
F. A. STRONG. PAWL AND RATCHET MECHANISM. APPLICATION FILED DEC. 31, 1912.

1,088,043.

Patented Feb. 24, 1914.

UNITED STATES PATENT OFFICE.

FREDERICK A. STRONG, OF BRIDGEPORT, CONNECTICUT, ASSIGNOR TO AMERICAN CHAIN COMPANY, OF SHERRILL, NEW YORK, A CORPORATION OF NEW YORK.

PAWL-AND-RATCHET MECHANISM.

1,088,043.

Specification of Letters Patent.

Patented Feb. 24, 1914.

Application filed December 31, 1912. Serial No. 739,543.

To all whom it may concern:

Be it known that I, FREDERICK A. STRONG, a citizen of the United States, residing at Bridgeport, county of Fairfield, State of Connecticut, have invented an Improvement in Pawl-and-Ratchet Mechanism, of which the following is a specification.

This invention has for its object to provide a simple and inexpensive pawl and 10 ratchet mechanism adapted for general use and especially adapted for use as an auto-

mobile jack.

With these and other objects in view I have devised the novel mechanism which I 15 will now describe, referring to the accompanying drawing forming a part of this specification and using reference characters

to indicate the several parts.

Figure 1 is a sectional elevation illustrat-20 ing the construction and operation of my novel implement; Fig. 2 a section on the line 2—2 in Fig. 1 looking in the direction of the arrows, the pawl being in position for lowering the screw; Fig. 3 a similar 25 view, the pawl being in position for raising the screw; Fig. 4 an elevation of the collar detached, as seen from the right in Fig. 1, the lever being removed; and Fig. 5 is a section on the line 5—5 in Fig. 1, looking in 30 the direction of the arrows.

10 denotes the standard or stationary member which may be of any ordinary or preferred design or configuration and 11 the screw or non-rotatable member which is 35 adapted to be moved vertically therein by means of a nut 12 or rotatable member and is held against rotation by lugs or a cross pin 13 engaging vertical grooves 14 in the standard. At the upper end of the screw 40 is a bearing block 15 which is placed under a weight to be raised and in which the upper end of the screw is swiveled. The nut rests upon the upper end of the standard and is provided with peripheral teeth 16. Near 45 the upper end of the standard is a peripheral groove 17 and below the groove a

shoulder 18 on which an oscillatory collar 19 rests. The inner end of a screw or pin 20 in the collar engages the groove in the 50 standard and retains the collar thereon but permits free oscillatory movement of the collar. Upon one side of the collar is a head or horizontal projection 21 having a recess 22 in which a double-pointed pawl 23 is 55 pivoted to swing in the horizontal plane and | the top of the collar, a rotatable member 110

a recess 24 in which a lever 25 is pivoted to swing in the vertical plane and is left free to drop down parallel with the standard. The pawl is provided with walls 26 at right angles to each other.

27 denotes a plunger which is held in engagement with either wall of the pawl to hold it in either of its operative positions, as in Figs. 2 and 3, by a spring 28 socketed in

The operation is as follows: In Fig. 2, the pawl is shown in position to lower the screw and bearing block and in Fig. 3 in position to raise said parts. To raise or lower the screw and bearing block and a weight rest- 70 ing thereon, the operator places the proper pawl in engagement with the teeth on the nut, raises the lever to a convenient position, for example, as indicated by dotted lines in Fig. 1 and swings the lever back- 75 ward and forward in approximately the horizontal plane. When the pawl is in the position shown in Fig. 2, the upper point of the pawl, as seen in said view, will engage the teeth of the nut when the lever is swung 80 forward, carrying the ring and head, and the pawl will carry the nut forward and lower the screw, bearing block and weight carried thereby, the pawl dragging over the teeth of the nut when the lever is swung 85 in the opposite direction. When the pawl is in the position shown in Fig. 3, the lower point of the pawl, as seen in said view, will engage the teeth of the nut when the lever is swung backward, carrying the ring and 90 head, and the pawl will carry the nut backward and raise the screw, bearing block and weight carried thereby, the pawl dragging over the teeth of the nut when the lever is swing in the opposite direction. When 95 is swung in the opposite direction. not in use the lever drops down wholly out of the way, as seen in Fig. 1. This is an important feature of construction as it provides a compact and self contained implement, without detachable parts and which 100 occupies relatively little space in a tool box. Having thus described my invention I

claim:

In a pawl and ratchet mechanism, a stationary member, a member retained against 105 rotation therein, a collar mounted upon the exterior of the stationary member, a bearing upon the exterior of the stationary member therefor, a horizontal projection from

engaging the non-rotatable member and having peripheral teeth resting upon the top of the stationary member and collar, integral ears depending from the underside of the projection and extending outward from the collar, a lever pivoted between the ears, an integral housing upon the upper side of the projection extending upward from the outer end and over the top thereof to having an exterior hollow casing projecting 10 having an exterior hollow casing projecting outward from the vertical portion of the housing, a double pointed pawl carried upon

a pivot secured between the horizontal portion of the housing and the upper surface of the projection, and spring means within the 15 hollow casing for retaining either point of the pawl in operative engagement with the peripheral teeth.

In testimony whereof I affix my signature in presence of two witnesses.

FREDERICK A. STRONG.

Witnesses:

E. F. VON WETTBERG, W. M. WHEELER.