wo 2012/087366 A1 |11 NI N0FV 0 0O 0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(43) International Publication Date
28 June 2012 (28.06.2012)

(10) International Publication Number

WO 2012/087366 Al

WIPOIPCT

(51) International Patent Classification:
GO6F 7/00 (2006.01) GO6F 17/00 (2006.01)

(21) International Application Number:

PCT/US2011/032631

(22) International Filing Date:

15 April 2011 (15.04.2011)
(25) English
(26)

(30)

Filing Language:

Publication Language: English

Priority Data:
12/973,668 20 December 2010 (20.12.2010) Us

Applicant (for all designated States except US): SALES-
FORCE.COM, INC. [US/US]; The Landmark @ One
Market Street, Suite 300, San Francisco, California 94105

(US).

Inventors; and

Inventors/Applicants (for US orly): EIDSON, Bill, C.
[US/US]; 3879 Corina Way, Palo Alto, California 94303
(US). WEISSMAN, Craig [US/US]; 2838 Sacramento
Street, San Francisco, California 94115 (US). OLIVER,
Kevin [US/US]; 2579 15th Avenue, San Francisco, Cali-
fornia 94127 (US). TAYLOR, James [US/US]; 4385 25th
Street, San Francisco, California 94114 (US). FELL, Si-
mon, Z. [GB/US]; 14 Flying Cloud Course, Corte Madera,
California 94925 (US). SCHNEIDER, Donovan, A.
[US/US]; 25 Aptos Avenue, San Francisco, California
94127 (US).

1

(72)
(73)

(74) Agent: OLSEN, Joseph, M.; salesforce.com, Inc., The
Landmark Building, @ One Market Street, Suite 300, San
Francisco, California 94105 (US).

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ,
UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
of inventorship (Rule 4.17(iv))
Published:

with international search report (Art. 21(3))

(54) Title: METHODS AND SYSTEMS FOR PERFORMING CROSS STORE JOINS IN A MULTI-TENANT STORE

300

o

FIG. 3

Join Operation 306 Host System 110
Query Layer 260
Sub-query 309 ~
7 ‘ Sub-query 308 = m'
Sub-query 307 — ,_;
. -
Sub-query 306 — . ~\\'~-

Optimizer Agent
245

Multi-tenant Datahase System 130

UL A B -
~
~ S -
e~ 4 oo ORI O
T+ ‘Data Delta /Data Delta ™
Plurality of data
elements 315 Non-Relational Data Relational Data
. Store 150 .. Store 155

(57) Abstract: Methods and systems for performing cross store joins in a multi-tenant store are described. In one embodiment, such
a method includes retrieving data from a multi-tenant database system having a relational data store and a non-relational data store,
receiving a request specifying data to be retrieved from the multi-tenant database system, retrieving, based on the request, one or
more locations of the data to be retrieved, generating a database query based on the request, in which the database query specifies a
plurality of data elements to be retrieved, the plurality of data elements including one or more data elements residing within the non-
relational data store and one or more other data elements residing within the relational data store, and executing the database query

against the multi-tenant database system to retrieve the data.

WO 2012/087366 PCT/US2011/032631

METHODS AND SYSTEMS FOR PERFORMING CROSS STORE JOINS IN
A MULTI-TENANT STORE

CLAIM OF PRIORITY

[0001] This application is related to, and claims priority to, the United States Patent
Application entitled “METHODS AND SYSTEMS FOR PERFORMING CROSS STORE
JOINS IN A MULTI-TENANT STORE,” filed on December 20, 2010, having an
application number of 12/973,668 and attorney docket No. 8956P006/320US and the
provisional utility application entitled “METHODS AND SYSTEMS FOR PERFORMING
CROSS STORE JOINS IN A MULTI-TENANT STORE,” filed on April 19, 2010, having an
application number of 61/325,709 and attorney docket No. 8956P006Z/320PROV, the entire
contents of which are incorporated herein by reference; and this application is further related
to, and claims priority to, the provisional utility application entitled “METHODS AND
SYSTEMS FOR OPTIMIZING QUERIES IN A MULTI-TENANT STORE,” filed on April
20, 2010, having an application number of 61/325,951 and attorney docket No.
8956P007Z/321PROV, the entire contents of which are incorporated herein by reference.

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights

whatsoever.

TECHNICAL FIELD

[0003] The subject matter described herein relates generally to the field of
computing, and more particularly, to methods and systems for performing cross store joins in

a multi-tenant store.

WO 2012/087366 PCT/US2011/032631

BACKGROUND

[0004] The subject matter discussed in the background section should not be assumed
to be prior art merely as a result of its mention in the background section. Similarly, a
problem mentioned in the background section or associated with the subject matter of the
background section should not be assumed to have been previously recognized in the prior
art. The subject matter in the background section merely represents different approaches,
which in and of themselves may also correspond to embodiments of the claimed subject
matter.

[0005] Within a computing environment, various data storage environments may be
selected for persistently storing data. For example, data may be stored within file systems
managed by an operating system that persistently stores file system data upon a hard drive, or
data may be persistently stored within a database. Various types of databases are available,
cach having its own particular benefits and drawbacks. For example, so called relational
databases provide the ability to “relate” various data tables to each other within the database,
using common characteristics shared by each table. For example, in a relational database, an
employee identifier may be used as a common characteristic to relate more than one table.
Such a database structure has certain drawbacks, however, one of which is that the
relationships necessitate a high level of computational overhead costs and computational
complexity which limits the extent to which a relational database can be scaled.

[0006] Non-relational database models and implementations also exist and
commonly exhibit better scalability, but also exhibit different drawbacks that are not
associated with relational database models and implementations. For example, non-relational
database implementations often exhibit improved scalability for storing large files or objects,
but may be less suitable in other regards such as sorting selective datasets or implementing
data guarantees for fast changing datasets.

[0007] Unfortunately, database queries that simultaneously reference information
from multiple data stores are highly inefficient and detract from benefits that may otherwise
be derived from the implementation of multiple data stores. Moreover, database queries that
simultaneously reference distinct implementations of diverse database models may be wholly

impracticable using previous database query mechanisms.

WO 2012/087366 PCT/US2011/032631

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Embodiments are illustrated by way of example, and not by way of limitation,
and can be more fully understood with reference to the following detailed description when
considered in connection with the figures in which:

[0009] Figure 1 illustrates an exemplary architecture in which embodiments may
operate;

[0010] Figure 2 illustrates an alternative exemplary architecture in which
embodiments may operate;

[0011] Figure 3 illustrates an alternative exemplary architecture in which
embodiments may operate;

[0012] Figure 4 illustrates an alternative exemplary architecture in which
embodiments may operate;

[0013] Figure 5 shows a diagrammatic representation of a system in which
embodiments may operate, be installed, integrated, or configured;

[0014] Figure 6 is a flow diagram illustrating a method for performing cross store
joins in a multi-tenant store in accordance with one embodiment; and

[0015] Figure 7 illustrates a diagrammatic representation of a machine in the

exemplary form of a computer system, in accordance with one embodiment.

DETAILED DESCRIPTION

[0016] Described herein are systems, devices, and methods for performing cross
store joins in a multi-tenant store. In one embodiment, such a method includes retrieving data
from a multi-tenant database system having a relational data store and a non-relational data
store. For example, in such a method, a host system for the multi-tenant database system
receives a request specifying data to be retrieved from the multi-tenant database system,
retrieving, based on the request via the host system, one or more locations of the data to be
retrieved, generating, at the host system, a database query based on the request, in which the
database query specifies a plurality of data elements to be retrieved, the plurality of data
elements including one or more data elements residing within the non-relational data store
and one or more other data elements residing within the relational data store, and executing
the database query against the multi-tenant database system to retrieve the data.

[0017] A federated query, which is a query that searches or references more than one

database may be highly inefficient, especially when referencing data at the lowest row-level

WO 2012/087366 PCT/US2011/032631

of a database, such as by requesting a join operation between tables stored in different data
stores, because the operation consumes so much network bandwidth that such join operations
do not scale well and thus, cannot feasibly be implemented on larger database
implementations. Challenges with such join operations are further exacerbated when
requesting data joins between database implementations operating on diverse models, such as
a join between, for example, a relational database implementation and a non-relational
database implementation. The methodologies described herein facilitate the ability to perform
such join operations in a manner that can be feasibly implemented on larger database systems
and in particular, that can feasibly be implemented on systems that leverage multiple data
store implementations that operate on diverse operational models, such as relational and non-
relational models.

[0018] For example, using the methodologies described herein, a join operation may
be performed by initiating non-relational database queries on non-relational database stored
objects where one or more foreign key parents is an object stored in a relational type database
implementation, such as Oracle™. For instance, a child table stored in non-relational
database may have an “Account” table stored in Oracle™ as its master table, despite the non-
relational database stored objects being persisted in a non-relational database implementation
and the Oracle™ stored object being persisted in a relational database implementation.

[0019] In the following description, numerous specific details are set forth such as
examples of specific systems, languages, components, etc., in order to provide a thorough
understanding of the various embodiments. It will be apparent, however, to one skilled in the
art that these specific details need not be employed to practice the disclosed embodiments. In
other instances, well known materials or methods have not been described in detail in order to
avoid unnecessarily obscuring the disclosed embodiments.

[0020] In addition to various hardware components depicted in the figures and
described herein, embodiments further include various operations which are described below.
The operations described in accordance with such embodiments may be performed by
hardware components or may be embodied in machine-executable instructions, which may be
used to cause a general-purpose or special-purpose processor programmed with the
instructions to perform the operations. Alternatively, the operations may be performed by a
combination of hardware and software.

[0021] Embodiments also relate to a system or apparatus for performing the
operations herein. The disclosed system or apparatus may be specially constructed for the

required purposes, or it may comprise a general purpose computer selectively activated or

WO 2012/087366 PCT/US2011/032631

reconfigured by a computer program stored in the computer. Such a computer program may
be stored in a non-transitory computer readable storage medium, such as, but not limited to,
any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks,
read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs,
magnetic or optical cards, or any type of media suitable for storing non-transitory electronic
instructions, each coupled to a computer system bus. In one embodiment, a computer
readable storage medium having instructions stored thereon, causes one or more processors
within a multi-tenant database environment to perform the methods and operations which are
described herein. In another embodiment, the instructions to perform such methods and
operations are stored upon a non-transitory computer readable medium for later execution.

[0022] The algorithms and displays presented herein are not inherently related to any
particular computer or other apparatus nor are embodiments described with reference to any
particular programming language. It will be appreciated that a variety of programming
languages may be used to implement the teachings of the embodiments as described herein.

[0023] Figure 1 illustrates an exemplary architecture 100 in which embodiments
may operate. Architecture 100 depicts a host system 110 communicably interfaced with
several customer organizations (105A, 105B, and 105C) via network 125. Within host system
110 is a multi-tenant database system 130 having a plurality of underlying hardware,
software, and logic elements 120 therein that implement database functionality and a code
execution environment within the host system 110 and in which the hardware, software, and
logic elements 120 of the multi-tenant database system 130 are separate and distinct from a
plurality of customer organizations (105A, 105B, and 105C) which utilize the services
provided by the host system 110 by communicably interfacing to the host system 110 via
network 125. In such an embodiment, each of the separate and distinct customer
organizations (105A-105C) may be remotely located from the host organization that provides
services to the customer organizations (105A-105C) via host system 110 having the multi-
tenant database system 130 executing therein. Alternatively, one or more of the customer
organizations 105A-105C may be co-located with the host system 110, such as within a same
host organization that provides the multi-tenant database system 130 upon which underlying
data is persistently stored.

[0024] In one embodiment, the hardware, software, and logic elements 120 of the
multi-tenant database system 130 include at least a non-relational data store 150 and a
relational data store 155, which operate in accordance with the hardware, software, and logic

elements 120 that implement the database functionality and code execution environment

WO 2012/087366 PCT/US2011/032631

within the host system 110. Host system 110 may further receive requests 115 from one or
more of the plurality of customer organizations 105A-105C via the network. For example, an
incoming request 115 may correspond to a request for services or a request to retrieve or store
data on behalf of one of the customer organizations 105A-C within the multi-tenant database
system 130.

[0025] Figure 2 illustrates an alternative exemplary architecture 200 in which
embodiments may operate. In one embodiment, host system 110 implements a method of
retrieving data from a multi-tenant database system 130 having a relational data store 155 and
a non-relational data store 150.

[0026] For example, in such an embodiment, a request 115 is received at a host
system 110 for the multi-tenant database system 130, with the request 115 specifying data
218 to be retrieved from the multi-tenant database system 130. In some embodiments, a
distinct web-server 210 operating within the host system 110 receives the incoming request
115 via network 125. For example, web server 210 may be responsible for receiving requests
115 from various customer organizations 105A-C via network 125. Web server 210 may
provide a web-based interface to a end-user client machine originating the request 115 (e.g.,
such as an end-user client device located within a customer organization 105A-C), the request
115 constituting a request for services from the multi-tenant database system 130 operating
within a host organization such as host system 110 that provides, for example, remotely
implemented cloud computing services. Optimizer agent 245 may also provide additional
functions such as developing pre-queries and optimizing data queries in accordance with
certain embodiments.

[0027] In one embodiment, the host system 110 retrieves, based on the request 115,
one or more locations 216 of the data 218 to be retricved. In one embodiment, a customer
schema 240 describes the one or more locations 216 of data 218 to be retrieved, in which the
customer schema 240 specifies each of the plurality of data elements of the data 218 to be
retrieved as residing within either the non-relational data store 150 or residing within the
relational data store 155, or as being available from both the non-relational data store 150 and
the relational data store 155. In one embodiment, the host system 110 retrieves the customer
schema 240 responsive to receiving the request 115. Alternatively, the host system 110
retrieves the one or more locations 216 of the data 218 to be retrieved from the customer
schema 240.

[0028] For example, in a particular embodiment, the one or more locations 216 of the

data 218 to be retrieved are stored in and retrieved from a customer schema 240 that specifies

WO 2012/087366 PCT/US2011/032631

where each of a plurality of data elements that constitute the data 218 to be retrieved are
located within the multi-tenant database system 130. Such a customer schema 240 may be
accessible via, for example, a global caching layer that provides fast efficient access to
various elements of a host system 110 implementing or providing the described multi-tenant
storage capabilities. In alternative embodiments, the one or more locations 216 of data 218 to
be retrieved may be retrieved from the customer schema 240 by the host system 110, by the
optimizer agent 245, by a query layer 260 of the host system 110, or by other elements of the
host system 110 responsible for determining the locations 216 of data 218 to be retrieved
from the multi-tenant database system 130 that is spread across diverse database
implementations, such as data 218 having a plurality of data elements that is spread across the
non-relational data store 150 and the relational data store 155 as depicted.

[0029] In one embodiment, the host system 110 generates a database query 217 based
on the request 115, in which the database query 217 specifies a plurality of data elements to
be retrieved, the plurality of data elements including one or more data elements residing
within the non-relational data store 150 and one or more other data elements residing within
the relational data store 155. In a particular embodiment, the database query 217 is based
further on the retrieved one or more locations 216 of the data 218 to be retrieved. Such a
database query 217 may further be generated or delegated by the host system 110 for
generation by a sub-system of the host system 110, such as query layer 260 or optimizer
agent 245.

[0030] In one embodiment, host system 110 executes the generated database query
217 against the multi-tenant database system 130 to retrieve the data 218, such as that which
is depicted by Figure 2, with the downward facing arrow directed toward the plurality of
underlying hardware, software, and logic elements 120 of the multi-tenant database system
130 depicting the database query 217 being passed to the implementing functionality of the
multi-tenant database system 130 and data 218 responsively being returned by the multi-
tenant database system 130 which is depicted by the upward curved arrows sending a
plurality of data elements originating from each of the diverse data stores, the non-relational
data store 150 and the relational data store 155, back to the host system 110.

[0031] In one embodiment, the database query 217 includes a plurality of sub-
queries. In such an embodiment, at least one of the plurality of sub-queries are directed
toward retrieving the one or more data elements residing within the non-relational data store
150 from the non-relational data store 150 and at least a second one of the plurality of sub-

queries are directed toward retrieving the one or more other data elements residing within the

WO 2012/087366 PCT/US2011/032631

relational data store 155 from the relational data store 155. For example, depicted by Figure 2
within the expanded view of database query 217 are several sub-query strings such as
“retrieve data element ‘a’ from the non-relational data store” (e.g., 150) and “retrieve data
element ‘b’ from the relational data store” (e.g., 155) and another sub-query string which
states “select ‘x” from ‘y’ where ‘z’” reflective of a generic Structured Query Language
(SQL) type query. Such a query may or may not be appropriate for querying the underlying
data stores (e.g., 150 and 155) depending upon the implementing query language or syntax
chosen.

[0032] Thus, in accordance with such embodiments, executing the database query
217 against the multi-tenant database system 130 includes referencing data elements stored in
both the relational data store 155 and the non-relational data store 150 so as to retrieve the
requisite data 218.

[0033] Figure 3 illustrates an alternative exemplary architecture 300 in which
embodiments may operate. In particular, depicted in additional detail are join operations
specified by the database query 217 in accordance with certain embodiments.

[0034] For example, in accordance with one embodiment, a join operation 305 is
specified by the database query 217.

[0035] In a particular embodiment, the join operation 305 includes multiple sub-
queries. For example, in such an embodiment a first sub-query 306 is to be executed against
the non-relational data store 150 and identifies the one or more data elements residing within
the non-relational data store 150; depicted by the dashed curved arrow pointing to non-
relational data store 150.

[0036] In such an embodiment, a second sub-query 307 is to be executed against the
relational data store 155 and determines a data delta 310 between the first sub-query 306 that
identifies the one or more data elements residing within the non-relational data store 150 and
the one or more other data elements residing within the relational data store 155.

[0037] In this embodiment, a third sub-query 308 is to be executed against the
relational data store 155 and the non-relational data store 150, wherein the third sub-query
308 replicates data corresponding to the determined data delta 310 from the relational data
155 store to the non-relational data store 150. For example, such a third sub-query 308 may
retrieve the one or more other data elements residing within the relational data store 155,
pulling them into, for example, a temporary table, file, temporarily caching the data, etc., and
then such a third sub-query 308 may issue an insertion or write command of the retrieved

data corresponding to the data delta 310 against the non-relational data store 150, causing the

WO 2012/087366 PCT/US2011/032631

data delta 310 data to be written, stored, or inserted into the non-relational data store 150,
thus completing the replication and thus further causing the previously unavailable data
elements which resided in the relational data store 155 to now be available from the non-
relational data store 150. Refer to the dashed line of Figure 3 depicting a third sub-query 308
being executed against both data stores (relational data store 155 and non-relational data store
150) to replicate the identified data delta 310 from the relational data store 155 to the non-
relational data store 150.

[0038] The determination to replicate or synchronize data from one data store to
another data store may be based on various considerations. For example, the decision to
replicate from the relational data store 155 to the non-relational data store 150 may be based
upon a determination or a policy to replicate a smaller dataset from its primary location to the
location having the larger dataset. For example, replicating the one or more data elements that
are part of the requested data may be more efficient from a network bandwidth perspective to
conduct the replication from the relational data store 155 to the non-relational data store 150,
than vise-versa.

[0039] In some embodiments, the opposite may equally be true, and thus, the
replication of data may go in the other direction, from the non-relational data store 150 to the
relational data store 155. Such determinations may be conducted by or made by, for example,
optimizer agent 245. In a particular embodiment using a non-relational database
implementation (e.g., 150), relational database type objects stored in a relational data store
155 (e.g., Oracle™) and are replicated to a non-relational data store 150 via one sub-query
specifying a join operation 305, and then another sub-query specifying a data retrieval
operation may pull all of the requisite data from the non-relational data store 150, as the
replication causes all of the required data to be made available from the non-relational data
store 150, notwithstanding that, in such an example, at least some of the data is persistently
stored and initially available only from the relational data store 155 (e.g., Oracle™).

[0040] Other replication decisions and considerations may similarly be considered
and implemented by optimizer agent 245. For example, one replication policy may be based
on consistency guarantees the replication operation affords, such as, whether or not the
replicated data is always in sync or guaranteed to be in sync, or whether some deviance is an
acceptable risk.

[0041] Take for example a replication operation that requires the replication of 10
million “Account” tables from the relational data store 155 to the non-relational data store

150 so that one billion child rows can be queried from the non-relational data store 150. With

-9.

WO 2012/087366 PCT/US2011/032631

such an example, a non-relational database query engine may be utilized to make a bulk
callout via JDBC (Java Database Connectivity) to retrieve the Oracle™ (e.g., relational) data.
In such an example, an Oracle™ RAC (Oracle Real Application Cluster) may be utilized or
an Oracle™ 11g data guard based guarantee mechanism may be utilized to provided the
necessary consistency, where consistency guarantees are an important consideration and very
large data replications are being initiated. Such large replications may be most appropriately
performed in advance, as doing so at query time, responsive on-the-fly to an incoming
request for data may require an unacceptably long delay in responding to or fulfilling the
incoming request.

[0042] Conversely, take an example with small tables and correspondingly small data
transfers. In such an example, the entire contents of a small table or several small tables
existing within a relational data store 155 (e.g., Oracle™) having current data may be
replicated over to the non-relational data store 150 at query time, for example, responsive to
an incoming request for data in which at least a portion of that data exists within the small
tables and is persistently stored by the relational data store 155 (e.g., Oracle™). Such a policy
may be appropriate for large analytics where the fixed cost of this type of query and
replication is not significant, as determined by, for example, optimizer agent 245.

[0043] Another consideration may be on an OrgID by OrgID basis, depending on, for
example, the size of tables or objects associated with each particular Organization. For
example, a policy may be adopted that data corresponding to medium to large Organizations
(e.g., based on a pre-determined size threshold) are replicated in advance. In one
embodiment, advance replication may make use of skinny table replication code, which
captures changes to specified objects within the relational data store 155 and pushes those
changes to another table, such as a pre-replicated table (e.g., where advance replication is
chosen) within a non-relational data store 150.

[0044] In certain embodiments, particular organizations may trigger high volumes of
changes, and thus, real time synchronization may not necessarily be required or appropriate
for every change, while still allowing the requested analysis to be performed on the non-
relational data store 150. Thus, in such an embodiment, the option of synchronizing the
updates at specific intervals is provided (for example, via optimizer agent 245 and the
hardware based query layer agent 501 and 734 discussed below). In such an embodiment, a
policy that allows updates at specific intervals provides for more efficient writes and updates,
albeit with perhaps the consequence dangling references and other "sloppy data" which may

be an acceptable deviance, or may required subsequent data checks and validation depending

-10-

WO 2012/087366 PCT/US2011/032631

on the adopted replication policy or underlying objective of the database query.

[0045] Another consideration with respect to replication may be data store statistics,
such as the cardinality of tables. Statistics may be produced, available through, or gathered by
optimizer agent 245. For example, in certain embodiments where a relatively small set of
rows are required, a sub-query (e.g., 306-309) may query the entire set of rows required from
the relational data store 155 and send the entire set of queried rows to the non-relational data
store 150, when it is determined that the overall database query 217 being processed is large
and sending the entire set of queried rows constitutes a reasonable transmission cost (e.g.,
based on a predetermined size ratio or fixed threshold, etc.). Such a policy may avoid the
need to pre-replicate or conduct advance replication without having yet received an actual
request for data and may further avoid the above described data inconsistency concerns.

[0046] Considerations of where to persistently store data, and thus, from where to
retrieve data from, may further be based upon the underlying implementing hardware of a
particular data store. For example, non-relational data store 150 may be optimized for the
storing of large flat files and binary files upon inexpensive storage in terms of, for example,
cost per gigabyte. Such an underlying hardware implementation may be feasible because the
non-relational data store (e.g., 150) is optimized for bulk reading of compressed flat files and
binary files, and is thus, less expensive computationally to processes requests against per
gigabyte in contrast to a relational model data store (e.g., 155) such as Oracle™. A relational
data store 155 such as Oracle™ may require more expensive storage hardware on a per
gigabyte basis due to requirements of the relational data store 155 to implement, for example,
mandatory analytics for all stored data, Enterprise level data protections such as transaction
processing and rollback capability. Such Enterprise level data protections further enable,
through transaction processing, the ability to “redo” a particular transaction in the event of a
failure in contrast to a direct insertion model that may feasibly leave a data store lacking
transaction processing in an inconsistent state should a database transaction fail or be
interrupted before final completion.

[0047] Thus, in certain embodiments, recent edits to stored data are transacted and
stored by a relational data store 155 that implements analytics, transaction processing and
rollbacks, and at least a portion of updates written to the relational data store 155 are
subsequently replicated, moved, transacted, or migrated to a non-relational data store 150 so
as to reduce the cost per gigabyte cost of persistently storing the corresponding data. In such
a way, host system 110 may leverage Enterprise level data protections associated with certain

relational data stores 155 and contemporaneously benefit from less costly persistent storage

- 11 -

WO 2012/087366 PCT/US2011/032631

available via some non-relational data stores 150.

[0048] In one embodiment, because the optimizer agent 245 has a “view” of the
available data from both the non-relational data store 150 and the relational data store 155,
the optimizer agent 245 can yield “selective queries” when certain data elements
corresponding to an incoming request 115 for data 218 may be obtained from more than one
source and in more than one manner. Optimizer agent 245 can further yield an improved
sequence or an ordering of a plurality of sub-queries to be issued in order to fulfill such a
request 115.

[0049] Thus, in accordance with certain embodiments and in view of the various
available considerations, a fourth sub-query 309 is further included within the join operation
305 and is to be executed against the non-relational data store 150, in which the fourth sub-
query 309 fetches the data to be retrieved from the non-relational data store 150 by fetching
both the one or more data elements residing within the non-relational data store 150 and the
one or more other data elements replicated from the relational data store 155 to the non-
relational data store 150 and thus available from within the non-relational data store 150. In
such a way, the plurality of data elements 315 may be completely retrieved from one of the
data stores, such as from the non-relational data store 150, despite some of the plurality of
data elements 315 not initially being available from the non-relational data store 150 prior to
data replication triggered by the join operation 305.

[0050] In some embodiments, alternative to replicating data between data stores
where one or more data elements of the requested data is persistently stored, a policy may be
adopted to retrieve all of the data elements into a location separate from each of the two or
more data stores (e.g., 150 and 155) being queried that persistently store the data. For
example, data may be retrieved utilizing an in-memory join operation into query layer 260 or
retrieved via an in-memory join operation into a global caching layer (e.g., element 550 of
Figure 5). Such an in-memory join operation may be selected based on known statistics
available from optimizer agent 245 or based on specified size thresholds (e.g., number of
rows, amount of data in terms of size (e.g., megabytes of data), cardinality of data requested,
etc.).

[0051] Other considerations that may available based upon, for example, known
statistics and analysis within the host system 110 may include a query cost for a particular
database query 217 or sub-query (e.g., 306-309), for example, derived from a known pick list
quantity for a particular query in which a maximum number of elements is known, and thus, a

maximum or estimated query cost is determinable or is known and available from the

-12-

WO 2012/087366 PCT/US2011/032631

optimizer agent 245. It may further be known based on already conducted analysis or
determinable via the optimizer agent 245 (e.g., through one or more pre-queries) which of
multiple available data stores (e.g., 150 and 155) can yield a result having the smallest
number of rows in the least amount of time or utilizing/consuming the fewest computational
resources. For example, with large database queries 217, it may be advisable to conduct a
pre-query for a small fraction of the requisite data from each data store (e.g., 150 and 155) to
determine which pre-query results in a more efficient result, and then based on such a
determination, generate the various sub-queries (306-309) required to fulfill the primary
database query 217 targeting the more efficient data store (e.g., 150 or 155 depending on the
result of the pre-query). Where appropriate analysis is conducted ahead of time by the
optimizer agent 245, the query policy may simply be requested, without having to issue pre-
queries, for example, such analytical determinations may be made and then stored and
specified for one or more locations of data via customer schema 240,

[0052] In alternative embodiments, different or additional join operations 305 may be
performed. For example, in one embodiment, a join operation 305 executed against the
multi-tenant database system 130 via database query 217 may include a join operation 305
selected from a group of join operations 305 consisting of: a join operation 305 specifying
two or more relation tables from the relational data store 155; a join operation 305 specifying
at least one relation table from the relational data store 155 and at least one or more data
structures residing within the non-relational data store 150; and a join operation 305
specifying two or more separate and distinct data structures residing within the non-relational
data store 150, in which each of the two or more separate and distinct data structures lack an
overlapping shared key, such as a shared characteristic, string, binary or alphanumeric key
with which to associate or otherwise relate the two distinct data structures within the non-
relational data store 150.

[0053] For example, in one embodiment, non-relational data store 150 provides the
capability to store many data structures, files, objects and other such information, but does
not implement functionality to “relate” such data structures, files, objects, and other
information. A join operation 305 specifying each of the two distinct data structures can,
however, identify and link or associate each such data structure, by depending on
functionality and logic external to the implemented non-relational data store 150, such as the
plurality of underlying hardware, software, and logic elements 120 within multi-tenant
database 130 that can execute the appropriately formed join operation 305 against the non-

relational data store 150 to form, for example, a singular data structure having all of the

- 13-

WO 2012/087366 PCT/US2011/032631

desired but previously unassociated information, or retrieving and temporarily caching the
desired information specified by such a join operation in an alternate location.

[0054] In an alternative embodiment, a specified join operation 305 includes: a first
sub-query (e.g., 306) to be executed against the non-relational data store 150, in which the
first sub-query (e.g., 306) is to retrieve the one or more data elements residing within the non-
relational data store 150; a second sub-query (e.g., 307) to be executed against the relational
data store, 155 in which the second sub-query (e.g., 307) determines a data delta 310 between
the one or more data elements residing within the non-relational data store 150 and the one or
more other data elements residing within the relational data store 155; and a third sub-query
(e.g., 308) that is to be executed against the relational data store 155, wherein the third sub-
query (e.g., 308) is to retrieve the one or more other data elements residing within the
relational data store 155 based on the determined data delta 310.

[0055] In such an embodiment, the third sub-query (e.g., 308) that retrieves the one
or more other data elements residing within the relational data store 155 based on the
determined data delta 310 may include either a time-based query filtering mechanism or a
record based filtering mechanism.

[0056] For example, in one embodiment, a time-based sub-query is to be executed
against the relational data store 155, in which the time-based sub-query specifies the one or
more other data elements to be retrieved from the relational data store 155 based one those
data elements within the relational data store 155 having a time stamp that is later than any
timestamp corresponding to those data elements within the one or more data elements
residing within the non-relational data store 150.

[0057] In an alternative embodiment, a record identifier based sub-query is to be
executed against the relational data store 155, in which the record identifier based sub-query
specifies the one or more other data elements to be retrieved from the relational data store
155 based one those data elements within the relational data store 155 having a record
identifier that is numerically greater than any record identifier corresponding to those data
elements within the one or more data elements residing within the non-relational data store
150.

[0058] Figure 4 illustrates an alternative exemplary architecture 400 in which
embodiments may operate. In particular, depicted in additional detail is the treatment of new
transactions received by the multi-tenant database system 130 in accordance with certain
embodiments.

[0059] For example, in certain embodiments, new information being written or

-14-

WO 2012/087366 PCT/US2011/032631

inserted into the multi-tenant database system 130 for persistent storage may be designated
for being presently stored in the non-relational data store 150 long term, but may nevertheless
be written to the relational data store 155 temporarily. For example, considerations for
writing data to one data store (such as the relational data store 155) on a temporary basis and
then later transitioning the data to another data store (such as the non-relational data store
150) may include, for example, improved write response times to one data store versus the
other, yet improved retrieval times from the alternate data store. One data store may be
associated with lower computational or lower operational costs. A particular data store, such
as the non-relational data store 150 may operate more efficiently with data that is rarely
updated, but is retrieved often. Alternatively, the other data store, such as the relational data
store 155 may exhibit better operational efficiency with greatly fragmented data or data that
is very frequently updated or added to, relative to the prior example having data that is rarely
updated.

[0060] Therefore, in accordance with certain embodiments, new transactions 415
received at the multi-tenant database system 130 (e.g., within a request 115 such as that
depicted previously) include or specify new data 416 that is to be written to the non-relational
data store 150. In some embodiments, new data 416 is written to an append log 410 of the
relational data store 155, despite an indication that the new data 416 is to be written to the
non-relational data store 150. Such an indication of where new data 416 is to be written may
be specified by the new transaction 415, for example, by a target 419 attribute within the new
transaction 415. Alternatively, a determination may be made by the host system 110 based on
the characteristics of the new data 416 as determined by, for example, optimizer agent 245, or
based on a flag or a stored preference associated with an OrgID that corresponds to the new
transaction 415.

[0061] In some embodiments, a join operation (e.g., 305) that includes sub-queries to
retrieve one or more other data elements residing within the relational data store 155 based on
a determined data delta (e.g., 310) includes a sub-query to retrieve the one or more other data
elements residing within the relational data store 155 from the append log 410 of the
relational data store 155. For example, new data 416 written to the append log may be
retrieved, or elements of new data 416 stored in append log may be retrieved.

[0062] In one embodiment, host system 110 triggers a flush of the append log 410,
thus flushing the new data 416 written to the append log 410 of the relational data store 155
to the non-relational data store 150 when the append log 410 reaches a flush threshold,

resulting in, for example, new data then residing in non-relational data store 150 as flushed

_15-

WO 2012/087366 PCT/US2011/032631

data 417 and corresponding to new data 416 which previously resided in append log 410 of
relational data store 155.

[0063] Different types of data may be stored by multi-tenant database system 130.
For example, in one embodiment, the one or more data elements residing within the non-
relational data store 150 correspond to plurality of compressed flat files or a plurality of
binary files or a combination of compressed flat files and binary files. Such files may be more
efficiently stored via a non-relational database architecture (e.g., 150).

[0064] In another embodiment, relational data store 155 implements a relational
database in accordance with a relational database management system (RDBMS), in which a
plurality of relation tables of the relational database are inter-related to each other through
one or more overlapping common characteristics for each of two or more relation tables
within the relational database, thus forming the “relationships” which are commonly
associated with relational type data stores 155.

[0065] In one embodiment, the non-relational data store 150 implements a distributed
structured database having a plurality of underlying hardware storage devices, each providing
at least a portion of a total storage capacity for the non-relational data store 150. In such an
embodiment, data elements within the non-relational data store 150 are referenceable on the
basis of a primary key, but are not referenceable on the basis of one or more overlapping
common characteristics between two or more relation tables, such as is the case with data
elements within the relational data sore 155.

[0066] In one embodiment, the relational data store 155 implements a relational
database model selected from among the following: an Oracle compatible database
implementation, an IBM DB2 Enterprise Server compatible relational database
implementation, a MySQL compatible relational database implementation, and a Microsoft
SQL Server compatible relational database implementation.

[0067] In one embodiment, the non-relational data store 150 implements a NoSQL
non-relational database implementation selected from among the following: a Vampire
compatible non-relational database implementation, an Apache Cassandra compatible
non-relational database implementation, a BigTable compatible non-relational database
implementation, and an HBase compatible non-relational database implementation.

[0068] In one embodiment, the non-relational data store 150 includes a plurality of
distributed computing nodes, each computing node comprising at least a memory, one or
more processors, and one or more communicatively interfaced hard disk drives. In such an

embodiment, each of the distributed computing nodes may further include an isolated

-16-

WO 2012/087366 PCT/US2011/032631

non-relational database instance having functionality to read, write, and update non-relational
database transactions without authorization or control from a centralized transaction
authority.

[0069] In a particular embodiment, the relational data store 155 implements a
monolithic relational database instance comprising memory and processors that coordinate
computing resources with a centralized transaction authority that controls whether updates or
changes to the monolithic relational database instance are committed to persistent storage
upon persistent storage devices communicatively interfaced to, and controlled by, the
monolithic relational database instance.

[0070] Figure 5 shows a diagrammatic representation of a system 500 in which
embodiments may operate, be installed, integrated, or configured.

[0071] In one embodiment, system 500 includes a memory 595 and a processor or
processors 590. For example, memory 595 may store instructions to be executed and
processor(s) 590 may execute such instructions. System 500 includes bus 515 to transfer
transactions and data within system 500 among a plurality of peripheral devices
communicably interfaced with bus 515. System 500 further includes web-server 525, for
example, to receive requests, return responses, and otherwise interface with remote clients,
such as client devices located within customer organizations 105A-C.

[0072] System 500 is further depicted as having an optimizer agent 535 designed to
optimize database queries and database sub-queries and optionally coordinate pre-queries to
determine an optimal or a preferred approach to query the underlying data stores. System 500
further includes a global caching layer 550 to provide caching services to communicably
interfaced devices and systems and in particular, provide caching of customer schema data
(e.g., meta data, etc.). The customer schema data is provided by customer schema 530
operable in conjunction with the global caching layer 550 specifying, for example, whether
requisite data elements are stored by a relational database or a non-relational database
implementation within the multi-tenant database system or both, and specifying locations
within the underlying data stores for one or more data elements that make up a dataset for a
corresponding request. The customer schema 530 may be stored upon a hard drive, persistent
data store or other storage location within system 500.

[0073] Distinct within system 500 is hardware based Query Layer Agent 501 which
includes request processor 570, customer schema processor 575, sub-query generator 580,
and query executor 585. In accordance with one embodiment, request processor 570 receives

requests specifying data to be retrieved (e.g. from web-server 525, from host system 110 as

-17 -

WO 2012/087366 PCT/US2011/032631

previously described, or directly from a connected network interface). Request processor 570
coordinates with customer schema processor 575 to retrieve the one or more locations of the
requested data that is to be retrieved from the underlying data stores. Request processor 570
further coordinates with sub-query processor 580 to develop and generate the necessary sub-
queries to either retrieve the requested one or more data elements from the appropriate
underlying data stores based on the determined one or more locations of such data, or
generates the necessary sub-queries to initiate join operations causing data subsets to be
synchronized, flushed, or replicated from one data store to another, so that subsequent sub-
queries can retrieve an entire requested data set from a lone data store. Such sub-queries
gencrated by the sub-query generator 580 may rely upon statistics and pre-query results
available from the optimizer agent 535. Query executor 585 executes the generated query and
sub-queries against a communicably interfaced database implementation.

[0074] Figure 6 is a flow diagram illustrating a method 600 for performing cross
store joins in a multi-tenant store in accordance with one embodiment, including specifying
and performing join operations specified by a database query (e.g., 217) in accordance with
certain embodiments. Method 600 may be performed by processing logic that may include
hardware (e.g., circuitry, dedicated logic, programmable logic, microcode, etc.), software
(e.g., instructions run on a processing device to perform various query operations such
reading, writing, updating, optimizing, initiating pre-queries, developing sub-queries, etc., or
a combination thereof. In one embodiment, method 600 is performed by hardware logic, such
as the hardware based query layer agent depicted at element 501 of Figure 5. Some of the
blocks and/or operations listed below are optional in accordance with certain embodiments.
The numbering of the blocks presented is for the sake of clarity and is not intended to
prescribe an order of operations in which the various blocks must occur.

[0075] Method 600 begins with processing logic receiving a request at a host system
for the multi-tenant database system, the request specifying data to be retrieved from the
multi-tenant database system (block 605). At block 610, processing logic retrieves, based on
the request via the host system, one or more locations of the data to be retrieved.

[0076] At block 615, processing logic retrieves, via the host system, a customer
schema responsive to receiving the request. For example, a customer schema may describe
the one or more locations of data to be retrieved, the customer schema specifying each of the
plurality of data elements of the data as residing within either the non-relational data store or
residing within the relational data store, or as being available from both the non-relational

data store and the relational data store.

-18-

WO 2012/087366 PCT/US2011/032631

[0077] At block 620, processing logic generates, at the host system, a database query
based on the request. For example, the database query may specify a plurality of data
elements to be retrieved, the plurality of data elements including one or more data elements
residing within the non-relational data store and one or more other data elements residing
within the relational data store. The database query may further include a plurality of sub-
queries. In one embodiment, the database query specifies a join operation via one of the sub-
queries. A purge, flush, synchronization, or replication operation may similarly be specified
via a sub-query.

[0078] At block 625, processing logic executes the database query against the multi-
tenant database system to retrieve the data.

[0079] At block 630, processing logic receives new transactions at the multi-tenant
database system, each new transaction specifying new data to be written to the non-relational
data store and at block 635, processing logic writes the new data to an append log of the
relational data store. For example, in one embodiment, a sub-query of the database query
specifies that the data to be retrieved is to be retrieved from the append log of the relational
data store.

[0080] At block 640, processing logic flushes the new data written to the append log
of the relational data store to the non-relational data store when the append log reaches a
flush threshold.

[0081] Figure 7 illustrates a diagrammatic representation of a machine 700 in the
exemplary form of a computer system, in accordance with one embodiment, within which a
set of instructions, for causing the machine 700 to perform any one or more of the
methodologies discussed herein, may be executed. In alternative embodiments, the machine
may be connected (e.g., networked) to other machines in a Local Area Network (LAN), an
intranet, an extranet, or the Internet. The machine may operate in the capacity of a server or a
client machine in a client-server network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment or as a server or series of servers within an on-demand
service environment, including an on-demand environment providing multi-tenant database
storage services. Certain embodiments of the machine may be in the form of a personal
computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a
cellular telephone, a web appliance, a server, a network router, switch or bridge, computing
system, or any machine capable of executing a set of instructions (sequential or otherwise)
that specify actions to be taken by that machine. Further, while only a single machine is

illustrated, the term “machine” shall also be taken to include any collection of machines (e.g.,

-19-

WO 2012/087366 PCT/US2011/032631

computers) that individually or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed herein.

[0082] The exemplary computer system 700 includes a processor 702, a main
memory 704 (e.g., read-only memory (ROM), flash memory, dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM) or Rambus DRAM (RDRAM),
etc., static memory such as flash memory, static random access memory (SRAM), volatile
but high-data rate RAM, etc.), and a secondary memory 718 (e.g., a persistent storage device
including hard disk drives and persistent multi-tenant data base implementations), which
communicate with each other via a bus 730. Main memory 704 includes customer schema
724 (e.g., specifies one or more locations of data or data elements constituting a specified
data or data set among two or more diverse data stores, such as locations of data elements
spread across both a relational data store and a non-relational data store and retricvable via,
for example, hardware based query layer agent 734). Main memory 704 further includes
global cache layer 723, such as a system-wide accessible global caching layer to provide
meta-data and other association or correspondence information between multiple data
elements of a larger data set, such as the type of information provided via customer schema
724. Main memory 704 and its sub-elements (e.g. 723 and 724) are operable in conjunction
with processing logic 726 and processor 702 to perform the methodologies discussed herein.

[0083] Processor 702 represents one or more general-purpose processing devices
such as a microprocessor, central processing unit, or the like. More particularly, the processor
702 may be a complex instruction set computing (CISC) microprocessor, reduced instruction
set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor,
processor implementing other instruction sets, or processors implementing a combination of
instruction sets. Processor 702 may also be one or more special-purpose processing devices
such as an application specific integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor, or the like. Processor 702 is
configured to execute the processing logic 726 for performing the operations and
functionality which is discussed herein.

[0084] The computer system 700 may further include a network interface card 708.
The computer system 700 also may include a user interface 710 (such as a video display unit,
a liquid crystal display (LCD), or a cathode ray tube (CRT)), an alphanumeric input device
712 (e.g., a keyboard), a cursor control device 714 (e.g., a mouse), and a signal generation
device 716 (e.g., an integrated speaker). The computer system 700 may further include

peripheral device 736 (e.g., wireless or wired communication devices, memory devices,

-20 -

WO 2012/087366 PCT/US2011/032631

storage devices, audio processing devices, video processing devices, etc. The computer
system 700 may further include a Hardware based query layer agent 734 managing database
queries and sub-queries and coordinating transactions with an underlying data store, such as a
multi-tenant database system.

[0085] The secondary memory 718 may include a non-transitory machine-readable
storage medium (or more specifically a non-transitory machine-accessible storage medium)
731 on which is stored one or more sets of instructions (e.g., software 722) embodying any
one or more of the methodologies or functions described herein. The software 722 may also
reside, completely or at least partially, within the main memory 704 and/or within the
processor 702 during execution thereof by the computer system 700, the main memory 704
and the processor 702 also constituting machine-readable storage media. The software 722
may further be transmitted or received over a network 720 via the network interface card 708.

[0086] While the subject matter disclosed herein has been described by way of
example and in terms of the specific embodiments, it is to be understood that the claimed
embodiments are not limited to the explicitly enumerated embodiments disclosed. To the
contrary, the disclosure is intended to cover various modifications and similar arrangements
as would be apparent to those skilled in the art. Therefore, the scope of the appended claims
should be accorded the broadest interpretation so as to encompass all such modifications and
similar arrangements. It is to be understood that the above description is intended to be
illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in
the art upon reading and understanding the above description. The scope of the disclosed
subject matter is therefore to be determined in reference to the appended claims, along with

the full scope of equivalents to which such claims are entitled.

201 -

WO 2012/087366 PCT/US2011/032631

CLAIMS

What is claimed is:

1. A method of retrieving data from a multi-tenant database system having a relational data store
and a non-relational data store, the method comprising:

receiving a request at a host system for the multi-tenant database system, the request specifying
data to be retrieved from the multi-tenant database system;

retrieving, based on the request via the host system, one or more locations of the data to be
retrieved;

generating, at the host system, a database query based on the request, wherein the database query
specifies a plurality of data elements to be retrieved, the plurality of data elements
including one or more data elements residing within the non-relational data store and one
or more other data elements residing within the relational data store; and

executing the database query against the multi-tenant database system to retrieve the data.

2. The method of claim 1:

wherein a customer schema describes the one or more locations of data to be retrieved, the
customer schema specifying each of the plurality of data elements of the data as residing
within either the non-relational data store or residing within the relational data store, or as
being available from both the non-relational data store and the relational data store; and

wherein the method further comprises retrieving, via the host system, the customer schema

responsive to receiving the request.

3. The method of claim 1:

wherein the database query comprises a plurality of sub-queries;

wherein at least one of the plurality of sub-queries are directed toward retrieving the one or more
data elements residing within the non-relational data store from the non-relational data
store; and

wherein at least a second one of the plurality of sub-queries are directed toward retrieving the
one or more other data elements residing within the relational data store from the

relational data store.

-2

WO 2012/087366 PCT/US2011/032631

4. The method of claim 1, wherein executing the database query against the multi-tenant
database system comprises referencing data elements stored in both the relational data

store and the non-relational data store.

5. The method of claim 1, wherein the database query specifies a join operation.

6. The method of claim 5, wherein the join operation comprises a plurality of sub-queries which
are generated based on query optimizations available via an optimizer agent of the host
system, the query optimizations selected from the group comprising:

a specified ordering for the plurality of sub-queries;

a target data store for execution of a corresponding sub-query;

onge or more pre-query assessments based on the data to be retrieved;

a replication order from the relational data store to the non-relational data store;

an in-memory join operation specifying at least one or more of the plurality of data elements to
be retrieved from each of the relational data store and the non-relational data store and
placed into memory accessible to the optimizer agent and a corresponding sub-query to
retrieve the at least one or more of the plurality of data elements from the memory

accessible to the optimizer agent in fulfillment of the request.

7. The method of claim 5, wherein the join operation comprises:

a first sub-query to be executed against the non-relational data store, wherein the first sub-query
identifies the one or more data elements residing within the non-relational data store;

a second sub-query to be executed against the relational data store, wherein the second sub-query
determines a data delta between the first sub-query identifies the one or more data
elements residing within the non-relational data store and the one or more other data
elements residing within the relational data store;

a third sub-query to be executed against the relational data store and the non-relational data store,
wherein the third sub-query replicates data corresponding to the determined data delta
from the relational data store to the non-relational data store; and

a fourth sub-query to be executed against the non-relational data store, wherein the fourth sub-

query fetches the data to be retrieved from the non-relational data store by fetching both

-23 -

WO 2012/087366 PCT/US2011/032631

the one or more data elements residing within the non-relational data store and the one or
more other data elements replicated from the relational data store to the non-relational

data store and thus available from within the non-relational data store.

8. The method of claim 5, wherein the join operation is selected from the group comprising:

a join operation specifying two or more relation tables from the relational data store;

a join operation specifying at least one relation table from the relational data store and at least
one or more data structures residing within the non-relational data store.

a join operation specifying two or more separate and distinct data structures residing within the
non-relational data store, wherein each of the two or more separate and distinct data

structures lack an overlapping shared key.

9. The method of claim 5, wherein the join operation comprises:

a first sub-query to be executed against the non-relational data store, wherein the first sub-query
to retrieve the one or more data elements residing within the non-relational data store;

a second sub-query to be executed against the relational data store, wherein the second sub-query
determines a data delta between the one or more data elements residing within the non-
relational data store and the one or more other data elements residing within the relational
data store; and

a third sub-query to be executed against the relational data store, wherein the third sub-query to
retrieve the one or more other data elements residing within the relational data store

based on the determined data delta.

10. The method of claim 9, wherein the third sub-query comprises one of:

a time-based sub-query to be executed against the relational data store, wherein the time-based
sub-query specifies the one or more other data elements to be retrieved from the
relational data store based one those data elements within the relational data store having
a time stamp that is later than any timestamp corresponding to those data elements within
the one or more data elements residing within the non-relational data store; and

a record identifier based sub-query to be executed against the relational data store, wherein the

record identifier based sub-query specifies the one or more other data elements to be

-4 -

WO 2012/087366 PCT/US2011/032631

retrieved from the relational data store based one those data elements within the relational
data store having a record identifier that is numerically greater than any record identifier
corresponding to those data elements within the one or more data elements residing

within the non-relational data store.

11. The method of claim 9, further comprising:

receiving new transactions at the multi-tenant database system, each new transaction specifying
new data to be written to the non-relational data store;

writing the new data to an append log of the relational data store; and

wherein the third sub-query to retrieve the one or more other data elements residing within the
relational data store based on the determined data delta comprises the third sub-query to
retrieve the one or more other data elements residing within the relational data store from

the append log of the relational data store.

12. The method of claim 11, further comprising flushing the new data written to the append log
of the relational data store to the non-relational data store when the append log reaches a

flush threshold.

13. The method of claim 1, wherein the one or more data elements residing within the non-
relational data store comprise a plurality of compressed flat files or a plurality of binary

files or a combination of the compressed flat files and the binary files.

14. The method of claim 1, wherein the relational data store comprises a relational database
implemented in accordance with a relational database management system (RDBMS),
wherein a plurality of relation tables of the relational database are inter-related to each
other through one or more overlapping common characteristics for each of two or more

relation tables within the relational database.
15. The method of claim 1, wherein the non-relational data store comprises a distributed

structured database having a plurality of underlying hardware storage devices, each

providing at least a portion of a total storage capacity for the non-relational data store,

-25-

WO 2012/087366 PCT/US2011/032631

and wherein data elements within the non-relational data store are referenceable on the
basis of a primary key and not on the basis of one or more overlapping common

characteristics between two or more relation tables.

16. The method of claim 1:

wherein the relational data store comprises a relational database implementation selected from
the group comprising: an Oracle compatible database implementation, an IBM DB2
Enterprise Server compatible relational database implementation, a MySQL compatible
relational database implementation, and a Microsoft SQL Server compatible relational
database implementation; and

wherein the non-relational data store comprises a NoSQL non-relational database
implementation selected from the group comprising a Vampire compatible non-relational
database implementation, an Apache Cassandra compatible non-relational database
implementation, a BigTable compatible non-relational database implementation, and an

HBase compatible non-relational database implementation.

17. The method of claim 1:

wherein receiving the request via an interface of the multi-tenant database system comprises
receiving the request via a web-server of the multi-tenant database system, wherein the
web-server provides a web-based interface to a remotely located end-user client machine
originating the request; and

wherein the request comprises a request for services from the multi-tenant database system

operating within a host organization for the multi-tenant database system.

18. The method of claim 1, wherein the multi-tenant database system further comprises elements
of hardware and software that are shared by a plurality of separate and distinct customer
organizations, each of the separate and distinct customer organizations being remotely
located from a host organization having the multi-tenant database system executing

therein.

-6 -

WO 2012/087366 PCT/US2011/032631

19. The method of claim 1:

wherein the non-relational data store comprises a plurality of distributed computing nodes, each
computing node comprising at least a memory, one or more processors, and one or more
communicatively interfaced hard disk drives, and wherein each of the distributed
computing nodes comprise an isolated non-relational database instance having
functionality to read, write, and update non-relational database transactions without
authorization or control from a centralized transaction authority; and

wherein the relational data store comprises a monolithic relational database instance comprising
memory and processors that coordinate computing resources with a centralized
transaction authority that controls whether updates or changes to the monolithic relational
database instance are committed to persistent storage upon persistent storage devices
communicatively interfaced to, and controlled by, the monolithic relational database

instance.

20. A non-transitory computer readable storage medium having instructions stored thereon that,
when executed by processor in a host system, perform a method comprising:

receiving a request specifying data to be retrieved from a multi-tenant database system;

retrieving based on the request, one or more locations of the data to be retrieved;

generating a database query based on the request, wherein the database query specifies a
plurality of data elements to be retrieved, the plurality of data elements including one or
more data elements residing within a non-relational data store of the multi-tenant
database system and one or more other data elements residing within a relational data
store of the multi-tenant database system; and

executing the database query against the multi-tenant database system to retrieve the data.

21. The non-transitory computer readable storage medium of claim 20, wherein the database
query specifies a join operation, the join operation comprising:
a first sub-query to be executed against the non-relational data store, wherein the first sub-query

identifies the one or more data elements residing within the non-relational data store;

-27-

WO 2012/087366 PCT/US2011/032631

a second sub-query to be executed against the relational data store, wherein the second sub-query
determines a data delta between the first sub-query identifies the one or more data
elements residing within the non-relational data store and the one or more other data
elements residing within the relational data store;

a third sub-query to be executed against the relational data store and the non-relational data store,
wherein the third sub-query replicates data corresponding to the determined data delta
from the relational data store to the non-relational data store; and

a fourth sub-query to be executed against the non-relational data store, wherein the fourth sub-
query fetches the data to be retrieved from the non-relational data store by fetching both
the one or more data elements residing within the non-relational data store and the one or
more other data elements replicated from the relational data store to the non-relational

data store and thus available from within the non-relational data store.

22. A system comprising:

a processor and a memory;

a communications interface to a multi-tenant database system having a relational data store and a
non-relational data store implemented therein;

a request processor to receive a request specifying data to be retrieved from the multi-tenant
database system;

a customer schema processor to retrieve, based on the request, one or more locations of the data
to be retrieved;

a sub-query generator to generate a database query based on the request, wherein the database
query specifies a plurality of data elements to be retrieved, the plurality of data elements
including one or more data elements residing within the non-relational data store of the
multi-tenant database system and one or more other data elements residing within the
relational data store of the multi-tenant database system; and

a query executor to execute the database query against the multi-tenant database system to

retrieve the data.

23. The system of claim 22, wherein the sub-query generator to generate the database query

based on the request comprises the sub-query generator to generate a plurality of

-8 -

WO 2012/087366 PCT/US2011/032631

sub-queries based on the request to fulfill the request, the sub-queries comprising:

a first sub-query to be executed against the non-relational data store, wherein the first sub-query
identifies the one or more data elements residing within the non-relational data store;

a second sub-query to be executed against the relational data store, wherein the second sub-query
determines a data delta between the first sub-query identifies the one or more data
elements residing within the non-relational data store and the one or more other data
elements residing within the relational data store;

a third sub-query to be executed against the relational data store and the non-relational data store,
wherein the third sub-query replicates data corresponding to the determined data delta
from the relational data store to the non-relational data store; and

a fourth sub-query to be executed against the non-relational data store, wherein the fourth sub-
query fetches the data to be retrieved from the non-relational data store by fetching both
the one or more data elements residing within the non-relational data store and the one or
more other data elements replicated from the relational data store to the non-relational

data store and thus available from within the non-relational data store.

-29.

1/7 PCT/US2011/032631

WO 2012/087366

) -
2I0)S eje(Z)
[euoneley

(43
2160

=T pue ‘a.em}jos

o5 ‘alempieH
210]S ejeq LonoeXS
|euonesy

-UON

0S| we)sAg sseqgeje(jueus)-ninj

GO uojeziuebiQ Jowoisn)

OTT We)sAg 1s0H

gc0] uoneziuebiQ Jowolsny

oo_\\\

B

Dk

VGO uoneziuebiQ jawoisny

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/032631

2[7

WO 2012/087366

GGl 0l
210]S ejeq 0Zr
|euonelsy —
P ¢l
)GO| uoneziuebip
e Jswojsn)
0SlL
2101S eleq S
[euoneoy]] 2 eieum A, woy X, PBjes
-c.oZ {910]S BJEp |2UOI}L|D] B} WCI)
Rt -E .0, Juswa|e ejep anallal ,
4 181018
‘ BJEP [BUONE[SI-UOU By} WO}
OS] wa)sAg aseqejeq jueus)-ninp T g LB, JUBWS|D B}Bp SABLIaI ,
Ovc ewayos "
lswioisny 09¢ Johe Aenpd gG0[uoneziuebip
E— — , lawiojsny
74 0l¢ |
Jeby Joziwndo 1OMBS 09N | GTT weysAs JSOH
e
A SCl HomeN V07 uopeziuebio
00¢c JOWOISNY

SUBSTITUTE SHEET (RULE 26)

¢ Old

3/7 PCT/US2011/032631

WO 2012/087366

M .w_m oom\

—GGreis — 0Grells
eleq |euolje|ey B]B(] |BUOIIR[SY-UON MMMM%MM_:“
A
ore oTe 1)
Bjjeq ejed ~.Ejeg Emn_ o ——
O\‘.'-- \-----'MHMOHQML--I'-Y @II@
S~
LY
A\
e S -« -
S A
/ e -y \ ~ - // { ~ \ /
TS, T S—
Seo >~ ~ A |
oo .. ~ < - ~ o - .
Tt eael T~ T4 1
Steal T ~<_ | TT|T 90t kenb-gng | /
S) T~ T e — \
Secedl T T 08 Lenbong | \
0cT walsAg aseqgejeq Jueus)-ninp 77 T o+ 80¢ Aenb-gng 7
e ' 60€ Aisnb-ang
Jusby Joziwndo 092 1ake Aienp AV\W
01T Wwa)sAs 1soH G0g uonelado uior

SUBSTITUTE SHEET (RULE 26)

4/7 PCT/US2011/032631

WO 2012/087366

— T

——— GGlalog T

ejeq [euopeley

boococococoocoooooooosoees

0%} weyshs eseqejeq jueusk-Hiny

ysnjj

T

_—" QOGl 8ol T
Ble(] |euoie[oy-UuoN

v
. o=meq
- = POUSTIS

017 WwalsAg 1soH

0oy

¥ 'Old

7
uoloesues] meN

SUBSTITUTE SHEET (RULE 26)

517 PCT/US2011/032631

WO 2012/087366

¢ 'Old

ges
Juaby Jeziwndo

0¢gs
BWSYDG Jawo)sn)

gcs
JoAIBg-GOAN

glg
snd

T0G juaby Joke
Aanp) peseg alempleH

GgG Joinoex3 Alenp

aG Jojesauany Aianb-gng

7G 10S$800.Jd BLIBYDS JaWwojsny)

0/G 10889201 }senbay

T0G uaby Jake Aenp paseg alempieH

GG Jafe buiyoe |eqo|

065
(s)Jossoo0.d

G6S
Alowsy

00G Wejsks

—
-
e
-—

——
——
—_——
—
-
——
—
——
—
—_—
—
-——
—
-—

SUBSTITUTE SHEET (RULE 26)

WO 2012/087366 6/7 PCT/US2011/032631

O St) FIG. 6
] A, 60

Receiving a request at a host system for the multi-tenant database
system, the request specifying data to be retrieved from the multi-tenant
database system. 605

Retrieving, based on the request via the host system, one or more
locations of the data to be retrieved. 610

Refrieving, via the host system, a customer schema responsive to
receiving the request. 615

:

Generating, at the host system, a database query
based on the request. 62

Executing the database query against the multi-tenant database system to
retrieve the data. 625

Receiving new transactions at the multi-tenant database system, each
new transaction specifying new data to be written to the non-relational
data store. 630

Writing the new data to an append log of the
relational data store. 635
Flushing the new data written to the append log of the relational data store

to the non-relational data store when the append log reaches a flush
threshold. 640

v
S

SUBSTITUTE SHEET (RULE 26)

WO 2012/087366 7/7 PCT/US2011/032631

/702
//\\ F G. 7 700
PROCESSOR L ,—136
PROCESSING| [>
1l 7%
LOGIC PERIPHERAL -
04 < > DEVICE
~
MAIN MEMORY 12
o4 ALPHANUMERIC
CUSTOMER // < > INPUT DEVICE
SCHEMA CURSOR
- 4J CONTROL DEVICE
—
—~T10
GLOBAL | |, 723
CACHE LAYER <«—»| USER INTERFACE
w
734 >
- T 70
HARDWARE BASED 116
QUERY LAYER |¢——»
AGENT INTEGRATED
« > SPEAKER
108
NETWORK 4 8
'NTEREQ% CARD > SECONDARY MEMORY
MACHINE-ACCESSIBLE | | , 731
STORAGE MEDIUM
/ - ot
/! 722
| 720 SOFTWARE L
7
/
Y

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 11/32631

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBF 7/00, GO6F 17/00 (2011.01)
USPC - 707/637

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by ¢
USPC: 707/637

lassification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 707/637, 660, 713, 714, 716, 718, 721, 722, 758, 769, E17.017 (keyword limited - see search terms below)

Electronic data base consulted during the international search (name of

data base and, where practicable, search terms used)

PUbWEST (PGPB, USPT, USOC, EPAB, JPAB); GOOGLE,; Google Scholar
Terms: database, multi, tenant, relational, join, schema, query, sql, order, rank, target, location, key, index, optimize, subquery.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

especially abstract; para [0009), [0021], [0022], [0039], [0045], [0046], [0048], [0051], [0052].

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2010/0211619 A1 (WEISSMAN et al.) 19 August 2010 (19.08.2010) entire document, 1-23
especially abstract; para [0002], [0003], [0004], [0006], [0008], {0010}, [0014], [0021], [0024],
[0025], [0035], [0039), [0040], [0042], [0051), [0055], [0059], [0062), [0064].
Y US 2009/0282045 A1 (HSIEH et al.) 12 November 2009 (12:1 1.2009) entire document, 1-23
especially abstract; para [0002), [0012], [0013], [0014], [0038], [0062].
A US 2007/0124276 A1 (WEISSMAN et al.}) 31 May 2007 (31.05.2007) entire document, 1-23

[:l Further documents are listed in the continuation of Box C.

[]

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be

considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

13 November 2011 (13.11.2011)

Date of mailing of the international search report

01DEC 201

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 5741.273-3201

Authorized officer:
Lee W. Young

>

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report

