Anti-programmed death-ligand 1 (PD-L1) antibodies and therapeutic uses thereof.

Abstract: Anti-programmed death-ligand 1 (PD-L1) antibodies, methods of using the same, therapeutic compositions thereof, and uses thereof in upregulating cell-mediated immune responses and treating T cell dysfunctional disorders are provided. The use of the anti-PD-L1 antibody as a diagnostic agent in vitro is also provided.
Descriptions

Anti-Programmed Death-Ligand 1 (PD-L1) Antibodies
And Therapeutic Uses Thereof

Technical Field

[1] The present invention relates to antibody or functional binding fragments that binds programmed cell death-ligand 1 (PD-L1) and particularly for therapeutic and diagnostic methods of using those antibodies. The present invention belongs to the field of biotechnology.

Background Art

[2] PD-L1 is a 40 kDa type I transmembrane protein that has been speculated to play a major role in suppressing the immune system. Formation of the PD-L1/PD-1 and PD-L1/B7.1 complexes negatively regulates T-cell receptor signaling, resulting in the subsequent downregulation of T-cell activation and suppression of anti-tumor immune activity.

[4] PD-L1 binds to its receptor, PD-1, found on activated T cells, B cells, monocytes and myeloid cells, to modulate activation or inhibition. PD-L1 also has an appreciable affinity for the costimulatory molecule CD80 (B7-1).

[5] Engagement of PD-L1 with its receptor PD-1 on T cells delivers a signal that inhibits TCR-mediated activation of IL-2 production and T cell proliferation. The mechanism involves inhibition of ZAP70 phosphorylation and its association with CD3ζ. PD-L1 binding to PD-1 also contributes to ligand-induced TCR down-modulation during antigen presentation to naive T cells, by inducing the up-regulation of the E3 ubiquitin ligase CBL-b.
PD-L1 is overexpressed in many cancers, including a wide variety of solid tumors and hematological malignances, such as myeloma, prostate, breast, colon, lung, melanoma, ovarian, salivary, stomach, thyroid tumors, lymphoma and bladder. PD-L1 overexpression in tumor cells may advance tumor invasion and is often associated with poor prognosis.

Furthermore, in many cancers, PD-L1 is overexpressed on tumor cells and tumor-infiltrating immune cells, such as macrophages and dendritic cells.

Given the role of PD-L1 in cancer development and immune system regulation, additional tools to detect the presence of PD-L1, for example for diagnosis and/or patient selection, are desirable.

The blockade therapy of PD-L1 target shows promising clinical benefits in many types of cancer. There is a need in the art for agents that target PD-L1 for the treatment of PD-L1-associated conditions, such as cancer. The invention fulfills that need and provides other benefits.

Summary of Invention

The present invention relates to anti-PD-L1 antibodies and methods of using the same.

The present disclosure provides antibodies that can act as agonists and/or antagonists of PD-L1, thereby modulating immune responses regulated by PD-L1. The disclosure further provides anti-PD-1 antibodies that comprise novel antigen-binding fragments. Anti-PD-L1 antibodies of the invention are capable of:
(A) Specifically binding to PD-L1, including human PD-L1;
(B) Blocking PD-L1 interactions with its natural ligand(s);
(C) Increasing T-ceii proliferation in a mixed lymphocyte reaction (MLR);
(D) Killing cancer cell by cytotoxic T lymphocyte (CTL);
(E) Killing cancer cell by antibody dependent cell-mediated cytotoxicity (ADCC);
(F) Killing cancer cell by complement dependent cytotoxicity (CDC);
(G) Killing myeloma cancer cell and prolongs survive rate in NSG mice;
(H) Killing myeloma cancer cell and prolongs survive rate in SCID lymphoma mice; or
(i) Performing all functions above.

[12] In particular embodiments, the two antibodies derived and defined from mouse comprise a heavy chain variable region (V\textsubscript{H}) and/or a light chain variable region (V\textsubscript{L}) and their Complementarity Determining Region (CDR) as summarized in Table below:

<table>
<thead>
<tr>
<th>Part A. A full variable sequence of PD-L1 antibodies derived from mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody</td>
</tr>
<tr>
<td>Q106</td>
</tr>
<tr>
<td>Q106</td>
</tr>
<tr>
<td>Q106</td>
</tr>
<tr>
<td>Q106</td>
</tr>
<tr>
<td>Q107</td>
</tr>
<tr>
<td>Q107</td>
</tr>
<tr>
<td>Q107</td>
</tr>
<tr>
<td>Q107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part B. CDR domain sequence of PD-L1 antibodies derived from mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Q106</td>
</tr>
<tr>
<td>Q106</td>
</tr>
<tr>
<td>Q107</td>
</tr>
<tr>
<td>Q107</td>
</tr>
</tbody>
</table>
Description of Embodiments

[13] In general, the present invention provides mouse antibody or antigen-binding fragment thereof that specifically binds PD-L1.

[14] In one aspect, the invention provides an mouse antibody or antigen-binding fragment which specifically binds human PD-L1, and comprising nucleic acid sequence consisting of SEQ ID NO: 1, 3, 5 and 7.

[15] In other aspect, the invention provides an mouse antibody or antigen-binding fragment which specifically binds human PD-L1, and comprising amino acid sequence consisting of SEQ ID NO: 2, 4, 6 and 8.

[16] In another aspect, the invention provides an mouse antibody or antigen-binding fragment which specifically binds human PD-L1, and comprising a heavy chain variable region (H-CVR) selected from the group consisting of SEQ ID NOs: 9-11 (H-CDR1, H-CDR2 and H-CDR3) and its variant; and/or a light chain variable region (L-CVR) selected from the group consisting of SEQ ID NOs: 12-14 (L-CDR1, L-CDR2 and L-CDR3) or its variant.

[17] In other aspect, the invention provides an mouse antibody or antigen-binding fragments which specifically binds human PD-L1, and comprising a heavy chain variable region (H-CVR) selected from the group consisting of SEQ ID NOs: 15-17 (H-CDR1, H-CDR2 and H-CDR3) or its variant; and/or a light chain variable region (L-CVR) selected from the group consisting of SEQ ID NOs: 18-20 (L-CDR1, L-CDR2 and L-CDR3) or its variant.

[18] Preferably, the mouse anti-PD-L1 antibodies of the invention are selected from Q106 and Q107.

[19] In a preferred embodiments, the present invention provides an anti-PD-L1 antibodies or antigen-binding fragments which are claimed as mouse antibodies or fragments.

[20] In a further preferred embodiments, the present invention provides an mouse antibodies or fragments which comprise a heavy chain variable region
(H-CVR) further containing mouse IgG or its variant with heavy chain FR region.

[21] In a further preferred embodiments, the present invention provides an mouse antibodies or fragments which further contain mouse IgG\textsubscript{K} or its variant with light chain constant region.

[22] In a preferred embodiments, the present invention provides an mouse antibodies or fragments which comprise a light chain variable region (L-CVR) further containing mouse \(\lambda\) chain or its variant with light chain FR region.

[23] In a preferred embodiments, the present invention provides an anti-PD-L1 antibodies or antigen-binding fragments which comprise chimeric antibody or fragments.

[24] In a further preferred embodiments, the present invention provides an chimeric antibody or fragments which further contain mouse IgG\textsubscript{1}, IgG\textsubscript{2a}, IgG\textsubscript{2b}, IgG\textsubscript{4} and/or a variant with heavy chain FR region.

[25] In one aspect, the invention features an isolated antibody that specifically binds to PD-L1. In some embodiments, the antibody comprises the following variable regions (CDRs): H-CDR\textsubscript{1}, H-CDR\textsubscript{2} and H-CDR\textsubscript{3}. In some embodiments, the antibody further comprises the following heavy chain domain framework regions (FRs): FR-H\textsubscript{1}, FR-H\textsubscript{2}, FR-H\textsubscript{3} and FR-H\textsubscript{4}.

[26] In some embodiments, the antibody further comprises the following CDRs: CDR-L\textsubscript{1}, CDR-L\textsubscript{2}, and CDR-L\textsubscript{3}. In some embodiments, the antibody further comprises the following light chain variable domain framework regions (FRs): FR-L\textsubscript{1}, FR-L\textsubscript{2}, FR-L\textsubscript{3}, and FR-L\textsubscript{4}.

[27] In some embodiments, the antibody comprises (a) a \(V_{H}\) sequence having at least 95% sequence identity; (b) a \(V_{L}\) sequence having at least 95% sequence identity; or (c) a \(V_{H}\) sequence as in (a) and a \(V_{L}\) sequence as in (b).

[28] In another aspect, the invention features an isolated antibody that competes for binding to PD-L1 with any one of the preceding antibodies. In another aspect, the invention features an isolated antibody that binds to the same
epitope as any one of the preceding antibodies. In some embodiments, any one of the preceding antibodies can be an antibody fragment that specifically binds to PD-L1.

[29] In some embodiments, the antibody fragment is selected from the group consisting of Fab, single chain variable fragment (scFv), Fv, Fab', Fab'-SH, F(ab')₂, and diabody.

[30] In another aspect, the present invention provides an isolated nucleic acid or DNA molecule that encodes any of the antibodies described herein.

[31] In a further aspect, the present invention provides an isolated polynucleotide composition, comprising the anti-PD-L1 antibody light chain or a functional fragment of the polynucleotide and the anti-PD-L1 polynucleotide of the heavy chain of an antibody or functional fragment thereof.

[32] In another aspect, the invention features a bispecific molecule of anti-PD-L1 antibodies or antigen-binding thereof of the bispecific molecule. Antibody or antigen binding portion of the invention can be derivatized or linked to another functional molecule, e.g., another peptide or protein (e.g., another antibody or ligand receptor) to generate at least two different the bispecific binding molecule binding sites or target molecules. Antibodies of the invention can in fact be derivatized or linked to more than one other functional molecule to generate more than two different binding sites and/or target molecule binding multispecific molecule; such multispecific molecules are also intended to be as used herein.

[33] In some particular embodiments, according to the anti-PD-L1 antibody or functional fragment thereof of the present invention block the interaction and/or interact with PD-1 and PD-L2 and/or the PD-L1 and CD80.

[34] In a further aspect, the present invention provides the use according to the anti-PD-L1 antibody or a functional fragment of the present invention in the manufacture of a medicament for enhancing the immune response of T
cells. In some embodiments, the enhanced immune response includes enhancement of T cell proliferation.

[35] In some particular embodiments, wherein the PD-L1 antibody induces tumor cell killing by executing cytolysis activity through a complement dependent cytotoxicity (CDC).

[36] In some particular embodiments, wherein the PD-L1 antibody exhibits antitumor activity by having increased antibody dependent cell-mediated cytotoxicity (ADCC).

[37] In some particular embodiments, wherein the PD-L1 antibody further kills tumor cells in NSG myeloma mice through a cytotoxic T lymphocyte (CTL) and increases its survive rate.

[38] In some particular embodiments, wherein the PD-L1 antibody combined with chemotherapeutic drug, lenalidomide further kills myeloma cells in SCID myeloma mice and increases its survive rate.

[39] In another aspect, the present invention provides the use according to the anti-PD-L1 antibody or a functional fragment of the present invention for the treatment or prevention of cancer and most preferably myeloma and lymphoma or infectious diseases of the medicament.

[40] The present invention further provides a method of treating and preventing PD-L1 mediated disease or disorder, according to PD-L1 antibody or a functional fragment of the present invention or combined therapy comprising pharmaceutical compositions thereof; preferably wherein said disease is cancer, most preferably the myeloma, lymphoma; and breast cancer, prostate cancer, lung cancer, stomach cancer, colon cancer, kidney cancer, melanoma, Non-small cell lung cancer.
Examples

The invention provides novel antibodies that bind to PD-L1. Antibodies of the invention are useful, for example, for cancer treatment by blocking PD-1/PD-L1 pathway using this novel anti-PD-L1 antibody.

The following examples are provided to further explain and demonstrate some of the presently preferred embodiments and are not intended to limit the scope or content of the invention in any way.

Example-1: Generation of Anti-PD-L1 Mouse Antibodies

Anti-PD-L1 mouse monoclonal antibodies were generated by hybridoma techniques. Briefly, The DNA sequence encoding the human PD-L1 was expressed with the Fc region of mouse IgG1 at the C-terminus in human 293T cells. Balb/c mice were immunized with the purified PD-L1 antigen emulsified with complete Freund's adjuvant followed by boosting a series of PD-L1 antigen emulsified with incomplete Freund's adjuvant. The antibody-expressing fusioned cells were screened by Enzyme-Linked ImmunoabSorbant Assay (ELISA) using the coated PD-L1 antigen. All ELISA positive clones producing the antibody with the highest specificity were further selected. Two anti-PD-L1 monoclonal antibodies named as Q106 and Q107 among them were finally chosen and further produced using in serum-free medium by in vitro cell culture method, and subsequently purified by Protein A affinity chromatography.

Example-2: Screen of Anti-PD-L1 Mouse Antibodies by ELISA

Screen of anti-PD-L1 antibodies against recombinant human PD-L1 was measured by indirect ELISA assay. Ninety-six well Falcon 3912 polyvinylchloride microtiter plates (Becton Dickinson Inc, Oxnard, CA) were coated with 100 µL of recombinant human PD-L1-Fc at 4 °C overnight. The plate was washed three times in PBST (PBS with 0.05% Tween-20), and then blocked with PBS containing 4% BSA to prevent nonspecific binding. 100 µL of hybridoma supernatant was added to each well and incubated at room
temperature for 2 hours. Wells were washed three times with PBST and 100 µL of HPR-conjugated goat anti-mouse secondary antibody (Biolegend, cat#405306) was added, and further incubated for 2 hours at room temperature. After washing, o-Phenylenediamine dihydrochloride (OPD) peroxidase substrate was added to each well and plates were incubated for 20 minutes at room temperature. Reactions were stopped using 0.36 N H₂SO₄ and the optical density read by an ELISA plate reader (VersaMax, Molecular Devices, Sunnyvale, CA, USA) at a wavelength of 490nm. The wells filled with anti-PD-L1 serum were served as the positive control. 45 positive clones were totally obtained, and continously passaged by limited dilution of cloning. The step was repeated three times for got a stable single of hybridoma. Results showed that two positive clones Q106 and Q107 with the highest titers can stably secrete monoclonal antibodies against human PD-L1.

Example-3: Specificity of anti-PD-L1 Antibodies

[45] This example shows the specificity for the anti-PD-L1 antibody of the invention for human PD-L1. In addition, it shows the affinity of two antibodies Q106 and Q107 for human PD-L1 expressed at the cell membrane on 293T-transfected cells (Fig. 1A). Human PD-L1 were stably transfected into 293T cells. Cells were harvested and plated at 150,000 cells per well in a 96-well plate for binding assay. The PD-L1 antibodies Q106, Q107 or Isotype antibody control were titrated starting at 10µg/ml, in a serial of three-fold dilutions and bound to cells in 50µl volumes for 25 minutes on ice. Cells were washed and then detected with anti-mouse IgG PE (BD Biosciences) at 20 µg/ml for 25 minutes on ice.

All samples were run on a MiltenyiBiotech MACSQuant and Mean Fluorescence Intensity of PD-L1 binding data as a function of anti-PD-L1 antibody concentration was analyzed using FlowJo® software provided by Tree Star. EC₅₀ values (antibodies concentration associated with an half-
maximal binding) were calculated using Kaleidagraph. These values are summarized below in Table 1:

Flow cytometry analysis also shows that the specificity of PD-L1 antibodies Q106 and Q107 in wildtype and PD-L1 knockdown mantle cell lymphoma cell line, Granta519 (Fig. 1B), and multiple myeloma cell line U266 (Fig. 1C).

Example-4: Cell surface bindings of anti-PD-L1 antibodies in different cancer cell lines

[46] Affinity purified both Q106 and Q107 antibodies in Example 1 were conjugated to the fluorochromes PE (Invitrogen). Human myeloma, breast cancer and prostate cancer cell lines were maintained in RPMI-1640 medium (Fisher Scientific, Herndon, VA) supplemented with 10% fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA). Cells were centrifuged and washed with PBS, then separately stained with PE-conjugated Q106 and Q107 antibodies, incubated for 30 min on ice, and washed 3 times before analysis. Flow cytometry data were collected with a FACSCantoll (Becton Dickinson) and analyzed with FlowJo V.9.1 software (TreeStar). Both Q106 and Q107 PD-L1 antibodies can bind to the cellular PD-L1 protein of Human myeloma cell lines (ARH-77 and U266), breast cancer cell lines (MB-231 and MCF-7), and prostate cancer cell lines (PC-3 and LN3) in FACS assays (Fig. 2).

Example-5: Enhancement of T cell proliferation in vitro by anti-PD-L1 antibodies

[47] Allogeneic CD3+, CD4+ and CD8+ T cells were purified from PBMCs from healthy donors using magnetic cell sorting (Miltenyi Biotec). CD3+ T cells were labeled with 5(6)-carboxyfluorescein diacetate succinimidyl ester (CFSE; 5 □ M; Invitrogen) for 10 minutes at 37°C. After washing, T cells (5 × 10^4) were seeded into 96-well U-bottomed tissue culture plates (Corning Glassworks) and cocultured with irradiated MM cell line ARH-77 at 37°C for 6-10 days in 5% CO_2 in Aim-V medium supplemented with 10% pooled human serum (T-cell medium). Flow cytometry analysis was used to detect dilution of CFSE. Anti-PD-L1 antibodies Q106 and Q107 can significantly increase CD3+
Example-6: Enhancement of CTLs killing activity in vitro by anti-PD-L1 antibodies

[48] A. Generation of tumor-reactive, alloantigen-specific cytotoxic T lymphocyte lines

Allogeneic CD3+ T cells were cocultured in T-cell medium with irradiated ARH-77. After 7 days of coculture, CD3+ T cells were harvested and restimulated with newly irradiated above described tumor cells. The cultures were fed with fresh T cell medium containing recombinant IL-2 (10 IU/ml), IL-7 (5 ng/ml), and IL-15 (5 ng/ml) (R&D Systems). The frequencies of CD3+CD8+ T cells were monitored every week by flow cytometry. After at least 4 repeated cycles of in vitro restimulation, cytotoxic T lymphocyte (CTL)-cell line was generated, and named as CTL-ARH-77. The CTL-cell line was expanded in T-cell medium containing recombinant IL-2 (10 IU/ml), IL-7 (5 ng/ml), and IL-15 (5 ng/ml) for 2 weeks and subjected to functional tests.

[49] B. Cytotoxicity assay

The standard 4-hour ⁵¹Cr-release assay was performed to measure cytolytic activity of the T-cell line with target cells including ARH-77, U266, ARP-1, K562, B cells, PBMCs and primary tumor cells isolated from multiple myeloma patients. To determine whether the cytolytic activity was restricted by Major Histocompatibility Complex (MHC) class I or II molecules, target cells were pretreated with 20 μg/ml antibodies against HLA-ABC (Serotec Ltd), HLA-DR (Immunotech), or control IgG (eBioscience).

ARH-77-reactive CTL-cell line from HLA-A^*0201^+ healthy blood donors was generated as described above. As shown in Fig. 4A, the percentages of tumor-reactive CD8+ T cells in CTL line were increased while applied Q106 antibody in CFSE dilution assay. Next, the cytolytic activity of ARH-77 CTL cell line was examined. The data showed that the CTL cells not only killed the
stimulatory ARH-77 cell lines, but also killed HLA-A*0201 + U266 and primary MM cells (patients 1 and 2). No killing was observed on HLA-A*0201 - ARP-1, ARK and primary MM cells (patient 3 and 4) or K562 cells (Fig. 4B) at all, indicating that NK cells were not responsible for the killing. Moreover, purified normal allogeneic (to the T cells) PBMCs and B cells from a HLA-A*0201 + donor and a MM patient were used as target cells to demonstrate whether the CTL cells were cytolytic to normal cells. As shown in Fig. 4B, no killing was observed against normal B cells or PBMCs, although the T cells were alloantigen-specific.

More importantly, when MM passaged cell lines or MM primary cells were pre-incubated with anti-PD-L1 antibodies, Q106 and Q107, respectively, these cells became more sensitive to the killing (Fig. 4B; P< 0.05 to 0.01).

Example-7: Tumor cells killed through ADCC induced by anti-PD-L1 antibodies.

[50] ADCC was measured by 51-Chromium (51-Cr) release assays. In ADCC assay, purified PBMCs from normal volunteers was used as effector cells. Target cells (1*10^6) were incubated with 200 μCi of 51-Cr for 1 h at 37°C with gentle resuspension of pellet at 15 min intervals. After washing, cells were plated at 10,000 cells/well in 96-well U-bottom plate with a different concentration of PBMCs. This is followed by the addition of antibody solution in a final concentration ranging from 5 to 20 μg/ml. Both anti-PD-L1 antibodies, Q106 and Q107 and mouse IgG1 (BioLegend) were used as tested groups and isotype control. Cells are then incubated for 4 h at 37°C, and released 51-Cr was analyzed using a Gamma Counter. Spontaneous release was determined from target cells without the addition of antibody and PBMCs, and maximum release was determined from target cells with 6% Triton X-100 without the addition of antibody and PBMCs. Percent cytotoxicity was calculated as [(counts in sample - spontaneous release)/(maximum counts - spontaneous release)] *100%. All experiments were performed in triplicates.
Data showed that ADCC induced by anti-PD-L1 antibodies, Q106 and Q107 killed hematological tumor cells (Fig. 5A) and solid cancer cells (Fig. 5B).

Example-8: Tumor cells killed through CDC induced by anti-PD-L1 antibodies

[51] CDC was measured by 51-Chromium (51-Cr) release assays as demonstrated in Example 7. In CDC assay, guinea pig serum (Sigma-Aldrich) was used as complement source. Target cells (1*10^6) were incubated with 200 μCi of 51Cr for 1 h at 37°C with gentle resuspension of pellet at 15 min intervals. After washing, cells were plated at 10,000 cells/well in 96-well U-bottom plate with different concentration of guinea pig serum. This is followed by the addition of antibody solution, in a final concentration ranging from 5 to 20 μg/ml. Both Q106 and Q107 PD-L1 antibodies and mouse IgG1 (BioLegend) were used as tested group and isotype control. Cells are then incubated for 4 h at 37°C, and released 51-Cr was analyzed using a Gamma Counter. Spontaneous release was determined from target cells without the addition of antibody and guinea pig serum, and maximum release was determined from target cells with 6% Triton X-100 without the addition of antibody and guinea pig serum. Percent cytotoxicity was calculated as [((counts in sample - spontaneous release)/(maximum counts - spontaneous release)) *100%. All experiments were performed in triplicate. The data showed that CDC induced by anti-PD-L1 antibodies, Q106 and Q107 killed both hematological tumor cells (Fig. 6A) and solid cancer cells (Fig. 6B).

Example-9: Immunotherapy of PD-L1 antibody in NSG myeloma mouse model

[52] It is now apparent that many tumors exploit expression of PD-1 ligands as a means to attenuate anti-tumor T cells responses. Several human cancers have been characterized to express elevated levels of PD-L1 on both tumors and tumor-infiltrating leukocytes and this elevated PD-L1 expression is often associated with a worse prognosis. Mouse tumor models demonstrate similar
increases in PD-L1 expression within tumors and demonstrate a role for the PD-1/PD-L1 pathway in inhibiting tumor immunity.

Here we present an experiment demonstrating the impact of blocking PD-L1 on multiple myeloma U266 of growth in NSG mice (Figs. 7A and 7B). These cells express PD-L1, but not PD-L2 on their cell surface as assessed by Flow Cytometry. Mice were inoculated intravenously with 1 million U266 cells on Day 0. On Day 14 (when tumors were seen in luminous image), 10 mice/group were treated with 10mg/kg of PD-L1 antibody(Q106) for the 3x/week duration of the study. In the study, mouse IgG was set up as control. Blockade of PD-L1 in late intervention is highly effective as a single agent therapy at preventing tumor growth. In contrast, control IgG showed no evidence of inhibiting tumor growth. These results demonstrate the unique role of the PD-1/PD-L1 axis in suppression of the anti-tumor immune response and support the potential for the treatment of human cancers with the antibody that blocks the PD-L1 interaction with PD-1 and B7.1.

U266 NSG tumor model: Methodically, on Day 0, 40 of mice were inoculated intravenously with 1 million of U266-luciferase cell in 100 microliters of PBS. Take image in IVIS imaging system every week after tumor inoculation. About 2-3 weeks later, 30 of 40 mice with similar-sized tumors were recruited into one of 3 treatment groups as listed below. The tumors were measured by taking image every week. Mice not recruited into below treatment groups, due to dissimilar tumor volume were euthanized:

Group 1: PBS control, IP, 100 μL, 3x/week;
Group 2: IgG control, 10 mg/kg IP, 100 μL, 3x/week;
Group 3: anti-PD-L1 antibody Q106, 10 mg/kg IP, 100 μL, 3x/week.

Example-10: Combination immunotherapy of PD-L1 antibody with lenalidomide in SCID myeloma mouse model.

[53] Shown are bioluminescence images (Fig. 8A), tumor burdens (Fig. 8B) and survival (Fig. 8C) of mice received different treatments. Representative
results from two independent experiments performed are shown. Error bars = SEM.*P< 0.05, compared with mouse IgG control.

On Day 0, 60 of SCID mice were inoculated subcutaneously with 2 million of 11266-luciferase myeloma cells in 100 microliters of PBS plus matrigel. Mice are allowed to grow tumors. Mice are weighed and measured 2 x/week until Day 15 (when the tumor volume is between 100-200 mm3). On Day 15, following tumor measurement, mice are recruited into 1 of the 4 treatment groups below. Mice not recruited into below treatment groups, due to dissimilar tumor volume are euthanized.

Group 1: IgG control, 10 mg/kg IP, 100 µL, 3x/week x 5, n=10;
Group 2: anti-PD-L1 antibody Q106, 10 mg/kg IP, 100 µL, 3x/week x 5, n=10;
Group 3: Lenalidomide, 10 mg/kg IP, 100 µL, for 5 days and 2 days off for 3 weeks, n=10;

Tumors are measured, luminous image taken and mice weighed 2X/week. Animals exhibiting weight loss of >15% will be weighed daily and euthanized if they lose >20% body weight. Mice will be euthanized when tumor volumes exceed 3,000 mm3, or after 3 months if tumors do not form.

This study showed that combination immunotherapy of anti-PD-L1 antibody, Q106 with lenalidomide blockade was more effective than treatment with the PD-L1 antibody or lenalidomide chemotherapy alone(Figs. 8A-C).

[54] Other Embodiments

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, the descriptions and examples should not be construed as limiting the scope of the invention. The disclosures of all patent and scientific literature cited herein are expressly incorporated in their entirety by reference.
Table 1. EC$_{50}$ Summary

<table>
<thead>
<tr>
<th>mAbs</th>
<th>EC$_{50}$ (nM) in FACS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q106</td>
<td>0.3</td>
</tr>
<tr>
<td>Q107</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 2. DNA and Amino acid sequences of V$_H$, V$_L$ and their CDR domains

<table>
<thead>
<tr>
<th>V$_H$ / V$_L$ / CDR</th>
<th>Sequence ID for Q106</th>
<th>Sequence ID for Q10711</th>
</tr>
</thead>
<tbody>
<tr>
<td>V$_H$DNA</td>
<td>SEQ ID NO:1</td>
<td>SEQ ID NO:5</td>
</tr>
<tr>
<td>V$_H$AA</td>
<td>SEQ ID NO:2</td>
<td>SEQ ID NO:6</td>
</tr>
<tr>
<td>V$_L$ DNA</td>
<td>SEQ ID NO:3</td>
<td>SEQ ID NO:7</td>
</tr>
<tr>
<td>V$_L$ AA</td>
<td>SEQ ID NO:4</td>
<td>SEQ ID NO:8</td>
</tr>
<tr>
<td>H-CDR1 AA</td>
<td>SEQ ID NO:9</td>
<td>SEQ ID NO:15</td>
</tr>
<tr>
<td>H-CDR2 AA</td>
<td>SEQ ID NO:10</td>
<td>SEQ ID NO:16</td>
</tr>
<tr>
<td>H-CDR3 AA</td>
<td>SEQ ID NO:11</td>
<td>SEQ ID NO:17</td>
</tr>
<tr>
<td>L-CDR1 AA</td>
<td>SEQ ID NO:12</td>
<td>SEQ ID NO:18</td>
</tr>
<tr>
<td>L-CDR2 AA</td>
<td>SEQ ID NO:13</td>
<td>SEQ ID NO:19</td>
</tr>
<tr>
<td>L-CDR3 AA</td>
<td>SEQ ID NO:14</td>
<td>SEQ ID NO:20</td>
</tr>
</tbody>
</table>

Reference to Deposited Biological Material

Not apply in this application.

Sequence Listing Free Text
[58] SEE SEQUENCE LISTING FILE-RUNSHIN

Patent Literature

[59] PTL1: WO201373223A1
[60] PTL2: WO2007005874A2
[61] PTL3: WO2010077634A1
[63] PTL5: WO2011066389A1
[64] PTL6: WO2014100079A1
[65] PTL7: US8217149

Non Patent Literature

Drawings

Anti-Programmed Death-Ligand 1 (PD-L1) Antibodies
And Therapeutic Uses Thereof

Brief Description of Drawings

[1] The invention can be more completely understood with reference to the following drawings.

Fig.1A

Fig.1B

Fig.1c

Fig.2

Fig.3A

Fig. 3B
[7] [fig. 3b] Anti-PD-L1 antibodies Q106 and Q107 increase CD4+ T cell proliferation in CFSE dilution assay.

Fig. 3C
[8] [fig. 3c] Anti-PD-L1 antibodies Q106 and Q107 increase CD8+ T cell proliferation in CFSE dilution assay.

Fig. 4A
[9] [fig. 4a] Anti-PD-L1 antibody Q106 enhances CTL cells proliferation in CFSE dilution assay.

Fig. 4B
[10] [fig. 4b] Anti-PD-L1 antibodies Q106 and Q107 kill cancer cells by enhanced CTLs in ⁵¹Cr cytotoxicity assay.

Fig. 5A
[11] [fig. 5a] Anti-PD-L1 antibodies Q106 and Q107 kill hematological tumor cells by induced ADCC.

Fig. 5B
[12] [fig. 5b] Anti-PD-L1 antibodies Q106 and Q107 kill solid cancer cells by induced ADCC.

Fig. 6A
[13] [fig. 6a] Anti-PD-L1 antibodies Q106 and Q107 kill hematological tumor cells by induced CDC.

Fig. 6B
[14] [fig. 6b] Anti-PD-L1 antibodies Q106 and Q107 kill solid cancer cells by induced CDC.
Fig. 7A

[15] (fig. 7a) Immunotherapy of PD-L1 antibody Q106 in NSG myeloma mouse model.

Fig. 7B

[16] (fig. 7b) Survival curve of immunotherapy of PD-L1 antibody Q106 in NSG myeloma mouse model.

Fig. 8A

[17] (fig. 8a) Combination immunotherapy of PD-L1 antibody Q106 with lenalidomide in SCID myeloma mouse model.

Fig. 8B

[18] (fig. 8b) Combination immunotherapy of PD-L1 antibody Q106 with lenalidomide Inhibits tumor growth in SCID myeloma mouse model.

Fig. 8C

[19] (fig. 8c) Combination immunotherapy of PD-L1 antibody Q106 with lenalidomide enhances survival rate in SCID myeloma mouse model.
Claims
Anti-Programmed Death-Ligand 1 (PD-L1) Antibodies
And Therapeutic Uses Thereof

[Claim 1] The anti-PD-L1 antibody, or antigen binding fragment, wherein the antibody comprises a full nucleic acid sequences of: SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, and SEQ ID NO:7.

[Claim 2] The anti-PD-L1 antibody, or antigen binding fragment, wherein the antibody comprises a full amino acid sequences of: SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, and SEQ ID NO:8.

[Claim 3] The anti-PD-L1 antibody, or antigen binding fragment, which antibody or fragment comprises a heavy chain variable region (HCVR) having complementarity determining regions (CDRs) selected from the group consisting of: CDRs 1-3 of SEQ ID NO: 9; CDRs 1-3 of SEQ ID NO: 10; CDRs 1-3 of SEQ ID NO: 11; CDRs 1-3 of SEQ ID NO: 15; CDRs 1-3 of SEQ ID NO: 16; CDRs 1-3 of SEQ ID NO: 17.

[Claim 4] According to claim 3, the anti-PD-L1 antibody, or antigen binding fragment, which antibody or fragment, comprising a heavy chain complementarity determining regions (H-CDR) selected from the group consisting of SEQ ID NOs: 9-17 and 15-17.

[Claim 5] The anti-PD-L1 antibody, or antigen binding fragment, which antibody or fragment comprises a light chain variable region (LCVR) having complementarity determining regions (CDRs) selected from the group consisting of: CDRs 1-3 of SEQ ID NO: 12; CDRs 1-3 of SEQ ID NO: 13; CDRs 1-3 of SEQ ID NO: 14; CDRs 1-3 of SEQ ID NO: 18; CDRs 1-3 of SEQ ID NO: 19; CDRs 1-3 of SEQ ID NO: 20.

[Claim 6] According to claim 5, The anti-PD-L1 antibody, or antigen binding fragment, which antibody or fragment, comprising a light chain
complementarity determining regions (L-CDR) selected from the group consisting of SEQ ID NOs: 12-14 and 18-20.

[Claim 7] According to any one of claims 1-6, the anti-PD-L1 antibody, or antigen binding fragment, which antibody or fragment, comprising a H-CDR selected from the group consisting of SEQ ID NOs: 9-11 and 15-17 and a L-CDR selected from the group consisting of SEQ ID NOs: 12-14 and 18-20.

[Claim 8] The anti-PD-L1 antibody, or antigen binding fragment according to any one of claims 1-7, wherein the antibody comprises a H-CDR and L-CDR pair selected from the group consisting of: a HCVR having the sequence set forth in SEQ ID NO: 9-11 and 15-17 and a LCVR having the sequence set forth in SEQ ID NO: 12-14 and 18-20. Each matches to SEQ ID NOs 9-20 from M1 throughout M6.

M1) Pairing sequence from H-CDR of SEQ ID NO:9 and L-CDR of SEQ ID NO:12 ;

M2) Pairing sequence from H-CDR of SEQ ID NO:10 and L-CDR of SEQ ID NO:13 ;

M3) Pairing sequence from H-CDR of SEQ ID NO:11 and L-CDR of SEQ ID NO:14 ;

M4) Pairing sequence from H-CDR of SEQ ID NO:15 and L-CDR of SEQ ID NO:18 ;

M5) Pairing sequence from H-CDR of SEQ ID NO:16 and L-CDR of SEQ ID NO:19 ;

M6) Pairing sequence from H-CDR of SEQ ID NO:17 and L-CDR of SEQ ID NO:20.

[Claim 9] The antibody of claims 1-8, wherein the antibody comprises:
(a) a VH sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 1;

(b) a VL sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 14;

(c) a VH sequence as in (a) and a VL sequence as in (b);

(d) a VH sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 17;

(e) a VL sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 20.

(f) a VH sequence as in (d) and a VL sequence as in (e);

[Claim 10] The antibody of any one of claims 1-9, wherein the antibody is IgG1 or IgG4.

[Claim 11] The antibody of any one of claims 1-9, wherein the antibody is IgG1k or IgG2k.

[Claim 12] The antibody of claims 1-11, wherein the antibody fragment is selected from the group consisting of Fab, single chain variable fragment (scFv), Fv, Fab', Fab'-SH, F(ab')2, and diabody.

[Claim 13] The anti-PD-L1 antibody, or antigen binding fragment of any one of claims 1-12 that specifically binds to an epitope within the extracellular domain of human or mouse PD-L1.

[Claim 14] A method for generating PD-L1 antibody that specifically binds to human PD-L1, including:

(a) Providing starting nucleic acid encoding the variable domains of all the components, wherein the variable domain comprises a CDR3 to be replaced or deleted CDR3 coding region;

(b) The repertoire of encoding substantially as SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, and/or SEQ ID NO: 8 amino acids as shown or SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, and/or SEQ ID NO: 7
donor nucleic acid sequences in combination, so that the donor nucleic acid is inserted into the CDR3 region of all constituents, to afford the product a nucleic acid encoding the variable domains of all components;

(c). Expressing a nucleic acid product repertoire;

(d). Selecting an antigen specific for PD-L1 binding fragment thereof; and

(e). Recovering the specific antigen-binding fragment or nucleic acid encoding the binding fragment.

[Claim 15] The method of claim 14 is used for the production of antibodies.

[Claim 16] According to any one of claims 1-15, wherein the PD-L1 antibody increases T-cell proliferation in a mixed lymphocyte reaction (MLR) assay.

[Claim 17] According to any one of claims 1-15, wherein the PD-L1 antibody kills cancer cells in cytotoxic T lymphocyte (CTL) assay.

[Claim 18] According to any one of claims 1-15, wherein the PD-L1 antibody kills cancer cells in antibody dependent cell-mediated cytotoxicity (ADCC) assay.

[Claim 19] According to any one of claims 1-15, wherein the PD-L1 antibody kills cancer cells in a complement dependent cytotoxicity (CDC) assay.

[Claim 20] According to any one of claims 1-15, wherein the PD-L1 antibody kills myeloma cancer cells and prolongs survival rate in NSG mice.

[Claim 21] According to any one of claims 1-15, wherein the combination of PD-L1 antibody with chemotherapeutic drug, lenalidomide kills myeloma cancer cells and prolongs survival rate in SCID mice.

[Claim 22] Use of an anti-PD-L1 antibody, or antigen binding fragment, according to any one of 1 to 15 for the detection of PD-L1 in vitro.
[Claim 23] Use of an anti-PD-L1 antibody, or antigen binding fragment, according to any one of 1 to 15 as a diagnostic agent in vitro.

[Claim 24] According to any one of claims 1-15 or any one of claims 9-21, wherein an anti-PD-L1 antibody, or antigen-binding portion and method, for the preparation of a medicament treating an T-cell dysfunctional disorder, an cancer, most preferably the myeloma and lymphoma, an autoimmune disease, an inflammatory disease, an allergy and an immunity disorder.
Fig. 1C

Q106

Q107

mIgG

PD-L1-KD

Wt

PD-L1

Fig. 2

Myeloma

Breast Cancer

Prostate Cancer

ARH-77

MB-231

PC-3

U266

MCF-7

LN3

mIgG

Q106

Q107

PD-L1
Fig. 3C

Fig. 4A

<table>
<thead>
<tr>
<th>Condition</th>
<th>CFSE Low %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL alone</td>
<td>3.8</td>
</tr>
<tr>
<td>CTL-ARH-77</td>
<td>45.3</td>
</tr>
<tr>
<td>CTL-ARH-77+ Isotype Control</td>
<td>49.5</td>
</tr>
<tr>
<td>CTL-ARH-77+ PD-L1 Ab</td>
<td>69.2</td>
</tr>
</tbody>
</table>
Fig. 8B

![Graph showing tumor size (mm²) over weeks after tumor inoculation.

Fig. 8C

![Graph showing survival (%) over days after tumor inoculation.]
A. **CLASSIFICATION OF SUBJECT MATTER**

Nerna ona app c a o n o .
PCT/IB2017/050855
A . CLASSIFICATION OF SUBJECT MATTER
C07K 16/28(2006.01)i; C12N 5/10(2006.01)i; A61K 39/395(2006.01)i; A61P 35/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. **FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)
C07K C12N A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CNABS, CPRSABS, CNMED, TWABS, TWMED, HKABS, MOABS, DWPI, Sipoabs, Cntxt, Twtxt, Wotxt, Ustxt, Eptxt, Jptxt, CNKI, Web of Science: ; programmed death ligand PD-L1, antibody; GenBank, Embl, Retrieving system of Chinese Patent: sequence search on SEQ ID Nos:2,4,9-14

C. **DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 106243225 A (GENRK SHANGHAI PHARM TECHNOLOGY CO LTD) 21 December 2016 (2016-12-21) see the whole document</td>
<td>1-24 (all partially)</td>
</tr>
<tr>
<td>A</td>
<td>CN 106103482 A (REGENERON PHARMA) 09 November 2016 (2016-11-09) see the whole document</td>
<td>1-24 (all partially)</td>
</tr>
<tr>
<td>A</td>
<td>CN 105968200 A (RUYANG SUZHO BIOLOGICAL TECHNOLOGY CO) 28 September 2016 (2016-09-28) see the whole document</td>
<td>1-24 (all partially)</td>
</tr>
<tr>
<td>A</td>
<td>CN 104673897 A (JIANGSU SIMCERE PHARM CO LTD) 03 June 2015 (2015-06-03) see the whole document</td>
<td>1-24 (all partially)</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search	Date of mailing of the international search report
02 November 2017 | 30 November 2017

Name and mailing address of the ISA/CN

STATE INTELLECTUAL PROPERTY OFFICE OF THE P.R.CHINA
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing 100088 China

Facsimile No. (86-10)62019451

Authorized officer

XING, Yunlong

Telephone No. (86-10)62411094

Form PCT/ISA/210 (second sheet) (July 2009)
This International Searching Authority found multiple inventions in this international application, as follows:

[1] Invention 1: claims 1-24 (all partially), relates to anti-PD-L1 antibody Q106 (heavy chain is SEQ ID NO: 2 and CDRs are SEQ ID NOs: 9-11, light chain is SEQ ID NO:4 and CDRs are SEQ ID NO: 12-14), or antigen binding fragment, the method of generating such anti-PD-L1 antibody, the use of the anti-PD-L1 antibody for detection of PD-L1 in vitro, the use of the anti-PD-L1 antibody as diagnostic agent in vitro and the, the use of the anti-PD-L1 antibody for preparation of a medicine.

[2] Invention 2: claims 1-24 (all partially), relates to anti-PD-L1 antibody Q107 (heavy chain is SEQ ID NO: 6 and CDRs are SEQ ID NOs: 15-17, light chain is SEQ ID NO:8 and CDRs are SEQ ID NO: 18-20), or antigen binding fragment, the method of generating such anti-PD-L1 antibody, the use of the anti-PD-L1 antibody for detection of PD-L1 in vitro, the use of the anti-PD-L1 antibody as diagnostic agent in vitro and the, the use of the anti-PD-L1 antibody for preparation of a medicine.

[3] The sequence structures and CDRs of the anti-PD-L1 antibody involved in the two sets of inventions are different, the same technical feature between them are all monoclonal antibodies against the programmed cell death factor ligand 1. However, the prior art (CN104673897 A 20150603, see claim 5) has disclosed a monoclonal antibody MPDL3280A for programmed cell death ligand 1. The common technical feature can not be considered as a "specific technical feature" within PCT Rule 13.2. Therefore, there is no identical or corresponding specific technical feature between the two inventions. The the international application does not comply with the requirement of PCT Rule 13.1.

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: claims 1-24 (all partially), relates to PD-L1 antibody Q106 (heavy chain is SEQ ID NO: 2 and CDRs are SEQ ID NOs: 9-11, light chain is SEQ ID NO:4 and CDRs are SEQ ID NOs: 12-14) and antigen binding fragment, method, use of the PD-L1 antibody Q106.

Remark on Protest

☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date (day/month/year)</th>
<th>Patent family member(s)</th>
<th>Publication date (day/month/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 106243225 A</td>
<td>21 December 2016</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 106103482 A</td>
<td>09 November 2016</td>
<td>EA 201691487 A1</td>
<td>30 December 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2016009444 A</td>
<td>16 January 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2017507650 A</td>
<td>23 March 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015112805 A1</td>
<td>30 July 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2937343 A1</td>
<td>30 July 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201620936 A</td>
<td>16 June 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 35965 A</td>
<td>31 August 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015112805 A8</td>
<td>28 July 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH 12016501384 A1</td>
<td>15 August 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20160128309 A</td>
<td>07 November 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2015209238 A1</td>
<td>21 July 2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 11201605908W A</td>
<td>30 August 2016</td>
</tr>
<tr>
<td>CN 105968200 A</td>
<td>28 September 2016</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 104673897 A</td>
<td>03 June 2015</td>
<td>CN 104673897 B</td>
<td>29 September 2017</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)