterize the utilization and usage of server resources, or prior

systems performance history for the purpose of performance tuning and resource optimization of

the middleware messaging software.

10

15

20

25

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

SYSTEMS AND METHODS FOR WEBSPHERE MQ PERFORMANCE METRICS
ANALYSIS

Cross-Reference to Related Applications

[0001] This application claims priority to U.S. Provisional Application No. 62/203,713,
filed on August 11, 2015, now pending, the disclosure of which is incorporated herein by

reference.

Field of the Disclosure

[0002] The present disclosure relates to computer-automated mining and profiling server
monitoring data and related information obtained through system commands and queries against
particular software components arranged in a particular way that provides comparative
information for the management and optimization of server and software resources through the
identification of constraints and bottlenecks. Further, the present disclosure relates to the analysis
and comparison of a current running profile of a server against previous or archived profiles. The
profiles characterize the utilization and usage of server resources, or prior systems performance

history for the purpose of performance tuning and resource optimization of the middleware

messaging software.
Background of the Disclosure

[0003] Current software engineering practices require the ongoing monitoring and
management of hardware and software assets. Hardware assets may include servers,
workstations, routers, and other networking equipment. Software assets may include enterprise

applications, desktop applications, middleware applications, etc. Previous solutions involve

manual review of server statistics, creation of server and middleware software monitoring
scripts, or the purchase of software licenses for monitoring and management software packages.
These software packages are designed for a particular technical platform (i.e., a specific
hardware and software architecture) and are constrained to a particular hardware and software
environment requiring multiple software packages to cover a heterogeneous server environment.

If changes are made to the hardware software architecture, the prior art software packages may

not be sufficient to provide the same level of services. By contrast, the present disclosure

provides a comprehensive solution.

10

15

20

25

30

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

[0004] IBM’s WebSphere MQ™ (“MQ”) is the industry leader for middleware
messaging software, and there are a considerable number of software programs available for
measuring and monitoring the product and its use of server resources. But these mechanisms
reside at or operate on the end points (i.c., a specific node in the hardware and software
architecture where applications are getting and putting messages to the MQ interface, a software
platform or networking equipment where Queue Managers are communicating with each other,
security monitoring interfaces, etc.) as used herein a Queue Manager provides queuing services
to applications and manages the queues that belong to them. In some situations, the application is
informed that this cannot be done, and appropriate reason code 1s given. But there 1s not

presently any tool that measures the capacity of the MQ infrastructure.

[0005] There are not too many ways MQ infrastructures can be implemented, but the
number of different physical components that make up a physical infrastructure can be
considerable, especially with larger implementations, from physical or virtual server hardware
and configuration, through to all the components that make up a middleware messaging network.
So being able to quantify the capacity of a particular implementation is critical as not two
implementations will be exactly the same. And there is no single tool out there today that

provides the needed collection and analysis able to quantify the actual middleware messaging

capacity.
Brief Summary of the Disclosure

[0006] One embodiment of the present disclosure may be described as a system for
monitoring a performance of a computer network architecture. The system may comprise a
plurality of collection points located throughout messaging endpoints in the computer network

architecture. The collection points may be configured to collect operating system resource data

and middleware data. The collection points may be implemented in software and are may be to

execute at each messaging endpoint.

[0007} The system may further comprise a centralized harness service in electronic

communication with the plurality of collection points. The harness service may be configured to
receive and compile operating system resource data and middleware data from the plurality of
collection points. The operating system resource data may comprise CPU, disk, or memory
usage. The middleware data may comprise message counts, enqueue rates, or dequeue rates. The

centralized harness service may be configured to send a specified number of messages at a
2

10

15

20

25

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

specified size over a specified number of threads through the computer network architecture. The
collection points may be configured to receive messages from the centralized harness and reply

to the centralized harness. The messages and replies may be encrypted.

[0008] The system may further comprise a runtime data capture service in electronic
communication with the harness service. The runtime data capture service may be configured to
receive the compiled operating system resource data and middleware data. The runtime data

capture service may also be configured to store the compiled operating system resource data and

middleware data in a data repository.

[0009] The system may further comprise a graphical user interface 1n electronic
communication with the data repository. The graphical user interface may be configured to
retrieve system resource data and middleware data from the data repository, analyze the retrieved

system resource data and middleware data, and display the analyzed system resource data and

middleware data to a user.

(0010] The system may further comprise a collection rules engine configured to instruct

each collection point on how it collects operating system resource data and middleware data.

[0011] Another embodiment of the present disclosure may be described as a system for
monitoring a performance of a computer network architecture. The system may comprise a
multi-threaded controller configured to produce messages, request messages, consume messages,

and subscribe to queue managers.

[0012] The system may also comprise a multi-threaded trigger monitor configured to

dynamically execute one or more consumer classes. Each consumer class may be configured to

consume messages, generate reply messages, and introduce a delay between the consumption of

a message and the generation of a reply message.

[0013] The system may also comprise a multi-threaded message publisher configured to
publish multi-topic messages at a predetermined publishing rate. The message publisher may be
configured to publish multiple types of message with various topics. The messages may be

persistent or non-persistent messages.

[0014] The system may also comprise a scenario database in communication with the

controller, trigger monitor, and message publisher, the database configured to provide each of

3

10

15

20

25

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

the controller, trigger monitor, and message publisher with one or more test parameters. The
scenario database may provide the controller, trigger monitor, and message publisher with
updated test parameters and wherein the analysis engine also compares performance analysis

data based on the updated test parameters.

[0015] The system may also comprise a runtime data capture service in configured to

receive operation data from the controller and store the operation data in a data repository.

[0016] The system may also comprise an analysis engine configured to produce and
monitor performance analysis data relating to the computer network architecture based on
operation data in the data repository. The analysis engine may also be configured to record and

manage test cycles and provide configurations for each test cycle. The analysis engine may also

compare performance analysis data to previous scenarios.

[0017] Another embodiment of the present disclosure may be described as a method for
determining a performance indicator of a computer network architecture. The method may
comprise providing a load configuration to a centralized harness service based on a usage pattern
for the computer network architecture; transmitting, from the centralized harness service to a
plurality of collection points, one or more messages based on the provided load configuration;
receiving, at the centralized harness service from the plurality of collection points, responses to
the one or more messages, the responses containing performance results; storing, at a data
repository, the received performance results; and determining, using a processor, the
performance indicator of the computer network architecture and displaying the performance

indicator to a user through a graphical user interface.

[0018] The present disclosure relates to the profiling of server system and middleware
messaging statistics for performing system infrastructure performance analysis for quantifying
capacity of a given configuration and combination of technical components. As used herein,
middleware may describe computer software that provides services to software applications
beyond those available from the operating system. Middleware may also describe the software
layer that lies between the operating system and the applications on each side of a distributed

computer network. Typically, middleware supports complex, distributed business software

applications.

10

15

20

25

30

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

[0019] The present disclosure analyses a specific computer middleware messaging
configuration and provides a unique combination of information to facilitate rapid correction or
modification of technical components to optimize server transaction performance. Furthermore,
the present disclosure’s collection of server and transaction statistics provides users with a longer
term ability to analyze server utilization and capacity metrics for maximizing server software

asset investments and minimizing use of software resources which can help users to save money

from over-buying on server capacity.

[0020] The present disclosure may be used for the discovery and implementation of
middleware performance management. In one embodiment, the present disclosure can generate
metrics that will be collected to provide performance and capacity planning data for interrogation
and analysts by middleware technicians responsible for performance tuning of the middleware

software assets to achieve cost savings of software licenses where a reconfiguration or tuning

may be able to free up under-utilized resources.

10021] This disclosure provides a platform-agnostic utility for the collection and
management of performance data across heterogeneous systems. One problem solved by the
present disclosure 1s simplifying the viewing and collection of performance management and
monitoring information in a way that combines server level, system level, and

software/application middleware level data so that capacity and utilization information can be

more quickly analyzed and managed.

[0022] Embodiments usable within the scope of the present disclosure relate to
computer-implemented methods and systems for transforming raw data (e.g., data that is not
readily readable and/or understandable by an individual) associated with one or more capture

files obtained from servers across the network, to form an array or similar individual readable
data (e.g., data readily readable and understandable by an individual) usable for monitoring,
analyzing, modifying, optimizing, or otherwise changing or observing the server topology,
thereby enabling parallel analysis for a plurality of technical platforms. For purposes of this
disclosure, the term “technical platforms™ includes Linux & AIX — using nmon™, Windows
using PerfMon™, z/OS using a straight dump to the Java™ directory structure, and Java™ for
tacilitating platform agnostic installation and configuration. The present disclosure is able to

aggregate data trom the collective technical platforms assimilating the data to a single repository

10

15

20

25

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

in a way that is unique for each platform structure, but yet in a format consistent for

Interrogation, analysis, and improved usability.

Description of the Drawings

[0023] For a fuller understanding of the nature and objects of the disclosure, reterence
should be made to the following detailed description taken in conjunction with the

accompanying drawings, in which:

Figure 1 1s a diagram illustrating collection points located in the “clouds™ of heterogeneous
networks that originate middleware messages;

Figure 2 1s a diagram 1llustrating one embodiment of the present disclosure;

Figure 3 is a chart showing CPU utilization for a test cycle of 100 threads and a message size of
100K b; and

Figure 4 1s a chart showing transactions per second (TPS) which illustrates messaging capacity

based on the number of transactions by number of threads and message size for putting messages

to a local queue.

Detailed Description of the Disclosure

[0024] One embodiment of the present disclosure 1s the “MQPPM” performance pack.
The embodiment MQPPM is a performance analysis tool, implemented in software, that is used
to measure possible performance scenarios for the purpose of selecting a certain contfiguration
that optimizes system resources for the particular pattern of usage. MQPPM also utilizes a suite

of graphical user interface views to display data, including analyzed data.

10025] MQPPM creates and configures reusable processes for modeling and measuring
current and peak potential performance of a particular installation of MQ. The MQPPM pack
comprises various software routines to enable this functionality. MQ may be used to decouple
otherwise highly coupled and highly dependent software transaction processing into
asynchronous application messages. The asynchronous application messages can be delivered to
a receiving application through a standardized interface with configurable frequency. Other data

delivery attributes can be communicated, which are characterized by specific Message Patterns,

all of which can be modeled and measured by MQPPM.

10

15

20)

25

30

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

[0026] MQPPM may be designed to exercise a MQ infrastructure by running end-to-end
transactions of a particular model through MQ, be it from the furthest end points of the

infrastructure, or selected segments.

[0027] Figure 1 shows the collection points or end points located in the “clouds” of
heterogeneous networks are where middleware messages originate. These end points are also
where agent components reside to produce statistics and information regarding the operating
system resources (for example, CPU, disk, and memory usage) as well as querying and
collecting middleware statistics (such as message counts, enqueue and dequeue rates, etc.). The
collected information and middle ware statistics may be configured in a collection rules engine.
The configuration may be performed before or after commencement of MQPPM. Information is
collected and forwarded by the agent components to a centralized service (hereafter referred to
as the “WMQ PPM Harness”). The harness transforms and passes the collected data to another
service (hereafter referred to as the “WMQ PPM Runtime Data Capture”) which receives data
and writes it to the central data repository in the common format. From there, data 1s stored until
it is needed for analysis or reporting by the user console. The collection of data 1s a one-way
flow from collection point to the data repository. Data collection may be optimized for

environments with high frequency and potentially large file data collection.

[0028] MQPPM may exercise the MQ infrastructure in a measurable and quantifiable
manner. MQPPM can perform this in a variety of ways. For example, the WMQ PPM harness
may send a specified number of messages at a specified size over a specified number of threads
through the MQ infrastructure to a “U-Turn” Queue that returns messages to the sending thread.
The elapsed time for each message on each thread may be captured in milliseconds. By

performing a variety of these tests between various endpoints, with various message sizes, and
over a varied number of threads, these metrics can profile the capacity and performance of the
MQ infrastructure for the specified message sizes and volumes. In another example, MQPPM
may simulate a request/response type application pattern. In this example, the WMQ PPM
harness sends a specific size message to a responding Trigger Process that will reply with its’
specified message size. By performing a variety of these tests between various endpoints, with

various message sizes, and over a varied number of threads, a possible TPS can be determined.

[0029] One embodiment of MQPPM comprises the following steps: Providing selected
load options based on the usage pattern defined for a particular MQ infrastructure

7

10

15

20

25

30

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

implementation; driving the selected load options and capturing transaction performance results;

and loading performance results to the MQPPM database and producing reports.

[0030] Where environments include usage of IBM’s WebSphere Message Broker / IBM
Integration Bus, MQPPM is able to deploy fixed WMB/IIB Message Flows to the product stacks
and exercise MQ as well as the WMB / IIB software to message capacity and system utilization.
This scenario could be done in two stages; 1 capture the MQ infrastructure capacities; 2™
exercise the WMB/IIB infrastructure by using these predefined Message Flows. The two
scenarios will reflect the overall capacity of the MQ and WMB/IIB infrastructure and form a

baseline for any tuning opportunities.

[0031] MQ also includes various security options such as SSL. encryption between client
applications and the MQ Queue Manager, SSL encryption between Queue Managers across the
network, and Advanced Message Security (AMS). Use of these additional security features can
add significant latency to round trip transaction response time, though generally transparent to

application producers and consumers.

[0032] A Queue Manager ensures the following actions: object attributes the change
according to the commands received, special events such as trigger events or instrumentation
events are generated when the appropriate conditions are met, and messages are put on the
correct queue, as requested by the application making the put call. Each queue belongs to a

single Queue Manager and is said to be a local queue to that Queue Manager. The Queue

Manager to which an application is connected is said to be the local Queue Manager for that

application. For the application, the queues that belong to its local Queue Manager are local

gueues.

[0033] Associated with each Queue Manager is a set of attributes (or properties) that

define its characteristics. Some of the attributes of a Queue Manager are fixed when it is created;
others may be changed by using the WebSphere MQ commands. Inquiries can be made
regarding the values of all the attributes, except those used for Secure Sockets Layer (SSL)
encryption. The fixed attributes may include: The name of the Queue Manager, the pl!atform on

which the Queue Manager runs (for example, z/ OS®), the level of system control commands that
the Queue Manager supports, the maximum priority that can be assigned to messages processed
by the queue manager, the name of the queue to which programs can send WebSphere MQ

commands, the maximum length of messages the Queue Manager can process, and whether the
8

10

15

20

25

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

Queue Manager supports syncpointing when programs put and get messages. Syncpointing ts
used to commit recoverable resources used by a Queue Manager. The changeable attributes may
include: a text description of the Queue Manager, the identifier of the character set the Queue
Manager uses for character strings when it processes calls, the time interval that the Queue
Manager uses to restrict the number of trigger messages, the time interval that the Queue
Manager uses to determine how often queues are to be scanned for expired messages, the name
of the Queue Manager's dead-letter (undelivered message) queue, the name of the Queue
Manager's default transmission queue, the maximum number of open handles for any one
connection, the enabling and disabling of various categories of event reporting, and the

maximum number of uncommitted messages within a unit of work.

[0034] A remote queue is a queue that belongs to another queue manager. A remote
queue manager is any queue manager other than the local queue manager. A remote queue
manager can exist on a remote machine across the network, or might exist on the same machine
as the local queue manager. WebSphere® MQ supports multiple queue managers on the same

machine.

[0035] MQPPM can quantify use of MQ AMS features and added latency for what the
differences are between models for capacity, response times and systems utilization for

encrypted as well as for non-encrypted messaging is in a particular environment. In one
embodiment, MQPPM will perform capacity tests before MQ AMS is enabled and then run

perform subsequent capacity tests post AMS enabling.

[0036] The MQPPM may be comprised of various software components. These

components include, but are not limited to, a Controller, a Trigger Monitor, a Message Publisher,

and a Configuration/Analysis Presentation.

[0037] The Controller is a configurable multi-threaded engine. The Controller can

produce messages, request/consume messages, and subscribe to queue managers.

[0038] The Trigger Monitor may be multi-threaded and configurable. The Trigger

Monitor may be programmed to dynamically execute required consumer classes. The consumer
classes may be configured to simply consume messages. The consumer classes may also

consume messages and generate reply messages. In some configurations, the consumer class

10

15

20

25

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

may have a delay between consuming a message and generating a reply message in order to

better simulate actual application processing time.

[0039] The Message Publisher may be multi-threaded and configurable. The Message
Publisher can be configured to publish multi-topic messages (or multiple types of messages with

various topics). The Message Publisher can also be configured to have a predetermined

publishing rate.

10040] The Configuration/Analysis Presentation (“Presentation”) may be an Oracle XE
web-based application. The Presentation may record customer/test cycles, manage test cycles,
provide configurations for each of the components for each test run, load test results, and

produce performance analysis charts.

[0041] Various test scenarios can be implemented using the systems and methods of the
present disclosure. For example, some test scenarios include put and get rate testing,

request/response testing, and publish/subscribe testing.

[0042] Generally, the put and get rate testing quantifies the put and get rates of the MQ
Queue Managers. Test results can be mapped according to message size for example, 1KB,
10KB, 50KB, 100KB, 250K B, 500KB, etc. The test can also be baselined by volume capacity
under multi-thread control. The test can also be baselined by customer messages sizes. In this
way, the message size may be chosen for the average message size and type per an application

stack.

[0043] Generally, the request/response testing quantifies network/MQ rates. In one
embodiment, the testing is performed using a “U-Turn” remote queue. The “U-Turn” Queue is
simply a Remote Queue on the target MQ Queue Manager (“QMgr”) that will route the message
back to the sending QMgr. This pattern can be used to assess portions of or the whole of an MQ
infrastructure. The request/response testing also simulates customer application response. For

example, the test scenario may run a trigger monitor with customer average response times.

[0044] Generally, the publish/subscribe testing performs a variety of different use case
implementations. For example, the publish/subscribe testing may involve single topic publish

and subscribe with message sizes at 1KB, 10KB, 50KB, or 100KB. The testing may involve

10

10

15

20

25

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

single topic publishing and multiple subscribers at similar message sizes. The testing may

involve multiple topic publishing and multiple subscribers at similar message sizes.

[0045] In one exemplary embodiment, the MQPPM pack is restricted to the following

Message Patterns:

[0046] 1. Put a Message to a Queue (including, but not limited to: Simple Put to a Local
Queue, Simple Put to a Remote Queue, Multi-threaded Put to a Local Queue, and Multi-threaded

Put to a Remote Queue);

[0047] 2. Get a Message from a Queue (including, but not limited to: Simple Get from a
Local, and Multi-threaded Get from a Local Queue);

[0048] 3. Request / Response (including, but not limited to: Simulated Request /
Response using a U-Turn Queue, Simulated Request / Response using an MQ Triggered Process

response); and

[0049] 4. Publish / Subscribe

[0050] These message patterns are useful to assess and characterize specific end-to-end
performance characteristics of a particular QMgr and MQ infrastructure. An application has two
core interactions with a QMgr—namely, Put and Get actions. Assessing, analyzing, and

characterizing these two actions 1s fundamental to understanding health and performance tuning

of a QMgr and the MQ) infrastructure.

[0051] MQ provides two types of message persistence for managing messaging in the

synchronous and asynchronous messaging paradigms.

[0052] Persistent Messages—Persistent messages are used for flows that are dependent

on the MQ feature for guaranteeing “one-time assured delivery” of application messages
between application end points (guaranteeing a message is sent successfully from application A

to application B without error, message loss, or sending of duplicate messages).

[0053] Non-Persistent Messages—Non-persistent messages are high speed messages
that are used 1n Request / Reply paradigms, as this message handling option is memory bound

and reduces the amount of 1/0 required for the hosting systems for writing messages to disk.

11

10

15

20

25

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

Such messages do not typically survive a system restart but pass through the system at much

higher speeds than persistent messages.

j0054] The present disclosure can assess a QMgr and MQ infrastructure in many ways.
One test involves adding Put Message to a Queue. The Put Message action evaluates how
quickly a QMgr will accept messages. There are additional variables that can impact the model

that need to be taken into account when testing the performance of a QMgr accepting messages.
For example, whether the target Queue 1s Local or Remote, and whether the messages Persistent

or Non-Persistent, the MQPPM performance pack can model the performance and capacity

differences.

[0055] To tully assess capacity and performance of a QMgr and the MQ infrastructure
involves multiple test runs to model and isolate issues that are detected. Many methods may be
deployed simultaneously or sequentially. One such method puts messages to a Local Queue and
will be used assess the QMgr and O/S set up configurations. Because messages would not be

leaving the local server (with Local Queues), there is no network configuration and latency

involved.

[0056] Another method involves putting messages to a Remote Queue to assess
conditions external to the QMgr and O/S set up and configuration. Generally, the Remote Queue

will be hosted in another QMgr on a different host and involve the use of the network for

messages to be put there.

[0057] In the present disclosure, agent components forward data to be deposited in the
database. The key looping components of the life cycle are the test/modify/re-test portion for
tuning the combination hardware/software stack where the performance statistics are re-collected

and compared to previously captured profiles (See Fig.1).

[0058] In one embodiment, MQPPM components are written in Java for portability and

usability across multiple platforms. The components may include:

[0059] Load Driver Process Component (hereafter “Load Driver”). The Load Driver 1s
configurable for the number of active threads, message size number of messages, etc. The Load

Driver will capture the elapsed time for each message transaction in milliseconds and report all

12

10

15

20

25

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

runtime statistics to a log file. The log file is then processed with the appropriate statistics

extracted and performance charts produced.

[0060] ~ Trigger Monitor Process Component (hereafter “Trigger Montitor”). The Trigger
Monitor 1s a custom Java™ trigger monitor supporting the Request / Response flow tests. The

Trigger Monttor is configuration and is a production ready process.

[0061] Publish / Subscriber Processes Component (hereafter “Publish/Subscriber”). The
Publish/Subscriber support both JMS and native MQ Java processing. The Publisher processes
are configurable for multi-threaded publishing and message sizes. Log files for both the

Publisher and Subscriber processes contain statistics showing both the Publisher and Subscriber

capacities and performance.

[0062] Exemplary Performance Reports: Capturing system utilization using tools like
nmon for Linux and AIX and Perfmon for Microsoft platforms can be used. (See Fig. 3, the
sample chart shows CPU utilization for a test cycle of 100 threads and a message size of 100Kb.)
We can see the test cycle has run 4 times; the very first peak of each run is the load process

building the 100Kb message with the rest of the time be taken by the QMgr of O/S.

[0063] There 1s an excess CPU Wait time showing the limitations of this QMgr /
platform configuration is 1/0. But looking at the previous TPS chart we can see that the TPS was

actually a well sustained 1,466 TPS.

[0064] Fig. 4 1s a sample TPS (Transactions Per Second) chart showing messaging
capacity based on the number of transactions by number of threads and message size for putting
messages to a local queue. This chart indicates the expected performance figures for this QMgr

on a particular platform.

[0065] The 1KB messages has a very high TPS, starting at 22,000 for 10 threads,
dropping to 16,000 TPS at 40 threads but going back up to 20,000 TPS at a 100 threads.

[0066] All the other message sizes drop from their start positions with the 100KB

messages having a very steady through put from 40 to 100 threads and only a slow drop off in
TPS from 1,836 to 1,466.

13

10

15

20

25

30

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

10067] The collection of components together will deliver the means to collect server and
middleware software performance statistics together, place them in a database, and provide

views and management consoles that will facilitate middleware performance tuning and

management of these technical assets.

[0068] Furthermore, the performance dashboard views can be customized so that the
viewers of the information do not require training to apprehend the significance of the

information.

[0069] The disclosed software may leverage the following features: Standard installer —
will pull from archive and perform appropriate unattended installation steps into the designated

server directory to facilitate automated installation of required software components.

[0070] Additionally, for purposes of the disclosure and claims herein, the term “array”
can be synonymously used with the term “individual readable data,” to indicate any form,
organization, or type of information that can be readily understood and processed by an

individual without requiring significant additional transformation thereof.

[0071] Systems and methods of the present disclosure will be implemented using the
Java™ programming language on any Java™ supported computer or similar device. In one
embodiment, raw data associated with one or more captured files is received, the raw data
including metrics associated with respective capture files. The raw data is transformed to form an
array or similar individual readable data that associates each capture file with one or more
respective metrics. The agents capture each unique data point (not deltas), measuring in
milliseconds. Because we can run in a multi-threaded environment, agents are able to capture
both the message and the return response on the same thread saving considerable system

overhead for the monitoring capability compared to competitive solutions.

[0072] For example, a plurality of capture files may be received from various agent
components, each at a respective point in time. The data will be sent across the network to a
collector component that will write the data to the repository for long-term storage of data for
historical reporting. After transformation of the data into a human readable format, the resulting
output (from the end collection points) each being associated with a single capture file, with

respective key metrics, in the form of columns, thereby defining cells, each cell populated by a

value associated with the key metric noted by the column heading.

14

10

15

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

[0073] The data structure used for the disclosure is a relational model using entities that

are within the collection structure are used to provide the profiles, patterns, and usage charts

based on the particular usage pattern and related attributes. The collection data itself is used to
produce the profile information for analysis. Depending on the usage of the embodiment, each
scenario may have unique data retention needs, for example, capturing and uploading data to a
website for ongoing reporting, may involve regular data purging from the source data repository.
In such a situation, the disclosure will include an archival facility for the purpose of being able to

restore past collection, analysis, and profile generation.

[0074] A webapp may be used to register a customer and then derive the required tests.
For each test, the website will generate the runtime configuration information that the user would

download and put into the configuration directory. The harness would then use this configuration

to run the test.

10075] Although the present disclosure has been described with respect to one or more
particular embodiments, it will be understood that other embodiments of the present disclosure
may be made without departing from the spirit and scope of the present disclosure. Hence, the
present disclosure is deemed limited only by the appended claims and the reasonable

interpretation thereof.

15

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

What is claimed is:

1. A system for monitoring a performance of a computer network architecture comprising:
a plurality of collection points located throughout messaging endpoints in the computer
network architecture, the collection points configured to collect operating system
5 resource data and middleware data;
a centralized harness service in electronic communication with the plurality of collection
points, the harmness service configured to receive and compile operating system resource

data and middleware data from the plurality of collection points;

a runtime data capture service in electronic communication with the harness service, the

10 runtime data capture service configured to:

receive the compiled operating system resource data and middleware data; and
store the compiled operating system resource data and middleware data in a data
repository; and
a graphical user interface in electronic communication with the data repository, the graphical
15 user interface configured to:
retrieve system resource data and middleware data from the data repository;
analyze the retrieved system resource data and middleware data; and

display the analyzed system resource data and middleware data to a user.

2. The system of claim 1, wherein the collection points are implemented in software and are

20 configured to execute at each messaging endpoint.

3. The system of claim 1, wherein the operating system resource data comprises CPU, disk, or

memory usage.

4. The system of claim 1, wherein the middleware data comprises message counts, enqueue

rates, or dequeue rates.

25 5. The system of claim 1, further comprising a collection rules engine configured to instruct each

collection point on how it collects operating system resource data and middleware data.

6. The system of claim 1, wherein:

16

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

the centralized harness service is configured to send a specified number of messages at a

specified size over a spectfied number of threads through the computer network

architecture; and

the collection points are configured to receive messages from the centralized harness and

5 reply to the centralized hamness.

7. The system of claim 6, wherein the messages and replies are encrypted.

8. A system for monttoring a performance of a computer network architecture comprising:
a multi-threaded controller configured to produce messages, request messages, consume

messages, and subscribe to queue managers;

10 a multi-threaded trigger monitor configured to dynamically execute one or more consumer

classes;

a multi-threaded message publisher configured to publish multi-topic messages at a

predetermined publishing rate;

a scenario database in communication with the controller, trigger monitor, and message
15 publisher, the database configured to provide each of the controller, trigger monitor, and
message publisher with one or more test parameters;

a runtime data capture service in configured to:
recetve operation data from the controller; and

store the operation data 1n a data repository; and
20 an analysis engine configured to produce and monitor performance analysis data relating to

the computer network architecture based on operation data in the data repository.

9. The system of claim 8, wherein a consumer class is configured to consume messages, generate
reply messages, and introduce a delay between the consumption of a message and the generation

of a reply message.

25 10. The system of claim 8, wherein the message publisher is configured to publish multiple types

of message with various topics.

11. The system of claim 8, wherein the analysis engine is also configured to record and manage

test cycles and provide configurations for each test cycle.

12. The system of claim 8, wherein at least some of the messages are persistent messages.

17

10

15

CA 02948700 2016-08-11

Attorney Docket No.: 075815.00007

13. The system of claim 8, wherein at least some of the messages are non-persistent messages.

14. The system of claim 8, wherein the scenario database provides the controller, trigger
monitor, and message publisher with updated test parameters and wherein the analysis engine

also compares performance analysis data based on the updated test parameters.

15. The system of claim 8, wherein the analysis engine compares performance analysis data to

previous scenarios.

16. A method for determining a performance indicator of a computer network architecture
comprising:
providing a load configuration to a centralized harness service based on a usage pattern for
the computer network architecture;
transmitting, from the centralized harness service to a plurality of collection points, one or
more messages based on the provided load configuration;
receiving, at the centralized harness service from the plurality of collection points, responses
to the one or more messages, the responses containing performance results;
storing, at a data repository, the received performance results; and
determining, using a processor, the performance indicator of the computer network

architecture and displaying the performance indicator to a user through a graphical user

interface.

18

i

MQ Message
Network

MQ Pub/Sub
Network

MQ / lIB
Network

CA 02948700 2016-08-11

Fig. 1

CA 02948700 2016-08-11

GV RRERI K

%nl/ v

/7

Z B4

AR AT AR R L AR LN LR LR R AN e R L L R N R Yy

CY A OO SRR IR Y 1 N Y e P A o e e

| soueu

2. .

FECEEY

Vidd

*

N

¥
.

e

-.r%

..

v
B2

{).X_-..?-

B -
e WA
.

.II./.

CPU Total : 100 Threads : 100Kb Messages

® User% mSysd

CA 02948700 2016-08-11

. .'/_.:c:/ »

e R - P,

...................

. :./ s rowr

A T I RN T A A e = W Rl SO 1 AR R AN RIBL 4 Ny AL S A R P
o :

3R8298%8°

vl

Fig. 3

CA 02948700 2016-08-11

B

SaTeMmMIN T

p B4

pPRaIY] 9AI}IY JO ON

R e R R R A R R R Y R N R L R L R X e L T I L O I R R T PR PR S S C R R PR = SRRy, - AR TR VPN % L SO PR S SR T e L TR SR LD RE L DTS R S SR PR PN - EETS SURPRER & AELUU 30 M
.

e b

‘.

. ° <% l- . .

- RN /v/l K . ™ o < 5 o 3 ; . . » o
. AR Y Y N / T AN s . . DO . - . ' . .
EIRTANTINNRNERY AN BRRRN AN D SRR cﬂ/ e PR S ROINREN e e ;

R

”..vwv.ru..w...
. wwwwoo!vr.
. ..,
. .

) A B, :
AN o el WA B Y AR O AAN YL S 4 e . B " . . . - - k)}l.n.'...% v

A

T4

»l;;l‘liilllég(f”l}i(%f/ 6 § “

ST AN AR S VWA AT WS ¢ 3 AW R A A AR R AT TR IR AT YL AW e Ve L L AR A AL A LA AL A A e A e TR R R R A R B e A S e e AR YRR NN VWA S T A R N WS SR R AN WY PR Y Y Y Y MWW WA YN TV R WL S R R AL LA LR AR W YL A Y RS A W OW T S e T WY W YRR R R e VRS WSV

«

.

- AL

AR A LA A L L T L N L L R R A Y B A L a8 A L A R A e L Nt R T N T L e A L L AT AL LR AR AN LT AT A L S L L AR TR L UG, S R RN L N S Y S 8 A AR A AR SN, € SN € N A A, X SRR /.w.' VAN VA2 O
ShUN e

R

AN I
cancecmnas NG T L A T e g RTATN e Y o A as

L I N N T S T e rmeam e e se e Tmenmay ey s ey sy e s Ee e e T e ey Ty

b
ARSI AL S R NN N R S S A C LR AN L U T LR NN -OL SO SAC R E RN O ;&Af.

'
B I I R L I R R R R Rl L T T e R A N R T e N R R R L O i . L L T N e W A CUICACN -rt..f{:....:...)\l..'..;fltl O 8m
' N

921S ddessay /spediy] JooN /Sdl
aNAINY 03 sInd 2Jessajy JUdsIsIag uonesddy

sued]

PUODDS 13 SUO|

MQ Message
Network

wnQ PPN
Hamess

MQ Pub/Sub
Network

AR A AR S A L =

......

...................

-
N
¥

i
ERRRIINGEDY
g bon's
Rl
RO ;

o
%
&

;

S &%, u;{ w*.w&x
BPCA CrRiErs PP

MQ / 1IB

Network

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - abstract drawing

