United States Patent Office

1

3,586,524
CONSOLIDATION OF FORMATIONS BY ELECTROLESS METAL PLATING PROCESS
Edwin A. Richardson, Houston, Tex., assignor to Shell
Oil Company, New York, N.Y.
No Drawing. Filed July 10, 1969, Ser. No. 840,826
Int. Cl. C23c 3/02; E21b 33/138
U.S. Cl. 166—292
7 Claims

ABSTRACT OF THE DISCLOSURE

The method of consolidating incompetent formations at low temperatures in the presence of an electroless basic metal plating solution under conditions of reduced stress by addition to the solution of a small amount of an organic sulfimide.

BACKGROUND OF THE INVENTION

In the U.S. Pats. 3,393,737; 3,438,440; 3,438,441 and pending applications Ser. No. 692,726 filed Dec. 27, 1967 which matured into U.S. Pat. 3,500,926 and Ser. No. 705,-907 filed Feb. 16, 1968 which matured into U.S. Pat. 3,500,927 electroless metal plating techniques are de- 25 scribed for consolidating unconsolidated formations and it is disclosed that the process provides advantages relative to resin consolidation techniques for consolidating earth formations as described in such papers as J. Pet. Tech. May 1966, p. 545 entitled "Review of Sand Consoli- 30 dation Experience in Southern Louisiana" J. L. Rike, or J. Pet. Tech. December 1961 paper entitled "Large-Scale Laboratory Investigation of Sand Consolidation Techniques" by W. F. Hoover, or J. Pet. Tech, December 1966, p. 1537 article entitled "Studies of a New Process to Con- 35 solidate Oil Sands With Plastics" by B. R. Treadway or as described in U.S. Pats. 3,412,796; 3,419,072; 3,378,071; 3,373,813; 3,310,111; 3,282,338 and the like. In essentially all of these resin consolidation processes for consolidating incompetent formations rigs are required and curing time 40 is difficult to control the resin coating or binding materials are difficult to control relative to temperature changes encountered in the treated formation and these materials also present a water stability problem and are affected by the presence of corrosive acids and the like. This often 45 results in costly operations of restrictive use and benefit and therefore makes the electroless metal consolidation techniques described in the above-mentioned references more attractive since metal consolidated formations require no rig, the formations thus treated are not affected 50 by temperature changes and are water stable and impart high compressive strength to such metallized consolidated

Under low temperature conditions as described in U.S. Pat. 3,438,441, wherein basic electroless metal plating 55 solutions are used to consolidate formations, realitively high plating reaction rates may result in consolidated formations which have a low resistance to stress and are subject to cracking. In this case, when such formations are contacted with hot fluids formation damage results.

It has now been discovered that the addition of a small amount of metal plating solution results in controlled metal deposition and consolidation of formations which are resistant to stress and hot fluid damage. Thus, in consolidating sands or coating materials at substantially normal room temperature, excellent uniform metal coatings are produced by using alkaline-plating solutions containing organic sulfimides such as saccharin.

As indicated, a sulfimide such as saccharin is unique in its capability of providing competent metal coatings where alkaline solutions are used at relatively low temperatures.

2

However, the metal plating of subterranean earth formations may be used to disperse and implant metal to be used as catalysts, activators, property indicators, etc. In the latter operations it may be advantageous to form deposits which crack and expose large surface areas of metal.

The present invention involves the discovery that in an electroless metal plating at a given temperature the degree of competency of the coating is uniquely responsive to the rate of reaction of the plating solution at the given temperature. This discovery is contrary to what would be expected from the effects from strain-reducing additives in electrolytic metal plating. It can be utilized to form highly competent, or incompetent, coatings at the option of the operator. Moderately cracked coatings can be formed by diluting a solution having a relatively high rate of reaction with a solvent such as 2-ethoxyethanol (Cellosolve), dioxane, glycerol, etc. Highly cracked coatings can be formed by diluting such a solution with a lower alcohol such as isopropanol.

PREFERRED EMBODIMENT OF THE INVENTION

The activator solutions can be any of the activator solutions described in U.S. Pats. 3,393,737; 3,438,440 or 3,438,441 and include stannous chloride and/or palladium chloride solutions which may contain hydrazine and which solutions can be buffered with weak organic acids and their salts. Preferred activator solutions are shown in Tables 1 and 2.

TABLE 1.—COMPOSITION OF ACTIVATOR SOLUTION (A₁)

	Quantity per barrel of solution ¹
5	Water, gallons 40.7
_	Gum arabic, gms. ² 20.6
	Hydrazing hydrate (85%), cc3 256
	Palladium chloride solution, cc.4 636
	NiSO ₄ ·6H ₂ O (Omit when buffers are used.
0	
	needed for pH=4.4) cc ~160-320
	Buffers:
	Formic acid (90%) cc 640
	Sodium formate, pounds 7
5	Or acetic acid (glacial), liters 6.4
	Sodium acetate, pounds 10.5
	Note: Chemicals must be added to the water in the order listed with complete mixing and dissolving before adding the
0	next chemical. ¹ Contains 10.2 grams PdCl₂/bbl. of activator solution. ² Requires about 15 minutes to dissolve.
	³ Or 400 cc. of 35% hydrazine. ⁴ Contains 1.6 gms. PdCl ₂ , 10 cc. conc. HCl, 90 cc. distilled or deionized water/100 cc. PdCl ₂ solution.

TABLE 2.—ACTIVATOR SOLUTIONS

(B₁) 900 cc. water 100 cc. of solution comprising 919 cc. water 81 cc. gum arabic solution containing 0.4/gram/1 0.4 cc. hydrazine hydrate (85% solution) 1.0 cc. of a solution containing

1.6 grams PdCl₂·2H₂O 10 cc. conc. HCl 90 cc. water

Add glacial acetic acid to give PH=4.2

The metal plating solutions can also include the compositions described in the above-mentioned patents provided they are modified by the reaction rate modifier and anti-stress and cracking controller of the prevention invention; namely, by the addition of a small amount and sufficient to control reaction rate of an organic sulfimide compound, said compound containing therein at least one

3

radical—SO₂NH. Compounds of this type are represented by saccharin and the alkali metal salts or polyvalent salts thereof such as the sodium or potassium salts of saccharin and their mixtures.

A particularly preferred metal plating solution of this 5 invention is shown in Table 3.

TABLE 3

Composition of low temperature plating solution

Quantity per barrel	10
Component: of solution	
H ₂ O, gallons 35.9	
$NiCl_2 \cdot 6H_2O$, pounds 13.28	
$NaH_2PO_2 \cdot H_2O$, pounds 15.95	
NH ₄ Cl, pounds 21.9	15
30% NH ₃ , gallons 2.19	
Saccharin (O-benzoic sulfimide), pounds 0.5 to 3.505	
Or Na Saccharin 2H ₂ O, pounds 0.5 to 4.61	
Solution density, gm./cc 1.06	
Solution pH 8.7	20

The sulfimide containing metal plating solutions for consolidating earth formations were subjected to the pipe nipple tests which was carried out as follows:

Prepare a sand pack in a pipe nipple 5" long by 1%" diameter fitted with appropriate end pieces to retain the sand.

(The sandpack should have a pore volume of about 40 cm.³ for most sands. The inlet volume of the tubing and holder from the pump to the sand inlet face should be about 80 cc. for the system described.) Connect the sandpack to appropriate inlet and outlet tubnig and immersed in a water bath at the desired temperature.

If the sand is oil-free and preferentially water-wet, water may be pumped through the pack to remove any air present. If the sand is non-water-wet or if oil is present, this must be washed out. To accomplish this, flush with 4 or 5 PV each of isopropyl alcohol (IPA), xylene, IPA respectively. The final displacement of IPA with H₂O will provide an oil-free pack in most cases. These washings will be facilitated if all air is first removed by flowing liquid through the pack at atmospheric pressure and at 600 per in old pack the pack at atmospheric

pressure and at 600 p.s.i. alternatively.

After all air and oil are removed, reduce the outlet pressure to 1 atm. and measure the pressure drop across the sandpack for some convenient water flow rate. The 45 pressure drop will be used to measure any changes in the fluid conductivity of the pack during subsequent operations.

The consolidation test experiment is carried out by passing the various activating and plating solutions 50 through the sandpack under the desired conditions. Finally the pack is flushed with water, which is used to remove all gas as described above. Outlet pressure is reduced to 1 atm. and the inlet pressure measured as before. The difference in the initial pressures (corrected for any differences in flow rate) and the final pressure is used to calculate the loss of permeability in the sandpack. The sandpack is then removed from the bath and opened for inspection and evaluation of the consolidation.

Data from a detailed evaluation of the saccharin system 60 are given in Table 4. It should be noted that most plating times were short in order to produce a weak deposit in which the imperfections could be more closely observed. The "disc" listed in Table 4 was a stainless steel end piece in the inlet of the sand pack. It was found 65 to be very sensitive to stress in that cracking would develop most easily on this member when plated. A coarse sand retaining screen downstream from the disc was less sensitive (generally) and would not show cracking in some cases when the disc did. The 20-40 mesh sand 70 (taking up space at the inlet) was the least sensitive of all and required high stress levels to produce cracking. Thus, observations on these three components gave a good estimate of the stress generated in a given experi-

TABLE 4.-PIPE NIPPLE EXPERIMENTS

ditions:
(1) No. 5 Sand (AI-2.0) —600 p.s.1. fluid pressure.
(2) Soo co. (Pt) colloidal palladium solution for activation.
(3) Spacer and/or plating initiation, if required (see below).
(4) Plating solution (see code number below and composition in Table 5).
(5) Hot water exposure test—500 ° F. for days indicated.

Run No 1 2 3 Spacer. Table 2 (B ₁)	1	2 H ₂ O	3 . H ₂ O	4 5 6 7 8 9 H ₂ O B ₁ B ₁ B ₁ B ₁	5 B1	6 B1	7 B ₁	8 B1	9 B1	10	п
$egin{array}{c} ext{Codd} ext{Key composition} & ext{A} ext{Key composition} & ext{NH}. ext{SO}. ext{SO}. ext{SO}. ext{F} ext{F} ext{SO}. ext{SO}.$	NH4	SO ₄	High citrate	Glycolate	E.	4	<u> </u>	(a)	itrato Glycolate B. B. B. B. Cellosolve 20% Cellosolve 30% Cellosolve 30% Cellosolve.	20% Cellosolve	30% Cellosolv
F. PV/min. (Bow rate). ~ 0.77 . ~ 0.72 . ~ 0.74 . ~ 0.70 . \sim	~0.7 66		$\sim \!$		~ 0.7279	~ 0.72	~0.77.	~0.84	1.1	1.23. 150	0.70.
t, min., plating time	93	78	107	105	110	109	108	. 105	108	123	137.
Outlet, pH	5.8	8.5	7.9	5.0	5.0	5.0	5.4		7.7	7.8	7.8
Appearance of Inlet: Loose solids (trash)											None.
Cracking on: Disc		Very bad	Very bad			None.	Very bad	Very bad	None Very bad Very bad Very bad		Very little.
Screen		do	qo	. None	None.	do	qo	qo	op		None.
20-40 mesh sand Very baddodo	Very bad	qo	qo	N.P .	N.P.	do	N.P.	qo	Some cracks		Trace.
No. 5 sand.			ďo	N.P	N.P	do	Z	do			

75

		_			3,586	5,524				C
t		5	[]			•		.	1	6
		al tensile stre		24	Ŧ.	0. 5.3. 833. 158. 8.7.		Very bad. (s).		
	-	ler than usus		23	S	U 120 1.6 109 70	7.7	Trace None		
		ve stress rati		22	R.	$\begin{array}{c} 0\\ \sim 120\\ 3.1\\ 164\\ 53 \end{array}$		None		/minute. R. R. 24.
		Very badly cracked—plated at 0 p.s.l. fluid pressure. Very badly cracked—plated at 0 p.s.l. fluid pressure. Very badly cracked—plated only ½ enough (H ₂ PO ₂)- to deplete Ni++. Flow too fast for depletion. No plating on inlet 1 cm. of sand. No plating on inlet 1 cm. of sand. Metal deposit must not be stable. Metal deposit must not be stable. Metal deposit must not be stable. Inliet plated successfully by appearance. Not plating on litel 1 cm. of sand. No plating on litel 1 cm. of sand. Not plating on litel 10%. Stars and plating on litel 10%. Stars appears to be tensile as usual. No. 5 sand badly cracked. Store and plating cracked. Not call connective than usual tensile stress.		21	n O	6.2 170 28 8.7		Very baddo		ner consolidation. ade in hot water: racking. Flow rate in pore volumes/minute. Flow rate in pore volumes/minute. 90° F.—Runs 12 through 13. 120° F.—Runs 20 through 24.
	,	olete Ni++. king. test.		20	H ₂ O	120 1.31 50 38	7.1 None			ther consolidation of the cons
		t 0 p.s.i. fluid pressure. enough (H ₂ PO ₂)- to deplete 1 and. t Ni plating lost. t ni plating lost. and. and. t nust have caused cracking. s not helpful). 40 mesh after hot water test. 40 mesh after not as the cracking is usual.		19	Āc	Acid 170. 77. 13.	Much	None do do	king	sand or oth exposure. o not degring g plating) ill much of ft.
		—plated at 0 p.s.i. fluid pressure. —only ½ enough (H-2PO ₂)— to deplete Ni++ oletion. I cm. of sand. and most Ni plating lost. not be stable. I cm. of sand. I cm. of sand. not be stable. fully by appearance. I left of sand. not be stable. I left of sand. and hy appearance. —Ingh pH must have caused cracking. rands signs not helpful). eaving Ni shell. about like 10%. tensile as usua. tensile as usua. about like 10%. tensile as usua. abcked.	racking	18	Рια	0.77 101 133		Increased Some. None.	(D). Saccharin—Hot water exposure—550° F. and/or observations of cracking impressive stress Note: 10.15 Note: 10.	Notes and observations No cracking or other damage observed. 10-goosts and gave much cracking but no loss of sand or other consolidation. 11-goosts showed increased cracking with increased exposure. 12-40 mesh sand badin crack. 20-40 mesh sand adaly cracked. 17-sis looks like typical acid plating systems which do not degrade in hot waters. Sample not exposed to hot water (no cracking during plating). 17-sis looks like typical acid plating systems which do not degrade in hot waters. Sample not exposed to hot water (no cracking during plating). 18-simple not sixe reacking than 90° F. plating but still much cracking. 19-40 mesh badly unaffected by not water. 20-40 mesh badly cracked and little consolidation left. 18-postst sessuitally unaffected by the water. 20-40 mesh badly cracked and little consolidation left. 18-postst sessuitaling. 18-postst sessuitaling. 19-postst sessuitaling.
	ervations	Very badly cracked. Very badly cracked—plated at 0 ps. Very badly cracked—only ½ enougi Flow too fast for depletion. No plating on inlet 1 cm. of sand. Mosts and dissolved and most Ni ph. Metal deposit must not be stabile. Only thin white shell left of sand. Only thin white shell left of sand. Only thin white shell left of sand. Inlet plated successfully by appears Very badly cracked—high ph. must Very badly cracked—high ph. must Very badly cracked—high ph. must Very badly cracked—high pl. must Very badly cracked—high pl. must Very badly cracked—ligh pl. must Soft calcolved eaving Ni shell. Soft calcolved eaving Ni shell. Soft calcolved eaving be too must as 1 Soft Soft badly cracked.	Saccharin—Plating data and observations of cracking		*	SO4-pH-8.7 0.67 85 127 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.	ne	ne	and/or observ	Notes and observations No cracking or other damage observed 20-40 mesh sand gave much cracking beposits showed increased cracking by Trace of cracking in 20-40 mesh sand. No cracking in 1040 mesh sand badiy cracked. This looks like typical acid plating systample not exposed to hot water (no stample not exposed to hot water (no 20-40 mesh sand lightly less cracking evident in 20-40 Deposits essentially unaffected by hot 20-40 mesh badly cracked and little co consolidation.
	Notes and observations	Very badly cracked No plating on inlet Mots and dissolve Matal deposit must Inlet plated success Very badly cracked Sadly cracked (alt All sand dissolve alt is and dissolve at Sares appears to b No. 5 sand badly conclete Stress appears to b No. 5 sand badly of No. 6 sand	data and obs	11	O S		7.2 None.	SomeNone.	ater exposure—550° F. a	and observations acking or other dam mess sand gave assu- mess sand gave assu- of cracking in 26–40 acking in No. 6 sand mesh sand badly ver- tooks like typical aci not sayoso or oracking trace of cracking evi trace of cracking evi trace of cracking evi trace of cracking evi mesh badly unaff mesh badly cracked midation.
ure	tr	000	rin-Plating	16	ΖŞ	SO4-pH-9.9 1.31 106 81 8.9	9.6	Much	t water expos	Notes and observable of the control
Hot water exposure	Con		(C). Saccha	15			8.4	Very bad	ccharin—Ho	No plating. From middl. 2 20-40 mesti
Ho	Days	Nonedododododododo			NoneL	All SO ₂	8.2 Much		ြင်း	1 1 1 1
	tion	9.4 9.4		13 14			7.18.2		6	1
	Key composition	NH4F. SO7. High citrate Glycolate do do do 10% Cellosolve 20% Cellosolve			None	U (all Cl-) 90 0.53 67	7.2Some	Nonedodo.	3	(a) 10.63 0.60 0.67 0.77 0.77 1.131 6.23 1.6 5.3 5.3 5.3 Fras made, racks.
				12	Z f			Ž		U. U. V.
				Run No		E.H. Sectoral Transcription of Francisco of	et: trash)	h sand		12 10.53 13.54 14.55 15.65
		6 6 5 4 8322111 10 10 11 11 11 11 11 11 11 11 11 11		No	Spacer_Plating solution:	E. sacchain. Key composition. F. PV/min. (flow rs. N. PV, plating solut, min., plating tim Inlett—pH	Outlet_pH Appearance of inlet: Loose solids (trash) Cracking on:	Disc. Screen. 20–40 mesh sand.		n: 12. 13. 17. 17. 19. 19. 20. 21. 23. 24. 24. 24. 24. 25. 24. 26. 27. 28. 28. 29. 29. 29. 20. 21. 20. 21. 20. 21. 22. 24. 24. 24. 26. 27. 28. 28. 28. 29. 29. 29. 29. 29. 29. 29. 29. 29. 29
		HI 12 8 8 8 7 7 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1		Run	Spa(Plat		Apr			Run: 12. 13. 13. 14. 17. 18. 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19

TABLE 5.—SOLUTION COMPOSITIONS AND CODE

		Soluti	ions li	sted by	y code		
	A	В	С	D	E	F	
Component, amount: H ₂ O, cc./l. NiCl ₂ ·6H ₂ O, grams/l NiSO ₄ ·6H ₂ O, grams/l NISO ₄ ·6H ₂ O, grams/l 29.4% NH ₃ , cc./l NH ₄ Cl, grams/l (NH ₄)·28O ₄ , grams/l							Į
H ₂ O, cc./l	. 890	725	835	900	870	870	
NiSO4-6H ₂ O, grams/l	45	85	. 34. 8	37 6	37 3	37.3	
NaH ₂ PO ₂ ·H ₂ O, grams/l	67	93	34. 8	37.6	37. 3	37. 3	
29.4% NH ₃ , cc./l	74	105	38. 2				
NH ₄ Cl, grams/l			. 58.0			-	
(NH ₄) ₂ SO ₄ , grams/l		159					1
NH4FHF, grams/l. Na citrate 2H2O, grams/l. Na glycolate, grams/l.	. 50		116				
Na glycolate, grams/l				80.0			
Na succinate 6H ₂ O, grams/l				37.6	37. 3	37. 3	
70% glycolic acid, cc./l					68.2	68. 2	
NaOH, grams/I					. 32.4	38.4	
р п	7. 0	8.7	8.8	7. 2	7. 2	8. 9	1.
	G	H	I	J	K		1
H ₂ O, cc./l	758	686	600	858	85	8	
H_2O , cc./l NiCl ₂ ·6H ₂ O, grams/l	37. 9	30. 3	26.6	37. 9	37.		
NaH ₂ PO ₂ H ₂ O ₃ grams/l	45 5	36, 4	31.9	45.5	45.		
NH ₄ Cl, grams/l	62. 5	50.0	43.8	62.4	62.		
29.4% N H ₃ , cc./l	52. 1	41.6	36.5	52. 1	52.	1	2
NH ₄ Cl, grams/l 29.4% NH ₃ , cc./l Cellosolve, cc./l Saccharin, grams/l	100	200	300	9. 5	10.	ñ	_
(NH ₄) ₂ SO ₄				ð. u	10.		
рH	8.5		8.4		8.	5	
	L	M	N	0	P		
H ₂ O, cc./l	860	860	827	865	86	5	2
NiSO4.6H2O, grams/l	42.0	42.0	42.0	43.0	43.		
NaH ₂ PO ₂ ·H ₂ O, grams/l	38.0	38.0	38.0	46.3	46.		
(NH ₄) ₂ SO ₄ , grams/l 29.4% NH ₃ , cc./l	79.0	79. 0 52. 0	40.0 115	80. 0 53. 0	80. (53. (
Saccharin, grams/l	10		10	10	8.0		
Na Saccharin 2H2O, grams/l		6.0					
As Saccharin, grams/l	-	4, 5					3
pH	8.7	8.9	9.9	8.8			o,
4	P ₁	R	S	T	v		
H ₂ O, cc./l	(1)	858	858	976	858		
NiCl ₂ -6H ₂ O, grams/l	(1)	37. 9	37. 9	6. 3	37.		
NaH ₂ PO ₂ ·H ₂ O, grams/l	(1)	45. 5	45. 5	7.6	45.		_
IN EL4CI, grams/i		62.4	62.4	72.8	62.		3
NH ₄ Cl, grams/l 29.4% NH ₃ , cc./l Saccharin, grams/l		4.0	52. 1 7. 0	22.0	52.	L	
pH				8.7	8.	5	
· · · · · · · · · · · · · · · · · · ·							

¹ 10 g./l. Acetic Acid System (see EPR, 114-67-F).

Saccharin also changes the relative importance of side reactions, giving slightly less H_2 production (not noted in Table 4) and more acid production, which lowers the pH in spent solution (see runs 17 and 18). This effect of saccharin on hydrogen production may indicate that saccharin plays a role in the stress-relieving reaction by causing some H^+ to form (assumed to be a fast reaction) instead of H_2 gas (assumed to be a slow one) from the chemisorbed H_2 on the metal. Also, this may be the mechanism by which saccharin slows down the overall deposition reaction.

The metal plating process of this invention can be modified by any of the methods described in the above patents on the subject as well as in copending applications Ser. No. 850,253 filed Aug. 14, 1969 and Ser. No. 835,-243 filed June 20, 1969 wherein spacer and backflush fluids are employed for this process of consolidating formations.

This invention provides a uniquely advantageous way of avoiding problems encountered in consolidating incompetent subterranean reservoir formations. It is also useful in controlling the competency of substantially any coating deposited by electroless metal plating from an alkaline plating solution on substantially any material. It

is particularly useful where the plating is effected by flowing a plurality of pore volumes of activating and plating solutions through a permeable non-catalytic material, such as a permeable earth formation, a permeable mass and/or structure of plastic, metal, or the like material that is non-catalytic to such a metal deposition, etc. The plating can be effected in order to improve the strength or stability of a granular material and/or an intergranular cementing material within a mass of granular material and/or to plug or reduce the permeability of such a mass or permeable structure, to bond catalytic and/or conductive metal within such a mass or structure, to bond other materials into such a mass or structure, etc.

We claim as our invention:

1. A method of consolidating an incompetent formation comprising treating the formation with an activating solution and thereafter treating the activated formation with a basic metal plating solution containing a small amount of an organic sulfimide until the formation is consolidated into a crack-resistant, water-resistant formation

2. The method of claim 1 wherein the activating solution is a palladium halide solution and the metal plating solution is a basic nickel halide solution containing saccharin.

3. The method of claim 2 wherein the activating solution is a palladium chloride solution containing a buffering agent and the nickel containing solution is a basic nickel chloride solution.

4. The method of claim 3 wherein between the activator and basic metal plating solutions a spacer fluid is injected into the formation.

5. A method of depositing metal on a solid material comprising contacting the solid material with an activating solution followed by treating said activated solid material with an electroless basic metal plating solution containing a small amount of an organic sulfimide until metal is deposited on the solid material.

6. The method of claim 5 wherein the solid material 40 is a permeable structure composed of non-catalytic material.

7. The method of claim 5 wherein the activating solution is a palladium halide solution and the metal plating solution is a nickel halide solution containing saccharin.

References Cited

UNITED STATES PATENTS

2,513,280	7/1950	Brown 204—49
2,690,402	9/1954	Crehan 117—54X
3,234,031	2/1966	Zirngiebl et al 106-1
3,417,005	12/1968	Baig 204—49X
3,438,441	4/1969	Richardson 166-292
3,500,927	3/1970	Simpson 166—292

OTHER REFERENCES

Domnikov, Larissa Electroless Nickel Plating from Alkaline Solutions. In Metal Finishing, March 1966, pp. 57-60.

IAN A. CALVERT, Primary Examiner

U.S. Cl. X.R.

106—1; 117—54; 166—300