发明名称
一种用于合成孔径水声通信的多普勒补偿方法及系统

摘要
本发明一种用于合成孔径水声通信的多普勒补偿方法及系统，该方法用于接收端精确恢复发送端分集发射的基带信号，所述方法包含步骤101用于帧同步检测并依据帧同步检测获得帧的帧长的步骤；步骤102）用于依据各帧帧长估计各帧的多普勒因子的步骤；步骤103）用于根据多普勒因子估计值对接收信号进行重采样，完成多普勒效应的粗补偿；步骤104）用于将各个分集支路补偿后的信号进行相干叠加，并进行解扩解调，恢复发送端发送的基带信号。步骤103和步骤104）之间对粗补偿后的信号再进行精细补偿的步骤。

本发明提供的方法有效抵抗收发节点相对运动产生的多普勒效应，实现各虚拟子阵发射信号的相干叠加，减少合成孔径处理空间增益损失提高水声通信质量。
1. 一种用于合成孔径水声通信的多普勒补偿方法，该方法用于接收端精确恢复发送端分集发射的基带信号，所述方法包含：
步骤101) 用于帧同步检测并根据帧同步检测获得各帧帧长的步骤；
步骤102) 用于根据各帧帧长估计各帧的多普勒因子的步骤；
步骤103) 用于根据多普勒因子估计值对接收信号进行重采样，完成多普勒效应的粗补偿；
步骤104) 用于将各个分集支路补偿后的信号进行相干叠加，并进行解扩解调，恢复发送端发送的基带信号；
所述步骤103)和步骤104)之间对于粗补偿后的信号再进行精细补偿的步骤，该步骤具体包含：
对接收端接收的信号中包含的训练信号进行下变频和解扩处理；
将下变频和解扩处理后的信号采用全相位FFT进行频率和相位的估计；
依据频率和相位的估计对各帧重采样后的信号分别进行频率和相位的精细补偿；
其中，所述进行频率和相位的估计进一步包含如下步骤：
步骤201)根据帧同步检测得出的训练信号的起始位置以及最大时间的不确定度确定截取L点数据，取2N-1点数据(L>2N-1)；
步骤202)对“2N-1”点数据采用加窗的方法进行全相位预处理；
步骤204)对全相位预处理后的数据做N点FFT变换即为全相位谱分析结果；
步骤204)对全相位FFT结果进行峰值检测和门限判决，若峰值超过预设门限，则以一定的步长调整2N-1点数据的起始位置，并重复以上步骤，比较R次全相位谱分析得到的峰值，从而得出最大峰值，以最大峰值对应的带宽和最大峰值对应的相位即为精确估计，其中R为将L点数据以2N-1点为单位划分得到的总份数；
步骤205)截取步骤203)得到的全相位谱分析主谱线上的相位值φ_m(k^*)，其中k^*为谱序号，即可精确获取信号的初始相位；频率使用全相位时移相位差法进行校正，校正公式为：
\[\hat{\phi} = \left[\phi(k^*) - \phi_m(k^*) \right] / N + 2k^* \pi / N \]
其中，φ(k^*)为相位谱，φ_m(k^*)为全相位相位谱，二者具有N的时移差；
步骤206)将数字域频率转换为连续域频率，得到的频率和相位估计值分别为：
\[\begin{align*}
\Delta \hat{\phi}_m &= \frac{\hat{\phi}}{2\pi} \cdot f_s \\
\Delta \phi_m &= \phi_m(k^*)
\end{align*} \]
其中，\(\hat{\phi} \)为全相位谱分析频率估计结果，\(\phi_m(k^*) \)为N点全相位FFT主谱线相位，\(f_s \)表示采样率。

2. 根据权利要求1所述的用于合成孔径水声通信的多普勒补偿方法，其特征还在于，所述步骤101)进一步包含：
首先，用前导码副本对输入信号进行匹配滤波，通过门限判决完成帧检测，并确定信号的起始位置；
然后，用后导码副本确定信号的结束位置。
3. 根据权利要求1所述的用于合成孔径水声通信的多普勒补偿方法，其特征在于，所述步骤102具体采用如下方法：

接收信号并进行帧同步检测后，利用帧结构中所包含的前导码和后导码估计数据包长度T_{rm}，并采用如下公式获得多普勒因子估计值$\tilde{\alpha}_m$:

$$
\tilde{\alpha}_m = \frac{T_{rm}}{T_r} - 1
$$

其中，T_r为接收端存储的已知帧长。

4. 一种用于合成孔径水声通信的多普勒补偿系统，该系统用于接收端精确恢复发送端分集发射的基带信号，所述系统包含：

帧同步检测模块，用于帧同步检测，获得各帧的起始和结束位置并获得各帧帧长；

多普勒因子估计模块，用于根据各帧帧长估计各帧的多普勒因子；

重采样粗补偿模块，用于根据多普勒因子估计值对接收信号进行重采样，完成多普勒效应的粗补偿；和

基带信号恢复模块，用于将各个分集支路补偿后的信号进行相关叠加，并进行解扩解调，恢复发送端发送的基带信号；

所述重采样粗补偿模块和基带信号恢复模块之间还包含一精细补偿模块，该精细补偿模块用于对粗补偿后的信号在进行频率和相位补偿，并获得精确的信号起始时刻；

所述精细补偿模块进一步包含：

处理子模块，用于对接收端接收的信号中包含的训练信号进行下变频和相扩处理；频率和相位估计子模块，用于将下变频和相扩处理后的信号采用全相位FFT进行频率和相位的估计值；和

补偿子模块，用于依据频率和相位的估计值对各帧重采样后的信号分别进行补偿；

其中，所述频率和相位估计子模块进一步包含：

预处理模块，用于根据帧同步检测出的训练信号的起始位置以及最大时间的不确定度确定截取L点数据，初次预处理从起始点开始截取2N-1点数据，否则按照判决判决模块给出的结果从起始点截取2N-1点数据，对其采用加双窗的方法进行全相位预处理；

傅里叶变换模块，用于对全相位预处理后的数据做N点FFT变换；

判决判决模块，用于全相位FFT结果进行门限判决和峰值检测，并根据全相位谱分析结果进行时域上的精细搜索，控制预处理模块调整截取数据的位置，得到R段数据中的最大峰值对应的时间起始点，最大峰值对应的频率和最大峰值对应的相位即为精确估计结果，至此，系统完成了时频精细同步；

第一处理模块，用于直接截取主谱线上的相位值，频率使用全相位时移相位差法进行校正，校正公式为

$$
\hat{\phi} = \left[\phi(k^*) - \phi_m(k^*)\right] + 2k^*\pi/N
$$

其中，$\phi(k^*)$为相位谱，$\phi_m(k^*)$为全相位相位谱，二者具有N的时移差；

频率和相位估计模块，用于将数字域频率转换为连续域频率，得到的频率和相位估计
值分别为：

\[
\begin{align*}
\Delta f_m &= \frac{\tilde{\omega}}{2\pi} \cdot f_s \\
\Delta \phi_m &= \phi_{np}(k^*)
\end{align*}
\]

其中，\(\tilde{\omega}\)为全相位谱分析频率估计结果，\(\phi_{np}(k^*)\)为N点全相位FFT主谱线相位，\(f_s\)表示采样率。

5. 根据权利要求4所述的用于合成孔径水声通信的多普勒补偿系统，其特征在于，所述帧同步检测模块进一步包含：

帧起始位置确定模块，用于对前导码的输入信号进行匹配滤波，通过门限判决完成帧检测，并确定信号的起始位置；

帧结束位置确定模块，用于用后导码副本确定信号的结束位置。

6. 根据权利要求4所述的用于合成孔径水声通信的多普勒补偿系统，其特征在于，所述多普勒因子估计模块进一步包含：

数据包长度估计模块，用于将帧同步检测后得到的帧结构中所包含的前导码和后导码估计数据包长度\(T_{nm}\)：

多普勒因子估计模块，用于采用如下公式获得多普勒因子估计值\(\tilde{a}_m\)：

\[
\tilde{a}_m = \frac{T_{nm}}{T_r} - 1
\]

其中，\(T_r\)为接收端存储的已知帧长。
一种用于合成孔径水声通信的多普勒补偿方法及系统

技术领域：
[0001] 本发明属于水声通信领域，具体涉及一种用于合成孔径水声通信的多普勒补偿方法及系统。

背景技术
[0002] “合成孔径”这一概念最初源于雷达，其基本原理是利用雷达与目标的相对运动获得高空间分辨力。国外学者将“合成孔径”技术应用于水声通信，实现了与PSK通信体制、多载波体制的结合，试验结果取得了较好的结果。在这里，合成孔径技术并非是为了增加孔径尺寸，而用以取得空间分集，称这种通信方式为合成孔径通信(Synthetic Aperture Communication, SAC)。在水声合成孔径通信中，由收发节点间的相对运动形成虚实子阵，这样SAC系统使用两个阵元即可取得空间分集，简化了系统设备，节约了成本。
[0003] 在浅海水声通信中，噪声低，多径干扰强，是最为恶劣的无线通信信道之一，因此通常采用非相干检测或扩频技术进行传输。针对远海水声信道的特点及系统的要求，通过将合成孔径技术与直接序列扩频通信体制相结合，取得空间分集增益，提高输出信噪比，并有效地抵抗由多途传播引起的频率选择性衰落。但是，发射和接收节点之间的相对运动造成的多普勒是无法避免的，多普勒对系统性能的影响尤为严重，不仅会使信号带宽无法实现相关合并，导致空间分集增益降低，而且扩频码的压缩和扩展使得频域增益大幅下降，误码率增大。因此，精确的运动补偿在合成孔径扩频通信系统中尤为重要，是其性能得以发挥的前提和保障。
[0004] H.C. Song等人采用DFPLL相位跟踪的方法来实现对多普勒的粗估计，但是该方法只适用于载体运动速度较小的情况，袁文凯等人提出利用线性调频Z变换对训练序列进行谱估计，然而由于伪随机序列有较高的频率分辨率，这意味着在多普勒条件下无法实现相关统计。在无线电扩频通信中，通常使用PLL实现频率和相位的跟踪，然而PLL的收敛需要经过几十甚至几百个码元，不能直接应用于在低码速率的水声通信中，因此，迫切需要一种适用于多普勒条件下的高精度频率估计和补偿方法。

发明内容
[0005] 本发明的目的在于，为克服上述技术问题本发明提供一种用于合成孔径水声通信的多普勒补偿方法及系统。
[0006] 为实现上述目的，本发明提供了一种用于合成孔径水声通信的多普勒补偿方法，该方法用于接收端精确恢复发送端分集发射的基带信号，所述方法包含：
[0007] 步骤101)用于帧同步检测并依据帧同步检测获得各帧帧长的步骤；
[0008] 步骤102)用于依据各帧帧长估计各帧的多普勒因子的步骤；
[0009] 步骤103)用于根据多普勒因子估计值对接收信号进行重采样，完成多普勒效应的粗补偿；
[0010] 步骤104)用于将各个分集支路补偿后的信号进行相干叠加，并进行解扩解调，恢
复发送端发送的基带信号。
[0011] 上述步骤103)和步骤104)之间对粗补偿后的信号再进行精细补偿的步骤，该步骤具体包含：
[0012] 对接收前接收的信号中包含的训练信号进行下变频和解扩处理；
[0013] 将下变频和解扩处理后的信号采用全相位FFT进行频率和相位的估计值；
[0014] 依据频率和相位的估计值对各帧重采样后的信号分别时间、频率和相位进行精确补偿。
[0015] 上述进行频率和相位的估计进一步包含如下步骤：
[0016] 步骤201)根据帧同步检测得出的训练信号的起始位置以及最大时间的不确定度
确定截取L点数据，取2N-1点数据(L≥2N-1)；
[0017] 步骤202)对“2N-1”点数据采用加双窗的方法进行全相位预处理；
[0018] 步骤203)对全相位预处理后的数据做N点FFT变换即为全相位谱分析结果；
[0019] 步骤204)对全相位FFT结果进行峰值检测和门限判决，若峰值超过预设门限，则以
一定的步长调整2N-1点数据的起始位置，并重复以上步骤，比较R次全相位谱分析得到的峰
值，从而得到最大峰值，标志时频域同步成功；由最大峰值得到的信息段起始点即消除了
多普勒造成的时域模糊，最大峰值对应的频率和最大峰值对应的相位即为精确估计结果，
其中R为将L点数据以2N-1点为单位划分得到的总份数；
[0020] 步骤205)截取步骤203)得到的全相位谱分析主谱线上的相位值Φ_m(k)’，其中k为
谱序号，即可精确获取信号的初始相位；频率使用全相位时移相位差法进行校正，校正公
式为：
\[
\hat{\omega} = \left[\phi(k) - \phi_m(k) \right] / N + 2k\pi / N
\]
[0021] 其中，Φ_m(k)’为相位谱，Φ_m(k)’为全相位相位谱，二者具有N的时移差；
[0022] 步骤206)将数字域频率转换为连续域频率，得到的频率和相位估计值分别为：
\[
\begin{align*}
\Delta \hat{f}_m &= \hat{\omega} / 2\pi, \\
\Delta \hat{\phi}_m &= \phi_m(k)'
\end{align*}
\]
[0023] 其中，\(\hat{\omega}\)为全相位谱分析频率估计结果，Φ_m(k)’为N点全相位FFT主谱线相位，\(\hat{f}_m\)表示采样率。
[0024] 上述步骤101)进一步包含：
[0025] 首先，用前导码对输入信号进行匹配滤波，通过门限判定完成帧检测，并确定信号的起始位置；
[0026] 然后，用后导码对信号的结束位置。
[0027] 上述步骤102)具体采用如下方法：
[0028] 接收到信号并进行帧同步检测后，利用帧结构中所包含的前导码和后导码估计数据包长度T_m，并采用如下公式获得多普勒因子估计值\(\hat{\alpha}_m\)：
\[
\hat{\alpha}_m = \frac{T_m}{T_i} - 1
\]
[0029] 其中，T_i为接收端存储的已知帧长。
基于上述方法本发明还提供一种用于合成孔径水声通信的多普勒补偿系统，该系统用于接收端精确恢复发送端分集发射的基带信号，所述系统包含：

帧同步检测模块，用于帧同步检测，获得帧的起始和结束位置并获得每帧帧长；

多普勒因子估计模块，用于依据每帧帧长估计各帧的多普勒因子；

重采样粗补偿模块，用于根据多普勒因子估计值对接收信号进行重采样，完成多普勒效应的粗补偿；和

基带信号恢复模块，用于将各个分集支路补偿后的信号进行相关叠加，并进行解扩解调，恢复发送端发送的基带信号。

上述重采样粗补偿模块和基带信号恢复模块之间还包括一精细补偿模块，该精细补偿模块用于对粗补偿后的信号在进行频率和相位补偿，并获得精确的信号起始时刻；

所述精细补偿模块进一步包含：

处理子模块，用于对接收端接收到的信号中包含的训练信号进行下变频和解扩处理；

频率和相位估计子模块，用于将下变频和解扩处理后的信号采用全相位FFT进行频率和相位的估计值；和

补偿子模块，用于依据频率和相位的估计值对各帧重采样后的信号分别进行补偿。

上述频率和相位估计子模块进一步包含：

预处理模块，用于根据帧同步检测得出的训练信号的起始位置以及最大时间的不确定度确定截取L点数据，初次预处理从起始点开始截取2N-1点数据，否则按照决策判决模块给出的结果从起始点开始截取2N-1点数据，将其采用加双重的方法进行全相位预处理；

傅里叶变换模块，用于对全相位预处理后的数据做N点FFT变换；

决策判决模块，用于对全相位FFT结果进行门限判决和峰值检测，并根据全相位谱分析结果进行时域上的精确搜索，控制预处理模块调整起始数据的位置，得到R段数据中的最大峰值对应的时间起始点，最大峰值对应的频率和最大峰值对应的位相即为精确估计结果，至此，系统完成了时频精细同步；

第一处理模块，用于直接截取主谱线上的相位值，频率使用全相位时移相位差法进行校正，校正公式为

\[
\hat{\phi}^* = \frac{\phi (k^*) - \phi_{wp} (k^*)}{N + 2k^* \pi / N}
\]

其中，\(\phi (k^*) \)为相位值，\(\phi_{wp} (k^*) \)为全相位相位；，二者具有N的时移差；

频率和相位估计模块，用于将数字域频率转换为连续域频率，得到的频率相位估计值分别为：

\[
\Delta \hat{f}_m = \frac{\hat{\phi}^*}{2\pi} f_s
\]

\[
\Delta \hat{\phi}_m = \phi_{wp} (k^*)
\]

其中，\(\hat{\phi}^* \)为全相位谱分析频率估计结果，\(\phi_{wp} (k^*) \)为N点全相位FFT主谱线相位，\(f_s \)表示采样率。

上述帧同步检测模块进一步包含：

帧起始位置确定模块，用于用前导码副本对输入信号进行匹配滤波，通过门限判断
决完成帧检测，并确定信号的起始位置；

[0054] 帧结束位置确定模块，用于用后导码副本确定信号的结束位置。

[0055] 上述多普勒因子估计模块进一步包含；

[0056] 数据包长度估计模块，用于将帧同步检测后得到的帧结构中所包含的前导码和后
导码估计数据包长度r_0；

[0057] 多普勒因子估计模块，用于采用如下公式获得多普勒因子估计值$ar{a}_m$；

$$
\bar{a}_m = \frac{r_{m_0}}{r^*} - 1
$$

[0059] 其中，r^*为接收端存储的已知帧长。

[0060] 与现有技术相比，本发明的技术优势在于：

[0061] 本发明针对合成孔径水声扩频通信中由于运动造成的合成孔径处理空间分集增
益损失较大的问题，提出了一种有效的多普勒效应估计和补偿方法，该方法能有效地抵抗
收发节点相对运动产生的多普勒效应，实现各虚拟子阵发射信号的相干叠加，减少合成孔
径处理空间增益损失，提高水声通信质量，从理论上和实际数据处理两个方面验证了该方
法的优越性。

附图说明

[0062] 图1为合成孔径水声通信的原理示意图；

[0063] 图2为帧结构示意图；

[0064] 图3是本发明提供的合成孔径通信运动补偿方法的流程框图；

[0065] 图4是本发明实施例提供的全相位预处理示意图；

[0066] 图5是本发明实施例提供的全相位差分法频谱校正示意图；

[0067] 图6是本发明实施例提供的实验海域实测信号频谱图；

[0068] 图7是本发明实施例信道冲激响应图。

具体实施方式：

[0069] 下面结合附图具体实施例对本发明进行详细的说明。

[0070] 本发明提出一种有效的高精度多普勒效应估计和补偿方法。该方法首先利用重采
样技术消除大部分的多普勒，然后采用全相位FFT方法实现对频率和相位的高精度估计，同
时消除多普勒造成的时间模糊。

[0071] 第一步，帧同步检测

[0072] 水声通信系统中需要帧同步信号来确定每一帧的开始位置，帧同步信号可由相
关性较好的序列，比如M序列，线性调频信号（LFM信号）等。考虑到LFM信号的模糊度函数在
多普勒轴上较宽，这意味着LFM信号对多普勒有较高的容忍度，因此选择LFM信号作为前导码
和后导码进行突发信息帧的检测及帧长估计，避免因载体运动速度较快造成检测失败，数
据包丢失。而伪随机序列的模糊度函数在多普勒轴上有尖锐的相关峰，具有较高的频率分
辨率，因此用伪随机序列作为训练序列来实现载波一致多普勒频偏的高精度估计。

[0073] 由于系统为突发工作模式，接收端首先用前导码副本对输入信号进行匹配滤波，
通过门限判决完成帧检测，并确定信号的起始位置。接着用后导码副本确定信号的结束位
置。在接收端，经过信道后的线性调频信号可以表示为：

\[R_{LFM}(t) = R_{LFM}(t) \ast h(t) \]

（1）

其中，\(R_{LFM}(t) \) 为发送的线性调频信号，\(h(t) \) 为信道冲击响应，“*”表示卷积。接收信号与本地的LFM信号副本进行相关运算：

\[R_{LFM}(\xi) = \int R_{LFM}(t) S_{LFM}(t-\xi) dt \]

（2）

交换积分顺序：

\[R_{LFM}(\xi) = \int h(t) S_{LFM}(t-\xi) dt \]

（3）

根据LFM的性质，其自相关函数在TBP= K/T2 较大时波形可用sinc函数近似，其中K为信号频率随时间的变化率，T为信号持续总时间，而且sinc函数的极限即为冲击函数δ(t)，所以式（1）可近似化为：

\[R_{LFM}(\xi) = \int h(t) \delta(\xi-t) dt = h(\xi) \] (4)

式（4）表明信道冲击响应可以用帧同步信号与接收端本地副本信号的相关结果近似表示，同时该结果也是帧同步检测的输入。

第二步，根据帧长测量估计多普勒因子

多普勒频移与相对运动速度、声波在水中的传播速度及信号的频率有关，在水声通信中，由于载波频率和系统带宽的比值很小，水声信道实际上为一宽带系统，水声信号的多普勒效应不能简单地用载波频率处的多普勒频移表示，而应该建模为模拟信号在时域上的压缩或扩展，即信号的持续时间T应由T变为T/(1+α)，其中α为多普勒因子，表达式为α= v/c * cos(θ)，v为相对运动速度，c为声速，θ为收发双方的相对运动与视线方向之间的夹角。假定每条路径具有相同的多普勒因子，综合考虑多径、多普勒及噪声的影响，第m个子信道的接收信号可以表示为

\[r_m(t) = e^{j2\pi f(t) 1 + \alpha m \cdot t - \tau_m(t)} + n_m(t) \] (5)

其中，L表示共有L条传播路径，d_k为基带信息序列，c_m为伪随机码序列，符号\(\sum_{k,m} \)表示扩频调制，\(p(t) \)为基带脉冲成型波形，\(f_c \)为载波频率，\(a_m \)为每条路径对应的信号幅度和延时，\(n_m(t) \)为第m个子信道的噪声，\(a_m \)为该分集信号对应的多普勒因子。

宽带多普勒的估计问题即多普勒因子的估计。接收到信号并进行帧同步检测后，利用帧结构中所包含的前导码和导码估计数据包的长度T_m，通过与已知帧长T_c比较得到多普勒因子的估计值，如式（6）所示

\[\hat{\alpha}_m = \frac{\hat{T}_m}{T_c} - 1 \] (6)
第三步，根据多普勒因子估计值对接收信号重采样

利用多普勒因子的估计值$\tilde{\alpha}_n$对接收信号$r_n(t)$进行重采样，完成多普勒效应的粗补偿，重采样后的信号表示如下:

$$ z_n(t) = r_n \left(\frac{t}{1 + \tilde{\alpha}_n} \right) $$

式(7)

重采样的方法选择很多，在实际工程应用中，可以兼顾运算量和精度的要求，选用基于多相滤波器的线性内插方法。

第四步，采用全相位FFT完成多普勒的精密估计

在完成多普勒效应粗补偿的基础上，使用全相位FFT对下变换和解扩后的训练信号进行高精度频域和相位估计，同时消除时间模糊，得到精确的信号起始时刻。

全相位FFT谱分析是通过叠的方法来减小由于信号截断带来的误差，其输入信号为包含了残留多普勒信息的基带信号，具体处理流程如下:

①根据帧同步给出的训练信号起始位置以及最大时间不确定性确定截取L点数据，每2N-1点为一段，共R段，令c_n表示训练伪随机序列，$x_n(t)$表示未调制基带信号的训练信号:

$$ x_n(t) = e^{j\frac{2\pi f_c n \tau - 2\pi f_c \tau}{1 + \tilde{\alpha}}} \sum_{l=1}^{L} c_n a_n b(t - \tau_m - \check{\tau}) e^{j\frac{2\pi f_c (t - \tau_m - \check{\tau})}{1 + \tilde{\alpha}}} $$

式(8)

②用本地载波和训练序列对$x_n(t)$进行下变频和解扩，训练信号的基带表达式为

$$ \tilde{z}_n(t) = e^{j\frac{2\pi f_c n \tau - 2\pi f_c \tau}{1 + \tilde{\alpha}}} R(\tau_m) \sum_{l=1}^{R} a_n R(\tau_m + \tau_e) e^{-j\frac{2\pi f_c \tau_e}{1 + \tilde{\alpha}}} $$

式(9)

其中，τ_m为残留多普勒导致的时间同步误差，$R(\tau_m)$为理想的归化伪码相关函数，当$\tau_m = 0$时，$R(\tau_m) = 1$。细同步的目的是使$\tau_m \rightarrow 0$，$\tilde{\alpha} \rightarrow \alpha$，令$\Delta f = f_c \frac{\alpha - \tilde{\alpha}}{1 + \tilde{\alpha}}$，$\Delta \varphi = -2\pi f_c \tau_e$分别表示频率误差和相位误差。

③为了更好地抑制频谱泄露，对每段2N-1点数据依次采用加双窗的方法进行全相位预处理;对每段数据依次作双窗全相位预处理，即卷积窗$\omega_c(n)$的前窗$f(n)$和后窗$b(-n)$均为汉宁窗，其观察区间为$n \in [-N+1,N-1]$

$$ \omega_c(n) = f(n) * b(-n) $$

④对全相位预处理后的数据$y_n(n)$做N点FFT即为全相位谱分析结果，记为$Y_n(e^{j\omega})$；

⑤对R段数据的全相位FFT结果进行门限判决和峰值检测，得到R段数据中的最大峰值对应的时间起始点，频率和相位；

⑥直接截取全相位谱分析主谱线上的相位值$\phi_{np}(k^*)$(假设谱序号为k^*)即可精确获取信号的初始相位;频率使用全相位时移相位差法进行校正，校正公式为

$$ \check{\tau}^* = \left[\phi(k^*) - \phi_{np}(k^*) \right] / N + 2k^* \pi / N $$

式(12)
(13)

(16)

(17)
均为最小相位信道和最大相位信道的混合，对帧检测极其不利。信道环境极其复杂恶劣。为了使仿真更加逼近真实的水声环境，从以下几个方面进行水声信道的模拟：将图2所示的帧结构直接序列扩频数据帧分别与以上6个信道模型进行卷积，等同于发射节点在6个不同位置上进行数据的传输。每一次传输设置不同的多普勒，表示收发节点的相对运动速度是变化的，最后在数据帧上添加高斯白噪声。具体仿真条件参数如表1所示：

<table>
<thead>
<tr>
<th>调制方式</th>
<th>BPSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>载波频率 f_c</td>
<td>2.5kHz</td>
</tr>
<tr>
<td>训练序列类型</td>
<td>m序列</td>
</tr>
<tr>
<td>训练序列长度</td>
<td>255码片</td>
</tr>
<tr>
<td>扩频码类型</td>
<td>Gold码</td>
</tr>
<tr>
<td>扩频码长度</td>
<td>127</td>
</tr>
<tr>
<td>码速率 R_c</td>
<td>2kcps</td>
</tr>
<tr>
<td>信息速率 R_b</td>
<td>15.7bps</td>
</tr>
</tbody>
</table>

[0133] 如下的表2汇总了3200比特基带数据基于蒙特卡罗仿真的误码率统计结果。可见，随着M的增大，系统的误码性能有着明显的改善，当SNR=-15dB时，通过合成孔径处理系统可以达到0.8%的误码率，充分说明了本发明所提出的运动补偿方法有效地获得合成孔径空间分集增益，提高了通信质量。

[0134] 表2不同虚拟子阵个数的误码率统计结果

<table>
<thead>
<tr>
<th>信噪比 (dB)</th>
<th>不同虚拟子阵的误码率统计结果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M=1</td>
</tr>
<tr>
<td>-5</td>
<td>3.0×10^{-3}</td>
</tr>
<tr>
<td>-10</td>
<td>2.1×10^{-2}</td>
</tr>
<tr>
<td>-12</td>
<td>4.9×10^{-2}</td>
</tr>
<tr>
<td>-15</td>
<td>6.0×10^{-1}</td>
</tr>
</tbody>
</table>

[0136] 总之，本发明针对合成孔径水声扩频通信中，由于运动造成的合成孔径处理空间分集增益损失较大的问题，提出了一种有效的多普勒效应估计和补偿方法。该方法先利用重采样技术消除大部分的多普勒，并在此基础上，进一步采用全相位FFT方法实现对频率和相位的高精度估计，同时消除多普勒造成的时间模糊。通过理论仿真验证表明，该方法能有效地抵抗接收节点相对运动产生的多普勒效应，实现各虚拟子阵发射信号的相干叠加，减少合成孔径处理空间增益损失，从而提高水声通信质量。

[0137] 最后所应说明的是，以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明，本领域的普通技术人员应当理解，对本发明的技术方案进行修改或者等同替换，都不脱离本发明技术方案的精神和范围，其均应涵盖在本发明的权利要求范围当中。
图1

图2

图3
图7