

US 20030125538A1

(19) United States

Patent Application Publication (10) Pub. No.: US 2003/0125538 A1 Amara et al. (43) Pub. Date: Jul. 3, 2003

(54) AMINO ACID TRANSPORTERS AND USES

(76) Inventors: Susan G. Amara, Portland, OR (US); Jeffrey L. Arriza, Portland, OR (US)

Correspondence Address:
MCDONNELL BOEHNEN HULBERT &
BERGHOFF

300 SOUTH WACKER DRIVE SUITE 3200 CHICAGO, IL 60606 (US)

(21) Appl. No.: 10/261,399

(22) Filed: Oct. 1, 2002

Related U.S. Application Data

(62) Division of application No. 09/042,709, filed on Mar. 17, 1998, now Pat. No. 6,458,571, which is a division of application No. 08/546,666, filed on Oct. 23, 1995, now Pat. No. 5,776,774, which is a division of application No. 08/140,729, filed on Oct. 20, 1993, now Pat. No. 5,658,782.

Publication Classification

(57) ABSTRACT

The present invention relates to novel mammalian amino acid transporter proteins and the genes that encode such proteins. The invention is directed toward the isolation, characterization and pharmacological use of the human amino acid transporter proteins EAAT1, EAAT2, EAAT3 and ASCT1. The invention specifically provides isolated complementary DNA copies of mRNA corresponding to each of these transporter genes. Also provided are recombinant expression constructs capable of expressing each of the amino acid transporter genes of the invention in cultures of transformed prokaryotic and eukaryotic cells, as well as such cultures of transformed cells that synthesize the human amino acid transporter proteins encoded therein. The invention also provides methods for screening in vitro compounds having transport-modulating properties using preparations of transporter proteins from such cultures of cells transformed with recombinant expression constructs.

. 54	102	150	198	246	294	342
AAC Asn	GCT Ala	CGG Arg 40	GCG Ala	GTC Val	ATG Met	TCG Ser
ACC	GGA Gly	CTG Leu	GGC G1 y 55	CAG Gln	CGC Arg	GCC Ala
GAG Glu	CCC	TTC Phe	GCG Ala	ACG Thr 70	CTG	GCC Ala
AAC Asn	666 61y	CGC	CTG	CGC Arg	ATG Met 85	66c 61y
AGC	GCC Ala 20	GCG Ala	GTG Val	AGC Ser	CGC Arg	TCG Ser 100
AAG Lys	GCG Ala	TGC Cys 35	666 Gly	CTG	CTC Leu	GTG Val
GAG Glu	CCT	CGT	TCC Ser 50	AGC Ser	CTG	CTG
ATG Met 1	666 61 y	CGG Arg	GTG Val	CTC Leu 65	ATG Met	AGC Ser
υ	GCG Ala	GCA Ala	ACC Thr	666 61y	GAG Glu 80	TGC Cys
GTAGCGCC	CAG Gln 15	CGC Arg	CTC	CGC Arg	GGC Gly	GTC Val 95
GTGT	GCT Ala	GGA G1y 30	CTG	TTG	CCC Pro	GTG Bval
2992	AGC Ser	GCG Ala	GTG Val 45	GCG Ala	TTC Phe	CTG
GGAGC	GAC Asp	GCG Ala	CTG	GCG Ala 60	GCC Ala	CCG Pro
C IC	CTT Leu	ACC Thr	GCG Ala	66C 61y	CTG Leu 75	CTG Leu
CACCTCTAGC TCGGAGCGGC	$\begin{array}{c} \mathtt{TAC} \\ \mathtt{Tyr} \\ 10 \end{array}$	GGG G1y	CAA Gln	CTG Leu	TAC Tyr	ATC Ile 90
CACC	GGC Gly	CCG Pro 25	CGC	GGC G1γ	ACC Thr	ATC Ile

FIG. 1B

390	438	486	534	582	630	678
TAC Tyr 120	GCG Ala	GAC Asp	GTG Val	GTG Val	CAG Gln 200	ACT Thr
GCC Ala	TTG Leu 135	AGC Ser	ACG	CTT Leu	ACC Thr	GGC Gly 215
GTC Val	GCC Ala	TCC Ser 150	GAG Glu	AAT Asn	GTG Val	ATA Ile
CGT Arg	GTG Val	CAG Gln	AAA Lys 165	TCC	GTC Val	CCC Pro
ATC	GCC Ala	CTT Leu	CCC Pro	CCC Pro 180	AAA Lys	ATC Ile
GGC Gly 115	CTC Leu	ACC Thr	GTC Val	TTT Phe	TAT Tyr 195	AAG Lys
66C 61y	GCG Ala 130	CAG Gln	CCT Pro	CTG	GAT Asp	GAA Glu 210
CTG	TCG	GCG Ala 145	CCT	AAC Asn	ACC	CAT His
CGT Arg	GCC Ala	GGT Gly	CCT Pro 160	AGA Arg	GCA Ala	ACC Thr
GGG G1γ	AGT Ser	TCC Ser	GGG G1γ	GCC Ala 175	TAT Tyr	GTA Val
CTC Leu 110	CTG	GGA Gly	TCG	CTG	ACG Thr 190	AAT Asn
TGC Cys	ACA Thr 125	CCA	GAC Asp	GAC Asp	CGT Arg	GGA G1y 205
AGC Ser	ACC Thr	AAG Lys 140	GAG Glu	CIC	TTC	TCT Ser
GCC Ala	CTC	ATC Ile	CTG Leu 155	TTC	GCT Ala	AGC Ser
GAT	66C 61y	ATC Ile	666 61y	TCT Ser 170	GCA Ala	AGC Ser
CIC Leu 105	TTT Phe	TTC Phe	CTG	GAC	GTT Val 185	AAC Asn

	726	774	822	870	918	996	1014
	GTG Val	ATC Ile	TGG Trp	AAG Lys 280	AAA Lys	GTT Val	TTC Phe
	CTG Leu	CTC	Ger	AGC Ser	GGG G1y 295	ATT Ile	AGA Arg
	GCT Ala 230	GAC Asp	GTG Val	GGA Gly	CTG	GGA Gly 310	
	TTT Phe	GAA G1u 245	CTG Leu	GTT Val	AGC Ser	GGA Gly	сса Рго 325
	CTG Leu	GGA Gly	GTG Val 260	CCT	ACC Thr	CAT His	AAC Asn
	GTC Val	GAA Glu	ATG Met	TTC Phe 275	GTG Val	ATT Ile	aaa Lys
Ö	TTG Leu	TCC Ser	ACG	ATG Met	CTG Leu 290	GTT Val	cga Arg
FIG. 1C	GGA G1y 225	66C 61 y	GCG Ala	ATC Ile	GTG Val	CAT His 305	ACA
FI	TTA	CTA Leu 240	GAG Glu	66c 61y	ATC Ile	GGC Gly	rrc Phe 320
	ATT Ile	AAA Lys	AAC Asn 255	GTG	ATC Ile	TTG	GTT Val
	AAC Asn	AAG Lys	CTC	CCT Pro 270	GAC Asp	ATA Ile	TTT Phe
	ATG Met	TTA	TCC Ser	GTA Val	AAA Lys 285	TCT Ser	TAT Tyr
	GGG Gly 220	GCC Ala	AAT Asn	TAC Tyr	ATG Met	GCA Ala 300	ATT Ile
	GAA Glu	GTG Val 235	TTC	TGG Trp	GAA Glu	TTC Phe	CTT Leu 315
	ATA Ile	CGA Gly	TTC Phe 250	ATG Met	GTG Val	ATC	CCA Pro

GAG Glu Leu CGT Arg ATT 11e 265 ATC I1e 11e 77r

Patent Application Publication Jul. 3, 2003 Sheet 3 of 42 US 2003/0125538 A1

Patent App	plication Pu	ıblication	Jul. 3,	2003 She	et 4 of 42	US 200	3/0125538
	1062	1110	1158	1206	1254	1302	1350
	TCC Ser	AAT Asn 360	ACC Thr	TTC Phe	ACC Thr	CCA Pro	CTG Leu 440
	TGC Cys	AAC Asn	GCC Ala 375	GTG Val	TTC	GTG Val	666 61y
	ACC	GAG Glu	666 G1y	CCG Ala 390	ATT Ile	GGC Gly	ATT Ile
	GCT Ala	GAA Glu	ATC Ile	GCC Ala	CAG Gln 405	GCA Ala	GCC Ala
	TTT Phe 340	ATT Ile	CCC	GTG Val	GGA Gly	GCA Ala 420	GAG Glu
	GCA Ala	TGC Cys 355	CTC	TGT Cys	GCA Ala	GGA Gly	CTG Leu 435
Q	ACA Thr	AAG Lys	ATT Ile 370	CAG Gln	AAC Asn	GTT Val	ATC Ile
FIG. 1D	GCG Ala	ATG Met	TTT Phe	TTC Phe 385	CIC	AGT Ser	ATT Ile
\overline{FI}	TTT Phe	ATG Met	AGG Arg	ATC	GAG Glu 400	TCC	GCC Ala
	CCA Pro 335	TCT Ser	AGC Ser	GCC Ala	ATA Ile	GCG Ala 415	ATT Ile
	GCC Ala	CCC Pro 350	ATC Ile	GCA Ala	AAC Asn	ACA Thr	ACC Thr 430
	CTC Leu	CTT Leu	AGG Arg 365	GGA Gly	AAC Asn	GCC Ala	CIC
	CTC	ACC Thr	AAG Lys	GAC Asp 380	CIC	ACT Thr	GTC Val
	66C 61y	GCG Ala	GAC Asp	ATG Met	CAA Gln 395	GTG Val	666 Gly
	CTG Leu 330	TCA	GTG Val	AAC Asn	GCG	CTA Leu 410	GGA Gly
	CTC	AGC Ser 345	GGT Gly	GTG Val	ATT	AIT Ile	GCT Ala 425

A1

IE	
FIG.	
'	•

Patent Application Publication		Jul. 3, 20	Jul. 3, 2003 Sheet 5 (of 42 US 2003/012		
	1398	1446	1494	1542	1590	1636	1680
	GAC Asp	66C 61y	GAA Glu	GAG Glu	GCC Ala 520		
	GTG Val 455	GCA Ala	CAG Gln	GAG Glu	GTG Val	E	
	ATT Ile	GGT Gly 470	GAG Glu	TCT	CCC	TGATGGGGCT	
	TGG Trp	CTG Leu	GGC Gly 485	AAG Lys	66C 61y	TGAT	
	GAC Asp	GCC Ala	AAA Lys	TGC Cys 500	GCT Ala	CTG	
	GTG Val	GAT Asp	AAG Lys	AAC Asn	CCC Pro 515	GTT Val	
E	GCT Ala 450	666 61y	ACA Thr	CCC	AAC Asn	TCG Ser 530	TTCA
FIG. 1E	CTG	GAG Glu 465	GCA Ala	ATC	CAG Gln	GAG	೮೭೦೦೦
<u>FI</u>	ATC Ile	GTG Val	AAG Lys 480	GCC	CAC His	AAG Lys	TCCCACCCTG
	CTG	AAT Asn	CAG Gln	GAA Glu 495	ACA Thr	Ser	
	CCT	GTG Val	AAT Asn	GTG Val	GTG Val 510	GAA Glu	SCAGTO
	CTG Leu 445	GTG Val	CTG Leu	AAA Lys	CTG Leu	CTG Leu 525	icc A6
	GAC	ACG Thr 460	CAC His	GTG Val	CCC Pro	GAA Glu	GCCTG
	CAT His	ACC Thr	CAC His 475	GAG Glu	Ser Ser	CCA	G CIT
	ACT Thr	ACC Thr	CTC	GCT Ala 490	ACA Thr	GCC Ala	GGGCTTTGGG CTTGCCTGCC AGCAGTGATG
	CCT	CGG Arg	ATT Ile	CTT	GAG Glu 505	AGT	GGGC

Patent Ap	plication F	Publication	Jul. 3	, 2003 Sh	eet 6 of 42	US 20	003/0125538 A1
	54	102	150	198	246	294	342
	r GGA GAA GAG n Gly Glu Glu 5	GTC Val	AAG GAG Lys Glu	ACA GTC Thr Val	A CCA TAC AGA J Pro Tyr Arg 70	GAA CTT Glu Leu	TCC AGT CTT Ser Ser Leu
	AAA AGC AAT Lys Ser Asn		ATT Ile	CTG	ACC CTC CGA Thr Leu Arg	TTT CCT GGG Phe Pro Gly 85	CIT AIC AIC Leu Ile Ile 100
FIG. 2A	ACT Thr 1	AGA TTC C Arg Phe G	CAG Gln	TTT Phe 50	TTT Phe		TTA CCA C Leu Pro L
FI	AAAGTAAAAT	AGG ATG GAG Arg Met Glu 15	AGG AAG AAA Lys Lys Lys 30	TTT CGG AAT Phe Arg Asn	ACA ATC CTT Thr Ile Leu	GTC AAG TAC Val Lys Tyr 80	ATG CTG GTC Met Leu Val 95
	CCCTCCTAGA A	GGG GGC P Gly Gly P	TTG GCC A Leu Ala I	TAC CTG T Tyr Leu P	GTG GGT A Val Gly T 60	CGG GAA G Arg Glu V	TTA CAG A Leu Gln M
	AAAGAAGAGA CO	CCC AAG ATG Pro Lys Met 10	CGC ACA CTT Arg Thr Leu 25	GTT AAA AGT Val Lys Ser	GCT GTC ATT Ala Val Ile	ATG AGC TAC Met Ser Tyr 75	ATG AGG ATG Met Arg Met 90

Patent Application Publication		Jul. 3,	Jul. 3, 2003 Sheet 7 of 42		US 2003/0125538 A1		
	390	438	486	534	582	630	678
	GAA G1u 120	GTG Val	AAG Lys	GAT Asp	GAA Glu	AAA Lys 200	AAT Asn
	TGG Trp	GTG Val 135	ACA Thr	GCA Ala	GTA Val	TTT Phe	AAC Asn 215
	AAG Lys	GCT Ala	GGC Gly 150	GCT Ala	CTG	AGC Ser	ATA Ile
	666 61y	ATT Ile	AAG Lys	ACA Thr 165	AAT Asn	AGA Arg	GTG Val
	TCA Ser	ATC Ile	GGG G1γ	GTG Val	CCA Pro 180	AAG Lys	GCT Ala
	GCA Ala 115	ACC	CCT	CGA Arg	AAT Asn	GAG Glu 195	GGT Gly
B	AAG Lys	ACC Thr 130	CAT	GTA Val	TTA Leu	TAT Tyr	GTG Val 210
FIG. 2B	AGT Ser	ACT Thr	ATC Ile 145	ATT Ile	ATG Met	AAC Asn	CCT
F	GAT Asp	ATG Met	ATC Ile	ААА Lys 160	AAC Asn	ACC Thr	ACG
	CTA	TAT Tyr	ATC Ile	66C 61y	AGG Arg 175	AAA Lys	GAA Glu
	GCG Ala 110	TAT Tyr	GTC Val	GAA Glu	ATC Ile	TTT Phe 190	AAC Asn
	GCG Ala	GTC Val 125	ATT Ile	AGA Arg	TTG Leu	GAG Gln	GCC Ala 205
	ATG Met	GTA Val	ATC Ile 140	CAC His	GAC Asp	ААА Lys	GAG Gln
	GGA Gly	GCT Ala	ATA Ile	ATG Met 155	CTG	TTT Phe	ATC Ile
	ACA	GGA Gly	GGC Gly	AAC Asn	TTC Phe 170	TGC Cys	CCC
	GTC Val 105	TGC Cys	ATT	GAA Glu	GCC	GCC Ala 185	GTG Val

Patent Application Publication		Jul. 3,	Jul. 3, 2003 Sheet 8 of 4		US 2003/0125538 A1	
726	774	8 2 2	870	918	996	1014
ACA GAG Thr Glu	CTG GGT CTA GTT Leu Gly Leu Val 245	ATG AAG GAA CAG Met Lys Glu Gln 260	GAA GCC ATC Glu Ala Ile	GGT ATT Gly Ile	ATG GGT GTG ATT GGG GGG Met Gly Val Ile Gly Gly 310	GTT GGC TTA CTC ATT CAC Val Gly Leu Leu Ile His 325
		ATT GGA Ile Gly	TCT CTT Ser Leu	CCC Pro 290	GAA GAC Glu Asp 305	GTC ATT Val Ile
ATG GAG ACT CTT Met Glu Thr Leu	GTG AAT Val Asn	GGT TTT Gly Phe 255	TTC TTT Phe Phe 270	ATG TGG Met Trp	ATT GTG GAG ATG Ile Val Glu Met	TAC ACC GTG ACT Tyr Thr Val Thr 320
GTG TCT GAG GCC Val Ser Glu Ala 1	CCA GTT CCA GGA 7 Pro Val Pro Gly 8 235	TTC TCC ATG TGC Phe Ser Met Cys 1250	GAG GCC CTG AGA CGIn Ala Leu Arg C	CTG GTA GCA GTA H Leu Val Ala Val 1	ATT GCT GGG AAG FILE ALA GLYS 1300	CAG CTT GCC ATG TGIn Leu Ala Met T315
	TCT GAG GCC ATG GAG ACT CTT ACC CGA ATC ACA GAG GAG CTG GTC 726 Ser Glu Ala Met Glu Thr Leu Thr Arg Ile Thr Glu Glu Leu Val 220	TCT GAG GCC ATG GAG ATC CGA ATC ACA ACA <th>TCT GAG GCC ATG GAG ATC CGA ATC CGA ATC ACA CGA ATC CGA GAG CTG CTG<th>Ser GLG ATG GAG ATC CTA ATC CGA ATC CTA CTA ATG Thr ATG ATG Thr ATG ATG<th>TCT GAG GCC ATG GAG ATC CGA ATC CTA GGA ATC CGA ATC CTA CTA<th>TCT GAG ATC GAG ATC CAT ATC CAT ATC GAG ATC GAG GAG</th></th></th></th>	TCT GAG GCC ATG GAG ATC CGA ATC CGA ATC ACA CGA ATC CGA GAG CTG CTG <th>Ser GLG ATG GAG ATC CTA ATC CGA ATC CTA CTA ATG Thr ATG ATG Thr ATG ATG<th>TCT GAG GCC ATG GAG ATC CGA ATC CTA GGA ATC CGA ATC CTA CTA<th>TCT GAG ATC GAG ATC CAT ATC CAT ATC GAG ATC GAG GAG</th></th></th>	Ser GLG ATG GAG ATC CTA ATC CGA ATC CTA CTA ATG Thr ATG ATG Thr ATG ATG <th>TCT GAG GCC ATG GAG ATC CGA ATC CTA GGA ATC CGA ATC CTA CTA<th>TCT GAG ATC GAG ATC CAT ATC CAT ATC GAG ATC GAG GAG</th></th>	TCT GAG GCC ATG GAG ATC CGA ATC CTA GGA ATC CGA ATC CTA CTA <th>TCT GAG ATC GAG ATC CAT ATC CAT ATC GAG ATC GAG GAG</th>	TCT GAG ATC GAG ATC CAT ATC CAT ATC GAG ATC GAG GAG

Patent Ap	plication 1	Publication	Jul. 3	3, 2003 Si	heet 9 of 42	2 US 2	2003/0125538 A1
	1062	1110	1158	1206	1254	1302	1350
	AAC Asn	CTG Leu 360	CTG	CCC Pro	TTG Leu	GGA Gly	GCA Ala 440
	AAA Lys	GCT	TGC Cys 375	CTC	GCT Ala	TTC Phe	GGG G1γ
	CGG Arg	ACC	AAG Lys	GTG Val 390	GAG Glu	AAC Asn	ATT Ile
	ACA Thr	ATC Ile	TTC	TTC Phe	TAT Tyr 405	CTG	AGT Ser
	GTA Val 340	CTC	ACC Thr	AGA Arg	CTC Leu	GAA Glu 420	GCC Ala
	TTG	GCA Ala 355	ATC Ile	ACC Thr	GCC Ala	TTT Phe	GCT Ala 435
\overline{Q}	TTC	CAA Gln	CCC Pro 370	GTC Val	ACT	AAC Asn	ACA Thr
FIG. 2D	TAC	CTG	CTA Leu	CGC Arg 385	666 61y	AAC Asn	GCC Ala
FI	CIC	TTG	ACC Thr	AAG Lys	GAT Asp 400	GTT Val	ACA Thr
	CTC Leu 335	666 Gly	GCC Ala	GAC Asp	ATG Met	CAA Gln 415	ATC Ile
	CCA	GGA G1y 350	TCT Ser	GTG Val	AAC Asn	GCT Ala	AGC Ser 430
	TTG	ATT Ile	AGT Ser 365	GGC Gly	ATT Ile	ATT Ile	ATC Ile
	GTC	TTT Phe	TCA Ser	AAT Asn 380	ACC Thr	TTC Phe	ACA Thr
	ATC Ile	GTT Val	TCT Ser	AAC Asn	GCC Ala 395	ATT Ile	ATT Ile
	GTC Val 330	TGG Trp	ACC Thr	GAG Glu	GGA Gly	GCC Ala 410	ATT Ile
	GCA Ala	CCT Pro 345	666 Gly	GAA Glu	GTA Val	GCT	CAA G1n 425

Patent App	lication P	ublication	Jul. 3,	, 2003 Sh	Sheet 10 of 42		US 2003/0125538 A1	
	1398	1446	1494	1542	1590	1638	1680	
	ACA Thr	GAC Asp	TCC	AAC Asn	AAG Lys 520	ATC Ile		
	CTG Leu 455	GTG Val	GAC Asp	AAG Lys	ATG Met	CCC Pro 535		
	GTG Val	GCG Ala 470	GGA Gly	CTG	GAA Glu	AAA Lys		
	ATT Ile	ATC Ile	CTG Leu 485	GAA Glu	ATT Asn	GAG Glu	CITI	
	GTC Val	ATC	GTA Val	CAT His 500	GAG Glu	ACT Thr	ದ :	
	ATG Met	CTC	ACC Asn	CGA Arg	GAA Glu 515	GAA Glu	ТАААСАААСА	
[sol	ACT Thr 450	ACG Thr	ACC Thr	TCA	ATT Ile	AAT Asn 530	TAAA(
FIG. 2E	GTC Val	ATC Ile 465	ACC	TTG	GTG Val	GAC Asp	تا	
FIC	CTG	GAC Asp	ACC Thr 480	CAC His	TCA	CAG Gln	ACTAACA	
	GGC Gly	GAC Asp	CGG Arg	GAG Glu 495	AAC Asn	GCA Ala	TAGA(
	GCG Ala	ACT Thr	CIC	GTG Val	GGT G1y 510	ATT Ile	ATG Met	
	CAG Gln 445	CCC Pro	CGC Arg	ATT Ile	ATG Met	CTG Leu 525	AAG Lys	
	CCT	CTG Leu 460	GAT	GGG	GAA Glu	CAA Gln	ACC Thr 540	
	ATT Ile	66C 61y	TTG Leu 475	GCT Ala	GTT Val	TAT Tyr	GAA Glu	
	GGA Gly	GTC Val	TTC	GGA G1y 490	GAT	CCA Pro	AGT Ser	
	GCT Ala	TCT	TGG	CTG	AGA Arg 505	ААА Lys	GAC Asp	

					-	
54	102	150	198	246	294	342
GCC Ala	CTT Leu	GAC Asp	ATC Ile 55	CAC His	AGG Arg	ACA Thr
GGT Gly	CAT His	TGT Cys	GTC Val	ATC Ile 70	ATG	ATC Ile
GAA Glu 5	AGT Ser	CTG Leu	GGT Gly	CCC Pro	CTC Leu 85	TTA Leu
ACG Thr	GAC Asp 20	CGC Arg	TTT Phe	TCT Ser	ATA Ile	AGC Ser 100
TCT	CCA	CTG Leu 35	GTG Val	GCA Ala	GAT Asp	TCC
GCA Ala	ATG Met	GGC G1y	ACG Thr 50	TTG	666 61y	ATC
ATG Met 1	CGA Arg	CTG	CTG	CGC Arg 65	CCA Pro	ATC Ile
ACC	GTG Val	CAC His	ACC	CTT	TTC Phe 80	CTA Leu
យួ	GAA Glu 15	CGG	CTC	CTT	GCC Ala	GGT G1y 95
GTTCCCAG	GTG Val	CAC His 30	CTG	666 61y	ATA Ile	CTG
GCGT	CAG Gln	AAG Lys	CTG Leu 45	GGA Gly	TTA Leu	ATT Ile
99	AAG Lys	CCC Pro	AAT Asn	TGT Cys 60	ATG Met	CTC Leu
AGGAG	CCC Pro	GAA Glu	AAG Lys	GTG Val	GTT Val 75	ATG Met
3 AAG	ATG Met 10	GAG Glu	666 61y	GCA Ala	GTG Val	AAA Lys 90
GATAGTGCTG AAGAGGAGGG	AAT Asn	TCA Ser 25	CTG	GGA G1y	GAT Asp	CIA
GATA(AAC Asn	66C G1y	AAG Lys 40	CTG Leu	CCT	ATG Met

Patent Application Publication		Jul. 3	3, 2003 S	Sheet 12 of 42 US		2003/0125538 A1	
	390	438	486	534	582	630	678
	AGT GGC CGC TTG GGC ACG AGA Ser Gly Arg Leu Gly Thr Arg 115	ATT GCT GCA Ile Ala Ala 130	AAT CCC AAG Asn Pro Lys	CTG GAT Leu Asp 165	GAA AAC CTT GTC CAA GCC Glu Asn Leu Val Gln Ala 180	GTC CTG GTT GCA CCA Val Leu Val Ala Pro 195	AGC GCT GAA GTC TCT CTG TTG Ser Ala Glu Val Ser Leu Leu 210
FIG. 3B		GCC ATG GTG TAT TAC ATG TCC ACG ACC Ala Met Val Tyr Tyr Met Ser Thr Thr 120			TTC CTG GAC CTT ATT CGA AAT CTC TTC C Phe Leu Asp Leu Ile Arg Asn Leu Phe F 170	TGC TTT CAA CAG ATT CAA ACA GTG ACG A Cys Phe Gln Gln Ile Gln Thr Val Thr L 185	CCG CCA GAC GAG GCC AAC GCA ACC A Pro Pro Asp Glu Glu Ala Asn Ala Thr S 200

Patent Application Publication		Jul. 3, 2003 S		eet 13 of 4	2 US 20	003/0125538 A1	
	726	774	822	870	918	996	1014
	AAG Lys	666 61 y	GCC Ala	AAG Lys	CTG Leu 295	AGG Arg	CAC His
	ATC A Ile L 230	ATA G Ile G	CAG G Gln A	ATG A Met L		GCT A Ala A 310	ATC CI
	GTT Val	CTG Leu 245	GAT Asp	GTA Val	GCC Ala	GTT Val	ATC 110 325
	ATG Met	GGT Gly	GGA G1Y 260	ATT Ile	ATC Ile	GTG Val	CTC
·	AAG Lys	TTA Leu	ATG Met	GAG Glu 275	GGT Gly	GAA Glu	GGC G1y
	ACT	GTC Val	AAG Lys	AAT Asn	CTG Leu 290	TTA Leu	ATA Ile
ار ع	GAG Glu 225	AAC Asn	GGG G1γ	ITG	CCC	GAC Asp 305	ATC Ile
FIG. 3C	GAG Glu	ATG Met 240	ATG Met	ATT Ile	TCT Ser	AAG Lys	GTG Val 320
FI	CCG	666 61y	GCT Ala 255	AAC Asn	TAC Tyr	ATC Ile	ACA Thr
	GTG Val	GAT Asp	ATC Ile	TTC Phe 270	TGG Trp	GCA Ala	GTA Val
	GAG	AAG Lys	GGC Gly	TTC	ATG Met 285	ATT Ile	ATG Met
	ACT Thr 220	TTC Phe	TTT Phe	GAT Asp	ATC Ile	ATC Ile 300	TAC
	GTG Val	GAG Glu 235	GCT	GTG Val	ATG Met	AAG Lys	ATG Met 315
	ACT	CIG	ATT Ile 250	ATG Met	ATC Ile	GGA Gly	666 61y
	GAG Glu	66C 61y	TTC	CTG Leu 265	GTG Val	TGT Cys	CTG
	AAC Asn	AAG Lys	TTT Phe	AAG Lys	TTA Leu 280	ATC Ile	CAA Gln

Patent App	plication F	Publication	Jul. 3	Jul. 3, 2003 Sl		42 US 2	2003/0125538 A1
	1062	1110	1158	1206	1254	1302	1350
	AAC Asn	CTG Leu	CTG Leu 375	CCT Pro	GTG Val	GGA Gly	GCG Ala
	AAA Lys	GCC	TGC Cys	CTT Leu 390	GCG Ala	GGA Gly	GGC Gly
	AGG Arg	ACT Thr	CGT Arg	GTC Val	GAA Glu 405	GAT Asp	GTC
	ACC Thr 340	ATC Ile	TTT Phe	TTC Phe	TAT Tyr	CTG Leu 420	AGC Ser
	GTG Val	TGG Trp 355	ACC Thr	AGA Arg	CTT Leu	GTC	GCA Ala 435
	GTA Val	GCT Ala	GTC Val 370	ACT Thr	GCC Ala	GTT Val	CTG
	TTT Phe	CAA Gln	CCT Pro	GTG Val 385	ACA Thr	GGT Gly	ACC
FIG. 3D	TAC Tyr	TTC Phe	TTG Leu	CGT Arg	GGT Gly 400	AAT Asn	GCC Ala
FI	ATT Ile 335	ATT Ile	ACT	AAG Lys	GAT Asp	ATG Met 415	ACA
	TTG	GGC G1Y 350	GGA Gly	GAT Asp	ATG Met	CAA Gln	CTC Leu 430
	CCC	GCT Ala	GCT Ala 365	ATT Ile	AAC Asn	GCC Ala	AGC
	CIC	TTT Phe	AGT	GGG Gly 380	ATT Ile	ATA Ile	GTA Val
	TTT Phe	CTT	TCC	CTG	ACC Thr 395	TTT Phe	ACT Thr
	ATC Ile 330	TCC	GCT Ala	AAT Asn	GCA Ala	ATC Ile 410	GTG Val
	GGC Gly	TTC Phe 345	ACC Thr	GAA Glu	GGA G1y	GCC Ala	ATT 11e 425
	GGG G1y	CCC	GGC G1y 360	GAA Glu	Grr Val	GCC	CAG Gln
			•				

Patent Application Publication			Jul. 3, 2003 S		Sheet 15 of 42 US		S 2003/0125538 A1	
	1398	1446	1494	1542	1590	1638	1686	
	ACA Thr 455	GAC Asp	TCT Ser	ACC Thr	ACT Thr	ATT Asn 535	AAG Lys	
	CTG	GTG Val 470	GAC Asp	GAT Asp	AAG Lys	TCT Ser	TGC Cys 550	
	ATT Ile	GCT Ala	GGT G1Y 485	CTG	ACC Thr	AAC Asn	GAA Glu	
	CTC	GTG Val	GTG Val	GAG Glu 500	ATG Met	AGC Ser	GAT Asp	
	CTC	CTG	GTT Val	TCT Ser	GAA Glu 515	GAA Glu	GTA Val	
	ATG Met 450	TTG	AAT Asn	AAG Lys	ATT Ile	AGG Arg 530	ATA Ile	
ורים	ACC Thr	AGC Ser 465	GTC	TCC Ser	GAT Asp	CAC His	GTC Val 545	
FIG. 3E	GTC Val	ATC Ile	TCA Ser 480	CIC	GAA Glu	AAC Asn	Ser	
FIG	CTG	GAC Asp	ACT Thr	CAC His 495	CAT His	AAG Lys	AAC Asn	
	GGG Gly	GAG Glu	AGA Arg	TAT Tyr	GTG Val 510	ATG Met	CAC His	
	GCC Ala 445	ACA Thr	ATG Met	GTC Val	CGA Arg	GAC Asp 525	GCA Ala	
	AGT Ser	CCA Pro 460	AGG Arg	ATA Ile	CAT His	GAT Asp	GCT Ala 540	
	CCC	CTG Leu	GAC Asp 475	GGG G1γ	GAG Gln	TAT Tyr	TAT Tyr	
	ATC Ile	66C G1y	CTG Leu	GCT Ala 490	TCC	ATT Ile	GTC Val	
	AGT	GTG Val	CTG	GGG Gly	GAC Asp 505	TCC	TGT	
	GCC Ala 440	GCC Ala	TGG Trp	TTT Phe	ATT Ile	CAA Gln 520	CAA Gln	

ful	3	2003	Sheet	16	of 42	
Jui.	J,	∠ 003	SHECL	TU	UI 44	

US 2003/0125538 A1

1734	1785	1800
GAA Glu	Ā	
GAG Glu	AATTCTTGAA	
GTT Val 565	AATT	
AGT Ser	Ą.	
TGC	AGTCTCAGCA	
GAC Asp	AGTC	
GCC Ala	ည်	
TCA Ser 560	TAAGGATATG	
AAG Lys	TAAG	
GGA Gly	AAA Lys	
AAT Asn	GAG Glu	
GCC	CGT Arg	
GCA Ala 555	AAA Lys	;GT
CTG	TGG Trp 570	C AGO
ACT	CCT	PAAACTCCCC AGCGT
GTA Val	GAA Glu	TAAA

T1	2	2003	Choot	17	of 42
Jui.	Э,	4003	Sheet	1/	01 42

US 2003/0125538 A1

4	
FIG.	

51	6	147	195	243	291	339
TGG Trp	GCG Ala	AAC Asn	CTA Leu 60	ATG Met	GGT Gly	ATT Ile
AGT Ser	GCC Ala	AGC Ser	ATT Ile	AGC Ser 75	ATT Ile	GTT Val
CCG Pro 10	GTG Val	CAC His	GAA G‡u	TCC Ser	AAA Lys 90	GCT Ala
TGC Cys	ACC Thr 25	GAA Glu	GGA Gly	ATA Ile	GGA Gly	ATT Ile 105
GGA Gly	TCC	CGA Arg 40	CCT	ATT Ile	TCC Ser	CTC
AAA Lys	CTG	GTT Val	TTT Phe 55	TTA Leu	GTA Val	ACT Thr
AGG Arg	TTG	TTG Leu	GCT Ala	CCA Pro 70	AAC Asn	ACC Thr
GCG Ala 5	GTG Val	GTC Val	TTT Phe	TTG	TCC Ser 85	TGT Cys
CCG	TGG Trp 20	GGA Gly	TAC Tyr	ATT Ile	GAT Asp	TTC Phe 100
AAA Lys	AAC Asn	ACA Thr 35	TTC	ATC Ile	CTG	TAT Tyr
666 61y	AAT Asn	ACC Thr	AAA Lys 50	CTC	GCA Ala	TAT Tyr
ATG Met 1	AAG Lys	ATT Ile	GAG Glu	AAA Lys 65	GCT Ala	GTG Val
ပ္ပ	CTG	66C Gly	CTA	CTG	GTT Val 80	GTC Val
ia cac	TTC Phe 15	CTA Leu	ACT Thr	ATG Met	GGT Gly	GCT Ala 95
ATAGCGGCGA CAGCC	CGC Arg	GTG Val 30	TCA	GGG Arg	ACA Thr	CGC Arg
ATAG	AAG Lys	GTG Val	CTC Leu 45	ATG Met	ATT Ile	CTG

Patent A	Application	1 Publicat	ion Ju	ul. 3, 2003	Sheet 1	8 of 42	US 2003/0	0125538 A1
	387	435	483	531	579	627	675	723
	AAA Lys	GTG Val	GTC Val	CCT Pro	GTC Val	GTT Val	TGC Cys 220	ATT Ile
	CAG Gln	ACG Thr	CTT Leu 155	AAG Lys	GCT Ala	ATT Ile	TTT Phe	CAA Gln 235
	ACC	AGT Ser	AAT Asn	GTG Val 170	ACA Thr	AAA Lys	GTC Val	GGA Gly
	GTC Val	GTC_ Val	GAG Glu	GAA Glu	TTC Phe 185	TAC	ATT Ile	AAG Lys
	GGT G1y 120	GAA_GIu	CCT	GAA Glu	TCC Ser	GAA Glu 200	TTG Leu	GAA Glu
	CCT	CCT Pro 135	TTC	CGT Arg	GAG Glu	AAG Lys	GGC Gly 215	GGA Gly
· &I	AAG Lys	Acc	ATG Met 150	AAG Lys	GAA Glu	ACA Thr	CTG	ATG Met 230
FIG. 4B	ATC Ile	AGC Ser	AAT Asn	ACT Thr 165	ACA Thr	AAA Lys	GTC Val	AAA Lys
FI	AGC Ser	GGC Gly	AGG Arg	AAA Lys	ATG Met 180	AAC Asn	AAC Asn	GGA Gly
	GTG Val 115	ACA	ATC Ile	TAC Tyr	AAC Asn	AAG Lys 195	ATA Ile	ATT Ile
	GTG Val	Arg Arg 130	CIC	CAG Gln	ATG Met	TCC	GGC Gly 210	GTC Val
	CTG	GCG Ala	GAT Asp 145	CAG Gln	GAG Glu	ATT Ile	GAT Asp	CTT Leu 225
	GTG Val	ATT Ile	TTA Leu	TTT Phe 160	CCA	GCA Ala	TCA Ser	GGA Gly
	ATT Ile	GAA	ATG Met	TGT Cys	GAT Asp 175	ACT Thr	TAT Tyr	TTT Phe
	GGT Gly 110	GGT Gly	GCC Ala	GCC	AGC Ser	ACA Thr 190	ATG	GTC Val
	CTA	GTG Val 125	GAT Asp	CAG Gln	CCC Pro	ATG	GGC G1y 205	CTT

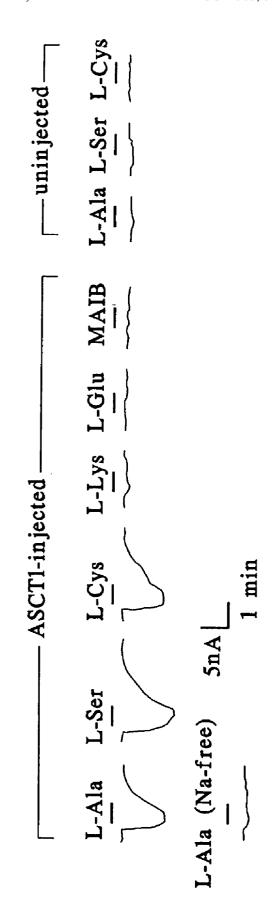
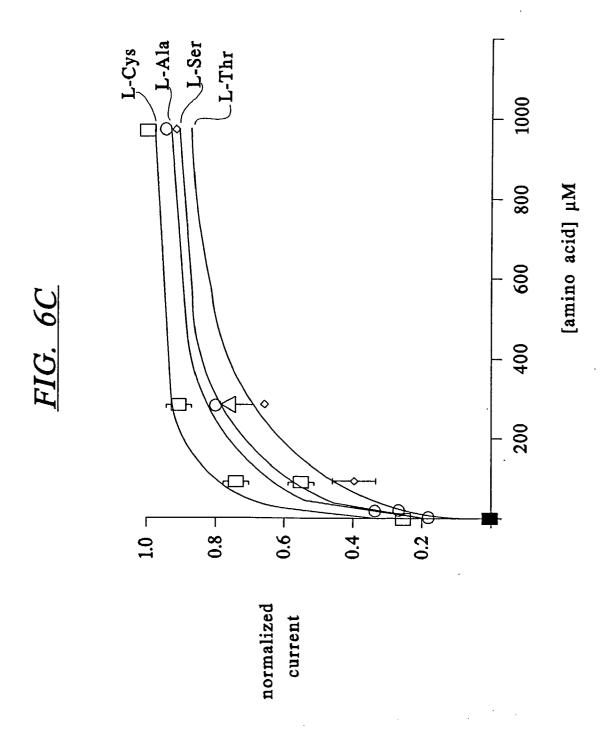
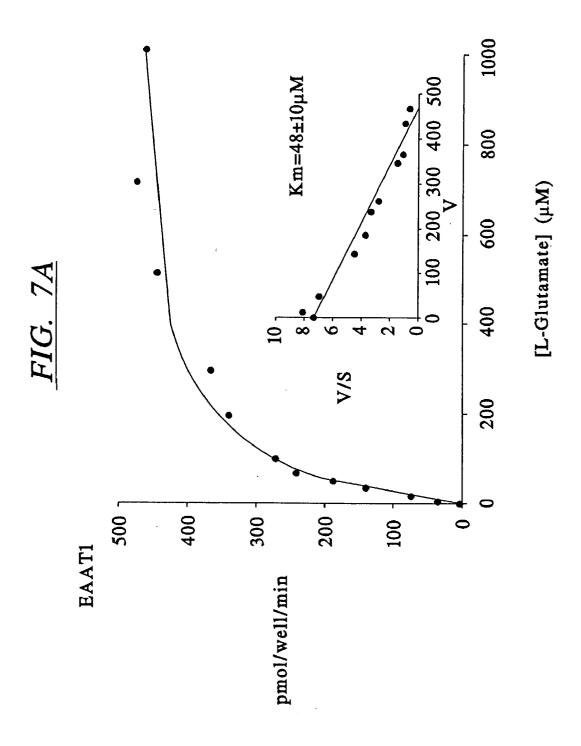
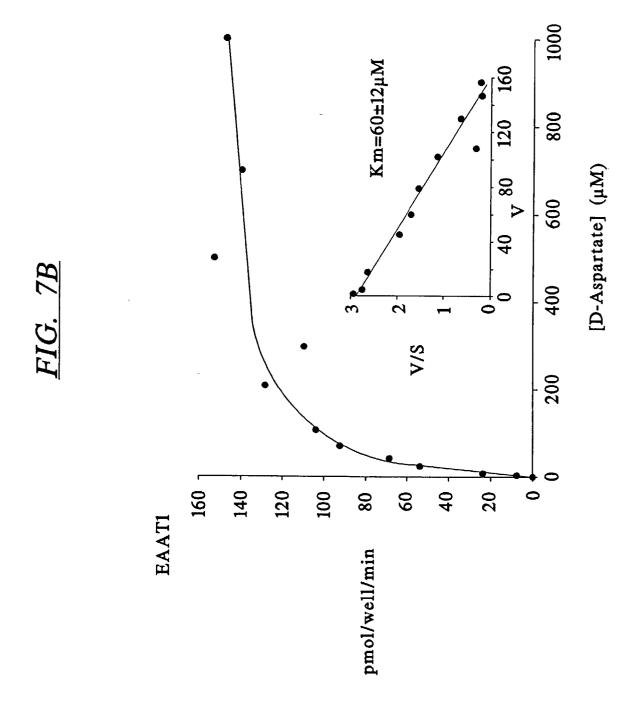
Patent Application Publication			Jul. 3	, 2003 Sh	eet 19 of 4	US 20	003/0125538 A1	
		771	819	867	915	963	1011	1059
		GTT Val	GCT Ala	GGC Gly	GTA Val 300	CGA Arg	TCT Ser	AAT Asn
		ATC Ile	ATT Ile	CTG	ATT Ile	TTC Phe 315	ATC	GAA
		AAA Lys 250	CTG Leu	AAG Lys	TCC	CCT Pro	ATG Met 330	GPA Glu
		ATG Met	TTC Phe 265	CGC Arg 280	CAC His	AAC Asn	CTC	GCT Ala 345
		ACC	TTG	TTC	ATC Ile	AAG Lys	GCT Ala	TGT Cys
		GCA Ala	ATT Ile	ATA Ile	GCA Ala 295	CGA Arg	ACA Thr	CGC Arg
. (FIG. 4C	GAT Asp	GGT Gly	GAA Glu	CTT Leu	GTA Val 310	CTC	TIC
		AGT Ser 245	CTA	TGG Trp	666 61y	GTC Val	CTC Leu 325	ACC Thr
Í		TTG	CCA Pro 260	GAC	ACT	ATA Ile	GCT Ala	GTC Val 340
		GCT	ATG Met	GAA Glu 275	CTG	TTC Phe	CAG Gln	CCT
		AAT Asn	TAT Tyr	GTT Val	GTC Val 290	TAT Tyr	GCC Ala	CTG
		TTC	TGT Cys	GAA Glu	AÇA Thr	ATA Ile 305	ATG	ACA Thr
		TTC Phe 240	ATG Met	ATA Ile	GCC Ala	CTG	GGA G1y 320	GCA Ala
		GAT Asp	ATC Ile 255	ATC Ile	ATG Met	CCG	ATG Met	TCA Ser 335
		GTG Val	ATC Ile	AAG Lys 270	TAC	CIC	GCC Ala	AGT
		CTG	CAG	666 61y	CTT Leu 285	ATT Ile	TTT Phe	TCC

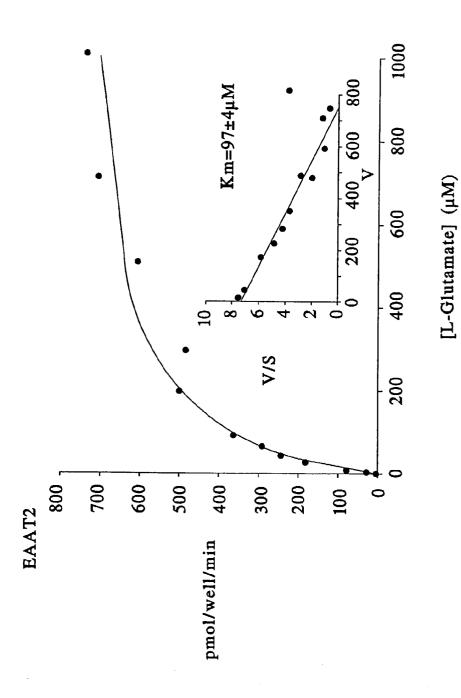
Patent Application Publication			Jul. 3, 2003 Sheet 20 of 4		2 US 2003/0125538 A1		
	1107	1155	1203	1251	1299	1347	1395
	GCA Ala	GTG Val 380	ATC Ile	GTG Val	66C Gly	CTG	ACT Thr 460
	GGT Gly	GCG Ala	ATC Ile 395	66C 61y	GTG Val	CTC	GGG Gly
	GTT Val	GCA Ala	CAG Gln	GCT Ala 410	GCC	TGG Trp	TTT Phe
	CCC	GTG Val	666 Gly	GCT Ala	AGT Ser 425	GAC Asp	GCT Ala
	TTA Leu 360	GCA Ala	ATT Ile	GGA Gly	CTG	GTC Val 440	GAT Asp
	CTG Val	GAA Glu 375	66C 61 y	ATC Ile	GTG Val	GCT Ala	GGT G1Y 455
OI.	TTC Phe	TAT Tyr	TTG Leu 390	AGC Ser	ATT Ile	ATT Ile	CTT
FIG. 4D	CGA Arg	CTC	GAC Asp	GCC Ala 405	GTG Val	ATC Ile	GTC Val
FI	ACT Thr	GCG Ala	CTG Leu	TCT	ATG Met 420	CTG	AAC Asn
	ATC Ile 355	ACC	GAC Asp	ACA	ACC Thr	ACC Thr 435	GTC
	AGG Arg	GGG G1Y 370	AAT Asn	GCC Ala	GTG Val	GTC Val	ATG Met 450
	AAG Lys	GAT Asp	TTG Leu 385	ACG Thr	CTG Leu	GAT Asp	ACC Thr
	GAC Asp	ATG Met	CAG Gln	ATC Ile 400	66c 61y	GAG Glu	AGG Arg
	GTG Val	AAC Asn	GCA Ala	AGT Ser	GCT Ala 415	GCC Ala	TTC Phe
	CAG Gln 350	ATC Ile	ATT Ile	ATC Ile	CAG Gln	CCC Pro 430	CGG Arg
	AAC Asn	ACA Thr 365	TTT Phe	ACC	CCC	CTG	GAC Asp 445

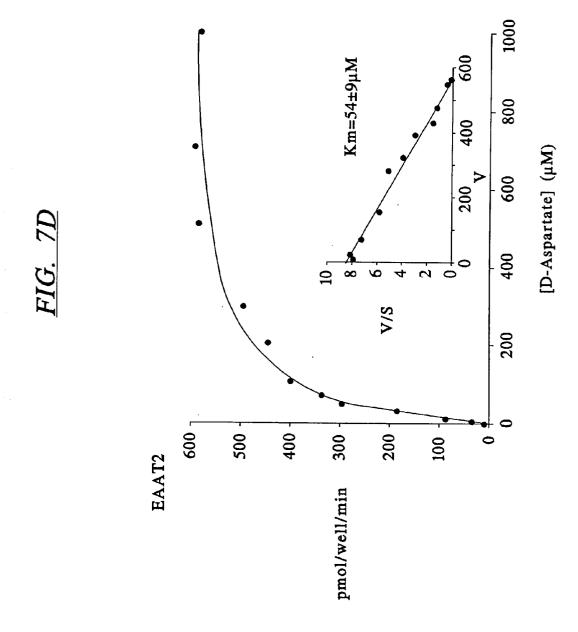
Patent Application	ı Publicat	ion Ju	ıl. 3, 2003	Sheet 21	of 42	US 2003/0125538 A1
	1443	1491	1539	1587	1640	1674
	GTT Val	ATC Ile	66C G1y	CAG Gln		
	GAT ASP 475	ACA Thr	GGA Gly	TCA		
	ATG Met	TCC Ser 490	AAT Asn	ACC Thr		
	GAG Gln	GAA Glu	GTC Val 505	GAG Gln	ŋ	
	GAG Glu	TTG Leu	TAT	ACC Thr 520	CGTGA	
	CTG	GCC Ala	TCT Ser	TTC	ATTT	
[sal	GAG Glu 470	TTT Phe	AAG Lys	TCA	AGGAC	
FIG. 4E	AAG Lys	CCC Pro 485	AAG Lys	ATC Ile	AGGAZ	
\overline{FIC}	AAG Lys	AAT Asn	ACC Thr 500	ACC Thr	AAC A	GAAA
	TCC	GTG Val	GAC Asp	GAC Asp 515	CTGGA	
	CTC	ATT Ile	TCA Ser	TCT Ser	AT GA	GGAAA
	AAG Lys 465	AAC Asn	GAC Asp	AAG Lys	IGCAG	IT AA
	GAA Glu	GTC Val 480	GAA Glu	GAC Asp	r 66C'	4CGGC
	GTG Val	GAA Glu	AAC Asn 495	GTA Val	TAGGGCCCCT GGCTGCAGAT GACTGGAAAC AAGGAAGGAC ATTTCGTGAG	A AAC
	ATT Ile	TCT	GAC Asp	GCA Ala 510	TAGGC	AGTCATCTCA AACACGGCTT AAGGAAAAGA
	GGC G1у	TCA	CTT Leu	TTT Phe	TTC Phe 525	\mathtt{AGTC}_I

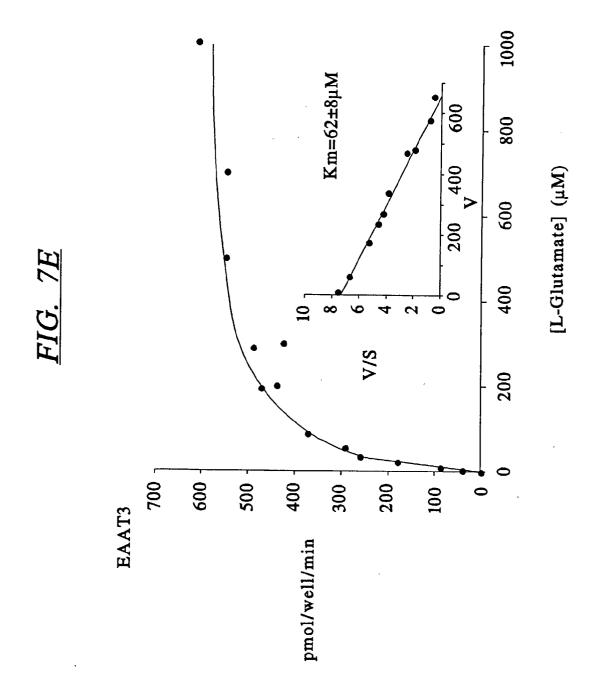
MEKSNETNGLYDSAQAGPAAGPGAPGTAAGRARRCARFLRRQALVÍLTVSGVLAGAGLGAALR.GL	SLSRTQVTYLAFEGEMELRMIRVIEERVVCSEVSDARSIDASCLORLGGIRVAYFGL. FTLSASALAVALAFI	TKPGSGAQTLQSSDLGLEDSGPPVPKETVDSFLDLARNLFBSNLVVAAFRTYATDYKVVTONSS\$ LHPGKGT.KENMYREGKIVOVTAADAFLDLTRNMFPPNLVEACFKGFKTSYEKRSFKVPIQANETLLG THPGNPKLKKQLGPGKKNDEVSSLDAFLDLTRNLFFENLVOACFOOIQTVTKKVLVAPPS.EEANTTK TKPGVTQKVDEIDRTGSTPEVSTVDAMIDLIRNMFPENLVOACFOOYKTREEVTASDDTGKNGTF	denteripigteiedmnibgevlealvigalkkigsegedtirffinsbnertyvsw	TMWWVPVGIMFLVGSRIVEMKDIIWLVTSLGKKIFASILGHVLHGGIVLPLYFVFTRKNPFRILLGLLAPFAH	AFATCSSSATEPSMMKCIEENNGVDKRISRFIEPIGATVNMDGAAIFOCVAAVFIAGENNIEENASOTFGTLVT
MTKSNGEEPRMGSRMTRFQQGVRKRTLLAKKKVQNITKEDVKSYLFRNAFVELTVSAVIVGTILGFALRPY.	KMSYREVKYFSPEGELLMRMEOVLVIEETISSLYFGMAALDSKASGKMGM. RAVVYYMTTTITTAVVIGIIIWII		avinnveemetitrireemvpvpgsvn.gvnalgivvrsmcrgfingrmkeogggaireffidsineriyav	IMWYAPLGILFLTAGKTLEMEDMGVIGGOLAMYTVTVTVTVTOTLIHAVIVLPHIYFLWTRKNPWVFIGGLLQALIT	AIGTSSSSATEPITFKCLEENNGVDKRITRFVEPVGATINMDGTALYEALAAIFTAGVNNFDENFGGITTSIT
MASTEGANNMPKQVEVRMHDSHLSSEEPKHRNLGMRMCDKLGKNLÍLISLTVFGVILGAVCGGLÍRLAA	PIHPDVVMLIAFPGDILMRMEKVLEERIISSIIFGLSGEDAKASGRLGT. RAMVXYMSTTILAAVEGVIEVLA		avislinetmneapeetkivikkglefkdgmnvpgiigffiafgiamgkmgvaggadggvlomserdchevsdm	DHVVFHAGTACLTCGKIIAIKDLEVVAROLGMYMITWIVGELIHGGIFLPELYFVXTRKNPFSFFAGIFQAWIT	ALGTASSAGTEPVTFRCLEDNLGIDKRVTRFVEPVGATINMDGTALYEAVAAIFIAGMNGVIEDGGOLVTVSLT
MGKPARKGCDSKRFLKNNWLLLS.TVVAVVLGIVIGVLVREYS	NLSTLDKFYFAFPGEILMRMIKVIEEPITVSSMITGVAALDSNVSGKIGL. RAVLYYFCTTETAVILGIVEVVS		esvtavmttavst <u>nrt</u> keyrvvglysDginvigiivfclvfglvigkmgekgginvdkfinalsdatwkinol	IMCYMPLGILPLIAGKIIEVEDWEIF.RKLGLYMVTWLSGLAIHSIVITPLIYFIWVRKNPERFAMGMTQALLT	AIMISSSSATEPVTFRCAETKNRVDKRITRFVERVGATINMDGTALYEAVAAVFTAGLNDMDLSIGGIITISVT
ASCT1	66	130	205	265	339
GLAST1	69	145	212	285	350
GLT1	69	142	209	283	357
EAAC1	84	116	182	254	327

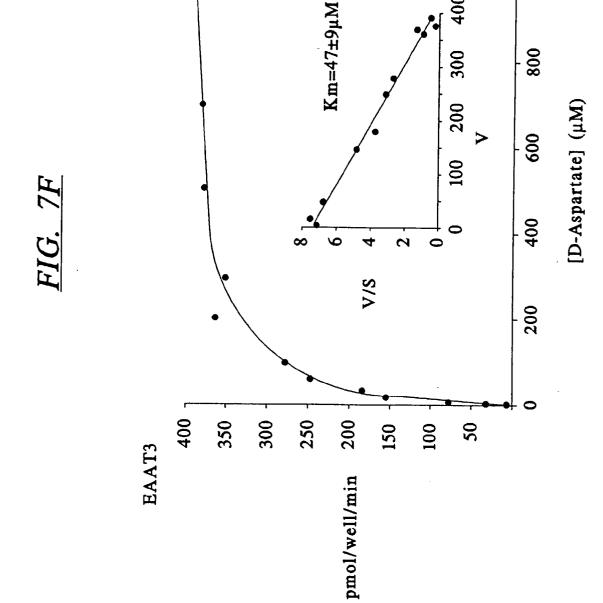
FIG. 6A

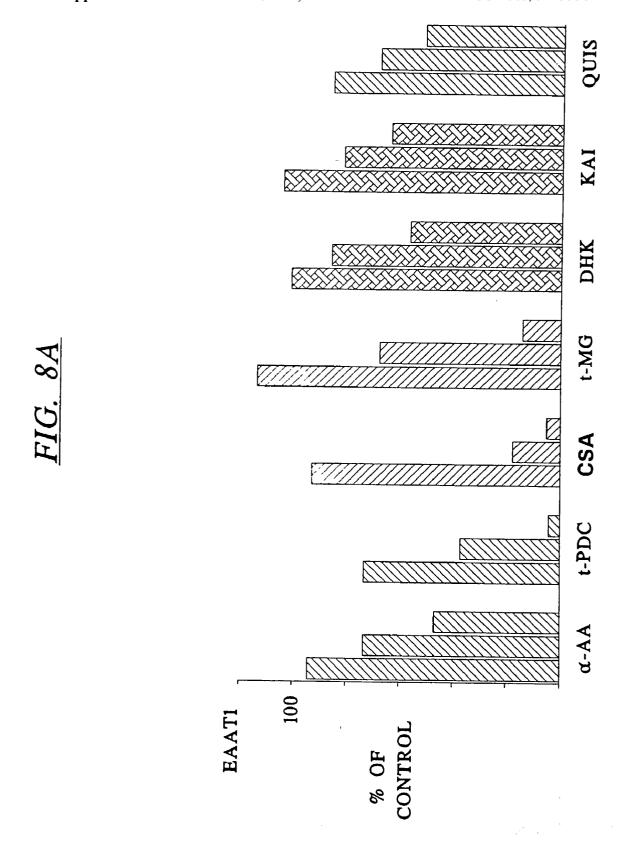





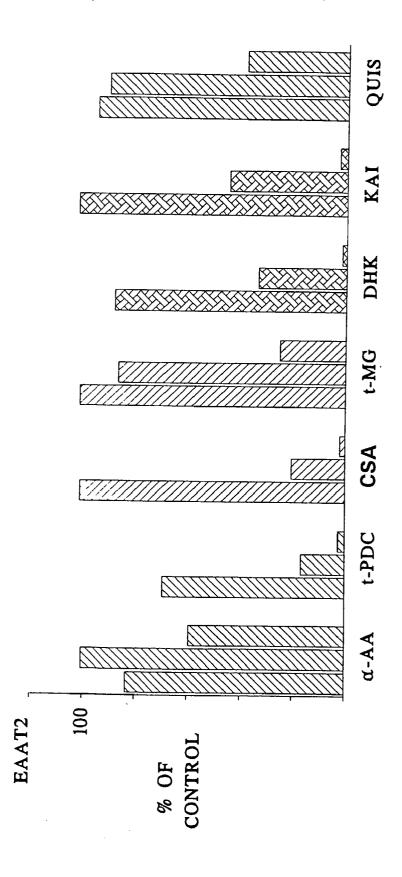

FIG. 6B

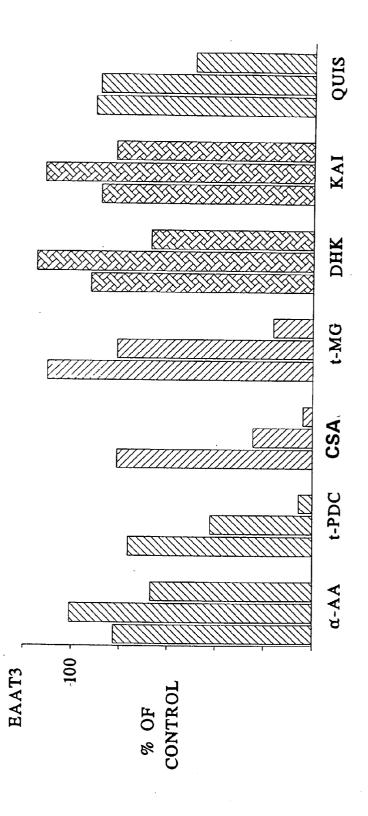












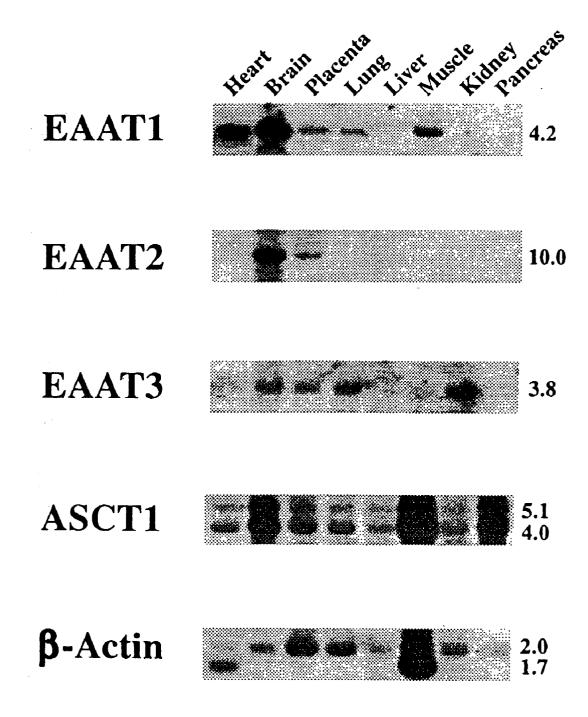


Figure 9

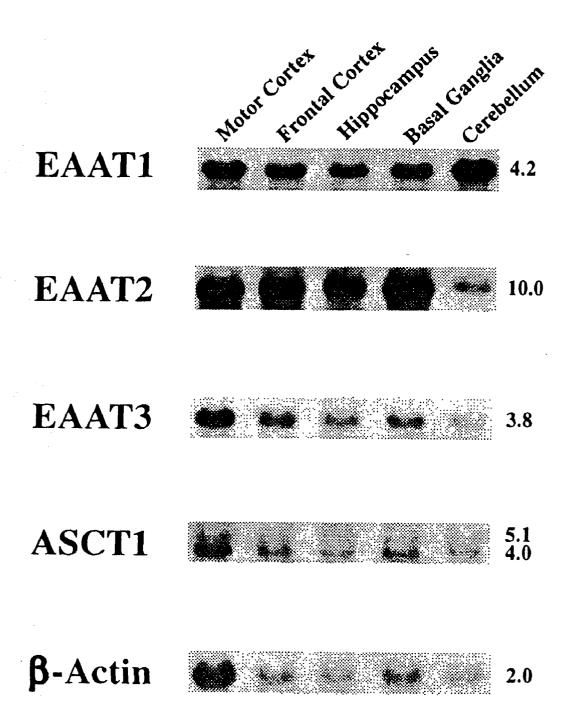


Figure 10

MTKSNGEEPKMGGRMERFQQGVRKRTLLAKKKVQNTKKOVKSYLFGNPFYILTVTAVIVGI.LGFILRPY.	RMSYREVKYFSFPGELIMRMIOMIVLPLTISSLVTGMAALDSKASGKMGMRAWYYMITTITAVVIGITIVIII	HPGKGT KENMHREGKIVRVTAADAFIIDLIRNMEBPNIVEACFKOFKTGYEKRSFKVPIOANBILVGAVINNVS	EAMETLTRITELVPVPGSVN.GVNALGLVVBSMCFGFVIGNMKEOGGALREFFDSLNEAIMRLVAVINWYAPE	GILFLIAGKIVEMEDMGVIGGOLAMYTVTVIVGILIHAVIVLPILYFLVTRKNPWVFIGGLLDALITRIGTISSS	SATLPITEKCLEENNGVDKRVTRFVLPVGATINMDGTALYEALAALFLAQVNNFELNFGQILTISITATAASIG
MASTEGANNMPKQVEVRMPDSHLGSEERKHRMLGLRLCDKLGKNLHINTLIVFGVILGAVCGGILRLAS	PIMPDVVMLIAFEGDILMRMIKHLILPLIISSLITGLSGLDAKASGRLGTRAMVYYMSTTIIAAVLGVILVLAI	HPGNPKIKKOLGPGKKNDEVSSLDAFIDLIRNLFPENIVOACFOOIQTVTKKVLVAPPPDEEANATSAEVSLAN	ETVTEVPEETKMVIKKGLEFKKKMNVIGLIGFFIAFGIAMGKMGDQAKLMVDFFNILNEIVMKIVIMIMWYSPI	GIACLICGKITAIKDIEVVARQIGMYMYTVIGILIHGGIFLPLIYFVVTRKNPFSLFAGIFQAWITAIGTASS	AGTIPITFKCLEENLGIDKRVTRFVLPVGATINMDGTALYEAVAAIFLAQMNGVVIDGGQIVTVSLTATLASVG
MGKPARKGCPSWKRFLKNNWYLLS.TVAAVVIGITTGVLVREHS	Olstiekfyfafpgelimrmikliilpliissmitgvaaldswysgrigiravvysfgttiavilgivlwsi	KPGVTQKVGEIARTGSTPEVSTVDAMIDLIRNMEPENIVQACFOOVKTKREEVKPPSDPENNMTEESFTAVM	TTAISKOKTKFYKTVGMYSDGINVIGLIVFCLVFGLVIGKMGEKGQILVDFFNALSDATMKIVQIIMCVMPI	GIHFLIAGKITEVEDWFIF.RKLGLYMATVLTGTAIHSIVILPLIYFIVVRKNPFRFAMGMAQAILTAIMISSS	SATLPITFKCAEENNQVDKRITRFVLPVGATINMDGTALYEAVAAVFIAQLNDLDLGIGQILTISITATSASIG
EAAT1	72 69 44	146	219	292	366
EAAT2		143	217	291	385
EAAT3		118	190	261	334

AAGI PQAGIVTMVI VITSVGI PIDDI ILLII AVDM FLDRIRTITINVLGDSI GAGIVEHISRHELKNR DVEMGNSV AASI PSAGIVTMILI LITAVGI PIEDI SILVAVDWILDRARTSVNVVGDSFGAGIVYHISK SELDTI DSQMRVHE AAGVPQAGIVTMVI VISAVGI PAEDVILLI AVDWILDRFRITWN VLGDAFGIGIVEKI SKKELEQMDVSSEVNI IEBNEMKKPYQLIAQDNATEKPIDSETKM 542 DIBMTKTQSKYOMKNHRESNSNQCVYKAHNSVIVDECKVTLAANGKSADCSVEEEPWKREK VNPFALEST LONEDSDTKKSYVNGGF VDKSDTISFTQTSQF 440 439 408 514 513 482

FIG. 12A

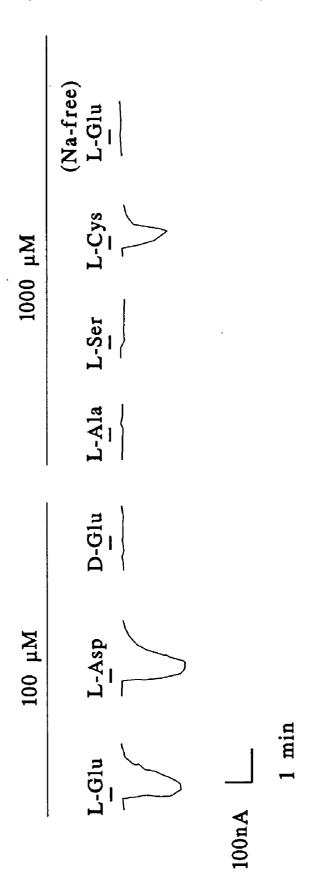
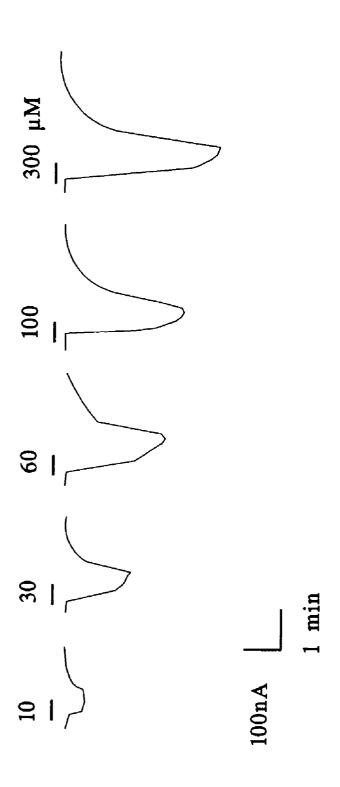
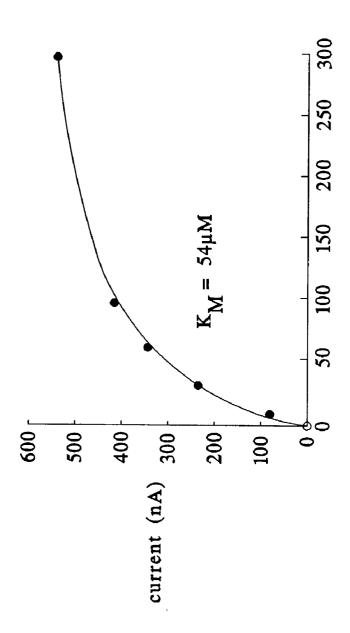




FIG. 12B

[L-glutamate] µM

FIG. 12C

AMINO ACID TRANSPORTERS AND USES

[0001] This invention was made with government support under National Institute of Health grants DA07595 and DA03160. The government has certain rights to this invention.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] This invention relates to amino acid transporters from mammalian species and the genes corresponding to such transporters. Specifically, the invention relates to the isolation, cloning and sequencing of complementary DNA (cDNA) copies of messenger RNA (mRNA) encoding each of four novel human amino acid transporter genes. The invention also relates to the construction of recombinant expression constructs comprising such cDNAs from each of the four novel himan amino acid transporter genes of the invention, said recombinant expression constructs being capable of expressing amino acid transporter proteins in cultures of transformed prokaryotic and eukaryotic cells. Production of the transporter proteins in such cultures is also provided. The invention relates to the use of such cultures of such transformed cells to produce homogeneous compositions of each transporter protein. The invention also provides cultures of such cells producing transporter proteins for the characterization of novel and useful drugs. Antibodies against and epitopes of these transporter proteins are also provided by the invention.

[0004] 2. Background of the Invention

[0005] The approximately 20 naturally-occurring amino acids are the basic building blocks for protein biosynthesis. Certain amino acids, such as glutamate and glycine, as well as amino acid derivatives such as γ -aminobutyric acid (GABA), epinephrine and norepinephrine, and histamine, are also used as signaling molecules in higher organisms such as man. For these reasons, specialized trans-membrane transporter proteins have evolved in all organisms to recover or scavenge extracellular amino acids (see Christensen, 1990, Physiol. Rev. 70: 43-77 for review).

[0006] These transporter proteins play a particularly important role in uptake of extracellular amino acids in the vertebrate brain (see Nicholls & Attwell, 1990, TiPS 11: 462-468). Amino acids that function as neurotransmitters must be scavenged from the synaptic cleft between neurons to enable continuous repetitive synaptic transmission. More importantly, it has been found that high extracellular concentrations of certain amino acids (including glutamate and cysteine) can cause neuronal cell death. High extracellular amino acid concentrations are associated with a number of pathological conditions, including ischemia, anoxia and hypoglycemia, as well as chronic illnesses such as Huntington's disease, Parkinson's disease, Alzheimer's disease, epilepsy and amyotrophic lateral sclerosis (ALS; see Pines et al., 1992, Nature 360: 464-467).

[0007] Glutamate is one example of such an amino acid. Glutamate is an excitatory neurotransmitter (i.e., excitatory neurons use glutamate as a neurotransmitter). When present in excess (>about 300 μ M; Bouvier et al., 1992, Nature 360: 471-474; Nicholls & Attwell, ibid.; >5 μ M for 5 min.; Choi et al., 1987, J. Neurosci. 7: 357-358), extracellular glutamate causes neuronal cell death. Glutamate transporters play a

pivotal role in maintaining non-toxic extracellular concentrations of glutamate in the brain. During anoxic conditions (such as occur during ischemia), the amount of extracellular glutamate in the brain rises dramatically. This is in part due to the fact that, under anoxic conditions, glutamate transporters work in reverse, thereby increasing rather than decreasing the amount of extracellular glutamate found in the brain. The resultingly high extracellular concentration of glutamate causes neuron death, with extremely deleterious consequences for motor and other brain functions, resulting in stroke, anoxia and other instances of organic brain dysfunction.

[0008] This important role for amino acid transporters in maintaining brain homeostasis of extracellular amino acid concentrations has provided the impetus for the search for and development of compounds to modulate and control transporter function. However, conventional screening methods require the use of animal brain slices in binding assays as a first step. This is suboptimal for a number of reasons, including interference in the binding assay by non-specific binding of heterologous (i.e., non-transporter) cell surface proteins expressed by brain cells in such slices; differential binding by cells other than neuronal cells present in the brain slice, such as glial cells or blood cells; and the possibility that putative drug binding behavior in animal brain cells will differ from the binding behavior in human brain cells in subtle but critical ways. The ability to synthesize human transporter molecules in vitro would provide an efficient and economical means for rational drug design and rapid screening of potentially useful compounds.

[0009] Amino acid transporters are known in the art, and some of these proteins have been isolated biochemically and their corresponding genes have been recently cloned using genetic engineering means.

[0010] Christensen et al., 1967, J. Biol. Chem. 242: 5237-5246 report the discovery of a neutral amino acid transporter (termed the ACS transporter) in Erlich ascites tumor cells.

[0011] Makowske & Christensen, 1982, J. Biol. Chem. 257: 14635-14638 provide a biochemical characterization of hepatic amino acid transport.

[0012] Kanner & Schuldiner, 1987, CRC Crit. Rev. Biochem. 22: 1-38 provide a review of the biochemistry of neurotransmitters.

[0013] Olney et al., 1990, Science 248: 596-599 disclose that the amino acid cysteine is a neurotoxin when present in excess extracellularly.

[0014] Wallace et al., 1990, J. Bacteriol. 172: 3214-3220 report the cloning and sequencing of a glutamate/aspartate transporter gene termed gltP from *Escherichia coli* strain K12.

[0015] Kim et al., 1991, Nature 352: 725-728 report the discovery that a cationic amino acid transporter is the cell surface target for infection by ecotropic retroviruses in mice.

[0016] Wang et al., 1991, Nature 352: 729-731 report the discovery that a cationic amino acid transporter is the cell surface target for infection by ecotropic retroviruses in mice.

[0017] Maenz et al., 1992, J. Biol. Chem. 267: 1510-1516 provide a biochemical characterization of amino acid transport in rabbit jejunal brush border membranes.

[0018] Bussolati et al., 1992, J. Biol. Chem. 267: 8330-8335 report that the ASC transporter acts in an electrochemically neutral manner so that sodium ion co-transport occurs without disrupting the normal membrane potential of the cells expressing the transporter.

[0019] Engelke et al., 1992, J. Bacteriol. 171: 5551-5560 report the cloning of a dicarboxylate carrier from *Rhizobium meliloti*.

[0020] Guastella et al., 1992, Proc. Natl. Acad. Sci. USA 89: 7189-7193 disclose the cloning of a sodium ion and chloride ion-dependent glycine transporter from a glioma cell line that is expressed in the rat forebrain and cerebellum.

[0021] Kavanaugh et al., 1992, J. Biol. Chem. 267:22007-22009 report that biochemical characterization of a rat brain GABA transporter expressed in vitro in *Xenopus laevis* oocytes.

[0022] Storck et al., 1992, Proc. Natl. Acad. Sci. USA 89: 10955-10959 disclose the cloning and sequencing of a sodium ion-dependent glutamate/aspartate transporter from rat brain termed GLAST1.

[0023] Bouvier et al., ibid., disclose the biochemical characterization of a glial cell-derived glutamate transporter.

[0024] Pines et al., ibid., report the cloning and sequencing of a glial cell glutamate transporter from rat brain termed GLT-1.

[0025] Kanai & Hediger, 1992, Nature 360: 467-471 disclose the cloning and sequencing of a sodium ion-dependent, high affinity glutamate transporter from rabbit small intestine termed EAAC1.

[0026] Kong et al., 1993, J. Biol. Chem. 268: 1509-1512 report the cloning and sequencing of a sodium-ion dependent neutral amino acid transporter of the A type that is homologous to a sodium-ion dependent glucose transporter.

[0027] Nicholls & Attwell, ibid., review the role of amino acids and amino acid transporters in normal and pathological brain functions.

SUMMARY OF THE INVENTION

[0028] The present invention relates to the cloning, expression and functional characterization of mammalian amino acid transporter genes. The invention comprises nucleic acids, each nucleic acid having a nucleotide sequence of a novel amino acid transporter gene. The nucleic acids provided by the invention each comprise a complementary DNA (cDNA) copy of the corresponding mRNA transcribed in vivo from each of the amino acid transporter genes of the invention. Also provided are the deduced amino acid sequences of each the cognate proteins of the cDNAs provided by the invention.

[0029] This invention provides nucleic acids, nucleic acid hybridization probes, recombinant eukaryotic expression constructs capable of expressing the amino acid transporters of the invention in cultures of transformed cells, such cultures of transformed eukaryotic cells that synthesize the amino acid transporters of the invention, homogeneous compositions of each of the amino acid transporter proteins, and antibodies against and epitopes of each of the amino acid transporter proteins of the invention. Methods for characterizing these transporter proteins and methods for

using these proteins in the development of agents having pharmacological uses related to these transporter proteins are also provided by the invention.

[0030] In a first aspect, the invention provides a nucleic acid having a nucleotide sequence encoding a human neutral amino acid transporter that is the ASCT1 transporter (SEQ ID No:2). In this embodiment of the invention, the nucleotide sequence includes 1680 nucleotides of the human ASCT1 cDNA comprising 1596 nucleotides of coding sequence, 30 nucleotides of 5' untranslated sequence and 54 nucleotides of 3' untranslated sequence. In this embodiment of the invention, the nucleotide sequence of the ASCT1 transporter consists essentially of the nucleotide sequence depicted in FIG. 1 (SEQ ID No:2). The use of the term "consisting essentially of" herein is meant to encompass the disclosed sequence and includes allelic variations of this nucleotide sequence, either naturally occurring or the product of in vitro chemical or genetic modification. Each such variant will be understood to have essentially the same nucleotide sequence as the nucleotide sequence of the corresponding ASCT1 disclosed herein.

[0031] The corresponding ASCT1 protein molecule, having the deduced amino acid sequence consisting essentially of the sequence shown in FIG. 1 (SEQ ID No.:3), is also claimed as an aspect of the invention. The use of the term "consisting essentially of" herein is as described above. Similarly, the corresponding ASCT1 protein molecule, having the deduced amino acid sequence consisting essentially of the sequence shown in FIG. 1 (SEQ ID No.:3), is also claimed as an aspect of the invention. ASCT1 protein molecules provided by the invention are understood to have substantially the same biological properties as the ASCT1 protein molecule encoded by the nucleotide sequence described herein.

[0032] In another aspect, the invention comprises a homogeneous composition of the 55.9 kD mammalian ASCT1 transporter or derivative thereof, said size being understood to be the size of the protein before any post-translational modifications thereof. The amino acid sequence of the ASCT1 transporter or derivative thereof preferably consists essentially of the amino acid sequence of the human ASCT1 transporter protein shown in FIG. 1 (SEQ ID No:3).

[0033] In a second aspect, the invention provides a nucleic acid having a nucleotide sequence encoding a human excitatory amino acid transporter that is the EAAT1 transporter (SEQ ID No:4). In this embodiment of the invention, the nucleotide sequence includes 1680 nucleotides of the human EAAT1 cDNA comprising 1626 nucleotides of coding sequence, 30 nucleotides of 5' untranslated sequence and 24 nucleotides of 3' untranslated sequence. In this embodiment of the invention, the nucleotide sequence of the EAAT1 transporter consists essentially of the nucleotide sequence depicted in FIG. 2 (SEQ ID No:4). The use of the term "consisting essentially of" herein is as described above.

[0034] In another aspect, the invention comprises a homogeneous composition of the 59.5 kilodalton (kD) mammalian EAAT1 transporter or derivative thereof, said size being understood to be the size of the protein before any post-translational modifications thereof. The amino acid sequence of the EAAT1 transporter or derivative thereof preferably consists essentially of the amino acid sequence of the human EAAT1 transporter protein shown in FIG. 2

(SEQ ID No:5). EAAT1 protein molecules provided by the invention are understood to have substantially the same biological properties as the EAAT1 protein molecule encoded by the nucleotide sequence described herein.

[0035] In a third aspect, the invention provides a nucleic acid having a nucleotide sequence encoding a human excitatory amino acid transporter that is the EAAT2 transporter (SEQ ID No:6). In this embodiment of the invention, the nucleotide sequence includes 1800 nucleotides of the human EAAT2 cDNA comprising 1722 nucleotides of coding sequence, 33 nucleotides of 5' untranslated sequence and 45 nucleotides of 3' untranslated sequence. In this embodiment of the invention, the nucleotide sequence of the EAAT2 transporter consists essentially of the nucleotide sequence depicted in FIG. 3 (SEQ ID No:6). The use of the term "consisting essentially of" herein is as described above.

[0036] The corresponding EAAT2 protein molecule, having the deduced amino acid sequence consisting essentially of the sequence shown in FIG. 3 (SEQ ID No.:7), is also claimed as an aspect of the invention. EAAT2 protein molecules provided by the invention are understood to have substantially the same biological properties as the EAAT2 protein molecule encoded by the nucleotide sequence described herein.

[0037] In another aspect, the invention comprises a homogeneous composition of the 62.1 kD mammalian EAAT2 transporter or derivative thereof, said size being understood to be the size of the protein before any post-translational modifications thereof. The amino acid sequence of the EAAT2 transporter or derivative thereof preferably consists essentially of the amino acid sequence of the human EAAT2 transporter protein shown in FIG. 3 (SEQ ID No:7).

[0038] In yet another aspect, the invention provides a nucleic acid having a nucleotide sequence encoding a human excitatory amino acid transporter that is the EAAT3 transporter (SEQ ID No:8). In this embodiment of the invention, the nucleotide sequence includes 1674 nucleotides of the human EAAT3 cDNA comprising 1575 nucleotides of coding sequence, 15 nucleotides of 5' untranslated sequence and 84 nucleotides of 3' untranslated sequence. In this embodiment of the invention, the nucleotide sequence of the EAAT3 transporter consists essentially of the nucleotide sequence depicted in FIG. 4 (SEQ ID No:8). The use of the term "consisting essentially of" herein is as described above.

[0039] The corresponding EAAT3 protein molecule, having the deduced amino acid sequence consisting essentially of the sequence shown in FIG. 4 (SEQ ID No.:9), is also claimed as an aspect of the invention. EAAT3 protein molecules provided by the invention are understood to have substantially the same biological properties as the EAAT3 protein molecule encoded by the nucleotide sequence described herein.

[0040] In another aspect, the invention comprises a homogeneous composition of the 57.2 kD mammalian EAAT3 transporter or derivative thereof, said size being understood to be the size of the protein before any post-translational modifications thereof. The amino acid sequence of the EAAT3 transporter or derivative thereof preferably consists essentially of the amino acid sequence of the human EAAT3 transporter protein shown in FIG. 4 (SEQ ID No:9).

[0041] This invention provides both nucleotide and amino acid probes derived from the sequences herein provided. The

invention includes probes isolated from either cDNA or genomic DNA, as well as probes made synthetically with the sequence information derived therefrom. The invention specifically includes but is not limited to oligonucleotide, nick-translated, random primed, or in vitro amplified probes made using cDNA or genomic clone embodying the invention, and oligonucleotide and other synthetic probes synthesized chemically using the nucleotide sequence information of cDNA or genomic clone embodiments of the invention.

[0042] It is a further object of this invention to provide such nucleic acid hybridization probes to determine the pattern, amount and extent of expression of these transporter genes in various tissues of mammals, including humans. It is also an object of the present invention to provide nucleic acid hybridization probes derived from the sequences of the amino acid transporter genes of the invention to be used for the detection and diagnosis of genetic diseases. It is an object of this invention to provide nucleic acid hybridization probes derived from the DNA sequences of the amino acid transporter genes herein disclosed to be used for the detection of novel related receptor genes.

[0043] The present invention also includes synthetic peptides made using the nucleotide sequence information comprising the cDNA embodiments of the invention. The invention includes either naturally occurring or synthetic peptides which may be used as antigens for the production of amino acid transporter-specific antibodies, or used for competitors of amino acid transporter molecules for amino acid, agonist, antagonist or drug binding, or to be used for the production of inhibitors of the binding of agonists or antagonists or analogues thereof to such amino acid transporter molecules.

[0044] The present invention also provides antibodies against and epitopes of the mammalian amino acid transporter molecules of the invention. It is an object of the present invention to provide antibodies that are immunologically reactive to the amino acid transporters of the invention. It is a particular object to provide monoclonal antibodies against these amino acid transporters, must preferably the human excitatory and neutral amino acid transporters as herein disclosed. Hybridoma cell lines producing such antibodies are also objects of the invention. It is envisioned at such hybridoma cell lines may be produced as the result of fusion between a non-immunoglobulin producing mouse myeloma cell line and spleen cells derived from a mouse immunized with a cell line which expresses antigens or epitopes of an amino acid transporter of the invention. The present invention also provides hybridoma cell lines that produces such antibodies, and can be injected into a living mouse to provide an ascites fluid from the mouse that is comprised of such antibodies. It is a further object of the invention to provide immunologically-active epitopes of the amino acid transporters of the invention. Chimeric antibodies immunologically reactive against the amino acid transporter proteins of the invention are also within the scope of this invention.

[0045] The present invention provides recombinant expression constructs comprising a nucleic acid encoding an amino acid transporter of the invention wherein the construct is capable of expressing the encoded amino acid transporter in cultures of cells transformed with the construct. Preferred embodiments of such constructs comprise the human EAAT1 cDNA (SEQ ID No.:4), the human

EAAT2 cDNA (SEQ ID No.:6), the human EAAT3 cDNA (SEQ ID No.:8), and human ASCT1 cDNA (SEQ ID No.:2), each construct being capable of expressing the amino acid transporter encoded therein in cells transformed with the construct.

[0046] The invention also provides cultures cells transformed with the recombinant expression constructs of the invention, each such cultures being capable of and in fact expressing the amino acid transporter encoded in the transforming construct.

[0047] The present invention also includes within its scope protein preparations of prokaryotic and eukaryotic cell membranes containing at least one of the amino acid transporter proteins of the invention, derived from cultures of prokaryotic or eukaryotic cells, respectively, transformed with the recombinant expression constructs of the invention. In a preferred embodiment, each preparation of such cell membranes comprises one species of the amino acid transporter proteins of the invention.

[0048] The invention also provides methods for screening compounds for their ability to inhibit, facilitate or modulate the biochemical activity of the amino acid transporter molecules of the invention, for use in the in vitro screening of novel agonist and antagonist compounds. In preferred embodiments, cells transformed with a recombinant expression construct of the invention are contacted with such a compound, and the effect of the compound on the transport of the appropriate amino acid is assayed. Additional preferred embodiments comprise quantitative analyses of such effects.

[0049] The present invention is also useful for the detection of analogues, agonists or antagonists, known or unknown, of the amino acid transporters of the invention, either naturally occurring or embodied as a drug. In preferred embodiments, such analogues, agonists or antagonists may be detected in blood, saliva, semen, cerebrospinal fluid, plasma, lymph, or any other bodily fluid.

[0050] Specific preferred embodiments of the present invention will become evident from the following more detailed description of certain preferred embodiments and the claims.

DESCRIPTION OF THE DRAWINGS

[0051] FIG. 1 illustrates the nucleotide (SEQ ID No.:2) and amino acid (SEQ ID No.:3) sequences of the human ASCT1 neutral amino acid transporter.

[0052] FIG. 2 illustrates the nucleotide (SEQ ID No.:4) and amino acid (SEQ ID No.:5) sequences of the human EAAT1 excitatory amino acid transporter.

[0053] FIG. 3 illustrates the nucleotide (SEQ ID No.:6) and amino acid (SEQ ID No.:7) sequences of the human EAAT2 excitatory amino acid transporter.

[0054] FIG. 4 illustrates the nucleotide (SEQ ID No.:8) and amino acid (SEQ ID No.:9) sequences of the human EAAT3 excitatory amino acid transporter.

[0055] FIG. 5 presents an amino acid sequence comparison between human ASCT1, GLAST1, GLT1 and EAAC1.

[0056] FIG. 6 illustrates transmembrane electrochemical currents in Xenopus laevis oocytes microinjected with RNA

encoding ASCT1 and contacted with the indicated amino acids (Panel A); the amino acid concentration dependence of such electrochemical currents (Panel B); and a plot of normalized current vs. amino acid concentration illustrating the kinetic parameters of amino acid transport (Panel C).

[0057] FIG. 7 presents glutamate transporter kinetics of EAAT1 (Panel A), EAAT2 (Panel B) and EAAT3 (Panel C).

[0058] FIG. 8 represents the pharmacological responsiveness of glutamate transport by the human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 when contacted with the indicated competitors/inhibitors at the indicated concentrations.

[0059] FIG. 9 shows the pattern of expression of EAAT1, EAAT2, EAAT3 and ASCT1 in human tissues; β -actin is shown as a control for amount of RNA in each lane.

[0060] FIG. 10 shows the pattern of expression of EAAT1, EAAT2, EAAT3 and ASCT1 in human brain tissue; β -actin is shown as a control for the amount of RNA in each lane.

[0061] FIG. 11 illustrates the degree of predicted amino acid sequence homology between the novel human glutamate transporters EAAT1, EAAT2 and EAAT3; overbars indicate nine regions of hydrophobicity determined using the algorithm of Eisenberg et al., and potential sites of N-linked glycosylation are shown by the circled asparagine (N) residues.

[0062] FIG. 12 illustrate electrogenic uptake of various amino acids (Panel A) and the concentration dependence of such uptake of L-glutamate (Panel B) in Xenopus laevis oocytes expressing the EAAT1 amino acid transporter.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0063] The term "human amino acid transporter EAAT1" as used herein refers to proteins consisting essentially of, and having substantially the same biological activity as, the protein encoded by the nucleic acid depicted in FIG. 2 (SEQ ID No.:4). This definition is intended to encompass natural allelic variations in the EAAT1 sequence. Cloned nucleic acid provided by the present invention may encode EAAT1 protein of any species of origin, including, for example, mouse, rat, rabbit, cat, and human, but preferably the nucleic acid provided by the invention encodes EAAT1 receptors of mammalian, most preferably human, origin.

[0064] The term "human amino acid transporter EAAT2" as used herein refers to proteins consisting essentially of, and having substantially the same biological activity as, the protein encoded by the nucleic acid depicted in FIG. 3 (SEQ ID No.:6). This definition is intended to encompass natural allelic variations in the EAAT2 sequence. Cloned nucleic acid provided by the present invention may encode EAAT2 protein of any species of origin, including, for example, mouse, rat, rabbit, cat, and human, but preferably the nucleic acid provided by the invention encodes EAAT2 receptors of mammalian, most preferably human, origin.

[0065] The term "human amino acid transporter EAAT3" as used herein refers to proteins consisting essentially of, and having substantially the same biological activity as, the protein encoded by the nucleic acid depicted in FIG. 4 (SEQ ID No.:8). This definition is intended to encompass natural

allelic variations in the EAAT3 sequence. Cloned nucleic acid provided by the present invention may encode EAAT3 protein of any species of origin, including, for example, mouse, rat, rabbit, cat, and human, but preferably the nucleic acid provided by the invention encodes EAAT3 receptors of mammalian, most preferably human, origin.

[0066] The term "human amino acid transporter ASCT1" as used herein refers to proteins consisting essentially of, and having substantially the same biological activity as, the protein encoded by the nucleic acid depicted in FIG. 1 (SEQ ID No.:2). This definition is intended to encompass natural allelic variations in the ASCT1 sequence. Cloned nucleic acid provided by the present invention may encode ASCT1 protein of any species of origin, including, for example, mouse, rat, rabbit, cat, and human, but preferably the nucleic acid provided by the invention encodes ASCT1 receptors of mammalian, most preferably human, origin.

[0067] Each of the nucleic acid hybridization probes provided by the invention comprise DNA or RNA consisting essentially of the nucleotide sequence of one of the amino acid transporters, depicted in FIGS. 14 (SEQ ID Nos.:2, 4, 6, 8), or any portion thereof effective in nucleic acid hybridization. Mixtures of such nucleic acid hybridization probes are also within the scope of this embodiment of the invention. Nucleic acid probes as provided herein are useful for detecting amino acid transporter gene expression in cells and tissues using techniques well-known in the art, including but not limited to Northern blot hybridization, in situ hybridization and Southern hybridization to reverse transcriptase—polymerase chain reaction product DNAs. The probes provided by the present invention, including oligonucleotides probes derived therefrom, are useful are also useful for Southern hybridization of mammalian, preferably human, genomic DNA for screening for restriction fragment length polymorphism (RFLP) associated with certain genetic disorders.

[0068] The production of proteins such as these amino acid transporter molecules from cloned genes by genetic engineering means is well known in this art. The discussion which follows is accordingly intended as an overview of this field, and is not intended to reflect the full state of the art.

[0069] DNA encoding an amino acid transporter may be obtained, in view of the instant disclosure, by chemical synthesis, by screening reverse transcripts of mRNA from appropriate cells or cell line cultures, by screening genomic libraries from appropriate cells, or by combinations of these procedures, as illustrated below. Screening of mRNA or genomic DNA may be carried out with oligonucleotide probes generated from the nucleic acid sequence information from each of the amino acid transporters disclosed herein. Probes may be labeled with a detectable group such as a fluorescent group, a radioactive atom or a chemiluminescent group in accordance with know procedures and used in conventional hybridization assays, as described in greater detail in the Examples below. In the alternative, amino acid transporter-derived nucleic acid sequences may be obtained by use of the polymerase chain reaction (PCR) procedure, using PCR oligonucleotide primers corresponding to nucleic acid sequence information derived from an amino acid transporter as provided herein. See U.S. Pat. Nos. 4,683,195 to Mullis et al. and 4,683,202 to Mullis.

[0070] Each of the amino acid transporter proteins may be synthesized in host cells transformed with a recombinant

expression construct comprising a nucleic acid encoding the particular amino acid transporter cDNA. Such recombinant expression constructs can also be comprised of a vector that is a replicable DNA construct. Vectors are used herein either to amplify DNA encoding an amino acid transporter and/or to express DNA encoding an amino acid transporter gene. For the purposes of this invention, a recombinant expression construct is a replicable DNA construct in which a nucleic acid encoding an amino acid transporter is operably linked to suitable control sequences capable of effecting the expression of the amino acid transporter in a suitable host.

[0071] The need for such control sequences will vary depending upon the host selected and the transformation method chosen. Generally, control sequences include a transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding sites, and sequences which control the termination of transcription and translation. Amplification vectors do not require expression control domains. All that is needed is the ability to replicate in a host, usually conferred by an origin of replication, and a selection gene to facilitate recognition of transformants. See, Sambrook et al., 1990, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press: New York).

[0072] Vectors useful for practicing the present invention include plasmids, viruses (including phage), retroviruses, and integratable DNA fragments (i.e., fragments integratable into the host genome by homologous recombination). The vector replicates and functions independently of the host genome, or may, in some instances, integrate into the genome itself. Suitable vectors will contain replicon and control sequences which are derived from species compatible with the intended expression host. A preferred vector is pCMV5 (Andersson et al., 1989, J. Biol. Chem. 264: 8222-8229). Transformed host cells are cells which have been transformed or transfected with recombinant expression constructs made using recombinant DNA techniques and comprising nucleic acid encoding an amino acid transporter protein. Preferred host cells are COS-7 cells (Gluzman, 1981, Cell 23: 175-182). Transformed host cells may express the amino acid transporter protein, but host cells transformed for purposes of cloning or amplifying nucleic acid hybridization probe DNA need not express the transporter. When expressed, each of the amino acid transporters of the invention will typically be located in the host cell membrane. See, Sambrook et al., ibid.

[0073] Cultures of cells derived from multicellular organisms are a desirable host for recombinant amino acid transporter protein synthesis. In principal, any higher eukaryotic cell culture is useful, whether from vertebrate or invertebrate culture. However, mammalian cells are preferred, as illustrated in the Examples. Propagation of such cells in cell culture has become a routine procedure. See *Tissue Culture*, Academic Press, Kruse & Patterson, editors (1973). Examples of useful host cell lines are human 293 cells, VERO and HeLa cells, Chinese hamster ovary (CHO) cell lines, and WI138, BHK, COS-7, CV, and MDCK cell lines. COS-7 cells are preferred.

[0074] The invention provides homogeneous compositions of each of the human EAAT1, EAAT2, EAAT3 and ASCT1 amino acid transporter proteins produced by transformed eukaryotic cells as provided herein. Each such

homogeneous composition is intended to be comprised of the corresponding amino acid transporter protein that comprises at least 90% of the protein in such a homogeneous composition. The invention also provides membrane preparation from cells expressing each of the amino acid transporter proteins as the result of transformation with a recombinant expression construct, as described herein.

[0075] Amino acid transporter proteins made from cloned genes in accordance with the present invention may be used for screening amino acid analogues, or agonist or antagonists of amino acid transport, or for determining the amount of such agonists or antagonists in a solution of interest (e.g., blood plasma or serum). For example, host cells may be transformed with a recombinant expression construct of the present invention, an amino acid transporter expressed in those host cells, and the cells or membranes thereof used to screen compounds for their effect on amino acid transport activity. By selection of host cells that do not ordinarily express a particular amino acid transporter, pure preparations of membranes containing the transporter can be obtained.

[0076] The recombinant expression constructs of the present invention are useful in molecular biology to transform cells which do not ordinarily express a particular amino acid transporter to thereafter express this receptor. Such cells are useful as intermediates for making cell membrane preparations useful for transporter activity assays, which are in turn useful for drug screening. The recombinant expression constructs of the present invention may also be useful in gene therapy. Cloned genes of the present invention, or fragments thereof, may also be used in gene therapy carried out homologous recombination or site-directed mutagenesis. See generally Thomas & Capecchi, 1987, Cell 51: 503-512; Bertling, 1987, Bioscience Reports 7: 107-112; Smithies et al., 1985, Nature 317: 230-234.

[0077] Oligonucleotides of the present invention are useful as diagnostic tools for probing amino acid transporter gene expression in tissues of humans and other animals. For example, tissues are probed in situ with oligonucleotide probes carrying detectable groups by conventional autoradiographic techniques, to investigate native expression of this receptor or pathological conditions relating thereto. Further, chromosomes can be probed to investigate the presence or absence of the corresponding amino acid transporter gene, and potential pathological conditions related thereto.

[0078] The invention also provides antibodies that are immunologically reactive to the amino acid transporter proteins or epitopes thereof provided by the invention. The antibodies provided by the invention may be raised, using methods well known in the art, in animals by inoculation with cells that express an amino acid transporter or epitopes thereof, cell membranes from such cells, whether crude membrane preparations or membranes purified using methods well known in the art, or purified preparations of proteins, including fusion proteins, particularly fusion proteins comprising epitopes of the amino acid transporter proteins of the invention fused to heterologous proteins and expressed using genetic engineering means in bacterial, yeast or eukaryotic cells, said proteins being isolated from such cells to varying degrees of homogeneity using conven-

tional biochemical means. Synthetic peptides made using established synthetic means in vitro and optionally conjugated with heterologous sequences of amino acids, are also encompassed in these methods to produce the antibodies of the invention. Animals that are used for such inoculations include individuals from species comprising cows, sheep, pigs, mice, rats, rabbits, hamsters, goats and primates. Preferred animals for inoculation are rodents (including mice, rats, hamsters) and rabbits. The most preferred animal is the mouse.

[0079] Cells that can be used for such inoculations, or for any of the other means used in the invention, include any cell line which naturally expresses one of the amino acid transporters provided by the invention, or any cell or cell line that expresses one of the amino acid transporters of the invention, or any epitope thereof, as a result of molecular or genetic engineering, or that has been treated to increase the expression of an endogenous or heterologous amino acid transporter protein by physical, biochemical or genetic means. Preferred cells are *E. coli* and insect SF9 cells, most preferably *E. coli* cells, that have been transformed with a recombinant expression construct of the invention encoding an amino acid transporter protein, and that express the transporter therefrom.

[0080] The present invention also provides monoclonal antibodies that are immunologically reactive with an epitope derived from an amino acid transporter of the invention, or fragment thereof, present on the surface of such cells, preferably *E. coli* cells. Such antibodies are made using methods and techniques well known to those of skill in the art. Monoclonal antibodies provided by the present invention are produced by hybridoma cell lines, that are also provided by the invention and that are made by methods well known in the art.

[0081] Hybridoma cell lines are made by fusing individual cells of a myeloma cell line with spleen cells derived from animals immunized with cells expressing an amino acid transporter of the invention, as described above. The myeloma cell lines used in the invention include lines derived from myelomas of mice, rats, hamsters, primates and humans. Preferred myeloma cell lines are from mouse, and the most preferred mouse myeloma cell line is P3X63-Ag8.653. The animals from whom spleens are obtained after immunization are rats, mice and hamsters, preferably mice, most preferably Balb/c mice. Spleen cells and myeloma cells are fused using a number of methods well known in the art, including but not limited to incubation with inactivated Sendai virus and incubation in the presence of polyethylene glycol (PEG). The most preferred method for cell fusion is incubation in the presence of a solution of 45% (w/v) PEG-1450. Monoclonal antibodies produced by hybridoma cell lines can be harvested from cell culture supernatant fluids from in vitro cell growth; alternatively, hybridoma cells can be injected subcutaneously and/or into the peritoneal cavity of an animal, most preferably a mouse, and the monoclonal antibodies obtained from blood and/or ascites fluid.

[0082] Monoclonal antibodies provided by the present invention are also produced by recombinant genetic methods well known to those of skill in the art, and the present invention encompasses antibodies made by such methods that are immunologically reactive with an epitope of an

amino acid transporter of the invention. The present invention also encompasses fragments, including but not limited to F(ab) and F(ab)'₂ fragments, of such antibody. Fragments are produced by any number of methods, including but not limited to proteolytic cleavage, chemical synthesis or preparation of such fragments by means of genetic engineering technology. The present invention also encompasses single-chain antibodies that are immunologically reactive with an epitope of an amino acid transporter, made by methods known to those of skill in the art.

[0083] The present invention also encompasses an epitope of an amino acid transporter of the invention, comprised of sequences and/or a conformation of sequences present in the transporter molecule. This epitope may be naturally occurring, or may be the result of proteolytic cleavage of a transporter molecule and isolation of an epitope-containing peptide or may be obtained by synthesis of an epitope-containing peptide using methods well known to those skilled in the art. The present invention also encompasses epitope peptides produced as a result of genetic engineering technology and synthesized by genetically engineered prokaryotic or eukaryotic cells.

[0084] The invention also includes chimeric antibodies, comprised of light chain and heavy chain peptides immunologically reactive to an amino acid transporter-derived epitope. The chimeric antibodies embodied in the present invention include those that are derived from naturally occurring antibodies as well as chimeric antibodies made by means of genetic engineering technology well known to those of skill in the art.

[0085] The Examples which follow are illustrative of specific embodiments of the invention, and various uses thereof. They set forth for explanatory purposes only, and are not to be taken as limiting the invention.

EXAMPLE 1

Isolation of a Human Neutral Amino Acid Transporter cDNA

[0086] In order to clone a novel human neutral amino acid transporter, a cDNA library was prepared from human motor cortex mRNA using standard techniques [see Sambrook et al., 1990, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press: New York)]. Briefly, total RNA was isolated using the method of Chomczynski & Sacchi (1987, Anal. Biochem. 162: 156-159), wherein the tissue is disrupted and solubilized in a solution containing guanidinium isothiocyanate and the RNA purified by phenol/chloroform extractions. Total cellular RNA thus isolated was then enriched for poly (A+) mRNA by oligo (dT) chromatography. A mixture of oligo (dT)-primed and random-primed mRNA was converted to cDNA using the Superscript Choice System (Bethesda Research Labs, Gaithersburg, Md.). cDNA was ligated into the cloning vector λZAPII (Strategene, La Jolla, Calif.), packaged into phage heads using commercially-available packaging extracts (Strategene) and used to infect E. coli. Lawns of infected bacterial cells were used to make plaque lifts for hybridization using standard conditions (see Sambrook, et al., ibid.).

[0087] This cDNA library was hybridized with a ³²P-labeled oligonucleotide having the following sequence:

60

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (iii) NUMBER OF SEQUENCES: 17
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 63 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CTGRGCRATG AARATGGCAG CCAGGGCYTC ATACAGGGCT GTGCCRTCCA TGTTRATGGT

RGC 63

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1680 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:

						5'U								
	(ix)		A) NA	AME/1	KEY:		.1626	5						
	(ix)		A) NA	AME/1		3'UT	rr 516	580						
	(xi)	SEÇ	QUENC	CE DI	ESCR	IPTIC	ON: S	SEQ I	D NO	2:	:			
CAC	CTCT	AGC T	rcgg <i>i</i>	AGCG	GC G	IGTA(GCGC	Met				ı Glı	C AAC Asn	54
							GCG Ala							102
							GCA Ala							150
							ACC Thr							198
							GGG Gly							246
							GAG Glu 80							294
							TGC C y s							342
							CGT Arg							390
							GCC Ala							438
							GGT Gly							486
							CCT Pro 160							534
							AGA Arg							582
							GCA Ala							630
							ACC Thr							678
							TTA Leu							726
							CTA Leu 240							774

	TTC Phe 250														822	
	ATG Met														870	
	GTG Val														918	
	ATC Ile														966	
	CCA Pro														1014	
	CTG Leu 330														1062	
	TCA Ser														1110	
	GTG Val														1158	
	AAC Asn														1206	
	GCG Ala														1254	
	CTA Leu 410														1302	
	GGA Gly														1350	
	ACT Thr														1398	
	ACC Thr														1446	
	CTC Leu														1494	
	GCT Ala 490														1542	
	ACA Thr														1590	
	GCC Ala											TGA'	rggg(GCT	1636	
GGG	CTTTC	GGG (CTTG	CCTG	CC A	GCAG'	IGAT(TC0	CCAC	CCTG	TTC	A			1680	

(2)	INF	ORMA!	rion	FOR	SEQ	ID I	: OI	3:							
	(i)	(1	A) LI B) T	ENGTI YPE:	HARAG H: 5: amin DGY:	32 ar no ac	mino cid		ds						
	(ii) MOI	LECUI	LE T	YPE:	pro	tein								
	(xi) SE	QUEN	CE DI	ESCR:	IPTI	ON: S	SEQ :	ID NO) : 3	:				
Met 1	Glu	Lys	Ser	Asn 5	Glu	Thr	Asn	Gly	Tyr 10	Leu	Asp	Ser	Ala	Gln 15	Ala
Gly	Pro	Ala	Ala 20	Gly	Pro	Gly	Ala	Pro 25	Gly	Thr	Ala	Ala	Gly 30	Arg	Ala
Arg	Arg	Cys 35	Ala	Arg	Phe	Leu	Arg 40	Arg	Gln	Ala	Leu	Val 45	Leu	Leu	Thr
Val	Ser 50	Gly	Val	Leu	Ala	Gly 55	Ala	Gly	Leu	Gly	Ala 60	Ala	Leu	Arg	Gly
Leu 65	Ser	Leu	Ser	Arg	Thr 70	Gln	Val	Thr	Tyr	Leu 75	Ala	Phe	Pro	Gly	Glu 80
Met	Leu	Leu	Arg	Met 85	Leu	Arg	Met	Ile	Ile 90	Leu	Pro	Leu	Val	Val 95	Cys
Ser	Leu	Val	Ser 100	Gly	Ala	Ala	Ser	Leu 105	Asp	Ala	Ser	Cys	Leu 110	Gly	Arg
Leu	Gly	Gly 115	Ile	Arg	Val	Ala	Tyr 120	Phe	Gly	Leu	Thr	Thr 125	Leu	Ser	Ala
Ser	Ala 130	Leu	Ala	Val	Ala	Leu 135	Ala	Phe	Ile	Ile	Lys 140	Pro	Gly	Ser	Gly
Ala 145	Gln	Thr	Leu	Gln	Ser 150	Ser	Asp	Leu	Gly	Leu 155	Glu	Asp	Ser	Gly	Pro 160
Pro	Pro	Val	Pro	Lys 165	Glu	Thr	Val	Asp	Ser 170	Phe	Leu	Asp	Leu	Ala 175	Arg
Asn	Leu	Phe	Pro 180	Ser	Asn	Leu	Val	Val 185	Ala	Ala	Phe	Arg	Thr 190	Tyr	Ala
Thr	Asp	Tyr 195	Lys	Val	Val	Thr	Gln 200	Asn	Ser	Ser	Ser	Gly 205	Asn	Val	Thr
His	Glu 210	Lys	Ile	Pro	Ile	Gly 215	Thr	Glu	Ile	Glu	Gly 220	Met	Asn	Ile	Leu
Gl y 225	Leu	Val	Leu	Phe	Ala 230	Leu	Val	Leu	Gly	Val 235	Ala	Leu	Lys	Lys	Leu 240
Gly	Ser	Glu	Gly	Glu 245	Asp	Leu	Ile	Arg	Phe 250	Phe	Asn	Ser	Leu	Asn 255	Glu
Ala	Thr	Met	Val 260	Leu	Val	Ser	Trp	Ile 265	Met	Trp	Tyr	Val	Pro 270	Val	Gly
Ile	Met	Phe 275	Leu	Val	Gly	Ser	L y s 280	Ile	Val	Glu	Met	L y s 285	Asp	Ile	Ile

Val Leu Val Thr Ser Leu Gly Lys Tyr Ile Phe Ala Ser Ile Leu Gly $290 \hspace{1.5cm} 295 \hspace{1.5cm} 300 \hspace{1.5cm}$

His Val Ile His Gly Gly Ile Val Leu Pro Leu Ile Tyr Phe Val Phe 305 $$ 310 $$ 310 $$ 315 $$ 320

Thr Arg Lys Asn Pro Phe Arg Phe Leu Leu Gly Leu Leu Ala Pro Phe 325 330 335

Ala Thr Ala Phe Ala Thr Cys Ser Ser Ser Ala Thr Leu Pro Ser Met $340 \hspace{1.5cm} 345 \hspace{1.5cm} 350 \hspace{1.5cm}$

Met	гур	355	iie	GIU	GIU	ASII	360	GIY	vai	Asp	гуѕ	365	iie	ser	Arg	
Phe	Ile 370	Leu	Pro	Ile	Gly	Ala 375	Thr	Val	Asn	Met	Asp 380	Gly	Ala	Ala	Ile	
Phe 385	Gln	Суѕ	Val	Ala	Ala 390	Val	Phe	Ile	Ala	Gln 395	Leu	Asn	Asn	Ile	Glu 400	
Leu	Asn	Ala	Gly	Gln 405	Ile	Phe	Thr	Ile	Leu 410	Val	Thr	Ala	Thr	Ala 415	Ser	
Ser	Val	Gly	Ala 420	Ala	Gly	Val	Pro	Ala 425	Gly	Gly	Val	Leu	Thr 430	Ile	Ala	
Ile	Ile	Leu 435	Glu	Ala	Ile	Gly	Leu 440	Pro	Thr	His	Asp	Leu 445	Pro	Leu	Ile	
Leu	Ala 450	Val	Asp	Trp	Ile	Val 455	Asp	Arg	Thr	Thr	Thr 460	Val	Val	Asn	Val	
Glu 465	Gly	Asp	Ala	Leu	Gly 470	Ala	Gly	Ile	Leu	His 475	His	Leu	Asn	Gln	L y s 480	
Ala	Thr	Lys	Lys	Gly 485	Glu	Gln	Glu	Leu	Ala 490	Glu	Val	Lys	Val	Glu 495	Ala	
Ile	Pro	Asn	C y s 500	Lys	Ser	Glu	Glu	Glu 505	Thr	Ser	Pro	Leu	Val 510	Thr	His	
Gln	Asn	Pro 515	Ala	Gly	Pro	Val	Ala 520	Ser	Ala	Pro	Glu	Leu 525	Glu	Ser	Lys	
Glu	Ser 530	Val	Leu													
(2)	INF	ORMA'	rion	FOR	SEQ	ID 1	NO: 4	4 :								
	(i)	(1 (1	A) L1 3) T1 C) S1	ENGTI YPE : FRANI	HARAG H: 16 nucl DEDNI DGY:	580 k leic ESS:	ase acio sino	pain d	cs.							
	(ii)) MOI	LECUI	LE T	YPE:	cDNA	A									
	(ix)		A) N2	AME/I	KEY:											
	(ix		A) N2	AME/I	KEY:		.1656	5								
	(ix)		A) N2	AME/I	KEY:			580								
	(xi) SE(QUEN	CE DI	ESCR:	IPTIC	ON: S	SEQ :	ID NO): 4	:					
AAAG	AAG2	AGA (CCT	CCTA	GA AA	AAGT	AAAA	Met					ı Gly		A GAG 1 Glu	54
								AGA Arg								102
								GTG Val								150
								GCT Ala								198

Met Lys Cys Ile Glu Glu Asn Asn Gly Val Asp Lys Arg Ile Ser Arg

		45			50			55		
				CTT Leu					246	
				TAC Tyr 80					294	
				GTC Val					342	
				GAT Asp					390	
				ATG Met					438	
				ATC Ile					486	
				AAA Lys 160					534	
				AAC Asn					582	
				ACC Thr					630	
				ACG Thr					678	
				CTT Leu					726	
				GGA Gly 240					774	
				GTG Val					822	
				GAT Asp					870	
				TAT Tyr					918	
				ATG Met					966	
				ACT Thr 320					1014	
				CTC Leu					1062	
				TTG Leu					1110	

_																	
3	45					350					355					360	
G	GG	ACC	TCT	TCA	AGT	TCT	GCC	ACC	CTA	CCC	ATC	ACC	TTC	AAG	TGC	CTG	1158
G	ly	Thr	Ser	Ser	Ser 365	Ser	Ala	Thr	Leu	Pro 370	Ile	Thr	Phe	Lys	Cys 375	Leu	
					303					370					313		
							GAC										1206
G	Ιu	Glu	Asn	380	GIY	Val	Asp	Lys	Arg 385	Val	Thr	Arg	Phe	390	Leu	Pro	
							ATG Met										1254
•	ш	CLY	395	1111	110	ASII	ricc	400	GLY	1111	AIG	пса	405	Olu	AIU	пса	
C	сm	ccc	7 mm	mma	7 mm	CCIII	CAA	cmm	7 7 C	777	mmm	C 7 7	CITIC .	770	mma	CCA	1302
							Gln										1302
		410					415					420				-	
C	AA	ATT	ATT	ACA	ATC	AGC.	ATC	ACA	GCC	ACA	GCT	GCC	AGT	ATT	GGG	GCA	1350
G	ln					Ser	Ile				Ala					Ala	=
4	25					430					435					440	
G	CT	GGA	ATT	CCT	CAG	GCG	GGC	CTG	GTC	ACT	ATG	GTC	ATT	GTG	CTG	ACA	1398
A	la	Gly	Ile	Pro		Ala	Gly	Leu	Val		Met	Val	Ile	Val		Thr	
					445					450					455		
							GAC										1446
S	er	Val	Gly	Leu 460	Pro	Thr	Asp	Asp	Ile 465	Thr	Leu	Ile	Ile	Ala 470	Val	Asp	
				400					403					470			
							CGG										1494
T.	rp	Pne	ьеи 475	Asp	Arg	Leu	Arg	480	Thr	Thr	Asn	vai	ьеи 485	GIY	Asp	ser	
							GAG Glu										1542
ш,	cu	490	ата	GIY	116	val	495	1110	пец	Set	ALY	500	GIU	шeu	шуа	ADII	
7.	~ 7	CAE	cmm	C 7 7	N III C'	cce	770	ma ×	cmc	y mm	C 3 3	CAC	אאריי	C D T	NIII C	7 7 C	1500
							AAC Asn										1590
	05					510					515					520	
2	ΔΔ	CCA	יי ביי	CAA	CTC	ייייף ע	GCA	CAG	GAC	ייי ע ע	GAA	Σ⊘π	GAG	444	ccc	ΔͲሮ	1638
							Ala										1000
					525					530					535		
G.	AC	AGT	GAA	ACC	AAG	ATG	TAG	ACTA	ACA !	raaa	GAAA	CA C	ГТТ				1680
A	sp	Ser	Glu		Lys	Met											
				540													

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 542 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Met Thr Lys Ser Asn Gly Glu Glu Pro Lys Met Gly Gly Arg Met Glu 1 5 10 15

Arg Phe Gln Gln Gly Val Arg Lys Arg Thr Leu Leu Ala Lys Lys Lys $20 \\ 25 \\ 30$

Val Gln Asn Ile Thr Lys Glu Val Val Lys Ser Tyr Leu Phe Arg Asn \$35\$

Gly Phe Thr Leu Arg Pro Tyr Arg Met Ser Tyr Arg Glu Val Lys Tyr 65 70 75 80

Phe	Ser	Phe	Pro	Gl y 85	Glu	Leu	Leu	Met	Arg 90	Met	Leu	Gln	Met	Leu 95	Val
Leu	Pro	Leu	Ile 100	Ile	Ser	Ser	Leu	Val 105	Thr	Gly	Met	Ala	Ala 110	Leu	Asp
Ser	Lys	Ala 115	Ser	Gly	Lys	Trp	Glu 120	Cys	Gly	Ala	Val	Val 125	Tyr	Tyr	Met
Thr	Thr 130	Thr	Ile	Ile	Ala	Val 135	Val	Ile	Gly	Ile	Ile 140	Ile	Val	Ile	Ile
Ile 145	His	Pro	Gly	Lys	Gl y 150	Thr	Lys	Glu	Asn	Met 155	His	Arg	Glu	Gly	Lys 160
Ile	Val	Arg	Val	Thr 165	Ala	Ala	Asp	Ala	Phe 170	Leu	Asp	Leu	Ile	A rg 175	Asn
Met	Leu	Asn	Pro 180	Asn	Leu	Val	Glu	Ala 185	Суѕ	Phe	Lys	Gln	Phe 190	Lys	Thr
Asn	Tyr	Glu 195	Lys	Arg	Ser	Phe	L y s 200	Val	Pro	Ile	Gln	Ala 205	Asn	Glu	Thr
Leu	Val 210	Gly	Ala	Val	Ile	Asn 215	Asn	Val	Ser	Glu	Ala 220	Met	Glu	Thr	Leu
Thr 225	Arg	Ile	Thr	Glu	Glu 230	Leu	Val	Pro	Val	Pro 235	Gly	Ser	Val	Asn	Gl y 240
				245			Val		250					255	
Ile	Gly	Asn	Met 260	Lys	Glu	Gln	Gly	Gln 265	Ala	Leu	Arg	Glu	Phe 270	Phe	Asp
		275					Arg 280					285			
Ala	Pro 290	Val	Gly	Ile	Leu	Phe 295	Leu	Ile	Ala	Gly	L y s 300	Ile	Val	Glu	Met
Glu 305	Asp	Met	Gly	Val	Ile 310	Gly	Gly	Gln	Leu	Ala 315	Met	Tyr	Thr	Val	Thr 320
Val	Ile	Val	Gly	Leu 325	Leu	Ile	His	Ala	Val 330	Ile	Val	Leu	Pro	Leu 335	Leu
Tyr	Phe	Leu	Val 340	Thr	Arg	Lys	Asn	Pro 345	Trp	Val	Phe	Ile	Gly 350	Gly	Leu
Leu	Gln	Ala 355	Leu	Ile	Thr	Ala	Leu 360	Gly	Thr	Ser	Ser	Ser 365	Ser	Ala	Thr
	Pro 370		Thr	Phe		С у в 375	Leu	Glu			Asn 380		Val	Asp	Lys
Arg 385	Val	Thr	Arg	Phe	Val 390	Leu	Pro	Val	Gly	Ala 395	Thr	Ile	Asn	Met	Asp 400
Gly	Thr	Ala	Leu	Tyr 405	Glu	Ala	Leu	Ala	Ala 410	Ile	Phe	Ile	Ala	Gln 415	Val
Asn	Asn	Phe	Glu 420	Leu	Asn	Phe	Gly	Gln 425	Ile	Ile	Thr	Ile	Ser 430	Ile	Thr
Ala	Thr	Ala 435	Ala	Ser	Ile	Gly	Ala 440	Ala	Gly	Ile	Pro	Gln 445	Ala	Gly	Leu
Val	Thr 450	Met	Val	Ile	Val	Leu 455	Thr	Ser	Val	Gly	Leu 460	Pro	Thr	Asp	Asp
Ile 465	Thr	Leu	Ile	Ile	Ala 470	Val	Asp	Trp	Phe	Leu 475	Asp	Arg	Leu	Arg	Thr 480

Thr	Thr	Asn	Val	Leu 485	Gly	Asp	Ser	Leu	Gly 490	Ala	Gly	Ile	Val	Glu 495	His	
Leu	Ser	Ara	His		Leu	Lys	Asn	Ara		Val	Glu	Met	Gly		Ser	
		,	500			2		505	_				510			
Val	Ile	Glu 515	Glu	Asn	Glu	Met	Lys 520	Lys	Pro	Tyr	Gln	Leu 525	Ile	Ala	Gln	
Asp	Asn 530	Glu	Thr	Glu	Lys	Pro 535	Ile	Asp	Ser	Glu	Thr 540	Lys	Met			
(2)	INF	ORMA'	rion	FOR	SEQ	ID I	NO:	6 :								
	(i	() ()	A) L1 B) T1 C) S1	ENGTI YPE: TRANI	HARAG H: 1: nuc: DEDNI	300 } leic ESS:	base acio sino	pai: d	rs							
	(ii) MOI	LECUI	LE T	YPE:	cDN	A									
	(ix		A) N	AME/	KEY: ION:											
	(ix		A) N	AME/	KEY: ION:		.175	5								
	(ix	,	A) N	AME/	KEY:			300								
	(xi) SE	QUEN	CE DI	ESCR:	IPTI	on: :	SEQ :	ID NO	D: 6	:					
GAT	AGTG	CTG A	AAGA	GGAG(GG G(CGTT	CCCA	G AC	Me					ı Gly	GCC Ala	54
					CAG Gln											102
					AAG Lys											150
					CTG Leu 45											198
					GGA Gly			Leu		Leu						246
					TTA Leu											294
					ATT Ile											342
					GAT Asp											390
					ATG Met 125											438
ста	Δיייי	СТС	GTC	TTG	GCT	ATC	CAT	CCA	GGC	AAT	ccc	AAG	CTC	AAG	AAG Lys	486

	GGG Gly											534
	GAC Asp 170											582
	CAA Gln											630
	GAC Asp											678
	ACT Thr											726
	CTG Leu											774
	ATT Ile 250											822
	ATG Met											870
	ATC Ile											918
	GGA Gly											966
	GGG Gly											1014
	ATC Ile 330											1062
	TCC Ser											1110
Thr	GCT Ala	Ser	Ser	Ala	Thr	Leu	Pro	Val	Thr			1158
	AAT Asn											1206
	GCA Ala											1254
	ATC Ile 410											1302
	GTG Val											1350
	ATC Ile											1398

			G CTG GTG GCT GT 1 Leu Val Ala Va 47	l Asp
			r GTT GTG GGT GA n Val Val Gly As 485	
			G TCT GAG CTG GA S Ser Glu Leu As 500	
			F GAA ATG ACC AA e Glu Met Thr Ly 515	
			G GAA AGC AAC TC g Glu Ser Asn Se)	
			A GTA GAT GAA TG e Val Asp Glu Cy 55	s Lys
			C TGC AGT GTT GA Cys Ser Val Gl 565	
GAA CCT TGG AAA Glu Pro Trp Lys 570		TAAGGATATG AGTO	CTCAGCA AATTCTTG.	AA 1785
TAAACTCCCC AGCG	г			1800

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 574 amino acids
 (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Met Ala Ser Thr Glu Gly Ala Asn Asn Met Pro Lys Gln Val Glu Val 1 1

Arg Met Pro Asp Ser His Leu Gly Ser Glu Glu Pro Lys His Arg His $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Leu Gly Leu Arg Leu Cys Asp Lys Leu Gly Lys Asn Leu Leu Thr \$35\$

Leu Thr Val Phe Gly Val Ile Leu Gly Ala Val Cys Gly Gly Leu Leu 50 60

Arg Leu Ala Ser Pro Ile His Pro Asp Val Val Met Leu Ile Ala Phe 65 70 75 80

Pro Gly Asp Ile Leu Met Arg Met Leu Lys Met Leu Ile Leu Gly Leu 85 90 95

Ile Ile Ser Ser Leu Ile Thr Gly Leu Ser Gly Leu Asp Ala Lys Ala $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Ser Gly Arg Leu Gly Thr Arg Ala Met Val Tyr Tyr Met Ser Thr Thr

Ile Ile Ala Ala Val Leu Gly Val Ile Leu Val Leu Ala Ile His Pro 135

Gly Asn Pro Lys Leu Lys Lys Gln Leu Gly Pro Gly Lys Lys Asn Asp $145 \hspace{1.5cm} 150 \hspace{1.5cm} 155 \hspace{1.5cm} 160$

Glu	Val	Ser	Ser	Leu 165	Asp	Ala	Phe	Leu	Asp 170	Leu	Ile	Arg	Asn	Leu 175	Phe
Pro	Glu	Asn	Leu 180	Val	Gln	Ala	Cys	Phe 185	Gln	Gln	Ile	Gln	Thr 190	Val	Thr
Lys	Lys	Val 195	Leu	Val	Ala	Pro	Pro 200	Pro	Asp	Glu	Glu	Ala 205	Asn	Ala	Thr
Ser	Ala 210	Glu	Val	Ser	Leu	Leu 215	Asn	Glu	Thr	Val	Thr 220	Glu	Val	Pro	Glu
Glu 225	Thr	Lys	Met	Val	Ile 230	Lys	Lys	Gly	Leu	Glu 235	Phe	Lys	Asp	Gly	Met 240
Asn	Val	Leu	Gly	Leu 245	Ile	Gly	Phe	Phe	Ile 250	Ala	Phe	Gly	Ile	Ala 255	Met
Gly	Lys	Met	Gly 260	Asp	Gln	Ala	Lys	Leu 265	Met	Val	Asp	Phe	Phe 270	Asn	Ile
Leu	Asn	Glu 275	Ile	Val	Met	Lys	Leu 280	Val	Ile	Met	Ile	Met 285	Trp	Tyr	Ser
Pro	Leu 290	Gly	Ile	Ala	Cys	Leu 295	Ile	Cys	Gly	Lys	Ile 300	Ile	Ala	Ile	Lys
Asp 305	Leu	Glu	Val	Val	Ala 310	Arg	Gln	Leu	Gly	Met 315	Tyr	Met	Val	Thr	Val 320
Ile	Ile	Gly	Leu	Ile 325	Ile	His	Gly	Gly	Ile 330	Phe	Leu	Pro	Leu	Ile 335	Tyr
Phe	Val	Val	Thr 340	Arg	Lys	Asn	Pro	Phe 345	Ser	Leu	Phe	Ala	Gly 350	Ile	Phe
Gln	Ala	Trp 355	Ile	Thr	Ala	Leu	Gly 360	Thr	Ala	Ser	Ser	Ala 365	Gly	Thr	Leu
	370				-	375					380		Asp	-	_
Val 385	Thr	Arg	Phe	Val	Leu 390	Pro	Val	Gly	Ala	Thr 395	Ile	Asn	Met	Asp	Gly 400
Thr	Ala	Leu	Tyr	Glu 405	Ala	Val	Ala	Ala	Ile 410	Phe	Ile	Ala	Gln	Met 415	Asn
Gly	Val	Val	Leu 420	Asp	Gly	Gly	Gln	Ile 425	Val	Thr	Val	Ser	Leu 430	Thr	Ala
Thr	Leu	Ala 435	Ser	Val	Gly	Ala	Ala 440	Ser	Ile	Pro	Ser	Ala 445	Gly	Leu	Val
	Met 450		Leu	Ile		Thr 455		Val	Gly		Pro 460		Glu	Asp	Ile
Ser 465	Leu	Leu	Val	Ala	Val 470	Asp	Trp	Leu	Leu	Asp 475	Arg	Met	Arg	Thr	Ser 480
Val	Asn	Val	Val	Gly 485	Asp	Ser	Phe	Gly	Ala 490	Gly	Ile	Val	Tyr	His 495	Leu
Ser	Lys	Ser	Glu 500	Leu	Asp	Thr	Ile	Asp 505	Ser	Gln	His	Arg	Val 510	His	Glu
Asp	Ile	Glu 515	Met	Thr	Lys	Thr	Gln 520	Ser	Ile	Tyr	Asp	Asp 525	Met	Lys	Asn
His	Arg 530	Glu	Ser	Asn	Ser	Asn 535	Gln	Сув	Val	Tyr	Ala 540	Ala	His	Asn	Ser
Val 545	Ile	Val	Asp	Glu	C y s 550	Lys	Val	Thr	Leu	Ala 555	Ala	Asn	Gly	Lys	Ser 560

Ala	Asp	Cys	Ser	Val	Glu	Glu	Glu	Pro	Trp	Lys	Arg	Glu	Lys	
				565					570					

(2)	INFORMATION	FOR	SEQ	ID	NO:	8:
-----	-------------	-----	-----	----	-----	----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1674 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

 - (A) NAME/KEY: 5'UTR (B) LOCATION: 1..15
- (ix) FEATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: 16..1590
- (ix) FEATURE:

 - (A) NAME/KEY: 3'UTR
 (B) LOCATION: 1591..1674
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

` / ~		~		
ATAGCGGCGA CAG	_	_	A GGA TGC CCG AGT S Gly Cys Pro Ser 10	
			TCC ACC GTG GCC G Ser Thr Val Ala 2 25	
			CGA GAA CAC AGC A Arg Glu His Ser A	
			CCT GGA GAA ATT (Pro Gly Glu Ile 1	
			ATT ATA TCC AGC AT ILE ILE Ser Ser 1 75	
	l Ala Ala Leu A		TCC GGA AAA ATT o Ser Gly Lys Ile o	
	l Val Tyr Tyr P		CTC ATT GCT GTT A Leu Ile Ala Val 1 105	
			GGT GTC ACC CAG A Gly Val Thr Gln 1 120	
			GAA GTC AGT ACG (Glu Val Ser Thr V	
			CCT GAG AAT CTT (Pro Glu Asn Leu V	
	e Gln Gln Tyr L		GAA GAA GTG AAG GGlu Glu Val Lys 1	

CCC AGC GAT CCA GAG ATG AAC ATG GAA GAA GAG TCC TTC ACA GCT GTC Pro Ser Asp Pro Glu Met Asn Met Thr Glu Glu Ser Phe Thr Ala Val 175

579

AND ACT OCA ACT TOC AND ANC ANA CAA ACA AND CAA TAC ANA ACT OTT ### TIPE AND ILE SET LYS AND LYS THE LYS GUD TYP LYS ILE VAL ### TIPE AND ILE SET LYS AND LYS THE LYS GUD TYP LYS ILE VAL ### TIPE AND ILE SET LYS AND LYS THE LYS GUD TYP LYS ILE VAL ### TIPE AND ILE SET LYS AND LYS THE LYS GUD TYP LYS ILE VAL ### TIPE AND LYS SET AND GUD LA SAN ACT GOT CTG GGC TTG ART GTC TIT TGC ### TIPE AND LYS SET AND GUD LA SAN VAL LEU GUD LEU ILE VAL I AND LYS GUD COLD ### TIPE AND LYS SET AND GUD LA SAN VAL LEU GUD LEU ILE VAL I AND LYS GUD COLD ### TIPE AND LYS AND LYS AND VAL LEU GUD LEU ILE VAL I AND LYS GUD COLD ### TIPE AND LYS AND LYS AND VAL LEU GUD LEU ILE VAL I AND LYS I AND LYS GUD COLD ### TIPE AND LYS AND LYS AND LYS AND LYS GUD COLD ### TIPE AND LYS AND LYS AND LYS AND LYS GUD COLD ### TIPE AND LYS AND LYS AND LYS AND LYS GUD COLD ### TIPE AND LYS AND LYS AND LYS AND LYS GUD COLD ### TIPE AND LYS AND LYS AND LYS AND LYS AND LYS GUD COLD ### TIPE AND LYS AND
CLY MET TYPT SEY ADD CLY ILL ARM VAILED CLY EACH TO CALL TO CALL THE CLY ALL T
Leu Val Phe Gly Leu Val Tie Gly Lye Mee Gly Glu Lye Gly Glin Tie 225 CTG GTG GAT TEC TEC AAT GCT TTG AGT GAT GCA ACC ATG AAA ATC GTT Leu Val Aep Phe Phe Asn Ala Leu Ser Aep Ala Thr Met Lys Ile Val 220 CAG ATC ATC ATC ATC TTC TAT ATG CCA CTA GGT ATT TTG TTC CTG ATT GCT GAT GAT ATC ATC ATC TTC TAT ATG CCA CTA GGT ATT TTG TTC CTG ATT GCT GAT ATC ATC ATC ATC TTC TAT ATG CCA CTA GGT ATT TTG TTC CTG ATT GCT GAT ATC ATC ATC ATC ATC ATC ATC ATC GGA ATT TGC CTG ATT GCT GAT ATC ATC ATC ATC ATC ATC ATC ATC GGA ATT CTC CTG ATT GTG GGG AAG ATC ATC AGG GC ATG GGG CTG GGA ATC CA TT GTA Leu Tyr Met Ala Thr Val Leu Thr Gly Leu Ala Tie His Ser Tie Val Leu Tyr Met Ala Thr Val Leu Thr Gly Leu Ala Tie His Ser Ile Val 275 ATT CTC CCG CTG ATA TAT TTC ATA GTC GTA CGA AAG AAA AAC CCT TTC CGA TIE Leu Pro Leu Tie Tyr Phe Tie Val Val Arg Lye Aen Pro Phe Arg 305 ATT CTC CCG CTG ATA TAT TTC ATA GTC GTA CGA AAG AAA AAC CCT TTC CGA TIE Leu Pro Leu Tie Tyr Phe Tie Val Val Arg Lye Aen Pro Phe Arg 305 TTC ACT TCA GCA CA GCC CTG GCC CTC CTC ACC ACC TCC ATC ATC ATC TTC ATC TCA GCA ACA CTG CCT GCC ACC TTC CGC TGT GCT AGA GAA ATC ACC ACC GCA ACC ACC GCC GTG GCA ACC ACC TTC CGC TGT GCT AGA GAA ATC ACC ACC GCA ACC ACC GCC GTG GCA ACC ACC TCC CTT CCC GTT GCT AGA GAA ATC ACC ACC GCA ACC ACC ACC GCC GCC GTC TCC ACC ATC CCC GTT GCT ACC ACC ACC GCC GTC TTC ATC ACC ACC ACC ACC ACC ACC GCC GTC GCA ACC ACC ACC GCA GCC GCC GCC GCC TTAT GAA CCA GCC GCC GTC TTT TIE ATT CCA CCA TCC GC ACC ATC GCC ACC GCC GTC TTT TIE ATT CCA CAC ACC ACC ACC ACC GCC GCC GTC TTT TIE ATT CCA CAC TCC GCC ACC ATC GCC ACC ACC GCC GCC TTT ATT CCA CAC TTC GCC ACC ATC GCC ACC GCC GTC TTT TIE ATT CCA CAC TCC GCC ACC ATC GCC ACC GCC GCC GTC TTT TIE ATT CCA CAC TCC GCC ACC ATC GCC ACC GCC GCC GTG TTT ATT CCA CAC TTC GCT ACC TTC GCC ACC ATC GCC ACC GCC GCC GTG GCC TTT ATT CCA CAC TTC GCC ACC ATC GCC ACC ATC GCC ACC GTG GCC TTT ATT CCA CAC TTC GCC ACC ATC GCC ACC GCC GTG GCC TTT ATT CCA CAC TTC GCC ACC ATC GCC ACC ATC GCC GCC GTG GCC TTT ATT CCA CAC TTC ACC ACC ATC GCC ACC ACC GCC GTG GCC
Leu Val Aap Phe Phe Aan Ala Leu Ser Aap Ala Thr Met Lys Ile Val 240 240 245 24
CHI LE TLE Net Cys Tyr Met Pro Leu Gly Ile Leu Phe Leu Ile Ala 265 265 265 265 265 265 265 265 265 275 275 275 275 275 275 275 275 275 27
CITY LAC ATC GCC ACA GTC CTG ACT GGC CTT GCA ATC CAC TCC ATT GTA Leu Tyr Met Ale Thr Val Leu Thr Gly Leu Ala Ile Hie Ser Ile Val 280 ATT CTC CCG CTG ATA TAT TTC ATA GTC GTA CGA ACC CAC TCC ATT GTA 290 ATT CTC CCG CTG ATA TAT TTC ATA GTC GTA CGA AAG AAC CCT TCC CGA 300 ATT CTC CCG CTG ATA TAT TTC ATA GTC GTA CGA AAG AAC CCT TCC CGA 310 TTT GCC ATC GGA ATG GCC CAG GCT CTC CTG ACA GCT CTC ATG ATC TCT Phe Ala Met Gly Met Ala Gln Ala Leu Leu Thr Ala Leu Met Ile Ser 320 TCC AGT TCA GCA ACA CTG CCT GTC ACC TTC CGC TGT GCT GAA GAA AAT 320 TCC AGT TCA GCA ACA CTG CCT GTC ACC TTC CGC TGT GCT GAA GAA AAT 320 TCC AGT TCA GCA ACA CTG CCT GTC ACC TTC CGC TGT GCT GAA GAA AAT 340 ACC AGG GTG GAC AAGA GGG ATC ACT CGA TTC GTG TTA CCC GTT GGT GCA Ann ATC AAC ATC GAT GAG ACC GCG CTC TAT GAA GCA CTG GCT GGA GAG AATC AAC ATC GAT GGG ACC GCG CTC TAT GAA GCA GTG GCA GGG GTG 3350 ACA ATC AAC ATC GAT GGG ACC GCG CTC TAT GAA GCA GTG GCA GCG GTG 375 TTT ATT GCA CAG TTG AAT AAT GAC CTG GAC TTG GCC ATT GGG CAG ATC ATC 376 ACC ATC AGG ACA GAG AGG ACC GCG CTC TAT GAA GCA GTG GCA GCG GTG 377 TTT ATT GCA CAG TTG AAT GAC CTG GAC TTG GCC ATT GGG CAG ATC ATC 378 ACC ATC AGG ATC ACA GTG AAG AGG ACC GCG GTG GCC ATT GGG CAG ATC ATC 378 ACC ATC AGG ACC GTG AAC ACT CTC CCA GCA GTC GCA GCG GTG 378 ACC ATC AGG ACC GCG CTG GTG ACC ATC GCA GTG GCG GCG GTG 378 ACC ATC AGG ACC GCC CTG GTG ACC ATC GCC ATC GCG GCT GCG GTG 378 ACC ATC AGG ACC GCC CTG GTG ACC ATC GCC ATC GCG GCG GTG 378 ACC ATC AGG ACC GCC CTG GTG ACC ATC GCC ATC GCG GCG GTG GCC 378 ACC ATC AGG ACC GCC CTG GTG ACC ATC GCC ATC GCG ACC GCG GCG GCG 378 ACC ATC AGG ACC GCC CTG GTG ACC ATC GCC ATC GCG GCG GCG GCG 378 ACC ATC AGG ACC GCC CTG GTG ACC ATC GCC ATC GCG GCG GCG GCG 378 ACC ATC AGG ACC GCC CTG GTG ACC ATC GCC ATC GCG GCG GCG GCG 379 ACC ATC AGG ACC GCC CTG GTG ACC ATC GCG ACC GCG GCC ACC GCG GCG GCC CTG GTG ACC ATC ATC GCC GTG GCC ACC GCC GCG GAG GTC CTC GCG ACC GCC GCC GCG GCC ACC GCC GCG GAC GCC CTG GTG ACC ATC ATC GCC GTG GCC ACC GCC GCG GAC GCC CTG GTG ACC ATC GCC
Leu Tyr Met Ala Thr Val Leu Thr Gly Leu Ala Ile His Ser Ile Val 295 300 300 ATT CTC CCG CTG ATA TAT TTC ATA GTC GTA CGA AAG AAC CCT TTC GGA 315 315 315 315 315 315 315 315 315 315
The Leu Pro Leu Ile Tyr Phe Ile Val Val Arg Lys Asn Pro Phe Arg 315 315
Phe Ala Met Gly Met Ala Gln Ala Leu Leu Thr Ala Leu Met Ile Ser 320 TCC AGT TCA GCA ACA CTG CCT GTC ACC TTC CGC TGT GCT GAC GTG GCT GAA GAA GAA AAT SE Ser Ser Ala Thr Leu Pro Val Thr Phe Arg Cys Ala Glu Glu Asn 335 AAC CAG GTG GAC AGA GAG AGG ATC ACT GCT GTT GCT GTT GCT GTT GGT GCA ASN GIN Val Asp Lys Arg Ile Thr Arg Phe Val Leu Pro Val Gly Ala 350 ACA ATC AAC ATG GAT GGA ACC GCG CTC TAT GAA GCA GTG GCA GCG GTG GTA ASN GIN Val Asp Lys Arg Ile Thr Arg Phe Val Leu Pro Val Gly Ala 350 TTT ATT GCA CAG TTG AAT GAC CTG GAC TTG GGC ATT GGG CAG GCG GTG GTH ALA GLY ASP Leu Asp Leu Gly Ile Gly Gln Ile Ile Ala Gln Leu Asn Asp Leu Asp Leu Gly Ile Gly Gln Ile Ile Ser Ile Thr Ala Thr Ser Ala Ser Ile Gly Ala 360 ACC ATC AGT ATC AGG GCC ACA TCT GCC ACC ATC GGA GCT GCT GGC GTG GCC GTG GTH ALA GLY AND ASP Leu Asp Leu Gly Ile Gly Gln Ile Ile Ser Ile Thr Ala Thr Ser Ala Ser Ile Gly Ala Ala Gly Val 410 CCC CAG GCT GGC CTG GTG ACC ATG TG ATT GTG ATT GTG CTG ACT GCC GTG GCC GCC
Ser Ser Ser Ala Thr Leu Pro Val Thr Phe Arg Cys Ala Glu Glu Asn 345 AAC CAG GTG GAC AAG AGG ATC ACT CGA TTC GTG TTA CCC GTT GGT GCA ASn Gln Val Asp Lys Arg Ile Thr Arg Phe Val Leu Pro Val Gly Ala 355 ACA ATC AAC ATG GAT GGG ACC GCG CTC TAT GAA GCA GTG GTG GTG GTG THR ILe Asn Met Asp Gly Thr Ala Leu Tyr Glu Ala Val Ala Glu Leu Asn Asp Leu Asp Leu Asp Leu GG ATT GGG CAG ATC ATC ATC AGG AGG AGG AGG AGG AGG AGG AGG AGG AG
Ash Gin Val Asp Lys Arg Ile Thr Arg Phe Val Leu Pro Val Gly Ala 355 AcA ATC AAC ATG GAT GGG ACC GGG CTC TAT GAA GCA GTG GCA GCG GTG Thr Ile Ash Met Asp Gly Thr Ala Leu Tyr Glu 375 TTT ATT GCA CAG TTG AAT GAC CTG GAC TTG GGC ATT GGG CAG ATC ATC 385 Phe Ile Ala Gln Leu Ash Asp Leu Asp Leu Asp Leu Gly Ile Gly Gln Ile Ile 395 AcC ATC AGT ATC ACG GCC ACA TCT GCC AGC ATC GGA GCG GTG GTG ALA ALA GLY Val Ala Ala Gly Val 400 CCC CAG GCT GGC CTG GTG ACC ATG GTG ALA Thr Ser Ala Ser Ile Gly Ala Ala Gly Val 415 CTG CCC GCC GCC GAG GAT GTC ACC ATG GTG ATC ATT GCT GTC GAC TG GCC GTG GCC ALA Thr Leu Ile Ile Ala Gly Asp Trp Leu Leu A43 ASS AND Asp
The Ile Asn Met Asp Gly The Ala Leu Tyr Glu Ala Val Ala Ala Val 380 TTT ATT GCA CAG TTG AAT GAC CTG GAC TTG GAC TTG GGC ATT GGG CAG ATC ATC ATC ACC ACA ATC ATC 390 ACC ATC ATC AGT ATC ACG GCC ACA TCT GCA ALA Ser Ile Gly Ala Ser Ile Gly Ala Gly Val 410 CCC CAG GCT GGC CTG GTG ACC ACA TCT Met Val Ile Val Leu Ser Ala Ser Ile Val Leu Ser Ala Val Gly 420 CTG CCC GCC GCC GAG GAT GTC ACC ACC ACC ATC ACC ACC ACC ACC ACC A
Phe Ile Ala Gln Leu Asn Asp Leu Asp Leu Asp Leu Gly Ile Gly Gln Ile Gly Val ACC ATC AGT ATC AGG GCC GCC GCC GCG GTG ALa TCT GCC AGC ATC GGY GCT GGY Val Ala Gly Val CCC CAG GCT GGC CTG GTG ACC ATC GTG ACC ATC GTG ATC GTG ATC GCT GAC GCT GGY Ala Gly Leu Val Thr Met Val Ile Val Leu Ser ALa Gly ALA Gly ALA GLY ALE GLY CTG GCC GCC GCC GAG GAT GTC ACC CTG ATC GAT GCT GAC GCT GAC GCT GCT GAC GCT GCT GAC GCT GCT GAC GCT GAC ACC ATC GTG ALA GLY ALA G
The IIe Ser IIe The Ala The Ser Ala Ser IIe Gly Ala Ala Gly Val CCC CAG GCT GGC CTG GTG ACC ATG GTG ACC ATG GTG ATC GTG CTG AGT GCC GAG GGC Pro Gln Ala Gly Leu Val The Met Val IIe Val Leu Ser Ala Val Gly 415 CTG CCC GCC GCC GAG GAT GTC ACC CTG ATC ATC GTG GTC GAC TGG CTC CTG 430 GAC CGG TTC AGG ACC ATG GTC AAC GTC CTT GGT GAT GCT TTT GGC TTT GGT AGG Asp Arg Phe Arg The Met Val Asn Val Leu Gly Asp Ala Gly The 445 GGC ATT GTG GAA AAG CTC TC AAG AAG GAG GAT GCT TTT GGC GAG CAG ATG GTT AGG ACG GGT TC AGG ACC ATG GTC AAC GTC CTT GGT GAT GCT TTT GGC ACG ASp Arg Arg Phe Arg The Met Val Asn Val Leu Gly Asp Ala Phe Gly The 445 GGC ATT GTG GAA AAG ATC TC AAC ATC GTG AAT CCC TTT GCC TTG GAA TCC ACA ATC Ser Ser Glu Val Asn IIe Val Asn Pro Phe Ala Leu Glu Ser The IIe 1491
Pro Gln Ala Gly Leu Val Thr Met Val Ile Val Leu Ser Ala Val Gly CTG CCC GCC GCC GAG GAT GTC ACC CTG ATC ATT GCT GAT GAT GAT Trp Leu Leu Pro Ala Glu Asp Val Thr Leu Ile Ile Ala Val Asp Arg Trp Leu Leu GAC CGG TTC AGG ACC ATG GTC AAC GTC CTT GGT GAT GCT TTT GGG ACG Asp Arg Phe Arg Thr Met Val Asn Val Leu Gly Asp Ala Phe Gly Thr 445 GGC ATT GTG GAA AAG CTC TCC AAG AAG GAG CTG GAT GCT TTT GGG ACG GGC ATT GTG GAA AAG CTC TCC AAG AAG GAG CTG GAT GCT TTT GGG ATG GTT TCA TCT GAA GTC AAC ATT GTG AAT CCC TTT GCC TTG GAA TCC ACA ATC Ser Ser Glu Val Asn Ile Val Asn Pro Phe Ala Leu Glu Ser Thr Ile Ser Ser Glu Val Asn Ile Val Asn Pro Phe Ala Leu Glu Ser Thr Ile
Leu Pro Ala Glu Asp Val Thr Leu Ile Ile Ala Val Asp Trp Leu Leu 430 GAC CGG TTC AGG ACC ATG GTC AAC GTC CTT GGT GAT GCT TTT GGG ACG Asp Arg Phe Arg Thr Met Val Asn Val Leu Gly Asp Ala Phe Gly Thr 445 GGC ATT GTG GAA AAG CTC TCC AAG AAG GAG CTG GAG CAG ATG GAT GTT GIV Ile Val Glu Lys Leu Ser Lys Lys Glu Leu Glu Gln Met Asp Val 470 TCA TCT GAA GTC AAC ATT GTG AAT ASN Ile Val Asn Pro Phe Ala Leu Glu Ser Thr Ile
Asp Arg Phe Arg Thr Met Val Asn Val Leu Gly Asp Ala Phe Gly Thr 445 GGC ATT GTG GAA AAG CTC TCC AAG AAG GAG CTG GAG CAG ATG GAT GTT GIU Ile Val Glu Lys Leu Ser Lys Lys Glu Leu Glu Gln Met Asp Val 475 TCA TCT GAA GTC AAC ATT GTG AAT CCC TTT GCC TTG GAA TCC ACA ATC Ser Ser Glu Val Asn Ile Val Asn Pro Phe Ala Leu Glu Ser Thr Ile
Gly Ile Val Glu Lys Leu Ser Lys Lys Glu Leu Glu Gln Met Asp Val 465 TCA TCT GAA GTC AAC ATT GTG AAT CCC TTT GCC TTG GAA TCC ACA ATC Ser Ser Glu Val Asn Ile Val Asn Pro Phe Ala Leu Glu Ser Thr Ile
Ser Ser Glu Val Asn Ile Val Asn Pro Phe Ala Leu Glu Ser Thr Ile

												COII	CIII	ueu				
CTT Leu																1539		
TTT Phe																1587		
TTC Phe 525	TAGG	GCC	CCT (GCT	GCAG1	AT GA	ACTGO	SAAA	C AAC	GAA	GGAC	ATT	rcgto	GAG		1640		
AGTC	ATCI	CA I	AACAG	CGGC	TT AZ	AGGA <i>I</i>	AAAG <i>I</i>	A GAZ	λA							1674		
(2)	TNEC	י א שם	וא∩דים	FOR	SEQ	י חד	ı∩• (· •										
(2)					HARAG													
	(±)	(I	A) LI 3) T	ENGTI YPE:	H: 52 amin	25 ar no ac	nino cid		ls									
	(ii)	MOI	LECUI	LE T	YPE:	prot	ein											
	(xi)	SEÇ	QUENC	CE DI	ESCR:	IPTIO	ON: S	SEQ :	D NO): 9	•							
Met 1	Gly	Lys	Pro	Ala 5	Arg	Lys	Gly	Сув	Pro 10	Ser	Trp	Lys	Arg	Phe 15	Leu			
Lys	Asn	Asn	Trp 20	Val	Leu	Leu	Ser	Thr 25	Val	Ala	Ala	Val	Val 30	Leu	Gly			
Ile	Thr	Thr 35	Gly	Val	Leu	Val	Arg 40	Glu	His	Ser	Asn	Leu 45	Ser	Thr	Leu			
Glu	Ly s 50	Phe	Tyr	Phe	Ala	Phe 55	Pro	Gly	Glu	Ile	Leu 60	Met	Arg	Met	Leu			
Ly s 65	Leu	Ile	Ile	Leu	Pro 70	Leu	Ile	Ile	Ser	Ser 75	Met	Ile	Thr	Gly	Val 80			
Ala	Ala	Leu	Asp	Ser 85	Asn	Val	Ser	Gly	Lys 90	Ile	Gly	Leu	Arg	Ala 95	Val			
Val	Tyr	Tyr	Phe 100	Cys	Thr	Thr	Leu	Ile 105	Ala	Val	Ile	Leu	Gly 110	Ile	Val			
Leu	Val	Val 115	Ser	Ile	Lys	Pro	Gly 120	Val	Thr	Gln	Lys	Val 125	Gly	Glu	Ile			
Ala	Arg 130	Thr	Gly	Ser	Thr	Pro 135	Glu	Val	Ser	Thr	Val 140	Asp	Ala	Met	Leu			
Asp 145	Leu	Ile	Arg	Asn	Met 150		Pro	Glu	Asn	Leu 155	Val	Gln	Ala	Cys	Phe 160			
Gln	Gln	Tyr	Lys	Thr 165	Lys	Arg	Glu	Glu	Val 170	Lys	Pro	Pro	Ser	Asp 175	Pro			
Glu	Met	Asn	Met 180	Thr	Glu	Glu	Ser	Phe 185	Thr	Ala	Val	Met	Thr 190	Thr	Ala			
Ile	Ser	L y s 195	Asn	Lys	Thr	Lys	Glu 200	Tyr	Lys	Ile	Val	Gl y 205	Met	Tyr	Ser			
Asp	Gly 210	Ile	Asn	Val	Leu	Gly 215	Leu	Ile	Val	Phe	C y s 220	Leu	Val	Phe	Gly			
Leu 225	Val	Ile	Gly	Lys	Met 230	Gly	Glu	Lys	Gly	Gln 235	Ile	Leu	Val	Asp	Phe 240			
Phe	Asn	Ala	Leu	Ser 245	Asp	Ala	Thr	Met	Lys 250	Ile	Val	Gln	Ile	Ile 255	Met			
Суѕ	Tyr	Met	Pro 260	Leu	Gly	Ile	Leu	Phe 265	Leu	Ile	Ala	Gly	Lys 270	Ile	Ile			

28

Glu	Val	Glu 275	qaA	Trp	Glu	Ile	Phe 280	Arg	Lys	Leu	Gly	Leu 285	Tyr	Met	Ala
Thr	Val 290	Leu	Thr	Gly	Leu	Ala 295	Ile	His	Ser	Ile	Val 300	Ile	Leu	Pro	Leu
Ile 305	Tyr	Phe	Ile	Val	Val 310	Arg	Lys	Asn	Pro	Phe 315	Arg	Phe	Ala	Met	Gly 320
Met	Ala	Gln	Ala	Leu 325	Leu	Thr	Ala	Leu	Met 330	Ile	Ser	Ser	Ser	Ser 335	Ala
Thr	Leu	Pro	Val 340	Thr	Phe	Arg	Cys	Ala 345	Glu	Glu	Asn	Asn	Gln 350	Val	Asp
Lys	Arg	Ile 355	Thr	Arg	Phe	Val	Leu 360	Pro	Val	Gly	Ala	Thr 365	Ile	Asn	Met
Asp	Gl y 370	Thr	Ala	Leu	Tyr	Glu 375	Ala	Val	Ala	Ala	Val 380	Phe	Ile	Ala	Gln
Leu 385	Asn	Asp	Leu	qaA	Leu 390	Gly	Ile	Gly	Gln	Ile 395	Ile	Thr	Ile	Ser	Ile 400
Thr	Ala	Thr	Ser	Ala 405	Ser	Ile	Gly	Ala	Ala 410	Gly	Val	Pro	Gln	Ala 415	Gly
Leu	Val	Thr	Met 420	Val	Ile	Val	Leu	Ser 425	Ala	Val	Gly	Leu	Pro 430	Ala	Glu
Asp	Val	Thr 435	Leu	Ile	Ile	Ala	Val 440	Asp	Trp	Leu	Leu	Asp 445	Arg	Phe	Arg
Thr	Met 450	Val	Asn	Val	Leu	Gly 455	Asp	Ala	Phe	Gly	Thr 460	Gly	Ile	Val	Glu
L y s 465	Leu	Ser	Lys	Lys	Glu 470	Leu	Glu	Gln	Met	Asp 475	Val	Ser	Ser	Glu	Val 480
Asn	Ile	Val	Asn	Pro 485	Phe	Ala	Leu	Glu	Ser 490	Thr	Ile	Leu	Asp	Asn 495	Glu
Asp	Ser	Asp	Thr 500	Lys	Lys	Ser	Tyr	Val 505	Asn	Gly	Gly	Phe	Ala 510	Val	Asp
Lys	Ser	Asp 515	Thr	Ile	Ser	Phe	Thr 520	Gln	Thr	Ser	Gln	Phe 525			

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

CGCGGGTACC GCCATGGAGA AGAGCAAC

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

	30.01.1.434
CGCGTCTAGA TCACAGAACC GACTCCTTG	29
(2) INFORMATION FOR SEQ ID NO: 12:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	12:
CGCGGGTACC AATATGACTA AAAGCAATG	29
(2) INFORMATION FOR SEQ ID NO: 13:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	13:
CGCGTCTAGA CTACATCTTG GTTTCACTG	29
(2) INFORMATION FOR SEQ ID NO: 14:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	14:
CGCGGGTACC ACCATGGCAT CTACGGAAG	29
(2) INFORMATION FOR SEQ ID NO: 15:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	15:
CGCGTCTAGA TTATTTCTCA CGTTTCCAAG	30
(2) INFORMATION FOR SEQ ID NO: 16:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 28 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:	16:

CGCGGGTACC GCCATGGGGA AACCGGCG

28

- (2) INFORMATION FOR SEQ ID NO: 17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

CGCGGGATCC CTAGAACTGT GAGGTCTG

28

What is claimed is:

1. An isolated nucleic acid encoding a human excitatory amino acid transporter that hybridizes to a nucleic acid probe identified by Seq. I.D. No. 4 at a temperature of 42° C. in a solution of 5×SSPE, 50% formamide, 7.5% Denhardt's solution, 2% SDS, and 100 Fg/mL denatured salmon sperm DNA.

2. An isolated nucleic acid according to claim 1 wherein hybridization is detected after washing in a solution of 2×SSPE/0.1% SDS at room temperature and in a solution of 0.1×SSPE/0.1% SDS at 50° C.