

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
17 June 2010 (17.06.2010)

(10) International Publication Number
WO 2010/068091 A1

(51) International Patent Classification:

F16H 55/56 (2006.01)

(21) International Application Number:

PCT/NL2009/000250

(22) International Filing Date:

11 December 2009 (11.12.2009)

(25) Filing Language:

Dutch

(26) Publication Language:

English

(30) Priority Data:

2002325 12 December 2008 (12.12.2008) NL

(71) Applicant (for all designated States except US):
ROBERT BOSCH GMBH [DE/DE]; Postfach 30 02 20,
D-70442 Stuttgart (DE).

(72) Inventor; and

(75) Inventor/Applicant (for US only): VAN SPIJK, Johannes Gerardus Ludovicus Maria [NL/NL]; Admiraalsweg 49, NL-5151 MR Drunen (NL).

(74) Agent: PLEVIER, Gabriël Anton Johan Maria; Bosch
Transmission Technology B.V., IP-section (GS-CT/NE),
Postbus 500, NL-5000 AM Tilburg (NL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: ADJUSTABLE PULLEY FOR A CONTINUOUSLY VARIABLE TRANSMISSION, AND METHOD FOR THE ASSEMBLY THEREOF

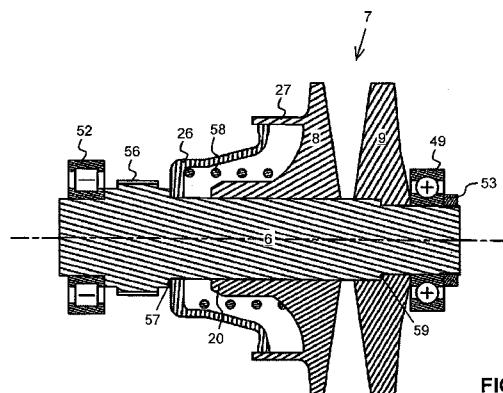


FIG. 5

(57) Abstract: The invention relates to an adjustable pulley (7), in particular for a continuously variable transmission, comprising two sheaves (8, 9) having a central opening into which an axle (6) of the pulley (7) is inserted, a first or fixed sheave (9) of which is fixedly connected to the axle (6) and a second or displaceable sheave (8) is displaceable along the axle (6) in the axial direction by means of the operating means (26, 27, 58) of the pulley (7). The central opening of the fixed sheave (9) is, at least viewed in an axial cross section thereof, non-circular, the axle (6) is provided, at the location of the fixed sheave (9), with an axial cross section which is substantially identical in shape to the central opening thereof, and the fixed sheave (9) is provided on the axle (6) with a force fit.

WO 2010/068091 A1

ADJUSTABLE PULLEY FOR A CONTINUOUSLY VARIABLE TRANSMISSION, AND METHOD FOR THE ASSEMBLY THEREOF

The invention relates to an adjustable pulley, in particular for a continuously variable transmission or CVT, provided with two sheaves having a central opening into which an axle of the pulley is inserted, a first sheave of which is fixedly connected to the pulley axle and a second sheave of which is displaceable in the axial direction along the pulley axle by means of the operating means of the pulley.

A pulley of this type is, for example known from US patent no. 6,012,998 and is especially used in CVTs of passenger motor vehicles in particular. In a continuously variable transmission, two pulleys are used having a drive belt between them, which drive belt is clamped between the two sheaves of the two pulleys during operation by in each case moving, that is to say, at least pushing, said second or displaceable sheave in the axial direction towards said first or fixed sheave by means of the operating means. The clamping forces exerted on the drive belt by the respective operating means via the sheaves in this case determine the radial positions of the drive belt between these sheaves of the two pulleys and thus for the transmission ratio of the CVT. At the same time, said clamping forces determine the maximum torque which can be transmitted between the two pulleys, that is to say determine the maximum frictional force which can be exerted between the drive belt and the sheaves of a respective pulley.

In general, the automotive industry aims for low production costs. In the case of the CVT, the pulleys in particular are relatively complex and heavily dimensioned components which thus to a large degree determine the cost price of the overall CVT.

The invention relates to a new pulley construction which can advantageously be produced less expensively than the constructions which are currently known. More particularly, a number of components of the pulley according to the invention can be produced and/or assembled in a simpler manner than was previously possible. In a particularly advantageous embodiment of the pulley according to the invention, the latter even has fewer components than the known pulley.

According to the invention, the axial cross section of the central opening of the fixed pulley sheave is non-circular and the pulley axle is provided with an axial cross section which is substantially identical in shape thereto, at least where the fixed sheave is situated on the axle, and the fixed sheave is fitted on the axle by a force fit. Preferably, the central opening of the fixed sheave follows a regular polygon having four or more rounded corners and having at least slightly convexly curved sides in between. Such a shape can be produced relatively easily and results in an optimum form-fit and force fit between the sheave and the axle. The assembly of the fixed sheave and the axle takes place either by

- first heating the fixed sheave and/or cooling the axle, by then inserting the axle into the central

opening of the fixed sheave, and finally by bringing the two components to the same and/or ambient temperature, or by

- firstly applying a lubricant to the wall of the central opening of the fixed sheave and/or to the periphery of the axle and by then pushing the axle through the central opening of the fixed

5 sheave.

This latter assembly technique is particularly simple and can thus be carried out inexpensively and is therefore in principle preferred.

With the known pulley, the (axially) displaceable sheave is fixedly (non-rotatably) connected to the axle by means of a key/groove connection in the tangential or peripheral direction so that

10 the torque can be transmitted between them. It should be noted that the "key of the known key/groove connection is usually provided as a separate component or components, for example in the shape of a cylindrical pin or a number of (bearing) balls. However, according to the invention, it is possible in a particularly advantageous way to produce said non-rotatable connection between the displaceable sheave and the axle by also providing the central 15 opening of this displaceable sheave with a non-circular axial cross section which is indeed greater than, but is preferably substantially identical in shape to the central opening of the fixed sheave. Obviously, the axle has to have an axial cross section at the location of the displaceable sheave which is smaller than, but substantially identical in shape to the opening of the displaceable sheave and thus preferably substantially identical in shape to the opening of 20 the fixed sheave. The assembly of the displaceable and fixed pulley sheaves and the pulley axle is effected in a simple manner by inserting the axle into the opening of the displaceable sheave.

It is known to provide the pulley axle with a gear wheel for the purpose of, for example, transmitting the torque to (a gear wheel of) an output shaft of the transmission. In order to

25 make it possible to produce and/or assemble the known pulley, this gear wheel is always provided as a separate component on the axle and non-rotatably connected thereto by means of a key/groove connection. However, according to the invention, it is advantageously possible, in combination with the above-described method for the assembly of the displaceable and fixed pulley sheaves and the pulley axle to integrally form the gear wheel with the axle on a first side 30 or end thereof. The respective other side or end of the pulley axle is in this case provided with the non-circular axial cross section and it is this end which is inserted and/or pushed into the central opening of the displaceable and fixed pulley sheaves in the desired sequence.

The invention will be explained with reference to the attached figures, in which:

Fig. 1 diagrammatically shows a cross section of the continuously variable transmission with 35 two adjustable pulleys according to the prior art;

Fig. 2 diagrammatically shows a cross section of a primary pulley according to the prior art;

Fig. 3 diagrammatically shows a cross section of a first exemplary embodiment of the

adjustable pulley according to the invention at the location of the fixed sheave thereof and oriented in the axial direction;

Fig. 4 diagrammatically shows a cross section of the first exemplary embodiment of the adjustable pulley according to the invention at the location of displaceable sheave thereof

5 and oriented in the axial direction; and

Fig. 5 diagrammatically shows a cross section of a second exemplary embodiment of the adjustable pulley according to the invention.

The continuously variable transmission 1 according to the prior art shown diagrammatically and in cross section in Fig. 1 is provided, in a transmission housing 11 thereof, with a so-called 10 primary adjustable pulley 3 and a so-called secondary adjustable pulley 7. The pulleys 3, 7 each comprise two sheaves 4, 5; 8, 9 which are fitted on a primary axle 2 and a secondary axle 6, respectively. One sheave 5; 8 of each pulley 3; 7 is axially displaceable, as a result of which the radial position of the drive belt 10 between the pulleys 3 and 7 can be modified and the transmission ratio can be adjusted, while the respective other fixed sheave 4; 9 is fixedly 15 connected to the respective axle 2; 6, both axially and tangentially.

Each of the displaceable sheaves 5 and 8 is provided with the operating means of the respective pulley 3, 4 in the form of a piston/cylinder assembly, with the displaceable sheave 8 of the secondary pulley 4 being provided with a single piston/cylinder assembly 26, 27 and with the displaceable sheave 5 of the primary pulley 3 being provided with a double piston/cylinder 20 assembly. The double piston/cylinder assembly of the primary pulley 3 comprises two cylinder chambers 13, 14. A first cylinder chamber 13 is enclosed by the cylinder 19, the piston 18, the radial wall 24 and the axle 2. A second cylinder chamber 14 is enclosed by the cylinder 21, the piston 17, the sheave 5 and the sleeve 20 of the primary axle 2 on which the displaceable sheave 5 is fitted. By means of the bores 15 and 16, fluid can be introduced into and removed 25 from said cylinder chambers 13, 14 and/or the volume thereof can be increased or decreased, with the displaceable sheave 5 with the sleeve 20 being displaced in the axial direction along the primary axle 2.

The axles 2, 6 are mounted in the transmission housing 11 with in each case two bearings 49, 52 per axle 2; 6, at least one bearing 49 of which is attached to the respective axle 2 or 6 by 30 means of a nut 53 on an axial end 55 of said axle 2 or 6.

The primary pulley 3 known from US-6,012,998 is illustrated in Fig. 2 in cross section. The fixed sheave 4 of the primary pulley 3 is arranged on the axle 2 thereof as a separate component. In the axial direction, the fixed sheave 4 is placed against steps 33 and is thus fixed in said direction. The steps 33 are formed by the stepwise increase in the (outer) diameter of the axle 35 2. In the tangential direction, the fixed sheave 4 is fixed on the axle 2 either by an adhesive or by means of a key/groove connection.

According to the invention, the fixed sheave 4 is by contrast fixed on the axle 2 by means of at

least one polygonal force fit, as is diagrammatically illustrated in Fig. 3 by means of the axial cross section of the primary pulley 3 at the location of the fixed sheave 4 thereof. The force fit fixes the fixed sheave 4 in the axial and in the tangential direction, in which latter direction the form-fit between the periphery of the central opening of the fixed sheave 4 and of the axle 2 5 which deviates from a circle ensures the mutual fixation thereof. According to the invention, measured in the radial direction, the periphery of the (unloaded/separate) axle 2 in this case has an oversize in the range from 0.005 mm to 0.050 mm compared to the periphery of the central opening of the (unloaded/separate) fixed sheave 4. Preferably, the radial oversize in the radial direction is in this case less than 0.025 mm and, for example, has a value between 10 0.015 mm and 0.020 mm. Such a small radial oversize, the attendant small degree to which the material has to be pressed and the unexpectedly low internal stresses during operation appear to have become possible by said additional tangential fixation of the form-fit between the fixed sheave 4 and the axle 2. However, if it is to be avoided that a gap can open between the fixed sheave 4 and the axle 2 during operation, for example in order to prevent crevice corrosion or 15 fretting corrosion, the radial oversize according to the invention has to be greater than 0.025 mm, preferably greater than 0.035 mm.

Apart from said radial oversize, the axial cross sections of the axle 2 and of the central opening of the fixed sheave 4 are substantially identical in shape and in this case substantially form a quadrangle having rounded corners and convex sides. According to the invention, said corners 20 at least approximately form an arc of a circle, the radius Rh of which is between 1 mm and 10 mm and said sides at least approximately form an arc of a circle, the radius Rz of which is greater than 10 mm and is preferably between 50 mm and 100 mm. It should be noted here that the polygonal shapes generally used in the art for such a form-fit have a continuously variable radius of curvature, in which case the abovementioned arcs and radii are only 25 approximations.

According to the invention, it is particularly advantageous to provide the edges of the central opening of the fixed sheave 4 with a small bevel or rounding. It has been found that this reduces the contact stresses which occur during operation between the fixed sheave 4 and the axle 2 by a factor of 3 to 4. In one preferred embodiment, said bevel or rounding of a dimension 30 provided in the axial direction is 0.5 to 2.5 mm and is preferably formed by an arc of a circle having a radius of 10 to 50 mm and merges smoothly with the contour of said central opening. According to the invention, the displaceable sheave 5 is preferably also fixed on the axle 2 by means of a polygonal form-fit, at least only in the tangential direction, as is diagrammatically illustrated in Fig. 4 by means of an axial cross section of the primary pulley 3 at the location of 35 the displaceable sheave 4 thereof. In this case, some clearance is left between the periphery of the axle 2 and the periphery of the central opening of the displaceable sheave 5 which, measured in the radial direction, in any case has to be smaller than 0.050 mm and is preferably

smaller than 0.025 mm, more particularly has a value between 0.010 mm and 0.020 mm. Such a radial clearance is relatively difficult to produce, but is necessary according to the invention in order to be able to use the pulley in the CVT, where possible tilting of the displaceable sheave 5 with respect to the axle 2 has to be minimal.

5 Apart from said radial clearance, the axial cross sections of the axle 2 and of the central opening of the displaceable sheave 5 are substantially identical in shape and in this case substantially form a quadrangle having rounded corners and convex curved sides. According to the invention, said corners form at least substantially an arc of a circle, the radius R_h of which is between 1 mm and 10 mm and said sides form at least substantially an arc of a circle, the 10 radius R_z of which is greater than 10 mm and preferably is between 50 mm and 100 mm.

Fig. 5 diagrammatically shows a second exemplary embodiment of the adjustable pulley 7 according to the invention viewed in the radial direction and in cross section. This is the secondary pulley 7, the axle 6 of which is (at least in this example) on its left-hand side provided with a gear wheel 56 which is integrally formed therewith. In the assembly of the 15 pulley 7, the two pulley sheaves 8, 9 are therefore successively moved and/or pushed over said gear wheel 56 from the right-hand end of the axle 6. More particularly, the piston 26 of the piston/cylinder assembly 26, 27 of the secondary pulley 7 is moved over the axle 7 before the sheaves 8, 9, which piston 26 is clamped in the respective cylinder 27 between a first step 57 of the axle 7 and a spring 58 provided for this purpose.

20 In the exemplary embodiment illustrated in Fig. 5, both the central opening of the fixed sheave 9 and the axle 7 are provided at the location of said fixed sheave 9 with a second step 59 which forms a mechanical stop in the axial direction for the fixed sheave 9 and, together with the bearing 49, locks the latter in the axial direction, so that said force fit between the axle 7 and the fixed sheave 7 is also relieved in said direction and/or ensures mutual fixation.

CLAIMS

1. Adjustable pulley (3; 7), in particular for a continuously variable transmission, comprising two sheaves (4, 5; 8, 9) having a central opening into which an axle (2; 6) of the pulley (3; 7) is inserted, a first or fixed sheave (4; 9) of which is fixedly connected to the axle (2; 6) and a second or displaceable sheave (5; 8) of which is displaceable in the axial direction along the axle (2; 6) by means of the operating means (17, 18, 19, 21; 26, 27, 58) of the pulley (3; 7), **characterized in that** the central opening of the fixed sheave (4; 9), at least in an axial cross section thereof, is non-circular, in that the axle (2; 6) is provided, at the location of the fixed sheave (4; 9), with an axial cross section which is substantially identical in shape to the central opening thereof, and in that the fixed sheave (4; 9) is fitted on the axle (2; 6) by a force fit.
2. Adjustable pulley (3; 7) according to Claim 1, **characterized in that** said force fit is achieved by the periphery of the axle (2; 6) having an oversize in the radial direction compared to the periphery of the central opening of the fixed sheave (4; 9) of a magnitude in the range from 0.005 mm to 0.050 mm, preferably in the range from 0.015 mm to 0.025 mm.
3. Adjustable pulley (3; 7) according to Claim 1 or 2, **characterized in that** the central opening of the fixed sheave (4; 9) is a regular polygon.
4. Adjustable pulley (3; 7) according to Claim 3, **characterized in that** the central opening of the fixed sheave (4; 9) has four rounded corners with at least slightly convexly curved sides in between.
5. Adjustable pulley (3; 7) according to Claim 4, **characterized in that** said corners are curved in accordance with a radius of curvature (Rh) having a magnitude in the range from 1 mm to 10 mm, and in that said sides are curved in accordance with a radius of curvature (Rz) having a magnitude greater than 10 mm, preferably in the range from 50 mm to 100 mm.
6. Adjustable pulley (3; 7) according to one or more of the preceding claims, **characterized in that** the edges of the central opening of the fixed sheave (4; 9) are provided with a bevel or rounding.
7. Adjustable pulley (3; 7) according to Claim 6, **characterized in that** the edges of the central opening of the fixed sheave (4; 9) are provided with a rounding, which rounding is formed by an arc of a circle having a radius between 10 mm and 50 mm and having an axial dimension of between 0.5 mm and 2.5 mm, which arc of a circle merges smoothly with the contour of said central opening.
8. Adjustable pulley (3; 7) according to one or more of the preceding claims, **characterized in that** the central opening of said displaceable sheave (5; 8) is provided with a non-circular axial cross section which is preferably substantially identical in shape to the non-circular axial cross section of the central opening of the fixed sheave (4; 9).

9. Adjustable pulley (3; 7) according to Claim 8, **characterized in that** the axle (2; 6), at the location of the displaceable sheave (4; 9), is provided with an axial cross section which is substantially identical in shape to the central opening thereof, and in that a clearance is provided between the displaceable sheave (5; 8) and the axle (2; 6).

5 10. Adjustable pulley (3; 7) according to Claim 9, **characterized in that** the said clearance in the radial direction is smaller than 0.050 mm and preferably has a value in the range from 0.010 mm to 0.025 mm.

11. Adjustable pulley (7) according to one or more of the preceding claims, **characterized in that** the axle (6) comprises a gear wheel (56) which is integrally formed therewith.

10 12. Adjustable pulley (7) according to Claim 11, **characterized in that** the operating means (26, 27, 58) comprise a piston (26) placed around the axle (6), which piston (26) is clamped between a step (57) on the periphery of the axle (7) and a spring (58) provided in a cylinder (27) of the respective operating means (26, 27, 58).

13. Method for the assembly of an adjustable pulley (3; 7), in particular according to one or 15 more of the preceding claims, comprising two sheaves (4, 5; 8, 9) having a central opening into which an axle (2; 6) of the pulley (3; 7) is inserted, a first or fixed sheave (4; 9) of which is fixedly connected to the axle (2; 6) and a second or displaceable sheave (5; 8) of which is displaceable along the axle (2; 6) in the axial direction by means of the operating means (17, 18, 19, 21; 26, 27, 58) of the pulley (3; 7), **characterized in that** the fixed sheave (4; 9) is fitted 20 on the axle (2; 6) by first applying a lubricant to the wall of the central opening of the fixed sheave (4; 9) and/or to the periphery of the axle (2; 6) and by then pushing the axle (2; 6) through the central opening of the fixed sheave (4; 9).

14. Method for the assembly of an adjustable pulley (7) according to Claim 13, **characterized in that** the axle (6) comprises a gear wheel (56) which is integrally formed 25 therewith, in that the operating means (26, 27, 58) comprise a piston (26) and a spring (58), and in that, before the fixed sheave (9) is fitted on the axle (6), successively the piston (26) is pushed over the axle (6) and against a step (57) on the periphery thereof, the spring (58) is pushed along the axle (6) and against the piston (26) and the displaceable sheave (8) is pushed over the axle (6) and against the spring (58).

1 / 3

FIG. 1

2 / 3

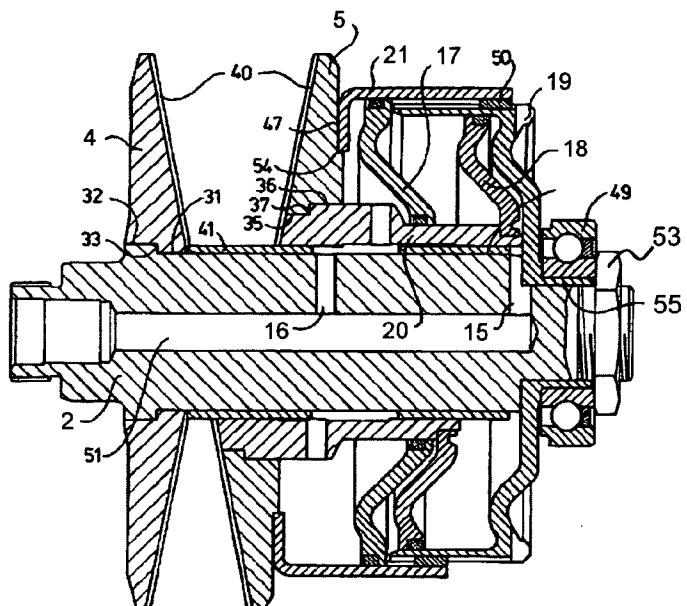
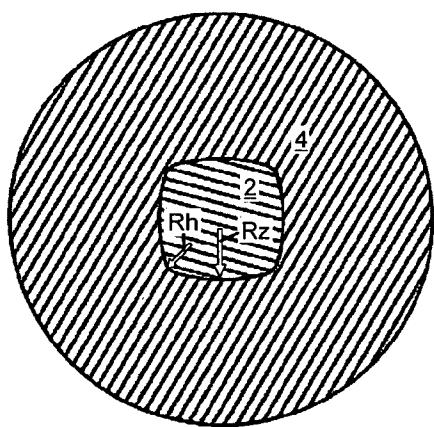
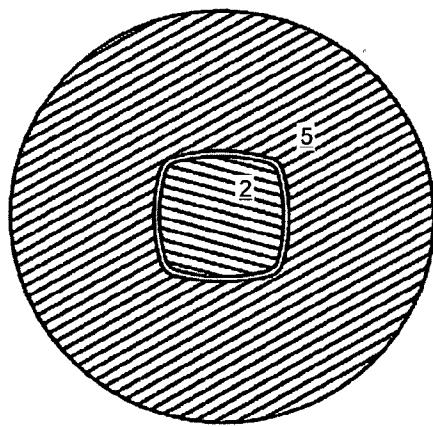




FIG. 2

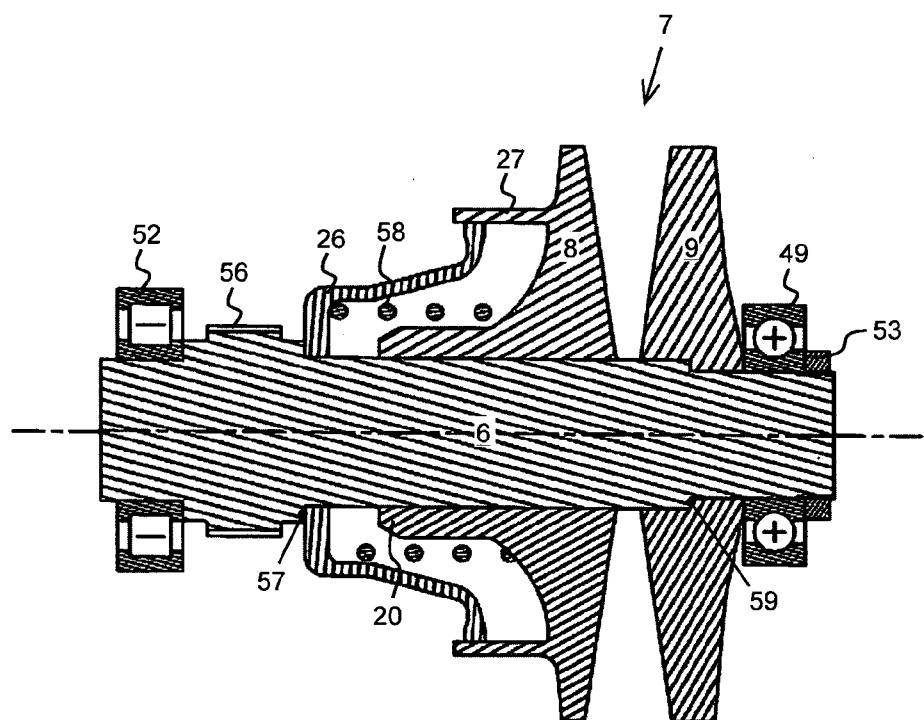


FIG. 3

FIG. 4

3 / 3

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No
PCT/NL2009/000250

A. CLASSIFICATION OF SUBJECT MATTER
INV. F16H55/56
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F16H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0 846 895 A (FORD GLOBAL TECH INC [US]) 10 June 1998 (1998-06-10) the whole document -----	1-14
Y	DE 37 21 692 A1 (LENZE GMBH & CO KG EXTERTAL [DE]) 12 January 1989 (1989-01-12) column 4, line 51 - line 67; figures 1,2 -----	1-14
X	US 2004/063527 A1 (HARGROVE TRACY E [US] ET AL) 1 April 2004 (2004-04-01) claims 3,9,17,22,27 -----	1,13
A	US 6 012 998 A (SCHUTZ MARTIJN ARNOUD [NL] ET AL) 11 January 2000 (2000-01-11) cited in the application the whole document ----- -/-	1,13

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
4 March 2010	11/03/2010
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Van Prooijen, Tom

INTERNATIONAL SEARCH REPORT

International application No

PCT/NL2009/000250

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 10 2008 014241 A1 (LUK LAMELLEN & KUPPLUNGSBAU [DE]) 9 October 2008 (2008-10-09) paragraph [0031]; figure 3 -----	1
A	DE 38 36 576 A1 (LENZE GMBH & CO KG EXTERTAL [DE]) 8 June 1989 (1989-06-08) column 1, line 68 - column 2, line 32; figure 1 -----	1,13
A	GB 1 428 092 A (WOODS SONS CO T B) 17 March 1976 (1976-03-17) figures 9-14 -----	1,13
A	US 4 149 425 A (WILLIAMS WILLIAM A) 17 April 1979 (1979-04-17) column 2, line 35; figures 1,2 -----	1,13

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/NL2009/000250

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 0846895	A	10-06-1998	DE	69705920 D1		06-09-2001
			DE	69705920 T2		22-11-2001
			US	5829135 A		03-11-1998
DE 3721692	A1	12-01-1989		NONE		
US 2004063527	A1	01-04-2004		NONE		
US 6012998	A	11-01-2000		NONE		
DE 102008014241	A1	09-10-2008	US	2008268991 A1		30-10-2008
DE 3836576	A1	08-06-1989		NONE		
GB 1428092	A	17-03-1976		NONE		
US 4149425	A	17-04-1979	CA	1026125 A1		14-02-1978
			DE	2543612 A1		22-04-1976
			FR	2286321 A1		23-04-1976
			GB	1479564 A		13-07-1977