METHOD FOR MEASURING GLYCATED HEMOGLOBIN

Abstract: The present invention relates to a method for measuring glycated hemoglobin. The method of the present invention comprises: a hemolysis step of hemolyzing a blood sample with a hemolytic; a reaction step of reacting the hemolyzed blood sample with bead conjugates in which beads are conjugated with glycated hemoglobin binding materials; a first measuring step of measuring the amount of total hemoglobin in blood; an isolation step of isolating normal hemoglobin from the glycated hemoglobin conjugated with the bead conjugates; a second measuring step of measuring the amount of glycated hemoglobin in blood; and a calculation step of calculating the concentration of glycated hemoglobin in the blood sample based on the measured amount of total hemoglobin and glycated hemoglobin in the blood sample. The method for measuring the glycated hemoglobin of the present invention is able to simplify measuring steps by measuring the total amount of hemoglobin in blood from a blood sample that contains normal hemoglobin and glycated hemoglobin conjugated with bead conjugate in which beads and glycated hemoglobin is conjugated. In addition, the present invention enables easier measurement of the concentration of glycated hemoglobin in the blood sample since a separate dye for signal amplification is not needed.
본 발명은 당화혈색소 측정 방법에 관한 것으로, 본 발명에 따른 방법은 혈액 샘플을 용혈액으로 용혈시키는 용혈 단계; 비드와 당화혈색소 결합물질이 결합된 비드접합체를 상기 용혈된 혈액 샘플과 반응시키는 반응단계; 혈액 내의 총 혈색소의 양을 측정하는 제1 측정단계; 비드접합체와 결합된 당화혈색소로부터 정상 혈색소를 분리하는 분리단계; 혈액 내 당화혈색소의 양을 측정하는 제2 측정단계; 및 상기 측정된 혈액 샘플 내 총 혈색소의 양과 당화혈색소의 양을 기초로 하여 상기 혈액색소를 내 당화혈색소의 농도를 계산하는 계산단계를 포함하는 것을 특징으로 한다. 본 발명의 당화혈색소 측정방법에 의하면, 비트와 당화혈색소 결합물질이 결합된 비드접합체가 결합된 당화혈색소 및 정상 혈색소를 포함하는 혈액 샘플의 상태에서 혈액 내 총 혈색소의 양을 측정함으로써 측정 단계를 보다 단순화할 수 있으며, 또한 본 발명에 의하면 신호 증폭을 위한 별도의 연료를 필요로 하지 않으므로 보다 용이하게 혈액 샘플 내의 당화혈색소의 농도를 측정할 수 있다.
명세서
당화혈색소 측정 방법

기술분야
[1] 본 발명은 당뇨병 여부를 검사하는데 이용되는 당화혈색소 측정방법에 관한 것으로, 보다 상세하게는, 보다 단순화된 과정으로 당화혈색소를 측정하는 방법에 관한 것이다.

배경기술
[3] 최근 의학적 진단이나 약물을 통한 치료 영역에 있어서, 마취제 또는 유해한 화학물질에 대한 분석 분석의 농도 측정이 의학적 또는 환경적 분야에서 유용하게 사용되고 있다. 그 중 의학적 진단 및 치료 분야에 사용되는 생체 시료 농도의 측정은 다양한 질환으로부터 해방되고 살아가는 인간의 욕구 증가와 함께 관심이 계속 증가하고 있다. 특히 당뇨병과 관련하여 혈당을 측정할 수 있는 당화혈색소 검사는 한반의 측정으로 비교적 장기간의 혈당 평균치를 알 수 있으며 그에 대한 관심이 증가하고 있다.


[7] 혈도글로빈 A1c(HbA1c)는 당화혈색소라고도 불리며, 이는 혈색소(Hemoglobin) 중의 하나로 사람의 적혈구(RED Blood Cell)에 들어있다. 혈액 속의 혈당(포도당)이 상승하면 혈액 내 포도당의 일부가 혈색소에 결합하게 된다. 이렇게 포도당과 결합한 혈색소(Hemoglobin)를 당화혈색소(glycated Hemoglobin)라고 하며, 혈도글로빈 에이원씨(HbA1c)라고도 불린다. 당화혈색소의 수치는 지난 2-3개월 동안의 혈당 수치와 균형을 이루므로, 당화혈색소는 지난 2-3개월 동안의 혈당 수치로서 인정될 수 있다. 당화혈색소의 수치를 확인함으로써 당뇨의 관리와 항후 약물 조절 등의 지표로 이용될 수 있으므로 당화혈색소의 측정이 중요하다.

[11] 당화혈색소 수치를 정량적으로 측정하기 위해서는 사람마다 총 혈색소의 양이 다르기 때문에, 총 혈색소 양에 대한 당화혈색소 양의 비율로 나타내며, 이 때 총 혈색소의 양도 함께 측정하게 된다. 성인 및 영유아의 일반적인 총 혈색소 범위는 남성의 경우 13.0 ~17.0 g/dl, 여성의 경우 12.0~15.0 g/dl, 영유아의 경우 11.0~14.0 g/dl의 범위를 갖는다. 당화혈색소의 수치가 6.0%라면 3개월 동안 헌혈이 평균적으로 120 g/dl로 유지되었다고 표현할 수 있다. 미국당뇨협회(ADA)에서는 7.0% 이하로 당화혈색소의 수치를 유지하여야 한다고 하며, 정상범위는 4.0~6.5%이다.

[12]

[13] 한편, 미국등록특허 US5,242842 및 미국등록특허 6,399,293 및 6,300,142의 경우 염료 등의 신호 발생 물질이 추가로 요구되어 측정 단계가 복잡화되며, JP3340129에서는 회석하는 단계가 추가로 요구되는 등 역시 추가의 단계들이 수행되어야 한다. 즉 이러한 작업은 측정자에게 여러 단계의 직접적인 간섭을 요구하므로 측정자는 번거로움을 느낄 수 있다. 또한 측정자의 간섭은 측정 과정을 복잡하게 할 수 있고 자연스러 측정시간이 지체되는 문제점이 있다.

[14]


[16]

발명의 상세한 설명
기술품 예계
[17] 이에 본 발명의 한 측면은 총해 보다 단순화된 과정을 통해 용이하게 당화혈색소의 농도를 측정할 수 있는 방법을 제공하는 것이다.

[18]

기술적 해결방법
[19] 본 발명의 일견지에 의하면, 혈액 샘플을 용혈액으로 용혈시키는 용혈 단계; 비드와 당화혈색소 결합물질이 결합된 비드접합체를 상기 용혈된 혈액 샘플과 반응시키는 반응단계; 혈액 내의 총 혈색소의 양을 측정하는 제 1 측정 단계; 비드 접합체와 결합된 당화혈색소로부터 정상 혈색소를 분리하는 분리 단계; 혈액 내 당화혈색소의 양을 측정하는 제 2 측정 단계; 및 상기 측정된 혈액 샘플 내 총 혈색소의 양과 당화혈색소의 양을 기초로 하여 상기 혈액 샘플 내 당화혈색소의 농도를 계산하는 계산 단계를 포함하는 당화혈색소 측정방법이 제공된다.

[20]


[22]
상기 용액은 트리스(tris), 헤펜스(HEPES), 테스(TES) 및 페페스(PIpes)로 이루어진 그룹으로부터 선택되는 것이 바람직하다.

상기 비드는 아가로스, 셀룰로스, 세파로스, 폴리스테렌, 폴리메틸 메타크릴레이트, 폴리비닐폴루엔, 라텍스 비드 및 유리 비드 중 적어도 하나인 것이 바람직하다.

상기 당화혈색소 결합물질은 보로니산(boronic acid), 콘카나발린 A(concanavalin A) 및 항체(antibody) 중 적어도 하나인 것이 바람직하다.

상기 제 1 측정 단계 및 제 2 측정 단계는 광 센서를 통한 광반사 측정 방식으로 측정하는 것이 바람직하다.

상기 분리단계는 세척액을 흘리주어 수행되는 것이 바람직하다.

상기 세척액은 pH 7～8.5 사이에서 작용하는 트리스(tris), 헤펜스(HEPES), 테스(TES), 페페스(PIpes) 등의 그룹으로부터 선택되는 것이 바람직하다.

상기 분리 단계는 정상 혈색소를 흡수 패드를 이용하여 흡수하여 수행되는 것이 바람직하다.

상기 흡수 패드는 다공성 패드인 것이 바람직하다.

상기 다공성 패드에 포함된 포어(pore)의 크기는 혈색소보다 크고 비트 보다 작은 것이 바람직하다.

유리한 효과

본 발명의 당화혈색소 측정방법에 의하면, 비드와 당화혈색소 결합물질이 결합된 비드집합체가 결합된 상태의 당화혈색소 및 정상 혈색소를 포함하는 전체 혈액 시료로부터 종 혈색소의 양을 측정함으로써 측정 단계를 보다 단순화하고, 신호 축복을 위한 별도의 염료를 필요로 하지 않으므로 보다 용이하게 혈액 샘플 내의 당화혈색소의 농도를 측정할 수 있다.

도면의 간단한 설명

도 1은 보로닌산을 당화혈색소 결합물질로 이용하여 제조된 비드집합체와 당화혈색소가 반응하는 화학구조를 나타낸 것이다.
도 2는 본 발명의 반응 단계(a), 상기 반응 단계를 거친 후 샘플 내에 정상 혈색소와 비드 접합체가 결합된 당화혈색소가 함께 존재하는 상태(b) 및 정상 혈색소가 제거된 상태(c)를 도식화하여 나타낸 것이다.

도 3은 혈색소의 농도를 측정하기 위한 예시적인 방법을 도시한 것이다.

도 4는 정상 혈색소가 펑수 페드로 흩어지고 측정 창에는 비드접합체와 결합된 당화혈색소가 분리하여 존재하는 상태를 도식적으로 나타낸 것이다.

도 5는 비드의 존재가 혈색소 농도의 측정 값에 영향이 없음을 나타내는 그래프이다.

발명의실시를위한최선의형태

본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위한 것으로서, 혈액 샘플에 존재하는 당화혈색소를 보다 용이하게 측정할 수 있는 방법을 제공하는 것이다.

보다 상세하게, 본 발명은 길이 10체의 단계에 따르면, 혈액 샘플을 용액액으로 용혈시키는 용혈 단계; 혈액 샘플과 당화혈색소 결합물질이 결합된 비드접합체를 상기 용혈된 혈액 샘플과 반응시키는 반응단계; 혈액 내의 총 혈색소의 양을 측정하는 제 1 측정 단계; 비드 접합체와 결합된 당화혈색소로부터 정상 혈색소를 분리하는 분리 단계; 혈액 내 당화혈색소의 양을 측정하는 제 2 측정 단계; 및 총 혈색소의 양을 측정한 혈액 샘플 내 총 혈색소의 양과 당화혈색소의 양을 기초로 하여 총 혈색소 및 당화혈색소의 농도를 계산하는 계산 단계를 포함하는 당화혈색소 측정방법을 제공한다.

이하에서 본 발명을 상세히 설명한다.

혈액 샘플 내의 당화혈색소 농도는 혈액 내 총 혈색소의 양에 상대적으로 측정되므로, 당화혈색소의 농도를 측정하기 위해서는 먼저 혈액 샘플을 용혈시켜 혈액에 포함된 정상 혈색소 및 당화혈색소를 노출시키기 위한 용혈단계를 수행한다.

이 때 사용될 수 있는 용혈액은 용혈이 가능한 샌투알의 비피농도를 지니고 pH 7~8.5사이에서 작용하는 용혈액을 사용하며, 트리스(tris), 헤플리스(HEPES), 테스(TES) 및 페페스(PIPES)로 이루어진 그룹으로부터 선택되는 것이 바람직하다. 보다 바람직하게는 개별활성제가 들어있는 완충용액으로서,
에킨데 20 mM 헤펠스 완충용액(N-2-Hydroxyethylpiperazine-N’-2-ethanesulfonic Acid HEPES; pH 8.1)을 사용하는 것이 바람직하다. 다만, 용혈액은 이에 제한되지 않고 당해 기술분야에 알려진 어떠한 적절한 용혈액을 사용할 수 있다. 용혈된 혈액 샘플에는 혈색소(Hemoglobin) 및 당화혈색소(glycated Hemoglobin)가 함께 존재한다.

그 다음, 상기 용혈된 혈액 샘플에 비드와 당화혈색소 결합물질이 결합된 비드접합체를 반응시켜서, 당화혈색소가 비드에 의해 표지되도록 하는 반응 단계를 수행한다. 본 발명에서 사용되는 "비드접합체"의 용어는 당화혈색소에 결합할 수 있는 결합물질에 비드가 결합한 것을 의미하며, 상기 비드접합체는 당화혈색소 결합물질에 의해 당화혈색소에 부착된다. 이 때 본 발명에서 사용되는 "당화혈색소 결합물질"의 용어는 당화혈색소에 특이적으로 결합할 수 있는 물질을 의미하며, 예를 들어 보론산(boronic acid), 콘카나발린 A(concanavalin A) 및 항체(antibody) 중 적어도 하나일 수 있으며, 바람직하게는 보론산을 사용할 수 있다.

도 1에는 보론산을 당화혈색소 결합물질로 이용한 비드접합체와 당화혈색소가 반응하는 화학구조가 예시적으로 설명되어 있다. 도 1에 나타난 마와 같이, 보론산의 OH 작용기와 당화혈색소 말단에 결합된 당의 시스-디올(sis-diol)이 반응하여 오각형의 둥 구조를 이루며, 이러한 특성을 이용하여 보론산은 당화혈색소 중에서 당화혈색소에만 특이적으로 결합된다.

따라서, 상기 당화혈색소 결합물질에 표지체를 부착시키는 경우 당화혈색소만을 선택적으로 표지할 수 있으며, 선행기술로는 염료 또는 자기를 띠는 물질 등을 부착시켜서 당화혈색소를 구분한다. 그러나, 본 발명에서는 당화혈색소의 분리를 위해 일정한 크기를 갖는 비드를 이용한다.

본 발명에서 사용될 수 있는 비드(bead)는 야가로스(agarose), 셀룰로즈(cellulose) 또는 세파로스(sepharose)와 같은 고분자 다당류 지지체, 폴리스티렌(polystyrene), 폴리에틸 메타크릴레이트(poly(methy1methacrylate)), 폴리비닐투루인데(polyvinyltoluene)과 같은 라텍스(latex) 비드 및 유리(glass) 비드 중 적어도 하나일 수 있으며, 바람직하게는 세파로스 비드를 사용한다.

본 발명에 사용되는 상기 비드는 염료로서 작용하지 않으며, 당화혈색소를 이후 단계에서 비드의 부피에 의해 정상 혈색소로부터 분리할 수 있도록 한다. 이때 비드의 입경 크기는 반응 후 당화혈색소와 결합한 당화혈색소 결합물질-비드의 침전 시간과 당화혈색소와 반응하는 정도를 고려하여 선택하는 것이 바람직하다.
한편, 상기 용혈 단계 및 반응 단계는 별도의 단계로 수행될 수 있으나, 바란지하게는 상기 용혈액 및 비드접합체를 혈액 샘플에 동시에 두어함으로써 단일의 단계로 수행될 수 있다.

이때 용혈 단계 및 반응단계에서 혈액샘플과 용혈액 및 비드접합체의 반응을 촉진하도록 반응 용기로 사용되는 카트리지를 혼들어 주는 것이 바람직하다. 이는 혈액샘플이 용혈액에 의해 용혈되어 빠져 나오고 동시에 당화혈색소가 비드접합체와 특이적으로 반응하도록 유도하기 위함이다. 여기서 용혈된 혈액샘플이 비드접합체와 충분히 반응할 수 있도록 일정 시간, 예를 들면 3분의 시간을 소요할 수 있다.

도 2에 도시된 바와 같이, 용혈 단계 및 반응 단계를 거친 샘플 내에는 정상 혈색소와 비드 접합체가 결합된 당화혈색소가 함께 존재하며, 이 때 상기 혈액 내의 총 혈색소의 양을 측정한다. 즉, 도 2(a)에서는 비드접합체가 당화혈색소와 결합하는 과정을 도시하며, 도 2(b)는 상기 표지된 당화혈색소 및 정상 혈색소가 모두 포함된 총 혈색소의 상태를 도시한다. 한편, 도 2(c)는 혈액 샘플로부터 정상 혈색소가 제거되고 당화혈색소만 남은 상태를 나타낸다.

즉, 비드접합체가 결합된 당화혈색소 및 정상 혈색소가 함께 존재하는 상태에서 혈액 내 총 혈색소의 농도를 측정하는 제 1 측정 단계가 수행되며, 이는 광반사 특성을 이용한 측정방식에 따라 당화혈색소의 양을 측정할 수 있다. 예를 들면 혈액샘플의 당화혈색소의 양을 측정하고자 할 경우 특정 주파수의 광신호를 특이적으로 흡수하는 혈색소의 특성을 이용한다. 이 때 당화혈색소 측정장치는 포토다이오드와 같은 방광소자와 수광소자를 이용하여 당화혈색소의 양을 측정하는 것이 바람직하다. 도 3은 예시적인 측정 과정을 도시하며, 도 3에 나타난 바와 같이 혈색소의 농도를 측정하기 위해 상기 반응은 투명한 측정창을 포함하는 카트리지 내에서 수행되는 것이 바람직하다.

부연하면 방광소자는 특징 파장을 갖는 광신호를 방광한다. 예를 들면 당화혈색소의 양을 측정하고자 할 경우 혈액샘플의 혈색소는 특이적으로 흡광을 나타내는 약 430nm 파장을 갖는 광신호를 방광할 수 있다. 이때 수광소자는 방광소자로부터 방사되어 카트리지를 통과한 광신호를 수신한다. 즉, 방광소자로 방광 제어 신호를 출력하고 수광소자로부터 입력되는 광신호를 A/D변환기를 통해 전기 신호로 변환하여 카트리지에 담겨있는 혈색소의 양을 측정할 수 있다.

공지 기술에서는 당화혈색소에 붙은 비드가 당화혈색소 양의 측정 값에 영향을
주는 것을 방지하기 위하여, 비드의 두께에 총혈액의 흐려도 양을 절충하고 당화혈색소의 양을 측정하기 위하여 비드검합체에 결합한 당화혈색소를 해리시키는 단계를 거쳐야 했으나, 본 발명자들은 실시에 1에서 확인할 수 있는 바와 같이, 당화혈색소에 비드검합체가 결합한 상태에서도 총혈색소 양의 측정 값에 영향이 없는 것을 발견하여, 불필요한 단계를 생략할 수 있도록 하였다.

[84] 그 다음 단계로, 당화혈색소의 능도를 구하기 위해, 비드검합체와 결합된 당화혈색소로부터 정상 혈색소를 분리하는 분리 단계를 수행하여야 하며, 바람직하게 상기 분리 단계는 흡수 펨드를 이용하여 정상 혈색소만을 흡수시켜서 수행될 수 있다.

[85] 본 발명에 사용될 수 있는 상기 흡수 펨드는 다공성 펨드인 것이 바람직하며, 이 때 다공성 펨드에 포함된 구멍의 크기는 혈색소보다 크지만 비드보다는 작은 크기를 가지는 것이어야 한다. 보다 상세하게 풀리에스터 및 풀리우레탄 등로부터 선택된 다공성 펨드가 사용될 수 있다. 그 결과, 도 4에 나타난 바와 같이 정상 혈색소는 상기 흡수 펨드로 흡수되고, 비드와 결합된 당화혈색소가 따로 분리되며, 측정 창에는 비드검합체와 결합된 당화혈색소만을 분리하여 존재하도록 한다.

[86] 상기 흡수 펨드는 측정이 끝난 혈액샘플 혼합물을 흡수하여 혈액샘플 혼합물의 이동을 차단한다. 예를 들면 이때 흡수 펨드는 도 4에 도시된 바와 같이 측정영역의 하부에 위치하는 것이 바람직하다. 상기 분리단계는 흡수 펨드 형식일 수 있으나, 다만 이에 한정되는 것은 아니다.

[87] 상기 분리단계는 보다 명확한 분리 및 분리 시간의 단축을 위해 세척액을 흡수하여 수행되는 것이 바람직하다. 본 발명에서 사용될 수 있는 세척액은 트리스(tris), 헤페스(HEPES), 테스(TES) 및 펀에스(PIPEC)등의 그룹으로부터 선택되는 것이 바람직하다. 상기 세척액이 혈액샘플 혼합물을 세척함에 따라 혈액샘플 내에 비투명으로 존재하는 일반 혈색소(Ao)가 제거된다.

[88] 부연하면, 혈액샘플의 적혈구 내에 존재하는 혈모글로빈(Hb)은 대부분 당화된 일반 혈모글로빈(Ao)이며, 이때 일반 혈모글로빈 중 4-14%만이 글루코스(glucose)와 반응하여 당화된 혈모글로빈(HbA1c)으로 존재한다. 따라서 혈액 속의 당화된 혈모글로빈을 측정하기 위해서는 일반 혈모글로빈을 제거해야만 하며, 이를 위해 일반 혈모글로빈을 세척할 수 있는 세척액을 이용하여 당화된 혈모글로빈을 보다 용이하게 분리하여 측정할 수 있게 하는 것이 바람직하다.

[89]
그 결과 측정중에 당화혈색소만이 낮는 결과가 되며, 이 때 상기 분리된 당화혈색소의 농도를 측정하는 제2 측정단계를 수행한다. 제2 측정단계는 상술한 제1 측정 단계와 동일한 방법에 의해 수행될 수 있다. 즉, 제2 측정 단계 역시 광 센서를 통한 광반사 측정 방식으로 측정하는 것이 바람직하다.

이 후 총 혈색소의 양을 당화혈색소의 양으로 나누어 혈액 샘플 내의 당화혈색소의 상대적인 양을 측정한다. 이 때 당화혈색소 비율은 다음 식에 의해 계산된다.

\[ \text{당화혈색소의 비율(\%)} = \frac{\text{당화혈색소}}{\text{총혈색소}} \times 100 \]

상술한 바와 같이 혈색소 동도의 용이한 측정을 위해 상기 반응은 측정영역이 포함된 카드리지 내에서 수행되는 것이 바람직하며, 상기 "측정영역"은 카드리지에서 혈액 샘플 내의 혈색소 및 당화혈색소의 양을 측정하는 영역으로, 예를 들어 도 4에서 혼수 페드 상부의 영역을 지정할 수 있다. 이때 측정영역은 광반사 특성 측정방식에 따라 혈색소의 양을 측정할 수 있다. 예를 들면 혈색소가 특정 주파수의 광선호를 특이적으로 흡수하는 특성을 이용한다. 이러한 혈색소의 특성에 의해 빛의 농도나 색조의 비교가 가능하여 혈색소의 농도를 측정할 수 있다. 나아가 측정영역은 광반사 특성 측정을 위해 외부 광센서를 통해 빛이 반사되는 광원으로부터도 포함할 수 있다.

본 발명을 하기의 시시에 대해 보다 상세하게 설명하나, 이는 예시로 한 것으로서 본 발명이 이에 제한되는 것은 아니다.

발명의 실시를 위한 형태

실시예 1: 비드와 당화혈색소 결합물질이 결합된 비드접합체의 제조

(1) 세척단계:

* CM세파로스 비드를 총 부피가 1L가 되도록 증류수로 세 번 세척한 후, 100mM MES(2-(N-morpholino)ethanesulfonic acid) PH 4.7로 두 번 세척한다. 이 때 세척 방식은 비드를 첨가 후 침전시키고 상층액을 버리는 방식에 의한다. 세척 단계를 통해 비드에 남아있는 악탈을 성분을 없애고 1-에틸-3-[3-디메틸아미노프로필] 카르보디아미드 하이드로כל로라이드(EDC or EDAC)의 수용이 좋은 최적 화합 pH로 변경한다.

(2) 접합단계:

상기 EDC(1-에틸-3-[3-디메틸아미노프로필] 카르보디아미드
하이드로로다이드(EDC or EDAC)는 카르복실기와 1차 아민을 연결하는
제로-길이(zero-length) 교차결합제(crosslinking agent)로써 상기 시약을 이용하여
카르복실기가 연결되어 있는 CM 세포로스와 3-아미노페닐 보론산의 아민기를
접합(conjugation)하여 APBA 비드를 합성할 수 있다.

EDC를 46g, APBA를 4.65g 넣어 100mM MES(Ph 4.7)에 녹인 뒤 차례로 비드
용액에 첨가하고, 4℃에서 두 시간 반응시킨다. APBA는 벗에 민감하므로 여두운
곳에서 반응시켜야 하며, EDC는 습기를 잘 흡수하므로 두개 병에 따로 두경을
닫아서 보관에 유의하여야 한다.

교차결합제(cross linker)인 EDC와 합성 물질인 보론산을 첨가하여 합성하는
단계는 합성 부산물 생성 등 효율을 증가하기 위해 자연에서 합성한다.

(3) 쿨칭(quenching) 및 블로킹(blocking) 단계:

1M 소듐 아세테이트(in D.W), 100mM 아세트산(in D.W), 50mM NaOH/1M NaCl
(in D.W)용액을 각각 500ml씩 첨가하고, 1시간동안 상온에서 반응시킨다. 이 때
반응물은 벗에 민감하므로 여두운 곳에서 반응시킨다. 합성지 끝나고 남은
EDC를 소듐 아세테이트로 쿨칭하고 아세트산과 NaOH, NaCl 로 세척 및
블로킹한다.

(4) 세척 단계

마지막으로 증류수로 3회 세척한 후, 20mM HEPES(Ph 8.1) 비퍼로 2회
세척하고, 최종 pH는 7.4로 맞춘다.

도 1에는 아미노페닐보론산(aminophenyl-boronic acid, APBA)을 당화협소소
결합물질로 이용한 비드접합제와 당화협소소가 반응하는 화학구조가
에이치로 설명되어 있다. 도 1에 나타난 바와 같이, 보론산의 OH 작용기와
당화협소소 발단에 결합된 당의 시스-디올(sis-diol)이 반응하여 오가형의 링
구조를 이루며, 이러한 특성을 이용하여 보론산은 증 혈소소 중에서
당화협소소에만 특이적으로 결합된다.

실시에 2: 당화협소소 측정 값에 대한 비드의 영향

비드 크기에 따른 굴절이나 비드에 특이적으로 결합한 당화협소소의 양과 상관
없이 총 혈액글로빈의 양에 따라 반사광이 일정하게 측정되는지 확인하기
위하여 하기의 실험을 실시하였다.

당뇨환자와 정상인의 혈액을 포함한 임의의 10개 샘플을 완전분리한 후 혈장과
침전된 적혈구의 비율을 조절하는 방법으로 다음의 샘플을 준비하였다.
해모글로빈 수치의 측정은 Hb 201(HemoCue, Sweden)을 사용하였다.

<table>
<thead>
<tr>
<th>샘플 번호</th>
<th>당화혈색소 수치%</th>
<th>총 해모글로빈 g/dl</th>
<th>k/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.1</td>
<td>2.8</td>
<td>0.152</td>
</tr>
<tr>
<td>2</td>
<td>7.6</td>
<td>6.0</td>
<td>0.339</td>
</tr>
<tr>
<td>3</td>
<td>5.2</td>
<td>11.1</td>
<td>0.720</td>
</tr>
<tr>
<td>4</td>
<td>5.3</td>
<td>7.4</td>
<td>0.490</td>
</tr>
<tr>
<td>5</td>
<td>8.6</td>
<td>4.5</td>
<td>0.255</td>
</tr>
<tr>
<td>6</td>
<td>9.6</td>
<td>20.0</td>
<td>1.219</td>
</tr>
<tr>
<td>7</td>
<td>6.7</td>
<td>12.9</td>
<td>0.837</td>
</tr>
<tr>
<td>8</td>
<td>5.4</td>
<td>18.5</td>
<td>1.157</td>
</tr>
<tr>
<td>9</td>
<td>10.1</td>
<td>9.3</td>
<td>0.563</td>
</tr>
<tr>
<td>10</td>
<td>4.9</td>
<td>17.0</td>
<td>1.043</td>
</tr>
</tbody>
</table>

그 결과 그래프를 도 5에 나타내었다. 상기 그래프에서 x축은 해모글로빈 수치이며, y축은 k/s 값이다. k/s 값은 반사광의 세기를 나타낸다.

따라서, x축과 y축이 도 5에서 확인할 수 있는 바와 같이 상관성이 있다는 것은, 해모글로빈의 수치가 변함에 따라 비드의 반사광이 또한 그에 비례하여 일정하게 변하는 것을 확인할 수 있는 것이다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특히 청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
청구범위

[1] 혈액 샘플을 용혈액으로 용혈시키는 용혈 단계;
비드와 당화혈색소 결합물질이 결합된 비드접합체를 상기 용혈된 혈액 샘플과 반응시키는 반응단계;
혈액 내 총 혈색소의 양을 측정하는 제 1 측정 단계;
비드 접합체와 결합된 당화혈색소로부터 정상 혈색소를 분리하는 분리 단계;
혈액 내 당화혈색소의 양을 측정하는 제 2 측정 단계; 및
상기 측정된 혈액 샘플 내 총 혈색소의 양과 당화혈색소의 양을 기초로 하여 상기 혈액샘플 내 당화혈색소의 농도를 계산하는 계산 단계를 포함하는 당화혈색소 측정방법.


[3] 제 1항에 있어서, 상기 용혈액은 트리스(tris), 헤펙스(HEPES), 테스(TES) 및 피페스(PIPES)로 이루어진 그룹으로부터 선택되는 당화혈색소 측정방법.

[4] 제 1항에 있어서, 상기 비드는 아가로스, 셀룰로스, 세파로즈, 폴리스테렌, 폴리메틸메타كر릴레이트, 폴리비닐폴리우레, 타데스 비드 및 유리 비드 중 적어도 하나인 당화혈색소 측정방법.

[5] 제 1항에 있어서, 상기 당화혈색소 결합물질은 보로산(boronic acid), 콘카나바린 A(concanavalin A) 및 항체(antibody) 중 적어도 하나인 당화혈색소 측정방법.


[8] 제 7항에 있어서, 상기 세척액은 트리스(tris), 헤펙스(HEPES), 테스(TES) 및 피페스(PIPES)로 이루어진 그룹으로부터 선택되는 당화혈색소 측정방법.


[Fig. 1]

m-アミノベンゾールボロン

[Fig. 2]

(a) : Bead-結合物質
(b) : HbA1C
(c) : Ao
A. CLASSIFICATION OF SUBJECT MATTER

G01N 33/49(2006.01)i, G01N 33/52(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G01N 33/49; G01N 33/36; G01N 33/50; G01N 33/53; G01N 33/543

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic database consulted during the international search (name of database and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keyword: glycated hemoglobin

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KR 10-2007-0014292 A (I-SENS, INC.) 01 February 2007 Abstract, claims 1-14, and figure 1</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2006-0009665 A (INFOFIA CO., LTD.) 01 February 2006 Abstract and claims 1-7</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2004-0018993 A (BIO FOCUS LTD.) 04 March 2004 Abstract and claims 1-5</td>
<td>1-11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
  “A” document defining the general state of the art which is not considered to be of particular relevance
  “E” earlier application or patent but published on or after the international filing date
  “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  “O” document referring to an oral disclosure, use, exhibition or other means
  “P” document published prior to the international filing date but later than the priority date claimed
  “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
  “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
  “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
  “A” document member of the same patent family

Date of the actual completion of the international search
16 MARCH 2010 (16.03.2010)

Date of mailing of the international search report
17 MARCH 2010 (17.03.2010)

Name and mailing address of the ISA/
Korean Intellectual Property Office
Government Complex-Daejeon, 139 Sooam-ro, Daejeon 302-701, Republic of Korea
Faksiimile No. 82-42-472-7140

Authorized officer
Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2007-0014292 A</td>
<td>01.02.2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>KR 10-2006-0009665 A</td>
<td>01.02.2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>KR 10-2004-0018893 A</td>
<td>04.03.2004</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분야(IPC))

G01N 33/49(2006.01)i, G01N 33/52(2006.01)i

B. 조사된 분야

조사된 최소문헌(국제특허분류를 기재)
G01N 33/49; G01N 33/36; G01N 33/50; G01N 33/53; G01N 33/543

조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국특허심판공보 및 한국공개특허심판공보: 조사된 최소문헌기재의 IPC 및 일본특허심판공보 및 일본공개특허심판공보: 조사된 최소문헌기재의 IPC

국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
eKOMPASS(특허청 내부 검색시스템) & 기워드: 당화혈색소

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KR 10—2007—0041272 A (주식회사 야이센스) 2007.02.01 요약 및 정구항 1-14, 및 도면1</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>KR 10—2006—0099665 A (주식회사 인프로그아) 2006.02.01 요약 및 정구항 1-7</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>KR 10—2004—0018883 A (주식회사 바이오폴리스) 2004.03.04 요약 및 정구항 1-5</td>
<td>1-11</td>
</tr>
</tbody>
</table>

* 인용된 문헌의 특별 카테고리:
  "A" 특별히 관리되지 않는 것으로 보이는 일반적인 기술수준을 정의한 문헌
  "E" 국제출원일보다 빠른 출원일 또는 우선일을 가져나 국제출원일 이후에 공개된 출원 또는 특허 문헌
  "L" 우선권 주장에 의문을 제기하는 문헌 또는 다른 인용문헌의 공개일 또는 다른 특허문헌의 이슈(이슈의 명시)를 밝히기 위하여 인용한 문헌
  "O" 구두 재시, 사용, 전시 또는 기타 수단을 연명하고 있는 문헌
  "P" 우선권 이후에 공개되었으나 국제출원일 이전에 공개된 문헌

"T" 국제출원일 또는 우선일 후에 공개된 문헌으로, 출원과 상관없이 발명의 기초가 되는 원리나 이론을 이해하기 위해 인용된 문헌
"X" 특별한 관련이 있는 문헌, 해당 문헌 하나만으로 청구된 발명의 신규성 또는 전보성이 없는 것으로 본다.
"Y" 특별한 관련이 있는 문헌, 해당 문헌이 하나 이상의 다른 문헌과 조합하는 경우로 그 조합이 탐구자에게 자명한 경우 청구된 발명은 전보성이 없는 것으로 본다.
"&" 동일한 대응특허문헌에 속하는 문헌

국제조사의 실적 안내
2010년 03월 16일 (16.03.2010)

국제조사보고서 발송일
2010년 03월 17일 (17.03.2010)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 선사로 139, 정부대전청사
팩스번호 82-42-472-7140

참고 자료
파일 전체/ (PCT/ISA)210 (두 번째 용지) (2008년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2007-0014292 A</td>
<td>2007.02.01</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>KR 10-2006-0009665 A</td>
<td>2006.02.01</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>KR 10-2004-0018893 A</td>
<td>2004.03.04</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>

사적 PCT/ISA/210 (대응특허 추가용지) (2008년 7월)