wO 2011/084214 A2 I 00 000 OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 1M1 AN 000100 D O O 0
ernational Bureau S,/ ‘ 0 |
. L MEY (10) International Publication Number
(43) International Publication Date \,!:,: #
14 July 2011 (14.07.2011) WO 2011/084214 A2

(51) International Patent Classification: sachusetts Ave., Apt. 206, Boston, Massachusetts 02115

GO6F 9/305 (2006.01) GO6F 13/16 (2006.01) (US). WOLRICH, Gilbert M.; 1 Macomber Lane, Fram-

GO6F 13/14 (2006.01) ingham, Massachusetts 01701 (US). DIXON, Martin G.;

(21) International Application Number: 4005 NE Hazelfern Place, Portland, Oregon 97232 (US).

PCT/US2010/054754 (74) Agents: VINCENT, Lester J. et al; Blakely Sokoloff

Tayl Zafi 12 km Park !
(22) International Filing Date: CZi]ifoorrm(?La 5 201;12%}8) 79 Oakmead Parkway, Sunnyvale,
29 October 2010 (29.10.2010) :

(81) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind of national protection available): AE, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
L. CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
12/653,704 17 December 2009 (17.12.2009) us HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(71) Applicant (for all designated States except US): INTEL KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
CORPORATION; 2200 Mission College Boulevard, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
Santa Clara, California 95052 (US). NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(72) Inventors; and TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(75) Inventors/Applicants (for US only): GOPAL, Vinodh; . o
15 West End Ave., Westborough, Massachusetts 01581 (84) Designated States (unless otherwise indicated, for every

(US). GUILFORD, James D.; 17 Mashpee Circle kind of regional protection available): ARIPO (BW, GH,
Northborough, Massachusetts 01532 (US). OZTURK, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

Erdinc; 19 Bronte Way, Apt 33L, Malborough, Mas-
sachusetts 01752 (US). FEGHALIL, Wajdi; 199 MMas- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR PERFORMING A SHIFT AND EXCLUSIVE OR OPERATION IN A SINGLE
INSTRUCTION

(57) Abstract: Method and apparatus for performing a shitt

mocgsion ETLITaD and XOR operation. In one embodiment, an apparatus in-
— FACRED HSTRUST o PROCESENG . . . .
- e P cludes execution resources to execute a first instruction. In
‘ E= N response to the first instruction, said execution resources
" it * sy 7 o el perform a shift and XOR on at least one value.
MEMORY 154
& m— T M
= i u
Tal MERL
e [ e e PR —

DEXPANS DN

11
23
wRELESS COMROLER
TRANSCEIER U e
: ’ v NIERFACE
s i Ko seeagmmson ! [ "
g & b
18 CONTROLTR

ALTERNATEBLE
NASTER MTCRTACE
52

Il

S o “w
S| <
= FIG. 1A
FIG. 1B
g I
SIMD COPROCESSOR
6L
162 ;
=
S~
g
VAIN PROCESSOR R
. WIRELESS
165 e cac-E s |, MIRE
e

FIG.1C



WO 2011/084214 A2 I 0000 )00 T A A A

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Published:
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, __
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))



10

15

20

25

30

WO 2011/084214 PCT/US2010/054754

METHOD AND APPARATUS FOR PERFORMING A SHIFT AND EXCLUSIVE
OR OPERATION IN A SINGLE INSTRUCTION

FIELD OF THE INVENTION

The present disclosure pertains to the field of computer processing. More
particularly, embodiments relate to an instruction to perform a shift and exclusive OR
(XOR) operation.

DESCRIPTION OF RELATED ART

Single-instruction-multiple data (SIMD) instructions are useful in various
applications for processing numerous data elements (packed data) in parallel. Performing
operations, such as a shift operation and an exclusive OR (XOR) operation, in series can
decrease performance.

BRIEF DESCRIPTION OF THE FIGURES

The present invention is illustrated by way of example and not limitation in the
Figures of the accompanying drawings:

Figure 1A is a block diagram of a computer system formed with a processor that
includes execution units to execute an instruction for a shift and XOR operation in
accordance with one embodiment of the present invention;

Figure 1B is a block diagram of another exemplary computer system in accordance
with an alternative embodiment of the present invention;

Figure 1C is a block diagram of yet another exemplary computer system in
accordance with another alternative embodiment of the present invention;

Figure 2 is a block diagram of the micro-architecture for a processor of one
embodiment that includes logic circuits to perform a shift and XOR operation in accordance
with the present invention;

Figure 3A illustrates various packed data type representations in multimedia
registers according to one embodiment of the present invention;

Figure 3B illustrates packed data-types in accordance with an alternative
embodiment;

Figure 3C illustrates various signed and unsigned packed data type representations
in multimedia registers according to one embodiment of the present invention;

Figure 3D illustrates one embodiment of an operation encoding (opcode) format;

Figure 3E illustrates an alternative operation encoding (opcode) format;
-1-
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Figure 3F illustrates yet another alternative operation encoding format;

Figure 4 is a block diagram of one embodiment of logic to perform an instruction in
accordance with the present invention.

Figure 5 is a flow diagram of operations to be performed in conjunction with one
embodiment.

DETAILED DESCRIPTION

The following description describes embodiments of a technique to perform a shift
and XOR operation within a processing apparatus, computer system, or software program.
In the following description, numerous specific details such as processor types, micro-
architectural conditions, events, enablement mechanisms, and the like are set forth in order
to provide a more thorough understanding of the present invention. It will be appreciated,
however, by one skilled in the art that embodiments of the invention may be practiced
without such specific details. Additionally, some well known structures, circuits, and the
like have not been shown in detail to avoid unnecessarily obscuring embodiments of the
present invention.

Although the following embodiments are described with reference to a processor,
other embodiments are applicable to other types of integrated circuits and logic devices.
The same techniques and teachings of the present invention can easily be applied to other
types of circuits or semiconductor devices that can benefit from higher pipeline throughput
and improved performance. The teachings of the present invention are applicable to any
processor or machine that performs data manipulations. However, embodiments of the
present invention is not limited to processors or machines that perform 256 bit, 128 bit, 64
bit, 32 bit, or 16 bit data operations and can be applied to any processor and machine in
which manipulation of packed data is needed.

Although the below examples describe instruction handling and distribution in the
context of execution units and logic circuits, other embodiments of the present invention
can be accomplished by way of software stored on tangible medium. In one embodiment,
the methods of the present invention are embodied in machine-executable instructions. The
instructions can be used to cause a general-purpose or special-purpose processor that is
programmed with the instructions to perform the steps of the present invention.
Embodiments of the present invention may be provided as a computer program product or

software which may include a machine or computer-readable medium having stored thereon
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instructions which may be used to program a computer (or other electronic devices) to
perform a process according to the present invention. Alternatively, the steps of the present
invention might be performed by specific hardware components that contain hardwired
logic for performing the steps, or by any combination of programmed computer components
and custom hardware components. Such software can be stored within a memory in the
system. Similarly, the code can be distributed via a network or by way of other computer
readable media.

Thus a machine-readable medium may include any mechanism for storing or
transmitting information in a form readable by a machine (e.g., a computer), but is not
limited to, floppy diskettes, optical disks, Compact Disc, Read-Only Memory (CD-ROMs),
and magneto-optical disks, Read-Only Memory (ROMs), Random Access Memory (RAM),
Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable
Programmable Read-Only Memory (EEPROM), magnetic or optical cards, flash memory, a
transmission over the Internet, electrical, optical, acoustical or other forms of propagated
signals (e.g., carrier waves, infrared signals, digital signals, etc.) or the like. Accordingly,
the computer-readable medium includes any type of media/machine-readable medium
suitable for storing or transmitting electronic instructions or information in a form readable
by a machine (e.g., a computer). Moreover, the present invention may also be downloaded
as a computer program product. As such, the program may be transferred from a remote
computer (e.g., a server) to a requesting computer (e.g., a client). The transfer of the
program may be by way of electrical, optical, acoustical, or other forms of data signals
embodied in a carrier wave or other propagation medium via a communication link (e.g., a
modem, network connection or the like).

A design may go through various stages, from creation to simulation to fabrication.
Data representing a design may represent the design in a number of manners. First, as is
useful in simulations, the hardware may be represented using a hardware description
language or another functional description language Additionally, a circuit level model
with logic and/or transistor gates may be produced at some stages of the design process.
Furthermore, most designs, at some stage, reach a level of data representing the physical
placement of various devices in the hardware model. In the case where conventional
semiconductor fabrication techniques are used, the data representing the hardware model

may be the data specifying the presence or absence of various features on different mask
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layers for masks used to produce the integrated circuit. In any representation of the design,
the data may be stored in any form of a machine readable medium. An optical or electrical
wave modulated or otherwise generated to transmit such information, a memory, or a
magnetic or optical storage such as a disc may be the machine readable medium. Any of
these mediums may “carry” or “indicate” the design or software information. When an
electrical carrier wave indicating or carrying the code or design is transmitted, to the extent
that copying, buffering, or re-transmission of the electrical signal is performed, a new copy
is made. Thus, a communication provider or a network provider may make copies of an
article (a carrier wave) embodying techniques of the present invention.

In modern processors, a number of different execution units are used to process and
execute a variety of code and instructions. Not all instructions are created equal as some
are quicker to complete while others can take an enormous number of clock cycles. The
faster the throughput of instructions, the better the overall performance of the processor.
Thus it would be advantageous to have as many instructions execute as fast as possible.
However, there are certain instructions that have greater complexity and require more in
terms of execution time and processor resources. For example, there are floating point
instructions, load/store operations, data moves, etc.

As more and more computer systems are used in internet and multimedia
applications, additional processor support has been introduced over time. For instance,
Single Instruction, Multiple Data (SIMD) integer/floating point instructions and Streaming
SIMD Extensions (SSE) are instructions that reduce the overall number of instructions
required to execute a particular program task, which in turn can reduce the power
consumption. These instructions can speed up software performance by operating on
multiple data elements in parallel. As a result, performance gains can be achieved in a wide
range of applications including video, speech, and image/photo processing. The
implementation of SIMD instructions in microprocessors and similar types of logic circuit
usually involve a number of issues. Furthermore, the complexity of SIMD operations often
leads to a need for additional circuitry in order to correctly process and manipulate the data.

Presently a SIMD shift and XOR instruction is not available. Without the presence
of a SIMD shift and XOR instruction, according to embodiments of the invention, a large
number of instructions and data registers may be needed to accomplish the same results in

applications such as audio/video/graphics compression, processing, and manipulation.
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Thus, at least one shift and XOR instruction in accordance with embodiments of the present
invention can reduce code overhead and resource requirements. Embodiments of the
present invention provide a way to implement a shift and XOR operation as an algorithm
that makes use of SIMD related hardware. Presently, it is somewhat difficult and tedious to
perform shift and XOR operations on data in a SIMD register. Some algorithms require
more instructions to arrange data for arithmetic operations than the actual number of
instructions to execute those operations. By implementing embodiments of a shift and XOR
operation in accordance with embodiments of the present invention, the number of
instructions needed to achieve shift and XOR processing can be drastically reduced.

Embodiments of the present invention involve an instruction for implementing a
shift and XOR operation. In one embodiment, a shift and XOR operation...

A shift and XOR operation according to one embodiment as applied to data
elements can be generically represented as:

DEST1 € SRCI [SRC2];

In one embodiment, SRC1 stores a first operand having a plurality of data elements and
SRC2 contains a value representing the value to be shifted by the shift and XOR instruction.
In other embodiments, the shift and XOR value indicator may be stored in an immediate
field.

In the above flow, “DEST” and “SRC” are generic terms to represent the source and
destination of the corresponding data or operation. In some embodiments, they may be
implemented by registers, memory, or other storage areas having other names or functions
than those depicted. For example, in one embodiment, DEST1 and DEST2 may be a first
and second temporary storage area (e.g., “TEMP1” and “TEMP2” register), SRC1 and
SRC3 may be first and second destination storage area (e.g., “DEST1” and “DEST2”
register), and so forth. In other embodiments, two or more of the SRC and DEST storage
arcas may correspond to different data storage elements within the same storage area (e.g., a
SIMD register).

Figure 1A is a block diagram of an exemplary computer system formed with a
processor that includes execution units to execute an instruction for a shift and XOR
operation in accordance with one embodiment of the present invention. System 100
includes a component, such as a processor 102 to employ execution units including logic to

perform algorithms for process data, in accordance with the present invention, such as in the
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embodiment described herein. System 100 is representative of processing systems based on
the PENTIUM® 111, PENTIUM® 4, Xeon™, Itanium®, XScale™ and/or StrongARM™
microprocessors available from Intel Corporation of Santa Clara, California, although other
systems (including PCs having other microprocessors, engineering workstations, set-top
boxes and the like) may also be used. In one embodiment, sample system 100 may execute
a version of the WINDOWS™ operating system available from Microsoft Corporation of
Redmond, Washington, although other operating systems (UNIX and Linux for example),
embedded software, and/or graphical user interfaces, may also be used. Thus, embodiments
of the present invention is not limited to any specific combination of hardware circuitry and
software.

Embodiments are not limited to computer systems. Alternative embodiments of the
present invention can be used in other devices such as handheld devices and embedded
applications. Some examples of handheld devices include cellular phones, Internet Protocol
devices, digital cameras, personal digital assistants (PDAs), and handheld PCs. Embedded
applications can include a micro controller, a digital signal processor (DSP), system on a
chip, network computers (NetPC), set-top boxes, network hubs, wide area network (WAN)
switches, or any other system that performs shift and XOR operations on operands.
Furthermore, some architectures have been implemented to enable instructions to operate
on several data simultaneously to improve the efficiency of multimedia applications. As the
type and volume of data increases, computers and their processors have to be enhanced to
manipulate data in more efficient methods.

Figure 1A is a block diagram of a computer system 100 formed with a processor
102 that includes one or more execution units 108 to perform an algorithm to shift and XOR
a number of data elements in accordance with one embodiment of the present invention.
One embodiment may be described in the context of a single processor desktop or server
system, but alternative embodiments can be included in a multiprocessor system. System
100 is an example of a hub architecture. The computer system 100 includes a processor 102
to process data signals. The processor 102 can be a complex instruction set computer
(CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very
long instruction word (VLIW) microprocessor, a processor implementing a combination of
instruction sets, or any other processor device, such as a digital signal processor, for

example. The processor 102 is coupled to a processor bus 110 that can transmit data signals
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between the processor 102 and other components in the system 100. The elements of
system 100 perform their conventional functions that are well known to those familiar with
the art.

In one embodiment, the processor 102 includes a Level 1 (L1) internal cache
memory 104. Depending on the architecture, the processor 102 can have a single internal
cache or multiple levels of internal cache. Alternatively, in another embodiment, the cache
memory can reside external to the processor 102. Other embodiments can also include a
combination of both internal and external caches depending on the particular
implementation and needs. Register file 106 can store different types of data in various
registers including integer registers, floating point registers, status registers, and instruction
pointer register.

Execution unit 108, including logic to perform integer and floating point operations,
also resides in the processor 102. The processor 102 also includes a microcode (ucode)
ROM that stores microcode for certain macroinstructions. For this embodiment, execution
unit 108 includes logic to handle a packed instruction set 109. In one embodiment, the
packed instruction set 109 includes a packed shift and XOR instruction for performing a
shift and XOR on a number of operands. By including the packed instruction set 109 in the
instruction set of a general-purpose processor 102, along with associated circuitry to
execute the instructions, the operations used by many multimedia applications may be
performed using packed data in a general-purpose processor 102. Thus, many multimedia
applications can be accelerated and executed more efficiently by using the full width of a
processor’s data bus for performing operations on packed data. This can eliminate the need
to transfer smaller units of data across the processor’s data bus to perform one or more
operations one data element at a time.

Alternate embodiments of an execution unit 108 can also be used in micro
controllers, embedded processors, graphics devices, DSPs, and other types of logic circuits.
System 100 includes a memory 120. Memory 120 can be a dynamic random access
memory (DRAM) device, a static random access memory (SRAM) device, flash memory
device, or other memory device. Memory 120 can store instructions and/or data represented
by data signals that can be executed by the processor 102.

A system logic chip 116 is coupled to the processor bus 110 and memory 120. The
system logic chip 116 in the illustrated embodiment is a memory controller hub (MCH).

-7-
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The processor 102 can communicate to the MCH 116 via a processor bus 110. The MCH
116 provides a high bandwidth memory path 118 to memory 120 for instruction and data
storage and for storage of graphics commands, data and textures. The MCH 116 is to direct
data signals between the processor 102, memory 120, and other components in the system
100 and to bridge the data signals between processor bus 110, memory 120, and system 1/O
122. In some embodiments, the system logic chip 116 can provide a graphics port for
coupling to a graphics controller 112. The MCH 116 is coupled to memory 120 through a
memory interface 118. The graphics card 112 is coupled to the MCH 116 through an
Accelerated Graphics Port (AGP) interconnect 114.

System 100 uses a proprietary hub interface bus 122 to couple the MCH 116 to the
I/O controller hub (ICH) 130. The ICH 130 provides direct connections to some 1/O
devices via a local 1/0 bus. The local 1/0 bus is a high-speed I/O bus for connecting
peripherals to the memory 120, chipset, and processor 102. Some examples are the audio
controller, firmware hub (flash BIOS) 128, wireless transceiver 126, data storage 124,
legacy /O controller containing user input and keyboard interfaces, a serial expansion port
such as Universal Serial Bus (USB), and a network controller 134. The data storage device
124 can comprise a hard disk drive, a floppy disk drive, a CD-ROM device, a flash memory
device, or other mass storage device.

For another embodiment of a system, an execution unit to execute an algorithm with
a shift and XOR instruction can be used with a system on a chip. One embodiment of a
system on a chip comprises of a processor and a memory. The memory for one such system
is a flash memory. The flash memory can be located on the same die as the processor and
other system components. Additionally, other logic blocks such as a memory controller or
graphics controller can also be located on a system on a chip.

Figure 1B illustrates a data processing system 140 which implements the principles
of one embodiment of the present invention. It will be readily appreciated by one of skill in
the art that the embodiments described herein can be used with alternative processing
systems without departure from the scope of the invention.

Computer system 140 comprises a processing core 159 capable of performing SIMD
operations including a shift and XOR operation. For one embodiment, processing core 159
represents a processing unit of any type of architecture, including but not limited to a CISC,

a RISC or a VLIW type architecture. Processing core 159 may also be suitable for
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manufacture in one or more process technologies and by being represented on a machine
readable media in sufficient detail, may be suitable to facilitate said manufacture.

Processing core 159 comprises an execution unit 142, a set of register file(s) 145,
and a decoder 144. Processing core 159 also includes additional circuitry (not shown)
which is not necessary to the understanding of the present invention. Execution unit 142 is
used for executing instructions received by processing core 159. In addition to recognizing
typical processor instructions, execution unit 142 can recognize instructions in packed
instruction set 143 for performing operations on packed data formats. Packed instruction
set 143 includes instructions for supporting shift and XOR operations, and may also include
other packed instructions. Execution unit 142 is coupled to register file 145 by an internal
bus. Register file 145 represents a storage area on processing core 159 for storing
information, including data. As previously mentioned, it is understood that the storage arca
used for storing the packed data is not critical. Execution unit 142 is coupled to decoder
144. Decoder 144 is used for decoding instructions received by processing core 159 into
control signals and/or microcode entry points. In response to these control signals and/or
microcode entry points, execution unit 142 performs the appropriate operations.

Processing core 159 is coupled with bus 141 for communicating with various other
system devices, which may include but are not limited to, for example, synchronous
dynamic random access memory (SDRAM) control 146, static random access memory
(SRAM) control 147, burst flash memory interface 148, personal computer memory card
international association (PCMCIA)/compact flash (CF) card control 149, liquid crystal
display (LCD) control 150, direct memory access (DMA) controller 151, and alternative
bus master interface 152. In one embodiment, data processing system 140 may also
comprise an 1/0 bridge 154 for communicating with various I/O devices via an 1/0 bus 153.
Such I/O devices may include but are not limited to, for example, universal asynchronous
receiver/transmitter (UART) 155, universal serial bus (USB) 156, Bluetooth wireless
UART 157 and I/O expansion interface 158.

One embodiment of data processing system 140 provides for mobile, network and/or
wireless communications and a processing core 159 capable of performing SIMD
operations including a shift and XOR operation. Processing core 159 may be programmed
with various audio, video, imaging and communications algorithms including discrete

transformations such as a Walsh-Hadamard transform, a fast Fourier transform (FFT), a
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discrete cosine transform (DCT), and their respective inverse transforms;
compression/decompression techniques such as color space transformation, video encode
motion estimation or video decode motion compensation; and modulation/demodulation
(MODEM) functions such as pulse coded modulation (PCM). Some embodiments of the
invention may also be applied to graphics applications, such as three dimensional (“3D”)
modeling, rendering, objects collision detection, 3D objects transformation and lighting, etc.

Figure 1C illustrates yet alternative embodiments of a data processing system
capable of performing SIMD shift and XOR operations. In accordance with one alternative
embodiment, data processing system 160 may include a main processor 166, a SIMD
coprocessor 161, a cache memory 167, and an input/output system 168. The input/output
system 168 may optionally be coupled to a wireless interface 169. SIMD coprocessor 161
is capable of performing SIMD operations including shift and XOR operations. Processing
core 170 may be suitable for manufacture in one or more process technologies and by being
represented on a machine readable media in sufficient detail, may be suitable to facilitate
the manufacture of all or part of data processing system 160 including processing core 170.

For one embodiment, SIMD coprocessor 161 comprises an execution unit 162 and a
set of register file(s) 164. One embodiment of main processor 165 comprises a decoder 165
to recognize instructions of instruction set 163 including SIMD shift and XOR calculation
instructions for execution by execution unit 162. For alternative embodiments, SIMD
coprocessor 161 also comprises at least part of decoder 165B to decode instructions of
instruction set 163. Processing core 170 also includes additional circuitry (not shown)
which is not necessary to the understanding of embodiments of the present invention.

In operation, the main processor 166 cxecutes a stream of data processing
instructions that control data processing operations of a general type including interactions
with the cache memory 167, and the input/output system 168. Embedded within the stream
of data processing instructions are SIMD coprocessor instructions. The decoder 165 of
main processor 166 recognizes these SIMD coprocessor instructions as being of a type that
should be executed by an attached SIMD coprocessor 161. Accordingly, the main
processor 166 issues these SIMD coprocessor instructions (or control signals representing
SIMD coprocessor instructions) on the coprocessor bus 166 where from they are received
by any attached SIMD coprocessors. In this case, the SIMD coprocessor 161 will accept

and execute any received SIMD coprocessor instructions intended for it.
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Data may be received via wireless interface 169 for processing by the SIMD
coprocessor instructions. For one example, voice communication may be received in the
form of a digital signal, which may be processed by the SIMD coprocessor instructions to
regenerate digital audio samples representative of the voice communications. For another
example, compressed audio and/or video may be received in the form of a digital bit stream,
which may be processed by the SIMD coprocessor instructions to regenerate digital audio
samples and/or motion video frames. For one embodiment of processing core 170, main
processor 166, and a SIMD coprocessor 161 are integrated into a single processing core 170
comprising an execution unit 162, a set of register file(s) 164, and a decoder 165 to
recognize instructions of instruction set 163 including SIMD shift and XOR instructions.

Figure 2 is a block diagram of the micro-architecture for a processor 200 that
includes logic circuits to perform a shift and XOR instruction in accordance with one
embodiment of the present invention. For one embodiment of the shift and XOR
instruction, the instruction can shift a floating point mantissa value to the right by the
amount indicated by the exponent, XOR the shifted value by a value, and produce the final
result. In one embodiment the in-order front end 201 is the part of the processor 200 that
fetches macro-instructions to be executed and prepares them to be used later in the
processor pipeline. The front end 201 may include several units. In one embodiment, the
instruction prefetcher 226 fetches macro-instructions from memory and feeds them to an
instruction decoder 228 which in turn decodes them into primitives called micro-
instructions or micro-operations (also called micro op or uops) that the machine can
execute. In one embodiment, the trace cache 230 takes decoded uops and assembles them
into program ordered sequences or traces in the uop queue 234 for execution. When the
trace cache 230 encounters a complex macro-instruction, the microcode ROM 232 provides
the uops needed to complete the operation.

Many macro-instructions are converted into a single micro-op, whereas others need
several micro-ops to complete the full operation. In one embodiment, if more than four
micro-ops are needed to complete a macro-instruction, the decoder 228 accesses the
microcode ROM 232 to do the macro-instruction. For one embodiment, a packed shift and
XOR instruction can be decoded into a small number of micro ops for processing at the
instruction decoder 228. In another embodiment, an instruction for a packed shift and XOR

algorithm can be stored within the microcode ROM 232 should a number of micro-ops be
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needed to accomplish the operation. The trace cache 230 refers to a entry point
programmable logic array (PLA) to determine a correct micro-instruction pointer for
reading the micro-code sequences for the shift and XOR algorithm in the micro-code ROM
232. After the microcode ROM 232 finishes sequencing micro-ops for the current macro-
instruction, the front end 201 of the machine resumes fetching micro-ops from the trace
cache 230.

Some SIMD and other multimedia types of instructions are considered complex
instructions. Most floating point related instructions are also complex instructions. As
such, when the instruction decoder 228 encounters a complex macro-instruction, the
microcode ROM 232 is accessed at the appropriate location to retrieve the microcode
sequence for that macro-instruction. The various micro-ops needed for performing that
macro-instruction are communicated to the out-of-order execution engine 203 for execution
at the appropriate integer and floating point execution units.

The out-of-order execution engine 203 is where the micro-instructions are prepared
for execution. The out-of-order execution logic has a number of buffers to smooth out and
re-order the flow of micro-instructions to optimize performance as they go down the
pipeline and get scheduled for execution. The allocator logic allocates the machine buffers
and resources that each uop needs in order to execute. The register renaming logic renames
logic registers onto entries in a register file. The allocator also allocates an entry for each
uop in one of the two uop queues, one for memory operations and one for non-memory
operations, in front of the instruction schedulers: memory scheduler, fast scheduler 202,
slow/general floating point scheduler 204, and simple floating point scheduler 206. The
uop schedulers 202, 204, 206, determine when a uop is ready to execute based on the
readiness of their dependent input register operand sources and the availability of the
execution resources the uops need to complete their operation. The fast scheduler 202 of
this embodiment can schedule on each half of the main clock cycle while the other
schedulers can only schedule once per main processor clock cycle. The schedulers arbitrate
for the dispatch ports to schedule uops for execution.

Register files 208, 210, sit between the schedulers 202, 204, 206, and the execution
units 212, 214, 216, 218, 220, 222, 224 in the execution block 211. There is a separate
register file 208, 210, for integer and floating point operations, respectively. Each register

file 208, 210, of this embodiment also includes a bypass network that can bypass or forward
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just completed results that have not yet been written into the register file to new dependent
uops. The integer register file 208 and the floating point register file 210 are also capable of
communicating data with the other. For one embodiment, the integer register file 208 is
split into two separate register files, one register file for the low order 32 bits of data and a
second register file for the high order 32 bits of data. The floating point register file 210 of
one embodiment has 128 bit wide entries because floating point instructions typically have
operands from 64 to 128 bits in width.

The execution block 211 contains the execution units 212, 214, 216, 218, 220, 222,
224, where the instructions are actually executed. This section includes the register files
208, 210, that store the integer and floating point data operand values that the micro-
instructions need to execute. The processor 200 of this embodiment is comprised of a
number of execution units: address generation unit (AGU) 212, AGU 214, fast ALU 216,
fast ALU 218, slow ALU 220, floating point ALU 222, floating point move unit 224. For
this embodiment, the floating point execution blocks 222, 224, execute floating point,
MMX, SIMD, and SSE operations. The floating point ALU 222 of this embodiment
includes a 64 bit by 64 bit floating point divider to execute divide, square root, and
remainder micro-ops. For embodiments of the present invention, any act involving a
floating point value occurs with the floating point hardware. For example, conversions
between integer format and floating point format involve a floating point register file.
Similarly, a floating point divide operation happens at a floating point divider. On the other
hand, non-floating point numbers and integer type are handled with integer hardware
resources. The simple, very frequent ALU operations go to the high-speed ALU execution
units 216, 218. The fast ALUs 216, 218, of this embodiment can execute fast operations
with an effective latency of half a clock cycle. For one embodiment, most complex integer
operations go to the slow ALU 220 as the slow ALU 220 includes integer execution
hardware for long latency type of operations, such as a multiplier, shifts, flag logic, and
branch processing. Memory load/store operations are executed by the AGUs 212, 214. For
this embodiment, the integer ALUs 216, 218, 220, are described in the context of
performing integer operations on 64 bit data operands. In alternative embodiments, the
ALUs 216, 218, 220, can be implemented to support a variety of data bits including 16, 32,
128, 256, etc. Similarly, the floating point units 222, 224, can be implemented to support a

range of operands having bits of various widths. For one embodiment, the floating point
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units 222, 224, can operate on 128 bits wide packed data operands in conjunction with
SIMD and multimedia instructions.

The term “registers” is used herein to refer to the on-board processor storage
locations that are used as part of macro-instructions to identify operands. In other words,
the registers referred to herein are those that are visible from the outside of the processor
(from a programmer’s perspective). However, the registers of an embodiment should not be
limited in meaning to a particular type of circuit. Rather, a register of an embodiment need
only be capable of storing and providing data, and performing the functions described
herein. The registers described herein can be implemented by circuitry within a processor
using any number of different techniques, such as dedicated physical registers, dynamically
allocated physical registers using register renaming, combinations of dedicated and
dynamically allocated physical registers, etc. In one embodiment, integer registers store
thirty-two bit integer data. A register file of one embodiment also contains sixteen XMM
and general purpose registers, eight multimedia (e.g., “EM64T” additions) multimedia
SIMD registers for packed data. For the discussions below, the registers are understood to
be data registers designed to hold packed data, such as 64 bits wide MMX"™ registers (also
referred to as ‘mm’ registers in some instances) in microprocessors enabled with MMX
technology from Intel Corporation of Santa Clara, California. These MMX registers,
available in both integer and floating point forms, can operated with packed data elements
that accompany SIMD and SSE instructions. Similarly, 128 bits wide XMM registers
relating to SSE2, SSE3, SSE4, or beyond (referred to generically as “SSEx”) technology
can also be used to hold such packed data operands. In this embodiment, in storing packed
data and integer data, the registers do not need to differentiate between the two data types.
In one embodiment, other registers or combination of registers may be used to store 256 bits
or more data.

In the examples of the following figures, a number of data operands are described.
Figure 3A illustrates various packed data type representations in multimedia registers
according to one embodiment of the present invention. Fig. 3A illustrates data types for a
packed byte 310, a packed word 320, and a packed doubleword (dword) 330 for 128 bits
wide operands. The packed byte format 310 of this example is 128 bits long and contains
sixteen packed byte data elements. A byte is defined here as 8 bits of data. Information for

cach byte data element is stored in bit 7 through bit 0 for byte 0, bit 15 through bit 8 for
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byte 1, bit 23 through bit 16 for byte 2, and finally bit 120 through bit 127 for byte 15.
Thus, all available bits are used in the register. This storage arrangement increases the
storage efficiency of the processor. As well, with sixteen data elements accessed, one
operation can now be performed on sixteen data elements in parallel.

Generally, a data element is an individual piece of data that is stored in a single
register or memory location with other data elements of the same length. In packed data
sequences relating to SSEx technology, the number of data elements stored in a XMM
register is 128 bits divided by the length in bits of an individual data element. Similarly, in
packed data sequences relating to MMX and SSE technology, the number of data elements
stored in an MMX register is 64 bits divided by the length in bits of an individual data
element. Although the data types illustrated in Fig. 3A are 128 bit long, embodiments of
the present invention can also operate with 64 bit wide or other sized operands. The packed
word format 320 of this example is 128 bits long and contains eight packed word data
elements. Each packed word contains sixteen bits of information. The packed doubleword
format 330 of Fig. 3A is 128 bits long and contains four packed doubleword data elements.
Each packed doubleword data element contains thirty two bits of information. A packed
quadword is 128 bits long and contains two packed quad-word data elements.

Figure 3B illustrates alternative in-register data storage formats. Each packed data
can include more than one independent data element. Three packed data formats are
illustrated; packed half 341, packed single 342, and packed double 343. One embodiment
of packed half 341, packed single 342, and packed double 343 contain fixed-point data
elements. For an alternative embodiment one or more of packed half 341, packed single
342, and packed double 343 may contain floating-point data elements. One alternative
embodiment of packed half 341 is one hundred twenty-cight bits long containing eight 16-
bit data elements. One embodiment of packed single 342 is one hundred twenty-cight bits
long and contains four 32-bit data elements. One embodiment of packed double 343 is one
hundred twenty-eight bits long and contains two 64-bit data elements. It will be appreciated
that such packed data formats may be further extended to other register lengths, for
example, to 96-bits, 160-bits, 192-bits, 224-bits, 256-bits or more.

Figure 3C illustrates various signed and unsigned packed data type representations
in multimedia registers according to one embodiment of the present invention. Unsigned

packed byte representation 344 illustrates the storage of an unsigned packed byte in a SIMD
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register. Information for each byte data element is stored in bit seven through bit zero for
byte zero, bit fifteen through bit eight for byte one, bit twenty-three through bit sixteen for
byte two, and finally bit one hundred twenty through bit one hundred twenty-seven for byte
fifteen. Thus, all available bits are used in the register. This storage arrangement can
increase the storage efficiency of the processor. As well, with sixteen data elements
accessed, one operation can now be performed on sixteen data elements in a parallel
fashion. Signed packed byte representation 345 illustrates the storage of a signed packed
byte. Note that the eighth bit of every byte data element is the sign indicator. Unsigned
packed word representation 346 illustrates how word seven through word zero are stored in
a SIMD register. Signed packed word representation 347 is similar to the unsigned packed
word in-register representation 346. Note that the sixteenth bit of each word data element is
the sign indicator. Unsigned packed doubleword representation 348 shows how
doubleword data elements are stored. Signed packed doubleword representation 349 is
similar to unsigned packed doubleword in-register representation 348. Note that the
necessary sign bit is the thirty-second bit of each doubleword data element.

Figure 3D is a depiction of one embodiment of an operation encoding (opcode)
format 360, having thirty-two or more bits, and register/memory operand addressing modes
corresponding with a type of opcode format described in the "TA-32 Intel Architecture
Software Developer’s Manual Volume 2: Instruction Set Reference,” which is which is
available from Intel Corporation, Santa Clara, CA on the world-wide-web (www) at
intel.com/design/litcentr. In one embodiment, a shift and XOR operation may be encoded
by one or more of fields 361 and 362. Up to two operand locations per instruction may be
identified, including up to two source operand identifiers 364 and 365. For one
embodiment of the shift and XOR instruction, destination operand identifier 366 is the same
as source operand identifier 364, whereas in other embodiments they are different. For an
alternative embodiment, destination operand identifier 366 is the same as source operand
identifier 365, whereas in other embodiments they are different. In one embodiment of a
shift and XOR instruction, one of the source operands identified by source operand
identifiers 364 and 365 is overwritten by the results of the shift and XOR operations,
whereas in other embodiments identifier 364 corresponds to a source register element and

identifier 365 corresponds to a destination register element. For one embodiment of the
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shift and XOR instruction, operand identifiers 364 and 365 may be used to identify 32-bit or
64-bit source and destination operands.

Figure 3E is a depiction of another alternative operation encoding (opcode) format
370, having forty or more bits. Opcode format 370 corresponds with opcode format 360
and comprises an optional prefix byte 378. The type of shift and XOR operation may be
encoded by one or more of fields 378, 371, and 372. Up to two operand locations per
instruction may be identified by source operand identifiers 374 and 375 and by prefix byte
378. For one embodiment of the shift and XOR instruction, prefix byte 378 may be used to
identify 32-bit or 64-bit source and destination operands. For one embodiment of the shift
and XOR instruction, destination operand identifier 376 is the same as source operand
identifier 374, whereas in other embodiments they are different. For an alternative
embodiment, destination operand identifier 376 is the same as source operand identifier
375, whereas in other embodiments they are different. In one embodiment, the shift and
XOR operations shift and XOR one of the operands identified by operand identifiers 374
and 375 to another operand identified by the operand identifiers 374 and 375 is overwritten
by the results of the shift and XOR operations, whereas in other embodiments the shift and
XOR of the operands identified by identifiers 374 and 375 are written to another data
clement in another register. Opcode formats 360 and 370 allow register to register, memory
to register, register by memory, register by register, register by immediate, register to
memory addressing specified in part by MOD fields 363 and 373 and by optional scale-
index-base and displacement bytes.

Turning next to Figure 3F, in some alternative embodiments, 64 bit single
instruction multiple data (SIMD) arithmetic operations may be performed through a
coprocessor data processing (CDP) instruction. Operation encoding (opcode) format 380
depicts one such CDP instruction having CDP opcode fields 382 and 389. The type of CDP
instruction, for alternative embodiments of shift and XOR operations, may be encoded by
one or more of fields 383, 384, 387, and 388. Up to three operand locations per instruction
may be identified, including up to two source operand identifiers 385 and 390 and one
destination operand identifier 386. One embodiment of the coprocessor can operate on 8§,
16, 32, and 64 bit values. For one embodiment, the shift and XOR operation is performed
on floating point data elements. In some embodiments, a shift and XOR instruction may be

executed conditionally, using selection field 381. For some shift and XOR instructions
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source data sizes may be encoded by field 383. In some embodiments of shift and XOR
instruction, Zero (Z), negative (N), carry (C), and overflow (V) detection can be done on
SIMD fields. For some instructions, the type of saturation may be encoded by field 384.

Figure 4 is a block diagram of one embodiment of logic to perform a shift and XOR
operation on packed data operands in accordance with the present invention. Embodiments
of the present invention can be implemented to function with various types of operands
such as those described above. For simplicity, the following discussions and examples
below are in the context of a shift and XOR instruction to process data elements. In one
embodiment, a first operand 401 is shifted by shifter 410 by an amount specified by input
405. In one embodiment it is a right shift. However in other embodiments the shifter
performs a left shift operation. In some embodiments the operand is a scalar value, whereas
in other embodiments it is a packed data value having a number of different possible data
sizes and types (e.g., floating point, integer). In one embodiment, the shift count 405 is a
packed (or “vector”) value, each element of which corresponds to an element of a packed
operand to be shifted by the corresponding shift count element. In other embodiments, the
shift count applies to all elements of the first data operand. Furthermore, in some
embodiments, the shift count is specified by a field in the instruction, such as an immediate,
r/m, or other field. In other embodiments, the shift count is specified by a register indicated
by the instruction.

The shifted operand is then XOR’ed by a value 430 by logic 420 and the XOR’ed
result is stored in a destination storage location (e.g., register) 425. In one embodiment, the
XOR value 430 is a packed (or “vector”) value, each element of which corresponds to an
element of a packed operand to be XOR’ed by the corresponding XOR element. In other
embodiments, the XOR value 430 applies to all elements of the first data operand.
Furthermore, in some embodiments, the XOR value is specified by a field in the instruction,
such as an immediate, r/m, or other field. In other embodiments, the XOR value is specified
by a register indicated by the instruction.

Figure 5 illustrates the operation of a shift and XOR instruction according to one
embodiment of the present invention. At operation 501, if a shift and XOR instruction is
received, a first operand is shifted by a shift count at operation 505. In one embodiment it
is a right shift. However in other embodiments the shifter performs a left shift operation. In

some embodiments the operand is a scalar value, whereas in other embodiments it is a
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packed data value having a number of different possible data sizes and types (e.g., floating
point, integer). In one embodiment, the shift count 405 is a packed (or “vector”) value,
cach element of which corresponds to an element of a packed operand to be shifted by the
corresponding shift count element. In other embodiments, the shift count applies to all
clements of the first data operand. Furthermore, in some embodiments, the shift count is
specified by a field in the instruction, such as an immediate, r/m, or other field. In other
embodiments, the shift count is specified by a register indicated by the instruction.

At operation 510, the shifted value is XOR’ed by an XOR value. In one
embodiment, the XOR value 430 is a packed (or “vector”) value, each element of which
corresponds to an element of a packed operand to be XOR’ed by the corresponding XOR
element. In other embodiments, the XOR value 430 applies to all elements of the first data
operand. Furthermore, in some embodiments, the XOR value is specified by a field in the
instruction, such as an immediate, r/m, or other field. In other embodiments, the XOR value
is specified by a register indicated by the instruction.

At operation 515, the shifted and XOR’ed value is stored in a location. In one
embodiment, the location is a scalar register. In another embodiment, the location is a
packed data register. In another embodiment, the destination location is also used as a
source location, such as a packed data register specified by the instruction. In other
embodiments the destination location is a different location than the source locations storing
the initial operand or other values, such as the shift count or the XOR value.

In one embodiment, the shift and XOR instruction is useful for performing data de-
duplication in various computer applications. Data de-duplication attempts to find common
blocks of data between files in order to optimize disk storage and/or network bandwidth. In
one embodiment, a shift and XOR instruction is useful for improving performance in data
de-duplication operations using operations, such as finding chunk boundaries using a rolling
hash, hash digest (e.g., SHA1 or MD5) and compression of unique chunks (using fast
Lempel-Ziv schemes).

For example, one data de-duplication algorithm can be illustrated by the following
pseudo-code:

while (p < max) {
v =(v>>1) XOR scramble[(unsigned char)*p];

if v has at least z trailing zeros {
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ret=1;
break; }
pt+;
}

In the above algorithm, a scramble table is a 256-entry array of random 32-bit
constants and v is the rolling hash that has a hash-value of the past 32 bytes of the data.
When a chunk boundary is found, the algorithm returns with ret=1 and the position, p,
denotes the boundary of the chunk. The value z can be a constant such as 12-15 that results
in good chunk detection and can be application specific. In one embodiment, the shift and
XOR instruction can help the above algorithm operate at rate of about 2 cycles/byte. In
other embodiments, the shift and XOR instruction helps the algorithm to perform even
faster or slower, depending on the use.

At least one embodiment, in which the shift and XOR instruction is used can be
illustrated by the following pseudo-code:

while (p < max) {
v =(v<<1)XOR brefl scramble[(unsigned char)*p];
if v has at least z leading zeros {
ret=1;
break; }
Pt
}

In the above algorithm, each entry of the brefl scramble array contains the bit-
reflected version of the corresponding entry in the original scramble array. In one
embodiment, the above algorithm shifts v left instead of right and v contains a bit-reflected
version of the rolling-hash. In one embodiment, the check for a chunk boundary is
performed by checking a minimum number of leading zeros.

In other embodiments, the shift and XOR instruction may be used in other useful
computer operations and algorithms. Furthermore, embodiments help to improve the
performance of many programs that use shift and XOR operations extensively.

Thus, techniques for performing a shift and XOR instruction are disclosed. While
certain exemplary embodiments have been described and shown in the accompanying

drawings, it is to be understood that such embodiments are merely illustrative of and not
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restrictive on the broad invention, and that this invention not be limited to the specific
constructions and arrangements shown and described, since various other modifications
may occur to those ordinarily skilled in the art upon studying this disclosure. In an area of
technology such as this, where growth is fast and further advancements are not easily
foreseen, the disclosed embodiments may be readily modifiable in arrangement and detail
as facilitated by enabling technological advancements without departing from the principles

of the present disclosure or the scope of the accompanying claims.
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CLAIMS

What is claimed is:

1.

A o T o

10.
11.
12.
13.
14.
15.

16.
17.

18.
19.
20.

A processor comprising;:
logic to perform a shift and XOR instruction, wherein a first value is shifted by
a shift amount and the shifted value is XOR’ed with a second value.

The processor of claim 1, wherein the first value is to be shifted left.

The processor of claim 1, wherein the first value is to be shifted right.

The processor of claim 1, wherein the first value is shifted logically.

The processor of claim 1, wherein the first value is shifted arithmetically.

The processor of claim 1, comprising a shifter and an XOR circuit.

The processor of claim 1, wherein the shift and XOR instruction includes a first field

to store the second value.

The processor of claim 1, wherein the first value is a packed datatype.

A system comprising;:
a storage to store a first instruction to perform a shift and XOR operation;
a processor to execute the logic to perform a shift and XOR instruction,
wherein a first value is shifted by a shift amount and the shifted value is
XOR’ed with a second value.

The system of claim 9, wherein the first value is to be shifted left.

The system of claim 9, wherein the first value is to be shifted right.

The system of claim 9, wherein the first value is shifted logically.

The system of claim 9, wherein the first value is shifted arithmetically.

The system of claim 9, comprising a shifter and an XOR circuit.

The system of claim 9, wherein the shift and XOR instruction includes a first field to

store the second value.

The system of claim 9, wherein the first value is a packed datatype.

A method comprising:
performing a shift and XOR instruction, wherein a first value is shifted by a
shift amount and the shifted value is XOR’ed with a second value.

The method of claim 17, wherein the first value is to be shifted left.

The method of claim 17, wherein the first value is to be shifted right.

The method of claim 17, wherein the first value is shifted logically.
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21.
22.
23.

24.
25.

26.
27.
28.
29.
30.
31.

32.
33.

34.

35.

36.

The method of claim 17, wherein the first value is shifted arithmetically.

The method of claim 17, comprising a shifter and an XOR circuit.

The method of claim 17, wherein the shift and XOR instruction includes a first field to
store the second value.

The method of claim 17, wherein the first value is a packed datatype.

A machine-readable medium having stored thereon an instruction, which if executed
by a machine causes the machine to perform a method comprising:

shifting a first value is shifted by a shift amount; and
XORing the shifted value is XOR’ed with a second value.

The method of claim 25, wherein the first value is to be shifted left.

The method of claim 25, wherein the first value is to be shifted right.

The method of claim 25, wherein the first value is shifted logically.

The method of claim 25, wherein the first value is shifted arithmetically.

The method of claim 25, comprising a shifter and an XOR circuit.

The method of claim 25, wherein the shift and XOR instruction includes a first field to
store the second value.

The method of claim 25, wherein the first value is a packed datatype.

A method comprising:
performing an exclusive OR (XOR) operation between a first shifted value and a
second bit reflected value and storing the result in a first register;
checking for a minimum number of leading zeros in the result.

The method of claim 33, wherein if the minimum number leading zeros is in the result,
indicating that the result corresponds to a first chunk.

The method of claim 34, wherein the first shifted value is to be shifted left by one bit
position.

The method of claim 34, wherein the first shifted value is to be shifted right by one bit

position.
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