METHODS AND COMPOSITIONS FOR MODULATING TUMOR CELL ACTIVITY

Inventors: Maureen D. O'Connor-McCourt, Beaconsfield (CA); Christiane Cantin, Pierrefonds (CA); Anne E.G. Lenferink, Lorraine (CA)

Assignee: National Research Council of Canada, Ottawa (CA)

Appl. No.: 13/268,020
Filed: Oct. 7, 2011

Related U.S. Application Data
Division of application No. 11/991,459, filed on Mar. 5, 2008, now Pat. No. 8,044,179, filed as application No. PCT/CA2006/001505 on Sep. 13, 2006.

Publication Classification
Int. Cl. C07K 6/8...
U.S. Cl. 530/387.9; 530/391.7; 530/391.1

Abstract
Antibodies which target clusterin, a protein involved in the epithelial-to-mesenchymal transition of carcinoma cells, are identified and characterized. The antibodies may be used to modulate tumour cell activity through binding the clusterin.
FIG. 2B

- Early
 - 44
 - 3
 - 113
- Middle
 - 15
 - 5
 - 24
- Late
 - 124

FIG. 2C

- Annexin
- Basic fibroblast growth factor receptor
- Cathepsin L
- Clusterin
- CSF-1
- Fibronectin
- Four-and-a-half LIM domains
- Integrin β1
- Laminin
- Platelet derived growth factor-A
- Serum/glucocorticoid regulated kinase
- Syndecan 1 and 3
- Ras homolog B
- Tumor associated antigen L6
- Urokinase plasminogen activator receptor
FIG. 3A

FIG. 3B

FIG. 3C
24 hrs

CTL

anti-clu

4T1

DU145

FIG. 5
Motility

\[\text{Ink clearance/cell/24 hr (Relative to CTL)} \]

![FIG. 6B](image)

Growth

\[^{3}\text{H}\text{J}\text{TdR Inc. (}\%\text{ of CTL)} \]

![FIG. 6C](image)
FIG. 7

TGF-β

anti-TGF-β

TβR’s

Smads

p38MAPK & others

Clusterin secretion

Growth inhibition

anti-clusterin

EMT
FIG. 8
<table>
<thead>
<tr>
<th>Antibody 1 (immobilized directly or indirectly)</th>
<th>16B5</th>
<th>16C11</th>
<th>20 E 11</th>
<th>21B12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody 2 -interacting with clusterin (in solution or captured on Ab1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutralizing mAb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16B5</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>16C11</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>20 E 11</td>
<td>+</td>
<td>-</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>21B12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B5</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>11E2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Neutralizing pAb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pAb#10</td>
<td>±</td>
<td>±</td>
<td>±</td>
<td>±</td>
</tr>
</tbody>
</table>

FIG. 11
Cells or Tissue Sample

RNA isolation → Straight A's™ mRNA Isolation Kits (TB103, Cat. No. 69963-3)

Total RNA

cDNA Synthesis → First Strand cDNA Synthesis Kit (TB113, Cat. No. 69001-3)

Ig-3' constant region primer

cDNA

Amplification → Ig-5' primers

KOD Hot Start DNA Polymerase (TB320, Cat. No. 710S6-3)

SpinPrep™ Gel DNA Kit (TB274, Cat. No. 70852-3)

PCR Products

Cloning → pSTBlue-1 Perfectly Blunt Cloning Kit (TB1S3, Cat. No. 70191-3) or

Single dA Tailing Kit (TB059, Cat. No. 69282-3) and pSTBlue AccepTor

Vector Cloning Kit (TB248, Cat. No. 70595-3)

Recombinant Colonies

Screening DNA Isolation Sequencing → PCR with KOD Hot Start DNA Polymerase (TB320, Cat. No. 71086-3)

Mobius™ 200 Plasmid Kit (TB279, Cat. No. 70970-3)

Sequencing Primers and Strandase™sDNA Preparation Kit (TB083, Cat. No. 69202-3)

DNA Sequence

Consensus determination → Fasta

Analysis of Immunoglobulin sequences

(http://imgt.cines.fr/vquest/IMGTvquest?livret=0&Option=mouselg)

FIG. 12
<table>
<thead>
<tr>
<th>CLONE</th>
<th>Sequence</th>
<th>SEQ ID NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11E2 VL Gr1</td>
<td>ENVLTQPSAIMSASPGEKVTMCTASASSSVSYMHVQQKSTSTPKLWYDTSKLASGVPGRFSGSGSNGNSYSLTISMMEADVATYTCFQGSGYPFTFGSGTKEIK</td>
<td>SEQ ID NO.:8</td>
</tr>
<tr>
<td>11E2 VL Gr2</td>
<td>DIQMTQSPSSLSALGGKVTITCASKQDINKYIAWYQHKPGKGPRLHHTSTLQPIPSRFSGSGSGGRDFYSISNLPEPDIAYYYCLQYDNLLRTFGGGTKEIK</td>
<td>SEQ ID NO.:9</td>
</tr>
<tr>
<td>20E11 VL</td>
<td>DIVLTLPSALVSLQGRATISCARASQSVNNSNYMHWYQQKPGQPPLIKYASNLGPGARFSGSGSGTTHFNLNHPYVEEDTATYQCQSWEIPWTFGGGTKEIK</td>
<td>SEQ ID NO.:10</td>
</tr>
<tr>
<td>21B12 VL</td>
<td>DIVMSQSPSSLSAVSVEKVTMSCKSSQLYYSSQKNYLAWYQRPQSQPKLLYIYAWASTRESGVPRFTFGSGSGLTFTFTISSVKAEGLAVYQCQYYIPRTFGGGTKEIK</td>
<td>SEQ ID NO.:11</td>
</tr>
<tr>
<td>16B5 VL</td>
<td>DIVMSQSPSSLSAVSAGEKVTMSCKSSQLNSRTRKNYLAWYQKPQPSQPKLLYIYAWASTRESGVPRFTFGSGSGTFTFTISSVQAEDLAVYQQCQKSYNLWTFGGGTKEIK</td>
<td>SEQ ID NO.:12</td>
</tr>
<tr>
<td>7C12 VL</td>
<td>DVLMTQTPLSPVGPDQASISRCRSSQSIVHSGNTYEWWLQPKQPSQPKLLIKYKVSNRFSGVPRFSGSQGSDTFTKISRVEAEDLGVYVCQGFPGSHVPFTFGGGTKEIK</td>
<td>SEQ ID NO.:13</td>
</tr>
<tr>
<td>6E12 VL</td>
<td>DVVLQTQTPSLPVSLGDQASISRCRSSQSLVHSGNTYLHWLQPKQPSQPKLLIKYKVSNRFSGVPRFSGSQGSDTFTKISRVEAEDLGVYVFCQGSTHIPTFGGGTKEIK</td>
<td>SEQ ID NO.:14</td>
</tr>
<tr>
<td>7B7 VL</td>
<td>DIVMTQSPSSLAMSVQGRVTMSCKSSQSLNNSNQKNYLAWYQQPQPSQPKLLVYYASTRESGVPRFTFGSGSGTFTFTISSVQAEDLAYFCQHNTPLTFAGGTKEIK</td>
<td>SEQ ID NO.:15</td>
</tr>
<tr>
<td>7D6 VL</td>
<td>DVMVTQTPSLPVSLGDQASISRCRSSQSLVHSGNTYLLHWYQKPQPSQPKLIIYKVSNRFSGVPRFSGSQGSDTFTKISRVEAEDLGVYVFCQGSTHVPRFGGGTKEIK</td>
<td>SEQ ID NO.:16</td>
</tr>
<tr>
<td>CLONE</td>
<td>Sequence</td>
<td>SEQ ID NO.</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>8F6 VL</td>
<td>DVLLTQTPLSLPVLGDSACSSQSLSLVSNSGNTYLLHWYLQKPGQSPKLIYKVSNNRSFGVPDRFSGGSGGGTDTFTNLISRVEAEDLGYFCSQSTHPFRTFGGGTKEIK</td>
<td>SEQ ID NO.:17</td>
</tr>
<tr>
<td>18F4 VL</td>
<td>DIVMTQSPATLSVTGDRVSLSRASQSISDLYHLYQKSHESPRILLYASQISGIPSRSFGSGSDDFTLSINSVEPEDVGGYYCQNGPSFPYTFGGGGTKEIK</td>
<td>SEQ ID NO.:18</td>
</tr>
<tr>
<td>20G3 VL</td>
<td>EIVLTTQSPPTTMTASPGEKITITCSASSSSISSSNHLHLYQKPKGSPKLILYRTSNLPSSVPPRFSGSGTSLTIGTMEAEDVATYYCQGSSLPRFGAGTGLALK</td>
<td>SEQ ID NO.:19</td>
</tr>
<tr>
<td>16C11 VL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLONE</td>
<td>Sequence</td>
<td>SEQ ID NO.</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>11E2 VH</td>
<td>EVQLQSGPELEKPGASVKISCKAGSFTYGNYMNWVKQNNKSLGWIGNIDPYGTPMNQKFKNFGKATLTVDKSSSTAYMLKLSLTSEDAVYYCALNSLLRLNAMDDYGQQGTSVTSS</td>
<td>SEQ ID NO.:20</td>
</tr>
<tr>
<td>20E11 VH</td>
<td>QIQLVQSGPELKKPGETVKSCKAGSFTYTYSMHWVKQAPGKLKWGMWINTETGEPTYADDKKGFRFASLETSASTAYQNINNNLNEOTAYFCARTGSSGFDWQGQTTLTSS</td>
<td>SEQ ID NO.:21</td>
</tr>
<tr>
<td>21B12 VH</td>
<td>QIQLVQSGPELKKPGETVKSCKAGSFTNYGMHWVKQAPGKLKWGMWINTETGEPTYADDKKGFRFASLETSASTAYQNINNNLNEOTAYFCARDGFLYFDYFWQGQTTLTSS</td>
<td>SEQ ID NO.:22</td>
</tr>
<tr>
<td>16B5 VH</td>
<td>EVQLQSGAELVKPGASVRSLCTSGFNIKDIYMHVVQRPQGLKGWIGPDAYGNTKYDPOQDAYSTQNDSTASSTAYLQLSLLSTEDAVYCYCARRYDAMYDYWQGQTTSS</td>
<td>SEQ ID NO.:23</td>
</tr>
<tr>
<td>16C11 VH</td>
<td>EVQLQSGPGEIHKPGASVKISCKAGSFTYNMYWVKQSHRKSLEWIGYIDPYGNDTSYNQSKKATLTADRSSSTAYMLHNLNLSTEDSGIYYCARGAYGSSYYWQGTGAVSA</td>
<td>SEQ ID NO.:24</td>
</tr>
<tr>
<td>7C12 VH</td>
<td>EVQLVSGGGLVKPGGLSLKLSCAASAGFTFSSYAMSWSVRQPKQPEKLSEAEISSGTYQQPYPTYPPDTGRFTISRDNAKNTLYLEMSSLRSEDTAMYYCTRIYDYGSDGWFAYWGQGTLTSS</td>
<td>SEQ ID NO.:25</td>
</tr>
<tr>
<td>6E12 VH</td>
<td>QVQLQSGPQLRPGASVKISCKGSDYFTYWMHVKQRPGQGLGMIGMDSDTQLNKEDKFKATLTVDSKSSSTAYMQSLPSTSEDAVYYCSRDNQYETLDFWGGQGTSVTSS</td>
<td>SEQ ID NO.:26</td>
</tr>
<tr>
<td>7B7 VH</td>
<td>TCKLVESGGLVLKPGGLSLKLSCAASAGFTFSSYAMSWSVRQPKQPEKLSEAEISSGTYQQPYPTYPPDTGRFTISRDNAKNTLYLEMSSLRSEDTAMYYCTRIYDYGSDGWFAYWGQGTLTSS</td>
<td>SEQ ID NO.:27</td>
</tr>
<tr>
<td>8F6 VH</td>
<td>QVQLQSGPQLRPGASVKISCKGSDYFTYWMHVKQRPGQGLGMIGMDSDTQLNKEDKFKATLTVDSKSSSTAYMQSLPSTSEDAVYYCSRDNQYETLDFWGGQGTSVTSS</td>
<td>SEQ ID NO.:28</td>
</tr>
<tr>
<td>CLONE</td>
<td>Sequence</td>
<td>SEQ ID NO.</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>18F4 VH</td>
<td>EVQLVESGGGLVKPGGSLKFSCLAASGFTFINYAMSWVRQSPKRLLEWIAEISSGGSDTYYPDTVTGRFTISRD NAKNTL*LEMSLRLSED'TAMYCARDGNWDGSLTTGAKAPLS</td>
<td>SEQ ID NO.:29</td>
</tr>
<tr>
<td>20G3 VH</td>
<td>QIQLVQSGPELKPKGGETVKISCKASGYTLDYSMHVWKQAPKGKLWWMGWINTETGEPTYVDDFKRRFAFSLETSASAAYLQINNLKEDTATYFCTRDSSTWFSYWGQGTLVTVSA</td>
<td>SEQ ID NO.:30</td>
</tr>
<tr>
<td>CLONE</td>
<td>Frame 1</td>
<td>CDR1</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11E2 VL Gr1</td>
<td>ENVLTQSPAIMSASPGEKVTMTCSAS (SEQ ID NO.: 53)</td>
<td>SSVSY (SEQ ID NO.:61)</td>
</tr>
<tr>
<td>11E2 VL Gr2</td>
<td>DIQMTQSPSSLASLGGKVTITCKAS (SEQ ID NO.:54)</td>
<td>QDINKY (SEQ ID NO.:62)</td>
</tr>
<tr>
<td>20E11 VL</td>
<td>DIVLTLSPASLAVSLGQRATISCRAS (SEQ ID NO.:55)</td>
<td>QSVNSSNYSY (SEQ ID NO.:63)</td>
</tr>
<tr>
<td>21B12 VL</td>
<td></td>
<td>QSLLYSSNQKNY (SEQ ID NO.:64)</td>
</tr>
<tr>
<td>16B5 VL</td>
<td>DIVMSQSPSSLAVSAGEKTMSCKSS (SEQ ID NO.:56)</td>
<td>QSSLLNSRTRKNY (SEQ ID NO.:65)</td>
</tr>
<tr>
<td>7C12 VL</td>
<td>DVLMTQTPLSLPVSPGDQASISCRRSS (SEQ ID NO.:57)</td>
<td>QSIIVHSGNTY (SEQ ID NO.:66)</td>
</tr>
<tr>
<td>6E12 VL</td>
<td>DVVLMTQTPLSLPVSLGDQASISCRRSS (SEQ ID NO.:58)</td>
<td>QSLVHSGNTY (SEQ ID NO.:67)</td>
</tr>
<tr>
<td>7B7 VL</td>
<td>DIVMTQSPSSLAMSVGQRVTMSCKSS (SEQ ID NO.:59)</td>
<td>QSLLLNSNNQKNY (SEQ ID NO.:68)</td>
</tr>
<tr>
<td>7D6 VL</td>
<td>DVMTQTPPLSLPVSLGDQASISCRRSS (SEQ ID NO.:60)</td>
<td>QSLVHSGNDTY (SEQ ID NO.:69)</td>
</tr>
<tr>
<td>CLONE</td>
<td>Frame 1</td>
<td>CDR1</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>8F6 VL</td>
<td>DVLLTQTPLSLPVLGDAQASISCRSS (SEQ ID NO.:70)</td>
<td>QSLVHSNGNTY (SEQ ID NO.:73)</td>
</tr>
<tr>
<td>18F4 VL</td>
<td>DIVMTQPSATLSVTGDRVSLSCRAS (SEQ ID NO.:71)</td>
<td>QSISDY (SEQ ID NO.:74)</td>
</tr>
<tr>
<td>20G3 VL</td>
<td>EIVLTQSPTTMASPGEKITITCSAS (SEQ ID NO.:72)</td>
<td>SSISSNF (SEQ ID NO.:75)</td>
</tr>
<tr>
<td>16C11 VL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLONE</td>
<td>Frame 1</td>
<td>CDR1</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>11E2 VH</td>
<td>EVQLQQSGPELEKPGASVKISCKAS (SEQ ID NO.:76)</td>
<td>GYSFTGYN (SEQ ID NO.:85)</td>
</tr>
<tr>
<td>20E11 VH</td>
<td>QIQLVQSGPELKKPGETVKISCKAS (SEQ ID NO.:77)</td>
<td>GYTFTDYS (SEQ ID NO.:86)</td>
</tr>
<tr>
<td>21B12 VH</td>
<td>QIQLVQSGPELKKPGETVKISCKAS (SEQ ID NO.:78)</td>
<td>GYTFTNYG (SEQ ID NO.:87)</td>
</tr>
<tr>
<td>16B5 VH</td>
<td>EVQLQQSGAELVKPGASVRLSCTTS (SEQ ID NO.:79)</td>
<td>GFNIKDIY (SEQ ID NO.:88)</td>
</tr>
<tr>
<td>16C11 VH</td>
<td>EVQLQQSGPELGKPGASVKISCKAS (SEQ ID NO.:80)</td>
<td>GYSFTGYN (SEQ ID NO.:89)</td>
</tr>
<tr>
<td>7C12 VH</td>
<td>EVQLVESGGGLVKPGGSLKLSCAAS (SEQ ID NO.:81)</td>
<td>GFTFSSYA (SEQ ID NO.:90)</td>
</tr>
<tr>
<td>6E12 VH</td>
<td>QVQLQQSGPQLVRPGASVKISCKAS (SEQ ID NO.:82)</td>
<td>DYSFTTYW (SEQ ID NO.:91)</td>
</tr>
<tr>
<td>7B7 VH</td>
<td>TCKLVESGGGLVKPGGSLKLSCAAS (SEQ ID NO.:83)</td>
<td>GFTFSSYS (SEQ ID NO.:92)</td>
</tr>
<tr>
<td>8F6 VH</td>
<td>QVQLQQSGPQLVRPGASVKISCKAS (SEQ ID NO.:84)</td>
<td>DYSFTTYW (SEQ ID NO.:93)</td>
</tr>
</tbody>
</table>
FIG. 13 Cont.

<table>
<thead>
<tr>
<th>CLONE</th>
<th>Frame 1</th>
<th>CDR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18F4 VH</td>
<td>EVQLVESGGGLVKPGGSLKFSCAAS (SEQ ID NO.:94)</td>
<td>GFTFINYA (SEQ ID NO.:96)</td>
</tr>
<tr>
<td>20G3 VH</td>
<td>QIQLVQSGPELKPGGETVKISCKAS (SEQ ID NO.:95)</td>
<td>GYTLTDYS (SEQ ID NO.:97)</td>
</tr>
<tr>
<td>CLONE</td>
<td>Frame 2</td>
<td>CDR2</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>11E2 VL Gr1</td>
<td>MHWYQQKSSTSPKWLWY (SEQ ID NO.:98)</td>
<td>DTS</td>
</tr>
<tr>
<td>11E2 VL Gr2</td>
<td>IAWYQHKPGKGLRLLIH (SEQ ID NO.:99)</td>
<td>YTS</td>
</tr>
<tr>
<td>20E11 VL</td>
<td>MHWYQQKPGQSPKLLIK (SEQ ID NO.:100)</td>
<td>YAS</td>
</tr>
<tr>
<td>21B12 VL</td>
<td>LAWYQRPGQSPKLLIY (SEQ ID NO.:101)</td>
<td>WAS</td>
</tr>
<tr>
<td>16B5 VL</td>
<td>LAWYQQKPGQSPKLLIY (SEQ ID NO.:102)</td>
<td>WAS</td>
</tr>
<tr>
<td>7C12 VL</td>
<td>LEWYLQKPGQSPKLLIY (SEQ ID NO.:103)</td>
<td>KVS</td>
</tr>
<tr>
<td>6E12 VL</td>
<td>LHWYLQKPGQSPKLLIY (SEQ ID NO.:104)</td>
<td>KVS</td>
</tr>
<tr>
<td>7B7 VL</td>
<td>LAWYQQKPGQSPKLLVY (SEQ ID NO.:105)</td>
<td>FAS</td>
</tr>
<tr>
<td>7D6 VL</td>
<td>LHWYLQKPGQSPKLLIY (SEQ ID NO.:106)</td>
<td>KVS</td>
</tr>
</tbody>
</table>
FIG. 13 Cont.

<table>
<thead>
<tr>
<th>CLONE</th>
<th>Frame 2</th>
<th>CDR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F6 VL</td>
<td>LHWYLQKPGQSPKLLIY (SEQ ID NO.:107)</td>
<td>KVS</td>
</tr>
<tr>
<td>18F4 VL</td>
<td>LHWYQQKSHESPRLLIK (SEQ ID NO.:108)</td>
<td>YAS</td>
</tr>
<tr>
<td>20G3 VL</td>
<td>LHWYQQKPGFSPKLLIY (SEQ ID NO.:109)</td>
<td>RTS</td>
</tr>
<tr>
<td>16C11 VL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLONE</td>
<td>Frame 2</td>
<td>CDR2</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>11E2 VH</td>
<td>MNWVKQNNNGKSLEWIGN (SEQ ID NO.:110)</td>
<td>IDPYYGTP (SEQ ID NO.:119)</td>
</tr>
<tr>
<td>20E11 VH</td>
<td>MHWVKQAPGKGLKWMGW (SEQ ID NO.:111)</td>
<td>INTETGEP (SEQ ID NO.:120)</td>
</tr>
<tr>
<td>21B12 VH</td>
<td>MHWVKQAPGKGLKWMGW (SEQ ID NO.:112)</td>
<td>INTYTGEP (SEQ ID NO.:121)</td>
</tr>
<tr>
<td>16B5 VH</td>
<td>MHWVKQRPQGLEWIGR (SEQ ID NO.:113)</td>
<td>IDPAYGNT (SEQ ID NO.:122)</td>
</tr>
<tr>
<td>16C11 VH</td>
<td>MYWVKQRSHRKSEWIGY (SEQ ID NO.:114)</td>
<td>IDPYNGDT (SEQ ID NO.:123)</td>
</tr>
<tr>
<td>7C12 VH</td>
<td>MSWVRQSPEKRLEWVAE (SEQ ID NO.:115)</td>
<td>ISSGGTYT (SEQ ID NO.:124)</td>
</tr>
<tr>
<td>6E12 VH</td>
<td>MHWVKQRPGQGLEWIGM (SEQ ID NO.:116)</td>
<td>IDPSDSET (SEQ ID NO.:125)</td>
</tr>
<tr>
<td>7B7 VH</td>
<td>MSWVRQTPEKRLEWVAT (SEQ ID NO.:117)</td>
<td>ISTIGSYT (SEQ ID NO.:126)</td>
</tr>
<tr>
<td>8F6 VH</td>
<td>MHWVKQRPGQGLEWIGM (SEQ ID NO.:118)</td>
<td>IDPSDSET (SEQ ID NO.:127)</td>
</tr>
</tbody>
</table>
FIG. 13 Cont.

<table>
<thead>
<tr>
<th>CLONE</th>
<th>Frame 2</th>
<th>CDR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>18F4 VH</td>
<td>MSWVRQSPEKRLEWIAE (SEQ ID NO.:128)</td>
<td>ISSGGSDT (SEQ ID NO.:130)</td>
</tr>
<tr>
<td>20G3 VH</td>
<td>MHWVKQAPGKGLKWMGW (SEQ ID NO.:129)</td>
<td>INETGEP (SEQ ID NO.:131)</td>
</tr>
<tr>
<td>CLONE</td>
<td>Frame 3</td>
<td>CDR3 (D Region)</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>11E2 VL Gr1</td>
<td>KLASGVPGGFSGSGSGSYSLTISSM EADVATYYC (SEQ ID NO.:132)</td>
<td>FQGSGYPFRT (SEQ ID NO.:141)</td>
</tr>
<tr>
<td>11E2 VL Gr2</td>
<td>TLQPGIPSFSFGSGSRDSYSFSISNLE PEDATYYC (SEQ ID NO.:133)</td>
<td>LQYDNLLRT (SEQ ID NO.:142)</td>
</tr>
<tr>
<td>20E11 VL</td>
<td>NLESGVPARFSFGSGSTHTLNIHPVE EEDTATYYC (SEQ ID NO.:134)</td>
<td>QHSWEIPWT (SEQ ID NO.:143)</td>
</tr>
<tr>
<td>21B12 VL</td>
<td>TRESGVPDRTGSGSTDFTLTISSVK AEDLAVYYC (SEQ ID NO.:135)</td>
<td>QQYIYPT (SEQ ID NO.:144)</td>
</tr>
<tr>
<td>16B5 VL</td>
<td>TRESGVPDRTGSGSTDFTLTISSVQ AEDLAVYYC (SEQ ID NO.:136)</td>
<td>KQSYNLWT (SEQ ID NO.:145)</td>
</tr>
<tr>
<td>7C12 VL</td>
<td>NRFSGVPDRFSFGSGSTDFTLKISRVE AEDLGVYYC (SEQ ID NO.:137)</td>
<td>FQGSHVPYT (SEQ ID NO.:146)</td>
</tr>
<tr>
<td>6E12 VL</td>
<td>NRFSGVPDRFSFGSGSTDFTLKISRVE AEDLGVYFC (SEQ ID NO.:138)</td>
<td>SQSTHIPRT (SEQ ID NO.:147)</td>
</tr>
<tr>
<td>7B7 VL</td>
<td>TRESGVPDRTFIGSGSTDFTLTISSVQ AEDLADYFC (SEQ ID NO.:139)</td>
<td>QQHYNTPLT (SEQ ID NO.:148)</td>
</tr>
<tr>
<td>7D6 VL</td>
<td>NRFSGVPDRFSFGSGSTDFTLKISRVE AEDLGVYFC (SEQ ID NO.:140)</td>
<td>SQSTHPVRT (SEQ ID NO.:149)</td>
</tr>
<tr>
<td>CLONE</td>
<td>Frame 3</td>
<td>CDR3 (D Region)</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>8F6 VL</td>
<td>NRFSGVPDRFSGSGSTDLNLISRVE AEDLGVVFC (SEQ ID NO.:150)</td>
<td>SQSTHVPR T (SEQ ID NO.:153)</td>
</tr>
<tr>
<td>18F4 VL</td>
<td>QSI SISGIPSRFSGS GSGSDFTLSINSV EPG VGYC (SEQ ID NO.:151)</td>
<td>QNGHSFPYT (SEQ ID NO.:154)</td>
</tr>
<tr>
<td>20G3 VL</td>
<td>NLPSGVPPRRFSGSGTSYSLTIGTME AEDVATYYC (SEQ ID NO.:152)</td>
<td>QQGSSLPR T (SEQ ID NO.:155)</td>
</tr>
<tr>
<td>16C11 VL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLONE</td>
<td>Frame 3</td>
<td>CDR3 (Ig Region)</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>11E2 VH</td>
<td>NYNQKFKGTKATLTVDKSSSTAYMQLKS LTSEDSAVYYC (SEQ ID NO.:156)</td>
<td>ALNSLRLNAMDY (SEQ ID NO.:165)</td>
</tr>
<tr>
<td>20E11 VH</td>
<td>TYADDFKGRFAFSLTSASTAYLQINNL KNEDEATYFC (SEQ ID NO.:157)</td>
<td>ARTGSGYFDC (SEQ ID NO.:166)</td>
</tr>
<tr>
<td>21B12 VH</td>
<td>TYADDFKGRFAFSLTSASTAYLQINNL KNEDEATYFC (SEQ ID NO.:158)</td>
<td>ARDGFLYFFDY (SEQ ID NO.:167)</td>
</tr>
<tr>
<td>16B5 VH</td>
<td>KYDPKFQGKATITADTSNTAYQLLS LTSEDTAVYYC (SEQ ID NO.:159)</td>
<td>ARRYDTAMDY (SEQ ID NO.:168)</td>
</tr>
<tr>
<td>16C11 VH</td>
<td>SYNQKSKGKATLTDSSSTAYMHLS LTSEDSGIYYC (SEQ ID NO.:160)</td>
<td>ARGAYGSSYAY (SEQ ID NO.:169)</td>
</tr>
<tr>
<td>7C12 VH</td>
<td>YYPDTTVGRFTISRDNAKNTLTYLEMSL RSEDTAMYYC (SEQ ID NO.:161)</td>
<td>TRIYDYGSWDGFAY (SEQ ID NO.:170)</td>
</tr>
<tr>
<td>6E12 VH</td>
<td>RLNQKFKDKATLTVDKSSSTAYMLSS PTSEDSAVYYC (SEQ ID NO.:162)</td>
<td>SRDGNRYYTLDF (SEQ ID NO.:171)</td>
</tr>
<tr>
<td>7B7 VH</td>
<td>DYPDSVKGRFTISRDNAKNTLYQMSS LKSEDTAMYCC (SEQ ID NO.:163)</td>
<td>TREDYRYAFAY (SEQ ID NO.:172)</td>
</tr>
<tr>
<td>8F6 VH</td>
<td>RLNQKFKDKATLTVDKSSSTAYMLSS PTSEDSAVYYC (SEQ ID NO.:164)</td>
<td>SRDGNYRSYTMDY (SEQ ID NO.:173)</td>
</tr>
</tbody>
</table>
FIG. 13 Cont.

<table>
<thead>
<tr>
<th>CLONE</th>
<th>Frame 3</th>
<th>CDR3 (D Region)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18F4 VH</td>
<td>YYPDTVGRFTISRDNAKNTL*LEMSSLRSEDTAMYYC (SEQ ID NO.:174)</td>
<td>ARDGNWDGGSLT (SEQ ID NO.:176)</td>
</tr>
<tr>
<td>20G3 VH</td>
<td>TYVDDFKRRFAFSLETSASAAYLQINNLKNEDTATYFC (SEQ ID NO.:175)</td>
<td>TRDGSSSTWFSY (SEQ ID NO.:177)</td>
</tr>
<tr>
<td>CLONE</td>
<td>Frame 4 (J Region)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>11E2 VL Gr1</td>
<td>GSGTKLEIK (SEQ ID NO.:178)</td>
<td></td>
</tr>
<tr>
<td>11E2 VL Gr2</td>
<td>FGGGTKLEIK (SEQ ID NO.:179)</td>
<td></td>
</tr>
<tr>
<td>20E11 VL</td>
<td>FGGGTKLEIK (SEQ ID NO.:180)</td>
<td></td>
</tr>
<tr>
<td>21B12 VL</td>
<td>FGGGTKLEIK (SEQ ID NO.:181)</td>
<td></td>
</tr>
<tr>
<td>16B5 VL</td>
<td>FGGGTKLEFK (SEQ ID NO.:182)</td>
<td></td>
</tr>
<tr>
<td>7C12 VL</td>
<td>FGGGTKLEIK (SEQ ID NO.:183)</td>
<td></td>
</tr>
<tr>
<td>6E12 VL</td>
<td>FGGGTKLEIK (SEQ ID NO.:184)</td>
<td></td>
</tr>
<tr>
<td>7B7 VL</td>
<td>FGAGTKLELK (SEQ ID NO.:185)</td>
<td></td>
</tr>
<tr>
<td>7D6 VL</td>
<td>FGGGTKLEIK (SEQ ID NO.:186)</td>
<td></td>
</tr>
</tbody>
</table>
FIG. 13 Cont.

<table>
<thead>
<tr>
<th>CLONE</th>
<th>Frame 4 (J Region)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F6 VL</td>
<td>FGGGTKLEIK (SEQ ID NO.:187)</td>
</tr>
<tr>
<td>18F4 VL</td>
<td>FGGGTKLEIK (SEQ ID NO.:188)</td>
</tr>
<tr>
<td>20G3 VL</td>
<td>FGAGTKLALK (SEQ ID NO.:189)</td>
</tr>
<tr>
<td>16C11 VL</td>
<td></td>
</tr>
<tr>
<td>CLONE</td>
<td>Frame 4 (J Region)</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>11E2 VH</td>
<td>WGQGTSVTVSS (SEQ ID NO.:190)</td>
</tr>
<tr>
<td>20E11 VH</td>
<td>WGQGTTLTVTSS (SEQ ID NO.:191)</td>
</tr>
<tr>
<td>21B12 VH</td>
<td>WGQGTTLTVTSS (SEQ ID NO.:192)</td>
</tr>
<tr>
<td>16B5 VH</td>
<td>WGQGTSVTVSS (SEQ ID NO.:193)</td>
</tr>
<tr>
<td>16C11 VH</td>
<td>WGGQTLVAVSA (SEQ ID NO.:194)</td>
</tr>
<tr>
<td>7C12 VH</td>
<td>WGQGTLVTVSAA (SEQ ID NO.:195)</td>
</tr>
<tr>
<td>6E12 VH</td>
<td>WGQGTSVTVSS (SEQ ID NO.:196)</td>
</tr>
<tr>
<td>7B7 VH</td>
<td>WGQGTLVTVSAA (SEQ ID NO.:197)</td>
</tr>
<tr>
<td>8F6 VH</td>
<td>WGQGTSVTVSS (SEQ ID NO.:198)</td>
</tr>
</tbody>
</table>
FIG. 13 Cont.

<table>
<thead>
<tr>
<th>CLONE</th>
<th>Frame 4 (J Region)</th>
<th>J Region (frameshift)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18F4 VH</td>
<td>WGQGTTLTVSS (SEQ ID NO.:51)</td>
<td>LTTGAKAPLSQSPQ (SEQ ID NO.:203)</td>
</tr>
<tr>
<td>20G3 VH</td>
<td>WGQGTLTVSQA (SEQ ID NO.:52)</td>
<td></td>
</tr>
</tbody>
</table>
FIG. 14

CDR1: G-Y-S/T-F-T-X-Y-X
CDR2: I-D/N-P/T-Y/E-X-G-X-P/T

<table>
<thead>
<tr>
<th></th>
<th>16C11 H CDR1</th>
<th>11E2 H CDR1</th>
<th>21B12 H CDR1</th>
<th>20E11 H CDR1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>16C11 H CDR2</th>
<th>11E2 H CDR2</th>
<th>21B12 H CDR2</th>
<th>20E11 H CDR2</th>
</tr>
</thead>
</table>
METHODS AND COMPOSITIONS FOR MODULATING TUMOR CELL ACTIVITY

BACKGROUND OF THE INVENTION

Carcinomas, the most common human malignancy, arise from epithelial cells. Progression of epithelial cancers begins with the disruption of cell-cell contacts as well as the acquisition of a migratory (mesenchymal-like) phenotype. This phenomenon, which is called an epithelial-to-mesenchymal transition (EMT), is considered to be a crucial event in late stage tumor progression and metastasis.

The secreted protein TGF-β suppresses tumor growth initially largely due to its growth inhibitory action on tumor cells of epithelial origin, then at later stages promotes tumor cell progression and metastasis. One mechanism by which TGF-β can promote tumor progression is through the induction of an EMT.

Due to the dual role that TGF-β plays in carcinogenesis, direct inhibitors of TGF-β may be risky since, while they could benefit late stage tumors, they could also accelerate preneoplastic lesions. A better therapeutic may be one that inhibits the pro-oncogenic EMT-promoting action of TGF-β, while leaving the tumor suppressor growth-inhibitory action of TGF-β unaffected. To develop such an inhibitor it would be necessary to identify the point at which there is a bifurcation of the TGF-β signaling pathway such that the mediators in one branch of the pathway participate in the EMT response, but not the growth inhibitory response to TGF-β.

Therapeutics that inhibit mediators that lie exclusively in the EMT-promoting branch of the TGF-β signaling pathway will reduce metastasis while having little or no effect on the acceleration of preneoplastic lesions.

In contrast, an endogenous protein (the YY1 nuclear factor) has been identified that is able to interfere with (as opposed to promote) the protumorigenic EMT action of TGF-β, while leaving the tumor-suppressing action (growth inhibition) intact (Kurisaki et al., 2004).

Inhibitors that target TGF-β ligands, receptors and the Smad signaling proteins are known. Specifically, soluble receptor ectodomains, antibodies and other binding proteins are able to act as antagonists by interacting with TGF-β ligands and sequestering them away from cell surface receptors. Small molecules are available that inhibit the kinase activity of the Type I TGF-β receptor and endogenous inhibitors of the Smad signaling proteins are also known. Since all of these signaling pathway components are involved in both the pro- and anti-carcinogenic actions of TGF-β, these inhibitors that target them may benefit late stage tumors, however, they could also accelerate preneoplastic lesions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1: TGF-β induces an epithelial to mesenchymal transition (EMT) in JM01 cells.

(A) This transition is characterized by an elongated morphology, the relocation of the markers E-cadherin (E-cad), β-catenin (β-Cat) and F-actin and the down-regulation of the marker Zona Occludens-1 (ZO-1). (B) This morphology change is accompanied by an increase in cell motility as shown in a wound healing assay in which the cells’ ability to migrate into a ‘scratch’ area is monitored in the absence or presence of TGF-β. (C) A complementary black ink motility assay was also used to visualize and quantify the motility of individual JM01 cells in the absence or presence of TGF-β. The black ink which is coated on the plastic sticks to the migrating cells, thereby generating the white tracks. Both assays show that the presence of TGF-β increases the motility of the JM01 cells.

FIG. 2: Analysis of TGF-β-induced gene expression changes using microarray technology. (A) Extensive analysis of microarray data obtained from 7 time-points (0.5, 1, 2, 4, 6, 12, and 24 hrs) during the TGF-β induction of the JM01 cell EMT allowed for the identification of 328 genes that were modulated during the early (0.5, 1 hr), middle (2, 4, 6 hr) or late (12, 24 hr) stages of the transition. (B) Only 5 of these genes are affected over the entire time-course. (C) By comparing our gene list with data on the basal gene expression profiles of the NCI-60 cell line panel (some of these cell lines exhibit a mesenchymal phenotype), and with expression profiling data from clinical samples, we identified 15 genes from our list that are associated with a mesenchymal tumor cell phenotype and with clinical tumor progression.

FIG. 3: Validation of the TGF-β modulation of selected gene expression and protein levels. (A) Semi-quantitative PCR confirmed the TGF-β-induced clusterin up-regulation and caveolin-1 down-regulation thereby validating the microarray analysis (microarray data shown below PCR results). (B) Western blot analysis of whole cell lysates of JM01 cells treated for 24 hrs with TGF-β demonstrated that these transcriptional changes result in increased clusterin (p-clu-pre-clusterin; s-clu-secreted mature clusterin) and decreased caveolin-1 (Cav-1) protein levels. (C) Immunofluorescent microscopy of JM01 cells treated for 24 hrs with TGF-β further confirmed these changes in clusterin and caveolin-1 protein levels through the visualization of these proteins in the intact cell. Nuclei are stained blue, caveolin-1 and clusterin are stained green and the F-actin fibers are stained red.

FIG. 4: Identification of secreted clusterin as a mediator of the TGF-β induced EMT. (A) Immunofluorescent microscopy indicated that clusterin is localized to the secretory pathway in JM01 cells and Western blot analysis of conditioned media (CM) indicated that clusterin is secreted (s-clu). (B, C) JM01 cells were treated for 24 hr with TGF-β, or CM taken from TGF-β treated JM01 cells, in the absence or presence of a antibody raised against the C-terminus of the clusterin chain (anti-clu). Using immunofluorescent microscopy of ZO-1 as a marker of the EMT it was shown that the clusterin antibody blocks the induction of the EMT by both TGF-β and the CM indicating that secreted clusterin is a necessary mediator in the TGF-β EMT pathway. Purified
clusterin alone was also shown to promote the EMT indicating that clusterin is not only necessary, but is sufficient for EMT induction. (D) The induction of the EMT by clusterin alone was further confirmed by using FACS analysis of the epithelial marker E-cadherin to monitor the EMT.

0014 FIG. 5: Clusterin acts as an EMT mediator in cell lines other than the JM01 cells. 4T1 tumor cells (breast) and DU145 tumor cells (prostate) were observed to secrete clusterin and exhibit a motile phenotype in the absence of TGF-β stimulation. Using the wound healing assay to monitor the motility of the 4T1 and DU145 cells, it was observed that a clusterin antibody (anti-clu) inhibits the motility of these cells indicating that clusterin is important for the maintenance of the TGF-β independent mesenchymal phenotype in these cells.

0015 FIG. 6: Clusterin is a pivotal mediator in the pathway leading to TGF-β induction of EMT but not in the pathway leading to TGF-β growth inhibition. (A) Using the black ink motility assay to monitor the EMT of the JM01 cells, it was confirmed that a clusterin antibody blocks the TGF-β induced EMT and that clusterin alone promotes the EMT. (B) This result was further confirmed by quantifying the motility change as area cleared in the ink per cell. (C) In contrast, as monitored by the incorporation of tritiated thymidine, it was shown that the clusterin antibody does not block TGF-β induced growth inhibition and that clusterin alone does not promote growth inhibition, indicating that clusterin is not a mediator in TGF-β growth inhibitory pathways.

0016 FIG. 7: Clusterin is an essential mediator in a TGF-β tumor promoting pathway but not in its tumor suppressing pathway. TGF-β induces secretion of clusterin and antibodies raised against the C-terminus of the clusterin β chain block the TGF-β1 induced EMT, but not the growth inhibitory response of the cells to TGF-β. These results indicate that clusterin is a necessary mediator in the TGF-β EMT pathway but do not address whether other TGF-β-induced mediators act in concert with clusterin to induce the EMT; that is, do not, address the question of whether clusterin alone mediates an EMT. The fact that purified clusterin in the absence of TGF-β also promotes an EMT indicates that clusterin is sufficient to induce this transition.

0017 FIG. 8: Analysis of the neutralizing activity of anti-clusterin polyclonal antibodies produced at BR1. Sera collected from two rabbits (#9 and #10) immunized with a clusterin peptide (aa 421-437) were confirmed to contain antibodies that interact with the peptide using surface plasmon resonance (data not shown), and were tested for their ability to inhibit cell motility in a wound healing assay (1/25 dilution of rabbit serum). The mouse mammary epithelial cell line, 4T1 (top), secretes clusterin and is motile in the absence of TGF-β, whereas the JM01 cell line (bottom) requires stimulation with TGF-β to induce clusterin production and cell motility. The sera of both rabbit #9 and #10 inhibit motility, with #10 serum being more potent. As expected, the pre-immune sera of both rabbits does not affect motility. A commercially available clusterin antibody is shown as a positive control (anti-clu, Santa Cruz).

0018 FIG. 9: Analysis of the activity of the anti-clusterin monoclonal antibodies produced at BR1. (A) Immunoprecipitations of recombinant human clusterin (500 ng) using either 50 or 100 ng of each of 12 BR1 produced monoclonal antibodies (commercial polyclonal (C18) and monoclonal (B5) antibodies were used as positive controls). Samples were analyzed on a 12% reducing SDS-PAGE. All antibodies were observed to interact with recombinant clusterin by immunoprecipitation. (B) Assessment of the ability of the 12 BR1-produced monoclonal antibodies to inhibit the TGF-β induced motility of JM01 cells using the black ink motility assay (commercial polyclonal (C18) and monoclonal (B5) antibodies were used as positive controls). The bar graph shows the relative values of the motility of the TGF-β treated BR1-JM01 cells in the presence of the various antibodies. Five BR1-produced monoclonal antibodies (21B12, 20E11, 16C11, 16B5 and 11E2) inhibit the TGF-β induced motility of the BR1-JM01 cells. Values are expressed as the clearance/ cell/24 hr relative to that of the TGF-β treated (control) cells. The * illustrates the cut-off value that was used when assessing neutralizing ability. When using this cut-off value in the black ink motility assay, there was a good agreement with the evaluation of the neutralizing ability of the monoclonal antibodies when using the wound healing motility assay (data not shown).

0019 FIG. 10: Two SPR-biosensor (Biacore) approaches for analysing the relationship between the epitopes of antibodies. (A) In the first approach, a rabbit anti-mouse Fc antibody (RAMFc) is covalently immobilized on the sensor chip and one monoclonal (termed Ab 1) is captured on the surface. After binding clusterin to Ab1, the second monoclonal antibody (termed Ab 2) is flowed over the surface. If the epitopes of the two antibodies are overlapping, then Ab2 will not be able to bind to Ab1-bound clusterin. If the two antibodies have unrelated epitopes, then Ab2 will be able to bind to Ab1-bound clusterin. (B) In the second approach, one monoclonal (termed Ab 1) is covalently immobilized on the sensor chip surface. Clusterin is then incubated with a second antibody (monoclonal or polyclonal, termed Ab2) in solution and the complex is then flowed over Ab1. If the epitopes of the two antibodies are overlapping, then Ab2-bound clusterin will not be able to bind to Ab1.

0020 FIG. 11: Results of the analysis of the relationship of the epitopes of the 5 EMT neutralizing BR1-produced anti-clusterin monoclonals antibodies with each other, and with the peptide epitopes of the C18, pAb1/10 and B5 antibodies. This table summarizes all the epitope mapping results obtained using the two SPR-biosensor (Biacore) approaches. A blue + indicates that Ab1 competed with Ab2 for binding to clusterin in the first Biacore approach (i.e. the ratio of RUs of Ab2 to RUs of bound clusterin was 0.1 or less). A red + or +/+ indicates that Ab2 competed with Ab1 for binding to clusterin in the second Biacore approach (i.e. the binding of clusterin to Ab1 was inhibited between 30-100% for +, and between 10-30% for +/−, when preincubated with Ab2). It is evident that all of the five neutralizing monoclonal antibodies (21B12, 20E11, 16C11, 16B5 and 11E2) interact with the overlapping peptide epitopes of pAb1/10, pAbC18 and mAb B5 since they all compete for each other, and for pAb1/10, pAbC18 and mAb B5. *It should be noted that all of the negative results from the first approach (blue −) occurred when Ab 20E11 was used (either as Ab1 or Ab2) indicating that this Ab did not behave well in that experimental set up. Therefore, for Δ 20E11, conclusions are taken primarily from the second experimental approach.

0021 FIG. 12: Isolation of the Ig variable region cDNAs. Flow diagram indication the steps for the isolation, sequencing, sequence analysis of the monoclonal variable regions.

0022 FIG. 13: Amino acid sequences of monoclonal antibodies

0023 FIG. 14: CDR1 and CDR2 alignment of clusterin Ig VH
SUMMARY OF THE INVENTION

[0024] A first object of the invention is to identify a method for inhibiting EMT in tumour cells without inhibiting the tumour-suppressing activity of TGF-β.

[0025] A further object of the invention is to identify molecules or compositions which may inhibit TGF-β-induced EMT in tumour cells without inhibiting the tumour-suppressing activity of TGF-β.

[0026] A first aspect of the invention provides for an agent having a binding affinity for clusterin, wherein the agent to clusterin inhibits epithelial-to-mesenchymal transition in carcinoma cells. In particular, the agent may bind to the β-subunit of clusterin, and more specifically, it may bind to the C-terminal portion of the clusterin β-subunit. The agent may, for example, be an antibody, including a monoclonal or polyclonal antibody.

[0027] A second aspect of the invention provides for a method for modulating the activity of carcinoma cells, comprising the steps of exposing the cells to an agent having a binding affinity for clusterin.

[0028] A further aspect of the invention provides for the use of an amino acid sequence in the generation of agents having a binding affinity for clusterin, wherein the sequence comprises SEQ ID NO.: 4 or a portion thereof. In particular, the sequence may comprise shorter portions of SEQ ID NO.: 4, including SEQ ID NO.: 1, SEQ ID NO.: 2, SEQ ID NO.: 3, and SEQ ID NO.: 5.

[0029] A further aspect of the invention provides for a vaccine comprising clusterin or a portion thereof which is involved in epithelial-to-mesenchymal transition in carcinoma cells, and a pharmaceutically suitable carrier. The portion of clusterin may comprise SEQ ID NO.: 4 or a portion thereof.

[0030] A further aspect of the invention provides for the use of an amino acid sequence in the preparation of a vaccine, wherein the sequence comprises SEQ ID NO.: 4 or a portion thereof. In particular, the sequence may comprise shorter portions of SEQ ID NO.: 4, including SEQ ID NO.: 1, SEQ ID NO.: 2, SEQ ID NO.: 3, and SEQ ID NO.: 5.

[0031] A further aspect of the invention provides for a nucleic acid sequence that encodes at least one of SEQ ID NO.: 1 through SEQ ID NO.: 5.

[0032] A further aspect of the invention provides for the use of an agent with a binding affinity for clusterin as a diagnostic tool, whereby binding of the agent to clusterin inhibits epithelial-to-mesenchymal transition in carcinoma cells.

DETAILED DESCRIPTION OF THE INVENTION

[0033] It is disclosed herein that clusterin is a therapeutic target whose inhibition blocks EMT without preventing TGF-β’s anti-proliferative tumor suppressor action.

[0034] Clusterin was first identified as a protein possibly involved in EMT using transcriptome analysis, then was analyzed to identify potential binding sites within clusterin. Synthetic peptides were created accordingly, and antibody preparations directed against these peptides were produced or purchased. Additionally, twelve monoclonal antibodies were isolated using full-length recombinant clusterin as the antigen. Both the anti-peptide antibody preparations and the twelve monoclonal antibodies were confirmed to bind to recombinant clusterin. The anti-peptide polyclonal antibody preparations and five of the twelve monoclonal antibodies were shown to inhibit EMT. These five neutralizing monoclonal antibodies were shown to interact with the same peptide epitope as the anti-peptide antibodies.

[0035] Using semi-quantitative RT-PCR, Western blot and immunofluorescent microscopy analysis, it was confirmed that several of the EMT-associated transcriptional changes that were detected by microarray analysis were reflected in changes in message and protein abundance (clusterin and caveolin are shown in FIG. 3). Anti-peptide antibodies were used to demonstrate that clusterin is an essential EMT mediator that is not involved in TGF-β’s growth inhibitory pathways (FIGS. 4-6). These results indicate that clusterin is an accessible therapeutic target whose inhibition blocks EMT without preventing TGF-β’s anti-proliferative tumor suppressor action.

[0036] The epitope within clusterin that is important for the generation of EMT-inhibiting agents was elucidated using anti-peptide antibody preparations in neutralization assays. Two different commercial polyclonal antibody preparations raised against synthetic peptides corresponding to sections of the C-terminus of the clusterin β sub-unit were used. The first antibody (from RDI Research Diagnostics Inc.) was raised against the synthetic peptide corresponding to amino acids 421-437 of clusterin (VEVSRRKPKF METVAEQ, SEQ ID NO 1) (termed RDI) and the second antibody (from Santa Cruz Biotechnology Inc.) was raised against the synthetic peptide corresponding to amino acids 422-443 of clusterin (ETVAEKALQ EYR, SEQ ID NO 2) (termed C-18). An anti-peptide monoclonal antibody against the same peptide (SEQ ID NO 2) was also purchased (termed BS). The overlap between these two epitopes is shown below. The ability of these antibody preparations to block EMT indicates the significance of the C-terminal portion of the clusterin β subunit in inducing EMT (FIG. 4-6). C-18 results shown; similar results obtained with RDI).

Prediction of Putative Functional Subdomains in Clusterin Based on Structural Bioinformatics

[0037] Generally, clusterin is thought to be a protein that is only partially structured, containing molten globule fragments. Additionally, it has been classified as an intrinsically disordered protein. Clusterin is postulated to contain several independent classes of binding sites capable of interacting with numerous other binding partners.

[0038] The clusterin sequence was examined using bioinformatics programs, namely:

[0039] PredictProtein (Rost, 1996).
[0042] PONDR (Li et al., 1999)

[0043] The C-terminal fragment of the β-subunit was identified as a putative binding region. The fragment (a.a. 421-443), in which the 439 amino acids of the C-terminal fragment of clusterin in order to generate polyclonal antibody preparations at BR1 that are similar to the commercial antibody 1 preparation (RDI) (these new polyclonal prepara-
tions are termed pAb#9 and #10). Additionally, full-length human clusterin was expressed in 293 cells and purified in order to use as antigen to generate monoclonal antibodies against full-length human clusterin. Twelve monoclonal antibodies were raised against full-length clusterin and were demonstrated to interact with clusterin by ELISA. These twelve antibodies are named 6E12, 7B7, 21B12, 20G3, 20E11, 18F4, 16C11, 16B5, 11E2, 8F6, 7D6, 7C12.

[0045] The polyclonal antibody preparations raised against the n.a.m. 421-437 epitope (pAb#9 and #10) were confirmed to inhibit the EMT (FIG. 8).

[0046] All twelve monoclonal antibody preparations raised against full-length human clusterin were confirmed to interact with recombinant human clusterin as evidenced by their ability to immunoprecipitate clusterin (FIG. 9A). Five of the twelve monoclonals were shown to be able to neutralize the EMT promoting action of clusterin in the black ink cell motility assay (FIG. 9B) and the wound healing cell motility assay (not shown). The five monoclonal antibodies that neutralize are 11E2, 21B12, 20E11, 16C11, 16B5.

[0047] Two Surface Plasmon Resonance (SPR)-based biosensor epitope mapping assays (FIG. 10) were used to determine whether the five neutralizing monoclonal antibodies generated using full-length clusterin were interacting with the same clusterin peptide epitope as the anti-peptide antibody preparations.

[0048] The two approaches that were used are described below:

1) The monoclonal antibodies were individually captured on a CM5 sensor chip surface on which a rabbit-anti-Mouse FC antibody was covalently immobilized (when captured, the mAb is termed mAb#1 in this experimental approach). Clusterin was then allowed to bind to mAb1. Then all five monoclonal antibodies were sequentially injected over mAb1-bound clusterin (the injected mAb is termed mAb2 in this experimental approach) in order to determine if both mAb1 and mAb2 are able to interact with clusterin simultaneously (FIG. 11). It was found that all five of the neutralizing mAbs (except 20E11 in some cases) competed with each other for binding to clusterin (when used both as mAb1 or as mAb2). Additionally, they were found to compete with the C18, pAb#10 and B5 anti-peptide antibodies, suggesting that the five neutralizing mAbs interact with the overlapping peptide epitopes of pAb#10, pAbC18 and mAb B5. It should be noted that, although Ab 20E11 appeared to have a distinct epitope in some cases (when used either as mAb1 or mAb2), this conclusion was not supported by the results of the second experimental approach.

2) The monoclonal antibodies were individually covalently immobilized on a CM5 sensor chip surface using amine coupling (when immobilized, the mAb is termed mAb#1 in this experimental approach). To demonstrate competition for binding to clusterin, an Ab (termed Ab2 in this approach) was then incubated with clusterin prior to injection of the complex over the mAb1 surface (FIG. 11).

[0049] It was confirmed that all of the five neutralizing mAbs competed with each other for binding to clusterin, and with the C18, pAb#10 and B5 anti-peptide antibodies. This confirms that the five neutralizing mAbs interact with the overlapping peptide epitopes of pAb#10, pAbC18 and mAb B5.

[0050] The hypervariable complementary determining regions (CDRs) of all twelve monoclonal Abs were sequenced. Mammalian light- and heavy-chain Igs contain conserved regions adjacent to the CDRs and the use of appropriately designed oligonucleotide primer sets enabled the CDRs to be specifically amplified using PCR (FIG. 12). These products were then sequenced directly (SEQ ID NO: 8-30; see FIG. 13).

[0051] By aligning the CDR sequences of four out of the five neutralizing monoclonal antibodies (11E2, 21B12, 20E11, 16C11), we were able to determine a consensus sequences for VH CDR1 and CDR2 of these anti-clusterin antibodies (see FIG. 14). The following consensus sequences were determined: CDR-1: G-Y-S/T-F-T-X-Y-X (SEQ ID NO.: 6) and CDR-2: 1-N/D-P/T-Y/E-X-G-X-P/T (SEQ ID NO.: 7).

[0052] The antibodies or peptides that interact with the epitope of clusterin defined here may be applied as therapeutics, i.e. they may act as a therapeutic in their own right due to their intrinsic ability to neutralize the EMT promoting activity of clusterin. Additionally, these antibodies and peptides may be used as a therapeutic due to their ability to target toxins, suicide genes or other agents with anti-tumor activity to the vicinity of tumor cells through their interaction with secreted clusterin.

[0053] Small molecules that interact with the epitope of clusterin defined here may also act as therapeutics by blocking the EMT promoting activity of clusterin. These antibodies, peptides and small molecules that exert their therapeutic activity by interacting with this clusterin epitope may exhibit less toxicity or side-effects as compared to other agents that remove all activities of clusterin, i.e. anti-sense or RNAi agents, since, while the EMT activity of clusterin is neutralized when this epitope is blocked, the other activities of clusterin may remain intact.

[0054] Other applications of the antibodies and peptides that interact with the epitope of clusterin defined here may be as 1) non-imaging diagnostics, i.e. they may detect clusterin as a biomarker in accessible body fluids or in tissue/tumor samples for diagnostic and prognostic applications in cancer, and 2) imaging diagnostics, i.e. they may be used to target contrast agents to tumors for imaging in vivo due to their interaction with secreted clusterin.

[0055] Antibodies comprising the heavy and light sequences identified herein, antibodies comprising the CDRs (complementarily determining regions) identified herein (FIG. 13), and antibodies comprising the consensus sequences (FIG. 14) are expected to be useful for the abovementioned purposes.

[0056] Clusterin itself, or the portions thereof which contain the epitope recognized by the antibodies and peptides discussed above, may be used as a vaccine. Preferably, the clusterin should be combined with a pharmaceutically suitable carrier. Clusterin or epitope-containing portions of clusterin may also be used in the generation of vaccines. Similarly, amino acid sequences having at least 90% identity with SEQ ID NO. 4 or the clusterin epitope identified herein will also be useful, since they are likely to have similar functionality to the specific sequences identified herein.

[0057] Cell culture, antibodies and reagents BR1-JM01 cells were isolated and characterized as described (Lenferink et al., Breast Cancer Res., 6, R514-30 (2004)). Cells were maintained at 37°C in a humidified, 5% CO2 atmosphere and cultured in DP/5% FBS (1:1 mixture of Ham’s F12 and Dulbecco’s modified Eagles Medium (DMEM) with 5% Fetal Bovine Serum (FBS) and antibiotics/antimicotics (both Wisent Inc.)).
Human recombinant TGF-β1 and pan-TGF-β neutralizing antibody 1D11 were reconstituted according to the manufacturer's instructions (R&D Systems). Purified human serum clusterin was kindly provided by Dr. M. Wilson (Wilson and Easterbrook-Smith, 1992). Purified human recombinant clusterin was produced in HEK-293 cells (general expression system described in Durocher et al., 2002). Antibodies against the following proteins were purchased and used in the indicated v/v dilutions: E-cadherin (E-cad, anti-cytoplasmic, SDS-Grade 1, Sigma), Zona Occludens-1 (ZO-1, Chemicon), polyclonal antibodies raised against the C-terminus of the human clusterin β chain (cluβ; RDI and Santa Cruz), and Caveolin-1 (cav-1; Santa Cruz). Horseradish peroxidase (HRP) conjugated antibodies were obtained from Jackson Immunoresearch Laboratories Inc and Alexa-488 labeled antibodies and Texas-red labeled phalloidin were purchased from Molecular Probes. All experiments were carried out with 75-80% confluent monolayers of BR1-JM01 cells in DMEM. Where indicated, cells were treated for 24 hr or 48 hr with TGF-β1 or purified clusterin at a final concentration of 100 μM or 200 μM, respectively.

RNA Isolation and Labeling

Monolayers of BR1-JM01 cells were grown in the absence or presence of TGF-β1 for 30 min, 1, 2, 4, 6, 12 or 24 hr. PolyA+ mRNA was extracted (4x150 mm dishes per time point) using the FastTrackTM 2.0 kit (Invitrogen) according to the manufacturer's instructions. RNA was isolated and labeled according to Schade et al., 2004.

Hybridization and Data Analysis

cDNA microarrays (15,264 sequence verified mouse ESTs; http://gsun.gen.mie.nih.gov/cDNA/15k.html) were obtained from the University Health Network Microarray Center in Toronto (http://www.microarrays.ca/). Slides were hybridized with Cy3 or Cy5 labeled cDNA as described (Enjalbert et al., 2003), scanned using a ScanArray 5000 (Perkin Elmer v.2.11) at a 10-micron resolution and 16-bit TIFF files were quantified using QuantiArray software (Perkin Elmer, v3.0). Microarray data normalization and analysis was performed as described (Enjalbert et al., 2003).

Northern Blot and Semi-Quantitative RT-PCR (SQ-RT-PCR) Analysis

For SQ-RT-PCR, 3-5 μg of total RNA was amplified in a 20 μl first-strand RT-PCR reaction using 50 U SuperScript II (Invitrogen) according to the manufacturer's guidelines with modifications. Samples were preincubated (2 min, 42°C) before adding SuperScript II and the RNaseOUT treatment was omitted. Samples were incubated (30 min, 42°C) and then cooled on ice. Two μl of first-strand reaction was added to the PCR mix (2.5 U Taq polymerase (New England Biolabs), 10 μM forward/reversed primers) in a final volume of 50 μl, which was heated (2 min, 94°C) prior to PCR amplification. Primers for the generation of the probes used for northern blot and SQ-RT-PCR are listed in Table 1.

Western Blot Analysis

BR1-JM01 cells grown in 35 mm dishes were treated with TGF-β1 (24 hr). Cells were lysed in hot 2% SDS. Fifty μg of total protein or 30 μl of conditioned medium was resolved by SDS-PAGE (10%) under reducing conditions. Proteins were transferred to nitrocellulose and membranes incubated with primary antibodies (cluβ, cav-1; 1/500) in TBS-T (20 mM Tris-HCl (pH 7.6), 137 mM NaCl, 0.1% Tween 20 (v/v)) containing 5% non-fat milk (overnight, 4°C). Membranes were washed with TBS-T, incubated with secondary HRP-conjugated antibody (1/20,000) in TBS-T+5% milk (1 hr), and washed with TBS-T. Immunoreactive bands were visualized using Enhanced Chemiluminescence (ECL; Perkin Elmer).

Immunofluorescence Microscopy

BR1-JM01 cells were seeded in glass chamber slides (Lab-Tek) and treated with purified clusterin or TGF-β1 preincubated (30 min) with or without cluβ antibody (8 μg/ml) or 1D11 (100 nM). Conditioned medium, obtained from non-treated and TGF-β1-treated BR1-JM01 cells (24 hr), was preincubated (30 min) with these antibodies prior to incubation with non-treated BR1-JM01 cells. After 24 hr of exposure, cells were fixed with 4% para-formaldehyde (10 min), rinsed twice (PBS), permeabilized (2 min, 0.2% Triton X-100 in PBS), rinsed again, and non-specific sites were blocked with 10% FBS in PBS (40 min). Para-formaldehyde fixed cells were then incubated (1 hr) with primary antibody (E-cad, 1/200; ZO-1, 1/100; cluβ, cav-1; 1/50) in PBS/10% FBS, were rinsed (4x in PBS) and finally were incubated with fluorescently conjugated secondary antibodies (Molecular Probes). Simultaneously, F-actin filaments were labeled with Texas-red labeled phalloidin (1/100) and nuclei were counterstained with 0.4 μg/ml 4,6-diamidino-2-phenylindole (DAPI; Sigma). Slides were rinsed (PBS) and mounted using Prolong anti-fade (Molecular Probes). Fluorescent images were captured using a Princeton Instrument Coolsnap CCD digital camera mounted on Leitz Aristoplan microscope and analyzed using Eclipse (Empix Imaging Inc.) and Photoshop (Adobe) software.

Cell Proliferation Assays

BR1-JM01 cells (2.5x10⁴ cells/well) were seeded in 24-well plates. The next day the medium was replenished and purified clusterin, TGF-β1, or TGF-β1 pre-incubated for 30 min with 1D11 antibody (100 nM) or cluβ antibody (8 μg/ml), was added to the cells. After 24 hr, cells were pulse-labeled with 0.5 μCi/ml [3H]thymidine (Amersham), rinsed (PBS, 4°C), trypsinized and [3H]thymidine incorporation was evaluated by liquid scintillation counting.

Cell Motility Assays

Cells (2x10⁴ cells/well) were seeded in ink-coated 12-well plates according to Al-Moustafa et al. (1999) in the absence or presence of TGF-β1, TGF-β1+cluβ, or purified clusterin. Images were captured after 24 hr using a Nikon Coolpix 995 digital camera mounted on Leitz Aristoplan microscope and particle-free tracks were quantified using ImageJ freeware (http://rsb.info.nih.gov/ij/).

Black Ink Motility Assay

Cells (2x10⁴ cells/well) were seeded in ink-coated 12-well plates according to Al-Moustafa et al. (1999) in the absence or presence of TGF-β1, TGF-β1+cluβ, or purified clusterin. Images were captured after 24 hr using a Nikon Coolpix 995 digital camera mounted on Leitz Aristoplan microscope and particle-free tracks were quantified using ImageJ freeware (http://rsb.info.nih.gov/ij/).
Wound Healing Motility Assay
[0067] Confluent cell monolayers (12-well plates) were “wounded” using a 2 μl pipet tip. The medium was then replenished, to remove cell debris, and the anti-clusterin mAbs were added (final concentration of 4 μg/mL) in the absence or presence of 100 μM TGF-β1. Images of the wound were captured prior to and after 24 hr of incubation using a Nikon Coolpix 995 digital camera mounted on a Leitz Aristoplan microscope.

Polyclonal Antibody Production
[0068] The peptide (aa. 421-437 of the clusterin protein) was produced and purified at the University of Calgary (http://peplab.myweb.med.ucalgary.ca/). An extra cysteine was added to the C-terminus of the peptide to facilitate oriented coupling on the surface of the CM-5 sensor chips that were used for screening of the rabbit antisera by surface plasmon resonance (SPR, Biacore™ 2000). The peptide was coupled to E. coli lysate hemocyanin (KLH, Inject Muri- culture KLH; Pierce) using either glutaraldehyde (Sigma) or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (Pierce) and dialyzed against PBS (overnight at 4°C). The peptide preparations that were conjugated by the two methods were mixed (1:1). Pre-immune serum was drawn from two female New Zealand white rabbits (10 ml), which were then injected with the KLH-coupled peptide preparation (1.25 μg peptide per 0.5 ml Freund’s Incomplete Adjuvant or PBS). Animals were boosted (1.25 μg peptide per 0.5 ml Freund’s Incomplete Adjuvant or PBS) every third week and serum was drawn (6 ml/kg) every 10 days after each boost until the antibody titer did not increase, at which point the animals were euthanized and exsanguinated.

[0069] Sera were tested for antibody activity using SPR. For this, the peptide was coupled to a CM-5 sensor chip (Biacore Inc.) using the Tiol coupling method (as described by the manufacturer) and dilutions (1/50) of the pre-immune sera, the antibody-containing sera and the commercially available anti-clusterin antibody (Santa Cruz) were run over the peptide surface.

Monoclonal Antibody Production
[0070] Four BALB/c mice were injected subcutaneously (s.c.) and intra-peritoneally (i.p.) with 35 μg of purified human clusterin emulsified in TiterMax adjuvant (Pierce). Animals were re-injected i.p. three weeks later and the serum titer was assessed 10 days later. Ten weeks later, responsive mice was boosted by i.p. injections (50 μg purified clusterin) and sacrificed three days later. Spleen cells harvested, fused with NSO myeloma cells and immediately plated (5×10⁴ cells/well in 96-well microplates; Costar) in Iscove’s medium supplemented with 20% FBS, 100 μM hypoxanthine, 0.4 μM aminopterin and 16 μM thymidine (HAT medium), murine IL-6 (1 ng/ml), penicillin (50 U/ml) and streptomycin (50 μg/ml). Supernatants (10-20 days post-fusion) were tested for anti-clusterin activity on immobilized purified clusterin by Enzyme-linked Immunosorbent Assay (ELISA). Antibody producing cells were cloned and restested twice for anti-clusterin activity. Thirteen anti-clusterin antibody producing clones were generated of which frozen stocks were prepared and a large-scale antibody production was initiated.

SPR-Based Biosensor (Biacore) Epitope Mapping

Approach 1:
[0071] Running buffer:
[0072] HBS (20 mM Hepes (pH 7.4), 150 mM NaCl, 3.4 mM EDTA, 0.005% Tween 20)
[0073] All experiments were run at 5 μL/min
[0074] Standard amine coupling of the anti mouse Fc immunoglobulin:
[0075] Inject 35 μL of a mixture of 0.05M NHS and 0.2M EDC
[0076] Inject antibodies diluted in 10 mM NaAc pH 5.0 at concentration of 30 μg/mL until an appropriate amount in captured
[0077] Inject 35 μL of 1M ethanolamine-HCl pH 8.5
[0078] Epitope mapping:
[0079] Inject 25 μL of mAb1 at a concentration of 25 or 50 μg/mL.
[0080] Inject 25 μL of a mixture of IgG1, IgG2α, IgG2b and IgG3 each one at a concentration of 25 μg/mL.
[0081] Inject 25 μL of human recombinant clusterin at a concentration of 30 μg/mL.
[0082] Inject 25 μL of mAb2 at a concentration of 25 or 50 μg/mL.
[0083] Control:
[0084] For each pair of antibodies, the non-specific binding of mab2 was determined by repeating all injections described in the epitope mapping section but injecting running buffer instead of clusterin.
[0085] The response (RU) obtained 20 sec after the end of the mab2 injection in the control was subtracted from the response obtained in the presence of clusterin.
[0086] Regeneration of the surface:
[0087] At the end of each cycle, inject 10 μL of 20 mM glycine pH11.7 followed with 10 μL of 100 mM HCl.

Approach 2:
[0088] Running buffer:
[0089] HBS (20 mM Hepes (pH 7.4), 150 mM NaCl, 3.4 mM EDTA, 0.005% Tween 20)
[0090] Standard amine coupling of the antibodies:
[0091] Inject 35 μL of a mixture of 0.05M NHS and 0.2M EDC
[0092] Inject antibodies diluted in 10 mM NaAc pH4.5 or 5.0 at concentration ranging from 20 to 80 μg/mL until an appropriate amount in captured
[0093] Inject 35 μL of 1M ethanolamine-HCl pH 8.5
[0094] Preparation of control surface
[0095] Inject 35 μL of a mixture of 0.05M NHS and 0.2M EDC
[0096] Inject 35 μL of 1M ethanolamine-HCl pH 8.5
[0097] Competition
[0098] Mix human recombinant clusterin at 50 nM with 250 nM or 500 nM antibodies in PBS (without Mg++ and Ca++)
[0099] Prepare a tube with antibody alone
[0100] Inject at a flow of 5 μL/min, 25 μL of clusterin alone, antibody alone or clusterin preincubated with antibodies over the antibody and the control surfaces.
[0101] Subtract the response obtained for the antibody alone solution from the response obtained for clusterin preincubated with the same antibody.
[0102] Calculate the % binding inhibition by dividing the response obtained for the clusterin preincubated with antibody by the response obtained for clusterin alone.
[0103] Regeneration solution
[0104] At the end of each cycle, inject 10 μL of 10 mM HCl at a flow rate of 20 μL/min
Immunoprecipitation

50 or 100 ng of the various monoclonal antibodies or the polyclonal antibody preparation (C18) was incubated with 204 of protein G slush (1:1 in PBS) overnight at 4°C. Then 500 ng of human recombinant clusterin was added and the mixture was incubated for another 2 hr at 4°C. Immunocomplexes were washed 3 times with 1 mL of buffer (150 mM NaCl, 50 mM Tris pH 8.0, 0.55% NP-40, 50 mM Na fluoride) and 20 μL of reducing sample buffer was added. Samples were boiled for 5 min prior to loading on a 12% SDS-PAGE. Separated proteins were then transferred to nitrocellulose and membranes were probed with anti-clusterin antibodies as described.

Sequencing of the Monoclonal Antibody Variable Region

Total RNA was isolated from the 12 hybridomas and first strand cDNA was prepared with reverse transcriptase and the Ig-3 constant region primer followed by amplification with the appropriate Ig-5 primer. These primer sets used in conjunction with KOD Hot Start DNA Polymerase specifically amplify the variable regions of light- and heavy-chain cDNAs. PCR products can be directly cloned with Novagen's pSTBlue-1 Perfectly Blunt™ Cloning Kit or treated with the Single dAT™ Tailing Kit and cloned into the pSTBlue-1 Acceptor™ Vector. For details see FIG. 13.

| Primer sets used for the validation of some of the 328 TGF-β modulated genes in the BRL-JM11 cells. |
|-------------------------------------|---------|-------|-------|-------|
| Gene Bank # Reverse Forward size (bp) |
| Ef5564381 TCCGCTTCACTGCGTCAGTTG GTCCAATTTGAGACAAAGAG 457 Clusterin |
| AU041878 TGGTGAAGGCCTTTGACTCTG AAAGCCTTTTAATTGAGATG 355 Integrin α6 |
| AW566992 AGTGCCATTGTTGCTTTGQA CAGCCGAAGCCCTTTGTG 517 Caveolin-1 |
| AU016590 GTGACGAGAGGGAGATCGT GCACCCATAGGATTCGCC 247 |
| Ftnl3 AW549343 CCTGCAATGTTCTTGTGGTTT GGCGAATCGATGGAGA 300 14-3-3σ |
| AA410123 GGCGCTTGCGCTACCTCCTGA AGRAGCCAGGCTCGAGTTG 297 |

Inclusion of a reference is neither an admission nor a suggestion that it is relevant to the patentability of anything disclosed herein

Li et al., Genome Inform. Ser. Workshop Genome Inform. 1999; 10: 30-
Lupas, Meth. in Enzym. 1996; 266: 513-525
Rost, Meth. in Enzym. 1996; 266: 525-539
Singh et al., Curr Opin Drug Discov Devel. 2004: 437-445
Al-Moustafa et al., Biotechniques. 1999: 60-62
Enjalbert et al., Mol Biol Cell. 2003: 1460-1467
Schade et al., Mol Blot Cell 2004: 5492-5502
Wilson and Easterbrooke-Smith, Biochim Biophys Acta 1992: 319-326

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 203
<210> SEQ ID NO 1
<211> LENGTH: 17
<212> TYPE: PRF
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
Val Glu Val Ser Arg Lys Asn Pro Lys Phe Met Glu Thr Val Ala Glu
1 5 10 15

Lys

Glu Thr Val Ala Glu Lys Ala Leu Gln Glu Tyr Arg
1 5 10

Glu Thr Val Ala Glu Lys
1 5

Leu Thr Gln Gly Glu Asp Gln Tyr Tyr Leu Arg Val Thr Thr Val Ala
1 5 10 15

Ser His Thr Ser Asp Ser Asp Val Pro Ser Gly Val Thr Glu Val
20 25 30

Val Lys Leu Phe Asp Ser Asp Pro Ile Thr Val Thr Val Pro Val Glu
35 40 46

Val Ser Arg Lys Asn Pro Lys Phe Met Glu Thr Val Ala Glu Lys Ala
50 55 60

Leu Gln Glu Tyr Arg Lys Lys His Arg Glu Glu
65 70 75

Leu Glu Val Ser Arg Lys Asn Pro Lys Phe Met Glu Thr Val Ala Glu
1 5 10 15

Lys Ala Leu Gln Glu Tyr Arg
<210> SEQ ID NO 6
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<220> FEATURE:
<221> NAME/KEY: MOD_RES
<222> LOCATION: (3)...(3)
<223> OTHER INFORMATION: Ser or Thr
<220> FEATURE:
<221> NAME/KEY: MOD_RES
<222> LOCATION: (6)...(6)
<223> OTHER INFORMATION: variable amino acid
<220> FEATURE:
<221> NAME/KEY: MOD_RES
<222> LOCATION: (8)...(8)
<223> OTHER INFORMATION: variable amino acid

<400> SEQUENCE: 6

Gly Tyr Xaa Phe Thr Xaa Tyr Xaa

1 5

<210> SEQ ID NO 7
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<220> FEATURE:
<221> NAME/KEY: MOD_RES
<222> LOCATION: (2)...(2)
<223> OTHER INFORMATION: Asn or Asp
<220> FEATURE:
<221> NAME/KEY: MOD_RES
<222> LOCATION: (3)...(3)
<223> OTHER INFORMATION: Pro or Thr
<220> FEATURE:
<221> NAME/KEY: MOD_RES
<222> LOCATION: (4)...(4)
<223> OTHER INFORMATION: Tyr or Glu
<220> FEATURE:
<221> NAME/KEY: MOD_RES
<222> LOCATION: (5)...(5)
<223> OTHER INFORMATION: variable amino acid
<220> FEATURE:
<221> NAME/KEY: MOD_RES
<222> LOCATION: (7)...(7)
<223> OTHER INFORMATION: variable amino acid
<220> FEATURE:
<221> NAME/KEY: MOD_RES
<222> LOCATION: (8)...(8)
<223> OTHER INFORMATION: Pro or Thr

<400> SEQUENCE: 7

Ile Xaa Xaa Xaa Xaa Gly Xaa Xaa

1 5

<210> SEQ ID NO 8
<211> LENGTH: 106
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct
<400> SEQUENCE: 8
Glu Asn Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15
Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Val Ser Tyr Met
20 25 30
His Trp Tyr Gln Gln Ser Ser Thr Ser Pro Lys Leu Trp Ile Tyr
35 40 45
Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Gly Arg Phe Ser Gly Ser
50 55 60
Gly Ser Gly Asn Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu
65 70 75 80
Asp Val Ala Thr Tyr Tyr Cys Phe Gln Gln Ser Gly Ser Gly Tyr Pro Phe Thr
85 90 95
Phe Gly Ser Gly Thr Lys Leu Glu Ile Lys
100 105

<210> SEQ ID NO 9
<211> LENGTH: 107
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 9
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Leu Gly
1 5 10 15
Gly Lys Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile Asn Lys Tyr
20 25 30
Ile Ala Trp Tyr Gin His Lys Pro Gly Lys Gly Pro Arg Leu Leu Ile
35 40 45
His Tyr Thr Ser Thr Leu Gln Pro Gly Ile Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Arg Tyr Ser Phe Ser Ile Ser Asn Leu Glu Pro
65 70 75 80
Glu Asp Ile Ala Thr Tyr Tyr Cys Leu Gin Tyr Asp Asn Leu Leu Arg
85 90 95
Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105

<210> SEQ ID NO 10
<211> LENGTH: 111
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 10
Asp Ile Val Leu Thr Leu Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15
Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Gin Ser Val Asn Ser Ser
20 25 30
Asp Tyr Ser Tyr Met His Trp Tyr Gin Gin Lys Pro Gly Gin Pro Pro
35 40 45
Lys Leu Leu Ile Lys Tyr Ala Ser Asn Leu Glu Ser Gly Val Pro Ala
50 55 60
Arg Phe Ser Gly Ser Gly Ser Gly Thr His Phe Thr Leu Asn Ile His
45 70 75 80
Pro Val Glu Glu Glu Asp Thr Ala Thr Tyr Cys Gln His Ser Trp
85 90 95
Glu Ile Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> SEQ ID NO 11
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 11
Asp Ile Val Met Ser Gln Ser Pro Ser Ser Leu Ala Val Ser Val Gly
1 5 10 15
Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Tyr Ser
20 25 30
Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Arg Pro Gly Gln
35 40 45
Ser Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60
Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80
Ile Ser Ser Val Lys Ala Glu Leu Ala Val Tyr Cys Gln Gln
85 90 95
Tyr Tyr Ile Tyr Pro Arg Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile
100 105 110
Lys

<210> SEQ ID NO 12
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 12
Asp Ile Val Met Ser Gln Ser Pro Ser Ser Leu Ala Val Ser Ala Gly
1 5 10 15
Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Asn Ser
20 25 30
Arg Thr Arg Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45
Ser Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60
Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80
Ile Ser Ser Val Gln Ala Glu Leu Ala Val Tyr Cys Gln Gln
85 90 95
Ser Tyr Asn Leu Thr Phe Gly Gly Gly Thr Lys Leu Glu Phe Lys
<210> SEQ ID NO 13
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 13

Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Pro Gly
1 5 10 15
Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser
20 25 30
Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45
Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80
Ser Arg Val Gln Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly
85 90 95
Ser His Val Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> SEQ ID NO 14
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 14

Asp Val Val Leu Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly
1 5 10 15
Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His Ser
20 25 30
Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45
Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80
Ser Arg Val Gln Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly
85 90 95
Thr His Ile Pro Arg Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> SEQ ID NO 15
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct
<400> SEQUENCE: 15
Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Met Ser Val Gly
 1 5 10 15
Gln Arg Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
 20 25 30
Asn Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45
Ser Pro Lys Leu Leu Val Tyr Phe Ala Ser Thr Arg Glu Ser Gly Val
 50 55 60
Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80
Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln
 85 90 95
His Tyr Asn Thr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
100 105 110
Lys

<210> SEQ ID NO 16
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE: OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 16
Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly
 1 5 10 15
Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser
 20 25 30
Asn Gly Asp Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser
 35 40 45
Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
 50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
 65 70 75 80
Ser Arg Val Gln Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser
 85 90 95
Thr His Val Pro Arg Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> SEQ ID NO 17
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE: OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 17
Asp Val Leu Leu Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly
 1 5 10 15
Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Ser
 20 25 30
Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser
-continued

<table>
<thead>
<tr>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>Thr His Val Pro Arg Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys</td>
<td>100</td>
<td>105</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 18
<211> LENGTH: 107
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 18
Asp Ile Val Met Thr Glu Ser Pro Pro Thr Leu Ser Val Thr Pro Gly | 1 | 5 | 10 | 15 |
Asp Arg Val Ser Leu Ser Cys Arg Ala Ser Glu Ser Ile Ser Asp Tyr | 20 | 25 | 30 |
Leu His Trp Tyr Glu Glu Lys Ser His Glu Ser Pro Arg Leu Leu Ile | 35 | 40 | 45 |
Lys Tyr Ala Ser Glu Ser Ile Ser Gly Ile Pro Ser Arg Phe Ser Gly | 50 | 55 | 60 |
Ser Gly Ser Gly Ser Asp Phe Thr Leu Ser Ile Asn Ser Val Glu Pro | 65 | 70 | 75 | 80 |
Glu Asp Val Gly Val Tyr Tyr Cys Glu Asn Gly His Ser Phe Pro Tyr | 85 | 90 | 95 |
Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys | 100 | 105 |

<210> SEQ ID NO 19
<211> LENGTH: 108
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 19
Glu Ile Val Leu Thr Gln Ser Pro Thr Thr Met Thr Ala Ser Pro Gly | 1 | 5 | 10 | 15 |
Glu Lys Ile Thr Ile Thr Cys Ser Ala Ser Ser Ser Ile Ser Ser Asn | 20 | 25 | 30 |
Phe Leu His Trp Tyr Glu Glu Lys Pro Gly Phe Ser Pro Lys Leu Leu | 35 | 40 | 45 |
Ile Tyr Arg Thr Ser Asn Leu Pro Ser Gly Val Pro Pro Arg Phe Ser | 50 | 55 | 60 |
Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Gly Thr Met Glu | 65 | 70 | 75 | 80 |
 Ala Glu Asp Val Ala Thr Tyr Cys Glu Glu Gly Ser Ser Leu Pro | 85 | 90 | 95 |
Arg Thr Phe Gly Ala Gly Thr Lys Leu Ala Leu Lys |
-continued

100 105

<210> SEQ ID NO 20
<211> LENGTH: 120
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 20

Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Glu Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Gly Tyr
20 25 30
Asn Met Asn Trp Val Lys Gln Asn Gly Lys Ser Leu Glu Trp Ile
35 40 45
Gly Asn Ile Asp Pro Tyr Tyr Gly Thr Pro Asn Tyr Asn Gln Lys Phe
50 55 60
Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80
Met Gln Leu Lys Ser Leu Thr Ser Gly Ser Ser Ala Val Tyr Tyr Cys
85 90 95
 Ala Leu Asn Ser Leu Leu Arg Leu Asn Ala Met Asp Tyr Trp Gly Gln
100 105 110
Gly Thr Ser Val Thr Val Ser Ser
115 120

<210> SEQ ID NO 21
<211> LENGTH: 118
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 21

Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Pro Gly Ala
1 5 10 15
Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr
20 25 30
Ser Met His Trp Val Lys Gln Asn Gly Leu Lys Trp Met
35 40 45
Gly Trp Ile Asn Thr Glu Thr Gly Glu Pro Thr Tyr Ala Asp Asp Phe
50 55 60
Lys Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Ser Thr Ala Tyr
65 70 75 80
Leu Gln Ile Asn Leu Lys Asn Gly Asp Thr Ala Thr Tyr Phe Cys
85 90 95
 Ala Arg Thr Gly Ser Ser Gly Tyr Phe Asp Cys Trp Gly Gln Gly Thr
100 105 110
Thr Leu Thr Val Ser Ser
115

<210> SEQ ID NO 22
<211> LENGTH: 118
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 22

Gln Ile Gln Leu Val Gin Ser Gly Pro glu Leu Lys Pro Gly Glu
1 5 10 15
Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asn Tyr
20 25 30
Gly Met His Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met
35 40 45
Gly Trp Ile Asn Thr Tyr Thr Gly Glu Pro Thr Tyr Ala Asp Asp Phe
50 55 60
Lys Gly Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Ser Thr Ala Tyr
65 70 75 80
Leu Gln Ile Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Cys
95 90 95
Ala Arg Asp Gly Phe Leu Tyr Phe Asp Tyr Trp Gly Gin Gly Thr
100 105 110
Thr Leu Thr Val Ser Ser
115

<210> SEQ ID NO 23
<211> LENGTH: 117
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 23

Glu Val Gln Leu Gln Gin Ser Gly Ala Gln Leu Val Lys Pro Gly Ala
1 5 10 15
Ser Val Arg Leu Ser Cys Thr Thr Ser Gly Phe Asn Ile Lys Asp Ile
20 25 30
Tyr Met His Trp Val Lys Gln Arg Pro Glu Gin Gly Leu Glu Trp Ile
35 40 45
Gly Arg Ile Asp Pro Ala Tyr Gly Asn Thr Lys Tyr Asp Pro Lys Phe
50 55 60
Gln Gly Lys Ala Thr Ile Thr Ala Asp Thr Ser Ser Asn Thr Ala Tyr
65 70 75 80
Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Cys
95 90 95
Ala Arg Arg Tyr Asp Thr Ala Met Asp Tyr Trp Gly Gin Gly Thr Ser
100 105 110
Val Thr Val Ser Ser
115

<210> SEQ ID NO 24
<211> LENGTH: 118
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct
<400> SEQUENCE: 24
Glu Val Gln Leu Gln Gln Ser Gly Pro Gln Leu Gln Leu Gly Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Gly Tyr
20 25 30
Asn Met Tyr Trp Val Lys Gln Ser His Arg Lys Ser Leu Gly Trp Ile
35 40 45
Gly Tyr Ile Asp Pro Tyr Asn Gly Asp Thr Ser Tyr Asn Gln Lys Ser
50 55 60
Lys Gly Lys Ala Thr Leu Thr Ala Asp Arg Ser Ser Ser Thr Ala Tyr
65 70 75 80
Met His Leu Asn Ser Leu Thr Ser Glu Asp Ser Gly Ile Tyr Tyr Cys
85 90 95
Ala Arg Gly Ala Tyr Gly Ser Ser Tyr Ala Tyr Trp Gly Gln Gly Thr
100 105 110
Leu Val Ala Val Ser Ala
115

<210> SEQ ID NO 25
<211> LENGTH: 122
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct
<400> SEQUENCE: 25
Glu Val Gln Leu Val Val Ser Gly Gly Gly Leu Val Val Leu Val Lys Pro Gly Gly
1 5 10 15
Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Ala Met Ser Trp Val Arg Gln Ser Pro Gln Lys Arg Leu Gly Trp Val
35 40 45
Ala Glu Ile Ser Ser Gly Gly Thr Thr Tyr Thr Tyr Tyr Pro Asp Thr Val
50 55 60
Thr Gly Arg Phe Thr Ile Ser Ser Asp Asn Ala Lys Asn Thr Leu Tyr
65 70 75 80
Leu Glu Met Ser Ser Leu Arg Ser Glu Asp Thr Ala Met Tyr Tyr Cys
95 90 95
Thr Arg Ile Tyr Asp Tyr Gly Ser Trp Asp Gly Phe Ala Tyr Trp
100 105 110
Gly Gln Gly Thr Leu Val Thr Val Ser Ala
115

<210> SEQ ID NO 26
<211> LENGTH: 120
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct
<400> SEQUENCE: 26
Gln Val Gln Leu Gln Gln Ser Gly Pro Gln Leu Val Arg Pro Gly Ala
1 5 10 15
-continued

| Ser Val Lys Ile Ser Cys Lys Ala Ser Asp Tyr Ser Phe Thr Thr Tyr |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| | | | | | | | | | |
| Trp Met His Trp Val Lys Gln Arg Pro Gly Gly Leu Glu Trp Ile |
| | | | | | | | | | |
| Gly Met Ile Asp Pro Ser Asp Ser Glu Thr Arg Leu Asn Gln Lys Phe |
| | | | | | | | | | |
| Lys Asp Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr |
| | | | | | | | | | |
| Met Gln Leu Ser Ser Pro Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys |
| | | | | | | | | | |
| Ser Arg Asp Gly Asn Tyr Arg Tyr Tyr Thr Leu Asp Phe Trp Gly Gln |
| | | | | | | | | | |
| Gly Thr Ser Val Thr Val Ser Ser |
| | | | | | | | | | |

<210> SEQ ID NO 27
<211> LENGTH: 119
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 27

Thr Cys Lys Leu Val Gln Ser Gly Gly Gly Leu Val Lys Pro Gly Gly 1
|5 |

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr |
|20 |

Ser Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val |
|35 |

Ala Thr Ile Ser Thr Ile Gly Ser Tyr Thr Asp Tyr Pro Asp Ser Val |
|50 |

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr |
|65 |

Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Met Tyr Cys Cys |
|85 |

Thr Arg Glu Asp Tyr Arg Tyr Ala Trp Phe Ala Tyr Trp Gly Gln Gly |
|100 |

Thr Leu Val Thr Val Ser Ala |
|115 |

<210> SEQ ID NO 28
<211> LENGTH: 120
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 28

Gln Val Gln Leu Gln Gln Ser Gly Pro Gln Leu Val Arg Pro Gly Ala 1
|5 |

Ser Val Lys Ile Ser Cys Lys Ala Ser Asp Tyr Ser Phe Thr Thr Tyr |
|20 |

Trp Met His Trp Val Lys Gln Arg Pro Gly Gly Leu Glu Trp Ile |
|35 |

|40 |

|45 |
-continued

Gly Met Ile Asp Pro Ser Asp Ser Glu Thr Arg Leu Asn Glu Lys Phe
50 55 60
Lys Asp Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr
45 70 75 80
Met Gln Leu Ser Ser Pro Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95
Ser Arg Asp Gly Asn Tyr Arg Ser Tyr Thr Met Asp Tyr Trp Gly Gln
100 105 110
Gly Thr Ser Val Thr Val Ser Ser
115 120

<210> SEQ ID NO 29
<211> LENGTH: 115
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 29

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly
1 5 10 15
Ser Leu Lys Phe Ser Cys Ala Ala Ser Gly Phe Thr Phe Ile Asn Tyr
20 25 30
Ala Met Ser Trp Val Arg Gln Ser Pro Glu Lys Arg Leu Glu Trp Ile
35 40 45
Ala Glu Ile Ser Ser Gly Gly Ser Asp Thr Tyr Tyr Pro Asp Thr Val
50 55 60
Thr Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Leu
65 70 75 80
Glu Met Ser Ser Leu Arg Ser Glu Asp Thr Ala Met Tyr Tyr Cys Ala
95 90 95
Arg Asp Gly Asn Trp Asp Gly Gly Ser Leu Thr Thr Gly Ala Lys Ala
100 105 110
Pro Leu Ser
115

<210> SEQ ID NO 30
<211> LENGTH: 118
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic protein construct

<400> SEQUENCE: 30

Gln Ile Gln Leu Val Glu Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu
1 5 10 15
Thr Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Leu Thr Asp Tyr
20 25 30
Ser Met His Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met
35 40 44
Gly Trp Ile Asn Thr Glu Thr Gly Glu Pro Thr Tyr Val Asp Asp Phe
50 55 60
Lys Arg Arg Phe Ala Phe Ser Leu Glu Thr Ser Ala Ser Ala Ala Tyr
65 70 75 80
-continued

Leu Gln Ile Asn Asn Leu Lys Asn Glu Asp Thr Ala Thr Tyr Phe Cys
85 90 95

Thr Arg Asp Gly Ser Ser Thr Trp Phe Ser Tyr Trp Gly Gln Gly Thr
100 105 110

Leu Val Thr Val Ser Ala
115

<210> SEQ ID NO 31
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<400> SEQUENCE: 31
ctggcttcaggctgcctcag

<210> SEQ ID NO 32
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<400> SEQUENCE: 32
tggcactggagcaaacac

<210> SEQ ID NO 33
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<400> SEQUENCE: 33
tggtgaacgctgtttgactctg

<210> SEQ ID NO 34
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<400> SEQUENCE: 34
aagcgcttctatggtcatt

<210> SEQ ID NO 35
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<400> SEQUENCE: 35
atggtgcattgttggtgcga
SEQ ID NO: 36
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

SEQUENCE: 36
gaagcggaga gaccttttgct

SEQ ID NO: 37
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

SEQUENCE: 37
gtgccagggag agagagaagggc

SEQ ID NO: 38
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

SEQUENCE: 38
gcaccacaag gagatggacc

SEQ ID NO: 39
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

SEQUENCE: 39
cctgcagagt gttggtcttt

SEQ ID NO: 40
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

SEQUENCE: 40
gggaaaaatcg atgtttagggc

SEQ ID NO: 41
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

SEQUENCE: 41
ggctgtgtagctatctcgt
<210> SEQ ID NO 42
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<400> SEQUENCE: 42
agagacgcag ctcagaggtg 20

<210> SEQ ID NO 43
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 43
Gly Tyr Ser Phe Thr Gly Tyr Asn 1 5

<210> SEQ ID NO 44
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 44
Gly Tyr Ser Phe Thr Gly Tyr Asn 1 5

<210> SEQ ID NO 45
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 45
Gly Tyr Thr Phe Thr Asn Gly 1 5

<210> SEQ ID NO 46
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 46
Gly Tyr Thr Phe Thr Asp Tyr Ser 1 5

<210> SEQ ID NO 47
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 47
Ile Asp Pro Tyr Asn Gly Asp Thr
1 5

<210> SEQ ID NO 48
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 48
Ile Asp Pro Tyr Tyr Gly Thr Pro
1 5

<210> SEQ ID NO 49
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 49
Ile Asn Thr Tyr Gly Thr Pro
1 5

<210> SEQ ID NO 50
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 50
Ile Asn Thr Gly Thr Gly Pro
1 5

<210> SEQ ID NO 51
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 51
Trp Gly Gln Gly Thr Leu Thr Val Ser Ser
1 5 10

<210> SEQ ID NO 52
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 52
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala
<210> SEQ ID NO 53
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 53

Glu Asn Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15

Glu Lys Val Thr Met Thr Cys Ser Ala Ser
20 25

<210> SEQ ID NO 54
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 54

Asp Ile Glu Met Thr Gln Ser Pro Ser Ser Leu Ala Ser Leu Gly
1 5 10 15

Gly Lys Val Thr Ile Thr Cys Lys Ala Ser
20 25

<210> SEQ ID NO 55
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 55

Asp Ile Val Leu Thr Leu Ser Pro Ala Ala Val Ser Leu Gly
1 5 10 15

Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser
20 25

<210> SEQ ID NO 56
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 56

Asp Ile Val Met Ser Gln Ser Pro Ser Ser Leu Ala Val Ser Ala Gly
1 5 10 15

Glu Lys Val Thr Met Ser Cys Lys Ser Ser
20 25

<210> SEQ ID NO 57
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
-continued

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 57

Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Pro Gly
1 5 10 15
Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser
20 25

<210> SEQ ID NO 58
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 58

Asp Val Val Leu Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly
1 5 10 15
Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser
20 25

<210> SEQ ID NO 59
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 59

Gln Arg Val Thr Met Ser Gln Ser Pro Ser Ser Leu Ala Met Ser Val Gly
1 5 10 15
Gln Arg Val Thr Met Ser Cys Lys Ser Ser
20 25

<210> SEQ ID NO 60
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 60

Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly
1 5 10 15
Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser
20 25

<210> SEQ ID NO 61
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 61

Ser Ser Val Ser Tyr
1 5
<210> SEQ ID NO 62
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 62
Gln Asp Ile Asn Lys Tyr
 1 5

<210> SEQ ID NO 63
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 63
Gln Ser Val Asn Ser Asn Tyr Ser Tyr
 1 5 10

<210> SEQ ID NO 64
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 64
Gln Ser Leu Tyr Ser Ser Asn Gln Lys Asn Tyr
 1 5 10

<210> SEQ ID NO 65
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 65
Gln Ser Leu Leu Tyr Ser Ser Asn Gln Lys Asn Tyr
 1 5 10

<210> SEQ ID NO 66
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 66
Gln Ser Ile Val His Ser Asn Gly Asn Thr Tyr
 1 5 10

<210> SEQ ID NO 67
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

SEQ ID NO 67
LENGTH: 12
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:

SEQ ID NO 68
LENGTH: 11
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:

SEQ ID NO 69
LENGTH: 26
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:

SEQ ID NO 70
LENGTH: 26
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:

SEQ ID NO 71
LENGTH: 26
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:

SEQ ID NO 72
LENGTH: 26
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 72

Glu Ile Val Leu Thr Gln Ser Pro Thr Thr Met Thr Ala Ser Pro Gly
1 5 10 15

Glu Lys Ile Thr Ile Thr Cys Ser Ala Ser
20 25

<210> SEQ ID NO 73
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 73

Gln Ser Leu Val His Ser Asn Gly Asn Thr Tyr
1 5 10

<210> SEQ ID NO 74
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 74

Gln Ser Ile Ser Asp Tyr
1 5

<210> SEQ ID NO 75
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 75

Ser Ser Ile Ser Ser Asn Phe
1 5

<210> SEQ ID NO 76
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 76

Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Glu Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Ile Ser Cys Lys Ala Ser
20 25

<210> SEQ ID NO 77
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 77
Gln Ile Gln Leu Val Val Ser Gly Pro Glu Leu Lys Pro Gly Glu
1 5 10 15
Thr Val Lys Ile Ser Cys Lys Ala Ser
20 25

<210> SEQ ID NO 78
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 78
Gln Ile Gln Leu Val Val Ser Gly Pro Glu Leu Lys Pro Gly Glu
1 5 10 15
Thr Val Lys Ile Ser Cys Lys Ala Ser
20 25

<210> SEQ ID NO 79
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 79
Glu Val Glu Val Gln Ser Gly Ala Glu Val Leu Lys Pro Gly Ala
1 5 10 15
Ser Val Arg Leu Ser Cys Thr Thr Ser
20 25

<210> SEQ ID NO 80
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 80
Glu Val Glu Val Gln Ser Gly Ala Glu Val Leu Lys Pro Gly Ala
1 5 10 15
Ser Val Lys Ile Ser Cys Lys Ala Ser
20 25

<210> SEQ ID NO 81
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 81
Glu Val Glu Val Val Ser Gly Gly Leu Val Lys Pro Gly Glu
1 5 10 15
-continued

Ser Leu Lys Leu Ser Cys Ala Ala Ser
20 25

<210> SEQ ID NO 82
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 82
Gln Val Gln Leu Gln Gln Ser Gly Pro Gln Leu Val Arg Pro Gly Ala
1 5 10 15
Ser Val Lys Ile Ser Cys Lys Ala Ser
20 25

<210> SEQ ID NO 83
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 83
Thr Cys Lys Leu Val Glu Ser Gly Gly Leu Val Lys Pro Gly Gly
1 5 10 15
Ser Leu Lys Leu Ser Cys Ala Ala Ser
20 25

<210> SEQ ID NO 84
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 84
Gln Val Gln Leu Gln Gln Ser Gly Pro Gln Leu Val Arg Pro Gly Ala
1 5 10 15
Ser Val Lys Ile Ser Cys Lys Ala Ser
20 25

<210> SEQ ID NO 85
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 85
Gly Tyr Ser Phe Thr Gly Tyr Asn
1 5

<210> SEQ ID NO 86
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
Gly Tyr Thr Phe Thr Asp Tyr Ser

Gly Tyr Thr Phe Thr Asn Tyr Gly

Gly Phe Asn Ile Lys Asp Ile Tyr

Gly Tyr Ser Phe Thr Gly Tyr Asn

Gly Phe Thr Phe Ser Ser Tyr Ala

Asp Tyr Ser Phe Thr Thr Tyr Trp
<210> SEQ ID NO 92
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 92
Gly Phe Thr Phe Ser Ser Tyr Ser
1 5

<210> SEQ ID NO 93
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 93
Asp Tyr Ser Phe Thr Thr Tyr Trp
1 5

<210> SEQ ID NO 94
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 94
Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Lys Pro Gly Gly Ser Leu Lys Phe Ser Cys Ala Ala Ser
1 5 10 15 20 25

<210> SEQ ID NO 95
<211> LENGTH: 25
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 95
Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Leu Lys Lys Pro Gly Glu Thr Val Lys Ile Ser Cys Lys Ala Ser
1 5 10 15 20 25

<210> SEQ ID NO 96
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 96
Gly Phe Thr Phe Ile Asn Tyr Ala
1 5
"<210> SEQ ID NO 97
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 97

Gly Tyr Thr Leu Thr Asp Tyr Ser
1 5

"<210> SEQ ID NO 98
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 98

Met His Trp Tyr Gln Gln Lys Ser Ser Thr Ser Pro Lys Leu Trp Ile
1 5 10 15

Tyr

"<210> SEQ ID NO 99
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 99

Ile Ala Trp Tyr Gln His Lys Pro Gly Lys Gly Pro Arg Leu Leu Ile
1 5 10 15

His

"<210> SEQ ID NO 100
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 100

Met His Trp Tyr Gln Gln Lys Pro Gly Gin Pro Pro Lys Leu Leu Ile
1 5 10 15

Lys

"<210> SEQ ID NO 101
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 101

Leu Ala Trp Tyr Gln Gln Arg Pro Gly Gin Ser Pro Lys Leu Leu Ile
1 5 10 15
-continued

Tyr

<210> SEQ ID NO 102
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 102

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile
1 5 10 15

Tyr

<210> SEQ ID NO 103
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 103

Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile
1 5 10 15

Tyr

<210> SEQ ID NO 104
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 104

Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile
1 5 10 15

Tyr

<210> SEQ ID NO 105
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 105

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Val
1 5 10 15

Tyr

<210> SEQ ID NO 106
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
-continued

<400> SEQUENCE: 106
Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile
1 5 10 15

Tyr

<210> SEQ ID NO 107
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 107
Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile
1 5 10 15

Tyr

<210> SEQ ID NO 108
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 108
Leu His Trp Tyr Gln Gln Lys Ser His Glu Ser Pro Arg Leu Leu Ile
1 5 10 15

Lys

<210> SEQ ID NO 109
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 109
Leu His Trp Tyr Gln Gln Lys Pro Gly Phe Ser Pro Lys Leu Leu Ile
1 5 10 15

Tyr

<210> SEQ ID NO 110
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 110
Met Asn Trp Val Lys Gln Asn Asn Gly Lys Ser Leu Glu Trp Ile Gly
1 5 10 15

Asn

<210> SEQ ID NO 111
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 111
Met His Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met Gly
1 5 10 15
Trp

<210> SEQ ID NO 112
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 112
Met His Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met Gly
1 5 10 15
Trp

<210> SEQ ID NO 113
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 113
Met His Trp Val Lys Gln Arg Pro Glu Gin Gly Leu Glu Trp Ile Gly
1 5 10 15
Arg

<210> SEQ ID NO 114
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 114
Met Tyr Trp Val Lys Gln Ser His Arg Lys Ser Leu Glu Trp Ile Gly
1 5 10 15
Tyr

<210> SEQ ID NO 115
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 115
Met Ser Trp Val Arg Gin Gin Gin Pro Glu Lys Arg Leu Glu Trp Val Ala
1 5 10 15
Glu
Continued

<210> SEQ ID NO 116
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 116
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
1 5 10 15

Met

<210> SEQ ID NO 117
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 117
Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val Ala
1 5 10 15
Thr

<210> SEQ ID NO 118
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 118
Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
1 5 10 15
Met

<210> SEQ ID NO 119
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 119
Ile Asp Pro Tyr Tyr Gly Thr Pro
1 5

<210> SEQ ID NO 120
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 120
Ile Asn Thr Glu Thr Gly Glu Pro
1 5
<210> SEQ ID NO 121
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 121
Ile Asn Thr Tyr Thr Gly Glu Pro
1 5

<210> SEQ ID NO 122
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 122
Ile Asp Pro Ala Tyr Gly Asn Thr
1 5

<210> SEQ ID NO 123
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 123
Ile Asp Pro Tyr Asn Gly Asp Thr
1 5

<210> SEQ ID NO 124
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 124
Ile Ser Ser Gly Tyr Thr
1 5

<210> SEQ ID NO 125
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 125
Ile Asp Pro Ser Asp Ser Glu Thr
1 5

<210> SEQ ID NO 126
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
peptide

<400> SEQUENCE: 126
Ile Ser Thr Ile Gly Ser Tyr Thr
1 5

<210> SEQ ID NO 127
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 127
Ile Asp Pro Ser Asp Ser Glu Thr
1 5

<210> SEQ ID NO 128
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 128
Met Ser Trp Val Arg Gln Ser Pro Glu Lys Arg Leu Glu Trp Ile Ala
1 5 10 15
Glu

<210> SEQ ID NO 129
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 129
Met His Trp Val Lys Gln Ala Pro Gly Lys Gly Leu Lys Trp Met Gly
1 5 10 15
Trp

<210> SEQ ID NO 130
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 130
Ile Ser Ser Gly Gly Ser Asp Thr
1 5

<210> SEQ ID NO 131
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
-continued

<400> SEQUENCE: 131

Ile Asn Thr Glu Thr Gly Glu Pro
1 5

<210> SEQ ID NO 132
<211> LENGTH: 36
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 132

Lys Leu Ala Ser Gly Val Pro Gly Arg Phe Ser Gly Ser Gly Ser Gly
1 5 10 15
Asn Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Val Ala
20 25 30
Thr Tyr Tyr Cys
35

<210> SEQ ID NO 133
<211> LENGTH: 36
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 133

Thr Leu Gln Pro Gly Ile Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly
1 5 10 15
Arg Asp Tyr Ser Phe Ser Ile Ser Asn Leu Glu Pro Glu Asp Ile Ala
20 25 30
Thr Tyr Tyr Cys
35

<210> SEQ ID NO 134
<211> LENGTH: 36
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 134

Asn Leu Glu Ser Gly Val Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly
1 5 10 15
Thr His Phe Thr Leu Asn Ile His Pro Val Glu Glu Glu Asp Thr Ala
20 25 30
Thr Tyr Tyr Cys
35

<210> SEQ ID NO 135
<211> LENGTH: 36
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
-continued

<400> SEQUENCE: 135
Thr Arg Glu Ser Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly

1 5 10 15
Thr Asp Phe Thr Leu Thr Ile Ser Val Lys Ala Glu Asp Leu Ala
20 25 30
Val Tyr Tyr Cys
35

<410> SEQ ID NO 136
<411> LENGTH: 36
<412> TYPE: PRT
<413> ORGANISM: Artificial Sequence
<420> FEATURE:
<423> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 136
Thr Arg Glu Ser Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly

1 5 10 15
Thr Asp Phe Thr Leu Thr Ile Ser Val Lys Ala Glu Asp Leu Ala
20 25 30
Val Tyr Tyr Cys
35

<410> SEQ ID NO 137
<411> LENGTH: 36
<412> TYPE: PRT
<413> ORGANISM: Artificial Sequence
<420> FEATURE:
<423> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 137
Asn Arg Phe Ser Gly Val Pro Asp Arg Gly Ser Gly Ser Gly

1 5 10 15
Thr Asp Phe Thr Leu Lys Ile Ser Val Glu Ala Glu Asp Leu Gly
20 25 30
Val Tyr Tyr Cys
35

<410> SEQ ID NO 138
<411> LENGTH: 36
<412> TYPE: PRT
<413> ORGANISM: Artificial Sequence
<420> FEATURE:
<423> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 138
Asn Arg Phe Ser Gly Val Pro Asp Arg Gly Ser Gly Ser Gly

1 5 10 15
Thr Asp Phe Thr Leu Lys Ile Ser Val Glu Ala Glu Asp Leu Gly
20 25 30
Val Tyr Tyr Cys
35

<410> SEQ ID NO 139
<411> LENGTH: 36
<412> TYPE: PRT
<413> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 139

Thr Arg Glu Ser Gly Val Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly
1 5 10 15
Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Glu Ala Glu Asp Leu Ala
20 25 30

Asp Tyr Phe Cys
35

<210> SEQ ID NO 140
<211> LENGTH: 36
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 140

Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly
1 5 10 15
Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Leu Gly
20 25 30

Val Tyr Phe Cys
35

<210> SEQ ID NO 141
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 141

Phe Glu Gly Ser Gly Tyr Pro Phe Thr
1 5

<210> SEQ ID NO 142
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 142

Leu Glu Tyr Asp Asn Leu Leu Arg Thr
1 5

<210> SEQ ID NO 143
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 143

Gln His Ser Trp Glu Ile Pro Trp Thr
1 5
<210> SEQ ID NO 144
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 144
Gln Gln Tyr Tyr Ile Tyr Pro Arg Thr
 1 5

<210> SEQ ID NO 145
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 145
Lys Gln Ser Tyr Asn Leu Trp Thr
 1 5

<210> SEQ ID NO 146
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 146
Phe Gln Gly Ser His Val Pro Tyr Thr
 1 5

<210> SEQ ID NO 147
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 147
Ser Gln Ser Thr His Ile Pro Arg Thr
 1 5

<210> SEQ ID NO 148
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 148
Gln Gln His Tyr Asn Thr Pro Leu Thr
 1 5
FEATURE: OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

SEQUENCE: 149

Ser Gln Ser Thr His Val Pro Arg Thr
1 5

SEQ ID NO 150
LENGTH: 36
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
SEQUENCE: 150

Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly
1 5 10 15
Thr Asp Phe Thr Leu Asn Ile Ser Arg Val Glu Ala Glu Asp Leu Gly
20 25 30
Val Tyr Phe Cys
35

SEQ ID NO 151
LENGTH: 36
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
SEQUENCE: 151

Gln Ser Ile Ser Gly Ile Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Ser Gly
1 5 10 15
Ser Asp Phe Thr Leu Ser Ile Asn Ser Val Glu Pro Glu Asp Val Gly
20 25 30
Val Tyr Tyr Cys
35

SEQ ID NO 152
LENGTH: 36
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
SEQUENCE: 152

Asn Leu Pro Ser Gly Val Pro Pro Arg Phe Ser Gly Ser Gly Ser Gly Ser Gly
1 5 10 15
Thr Ser Tyr Ser Leu Thr Ile Gly Thr Met Glu Ala Glu Asp Val Ala
20 25 30
Thr Tyr Tyr Cys
35

SEQ ID NO 153
LENGTH: 9
TYPE: PRT
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
peptide

<400> SEQUENCE: 153

Ser Gln Ser Thr His Val Pro Arg Thr
1 5

<210> SEQ ID NO 154
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 154

Gln Asn Gly His Ser Phe Pro Tyr Thr
1 5

<210> SEQ ID NO 155
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 155

Gln Gln Gly Ser Ser Leu Pro Arg Thr
1 5

<210> SEQ ID NO 156
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 156

Asn Tyr Asn Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Lys
1 5 10 15
Ser Ser Ser Thr Ala Tyr Met Gln Leu Lys Ser Leu Thr Ser Glu Asp
20 25 30
Ser Ala Val Tyr Tyr Cys
35

<210> SEQ ID NO 157
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 157

Thr Tyr Ala Asp Asp Phe Lys Gly Arg Phe Ala Phe Ser Leu Glu Thr
1 5 10 15
Ser Ala Ser Thr Ala Tyr Leu Gln Ile Asn Asn Leu Lys Asn Glu Asp
20 25 30
Thr Ala Thr Tyr Tyr Cys
35
<210> SEQ ID NO 158
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 158

<table>
<thead>
<tr>
<th>Thr</th>
<th>Tyr</th>
<th>Ala</th>
<th>Asp</th>
<th>Asp</th>
<th>Phe</th>
<th>Lys</th>
<th>Gly</th>
<th>Arg</th>
<th>Phe</th>
<th>Ala</th>
<th>Phe</th>
<th>Ser</th>
<th>Leu</th>
<th>Glu</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>Ser</td>
<td>Thr</td>
<td>Ala</td>
<td>Tyr</td>
<td>Leu</td>
<td>Gln</td>
<td>Ile</td>
<td>Asn</td>
<td>Asn</td>
<td>Leu</td>
<td>Lys</td>
<td>Asn</td>
<td>Glu</td>
<td>Asp</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Ala</td>
<td>Thr</td>
<td>Tyr</td>
<td>Phe</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 159
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 159

<table>
<thead>
<tr>
<th>Lys</th>
<th>Tyr</th>
<th>Asp</th>
<th>Pro</th>
<th>Lys</th>
<th>Phe</th>
<th>Gln</th>
<th>Gly</th>
<th>Lys</th>
<th>Ala</th>
<th>Thr</th>
<th>Ile</th>
<th>Thr</th>
<th>Ala</th>
<th>Asp</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>Thr</td>
<td>Ala</td>
<td>Tyr</td>
<td>Leu</td>
<td>Gln</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
<td>Ser</td>
<td>Glu</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Ala</td>
<td>Val</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 160
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 160

<table>
<thead>
<tr>
<th>Ser</th>
<th>Tyr</th>
<th>Asn</th>
<th>Gln</th>
<th>Lys</th>
<th>Ser</th>
<th>Lys</th>
<th>Gly</th>
<th>Lys</th>
<th>Ala</th>
<th>Thr</th>
<th>Leu</th>
<th>Thr</th>
<th>Ala</th>
<th>Asp</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td>Thr</td>
<td>Ala</td>
<td>Tyr</td>
<td>Met</td>
<td>His</td>
<td>Leu</td>
<td>Asn</td>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
<td>Ser</td>
<td>Glu</td>
<td>Asp</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Ile</td>
<td>Tyr</td>
<td>Tyr</td>
<td>Cys</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 161
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 161

<table>
<thead>
<tr>
<th>Tyr</th>
<th>Tyr</th>
<th>Pro</th>
<th>Asp</th>
<th>Thr</th>
<th>Val</th>
<th>Thr</th>
<th>Gly</th>
<th>Arg</th>
<th>Phe</th>
<th>Thr</th>
<th>Ile</th>
<th>Ser</th>
<th>Arg</th>
<th>Asp</th>
<th>Ann</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Lys</td>
<td>Ann</td>
<td>Thr</td>
<td>Leu</td>
<td>Tyr</td>
<td>Leu</td>
<td>Met</td>
<td>Ser</td>
<td>Ser</td>
<td>Leu</td>
<td>Arg</td>
<td>Ser</td>
<td>Glu</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Thr Ala Met Tyr Tyr Cys
35

<210> SEQ ID NO 162
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 162

Arg Leu Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Val Asp Lys
1 5 10 15
Ser Ser Ser Thr Ala Tyr Met Glu Leu Ser Ser Pro Thr Ser Glu Asp
20 25 30
Ser Ala Val Tyr Tyr Cys
35

<210> SEQ ID NO 163
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 163

Asp Tyr Pro Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn
1 5 10 15
Ala Lys Asn Thr Leu Tyr Leu Glu Met Ser Ser Leu Lys Ser Glu Asp
20 25 30
Thr Ala Met Tyr Tyr Cys
35

<210> SEQ ID NO 164
<211> LENGTH: 38
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 164

Arg Leu Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Val Asp Lys
1 5 10 15
Ser Ser Ser Thr Ala Tyr Met Glu Leu Ser Ser Pro Thr Ser Glu Asp
20 25 30
Ser Ala Val Tyr Tyr Cys
35

<210> SEQ ID NO 165
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 165

Ala Leu Asn Ser Leu Leu Arg Leu Asn Ala Met Asp Tyr
1 5 10
<210> SEQ ID NO 166
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 166

Ala Arg Thr Gly Ser Ser Gly Tyr Phe Asp Cys
1 5 10

<210> SEQ ID NO 167
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 167

Ala Arg Asp Gly Phe Leu Tyr Phe Phe Asp Tyr
1 5 10

<210> SEQ ID NO 168
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 168

Ala Arg Arg Tyr Asp Thr Ala Met Asp Tyr
1 5 10

<210> SEQ ID NO 169
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 169

Ala Arg Gly Ala Tyr Gly Ser Ser Tyr Ala Tyr
1 5 10

<210> SEQ ID NO 170
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide
<400> SEQUENCE: 170

Thr Arg Ile Tyr Asp Tyr Gly Ser Trp Asp Gly Phe Ala Tyr
1 5 10 15

<210> SEQ ID NO 171
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

SEQUENCE:

Ser Arg Asp Gly Asn Tyr Arg Tyr Tyr Thr Leu Asp Phe

Thr Arg Glu Asp Tyr Arg Tyr Ala Trp Phe Ala Tyr

Ser Arg Asp Gly Asn Tyr Arg Tyr Thr Leu Asp Tyr

Tyr Tyr Pro Asp Thr Val Thr Gly Phe Thr Ile Ser Arg Asn

Ala Lys Asn Thr Leu Leu Glu Met Ser Ser Leu Arg Ser Glu Asp Thr

Ala Met Tyr Tyr Cys

Thr Tyr Val Asp Phe Lys Arg Arg Phe Ala Phe Ser Leu Glu Thr

Ser Ala Ser Ala Tyr Leu Gln Ile Asn Asn Leu Lys Asn Glu Asp

Thr Ala Thr Tyr Phe Cys
Ala Arg Asp Gly Asn Trp Asp Gly Gly Ser Leu Thr
1 5 10

Thr Arg Asp Gly Ser Ser Thr Trp Phe Ser Tyr
1 5 10

Gly Ser Gly Thr Lys Leu Glu Ile Lys
1 5

Phe Gly Gly Thr Lys Leu Glu Ile Lys
1 5 10

Phe Gly Gly Thr Lys Leu Glu Ile Lys
1 5 10
<220> FEATURES:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 181

Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
1 5 10

<210> SEQ ID NO 182
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 182

Phe Gly Gly Thr Lys Leu Glu Phe Lys
1 5 10

<210> SEQ ID NO 183
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 183

Phe Gly Gly Thr Lys Leu Glu Ile Lys
1 5 10

<210> SEQ ID NO 184
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 184

Phe Gly Gly Thr Lys Leu Glu Ile Lys
1 5 10

<210> SEQ ID NO 185
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 185

Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
1 5 10
-continued

<210> SEQ ID NO 186
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 186

Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
1 5 10

<210> SEQ ID NO 187
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 187

Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
1 5 10

<210> SEQ ID NO 188
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 188

Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
1 5 10

<210> SEQ ID NO 189
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 189

Phe Gly Ala Gly Thr Lys Leu Ala Leu Lys
1 5 10

<210> SEQ ID NO 190
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 190

Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser
1 5 10

<210> SEQ ID NO 191
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 191

Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser
1 5 10
Trp Gly Gln Gly Thr Leu Thr Val Ser Ser
1 5 10

Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser
1 5 10

Trp Gly Gln Gly Thr Leu Val Ala Val Ser Ala
1 5 10

Trp Gly Gln Gly Thr Leu Val Ala Val Ser Ala
1 5 10

Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser
1 5 10

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala
1 5 10

Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser
1 5 10
peptide

<400> SEQUENCE: 197

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala
1 5 10

<210> SEQ ID NO 198
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 198

Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser
1 5 10

<210> SEQ ID NO 199
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 199

Gly Ala Lys Ala Pro Leu Ser Gln Ser Pro Gln
1 5 10

<210> SEQ ID NO 200
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 200

Leu Trp Thr Thr Gly Val Lys Glu Pro Gln Ser Ser Pro Gln
1 5 10 15

<210> SEQ ID NO 201
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 201

Leu Leu Gly Pro Arg Asp Ser Gly Arg Cys Leu Cys
1 5 10

<210> SEQ ID NO 202
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic peptide

<400> SEQUENCE: 202

Ile Leu Trp Thr Thr Gly Val Lys Glu Pro Gln Ser Ser Pro Gln
1 5 10 15
1-30. (canceled)

31. A monoclonal antibody or antigen binding fragment capable of specific binding to a β-subunit of human clusterin, wherein said monoclonal antibody binds to an epitope including amino acids 421-443 of the β-subunit of human clusterin more efficiently than a second monoclonal antibody raised against a synthetic peptide including or comprised within said epitope.

32. The monoclonal antibody or antigen binding fragment of claim 31, wherein said monoclonal antibody does not bind significantly to a synthetic peptide including or comprised within said epitope.

33. The monoclonal antibody or antigen binding fragment of claim 31, wherein the monoclonal antibody inhibits migration of cells in an ink clearance assay better than the second antibody.

34. The monoclonal antibody or antigen binding fragment of claim 31, wherein the monoclonal antibody or antigen binding fragment is capable of inhibiting epithelial-to-mesenchymal transitions in carcinoma cells.

35. A monoclonal antibody or an antigen binding fragment capable of specific binding to a β-subunit of human clusterin, wherein said monoclonal antibody binds to an epitope including amino acids 421-443 of the β-subunit of human clusterin and comprises a) a light chain variable region; and b) a heavy chain variable region comprising a CDR1 as set forth in SEQ ID NO.:6 and a CDR2 as set forth in SEQ ID NO.:7.

36. The monoclonal antibody or antigen binding fragment of claim 35, wherein the antibody or antigen binding fragment comprises a light chain variable region having complementary determining regions identical to those of SEQ ID NO.:8 and a heavy chain variable having a CDR1 as set forth in SEQ ID NO.:6, a CDR2 as set forth in SEQ ID NO.:7 and a CDR3 as set forth in SEQ ID NO.:165.

37. The monoclonal antibody or antigen binding fragment of claim 36, wherein the CDR1 is as set forth in SEQ ID NO.:85.

38. The monoclonal antibody or antigen binding fragment of claim 36, wherein the CDR2 is as set forth in SEQ ID NO.:119.

39. The monoclonal antibody or antigen binding fragment of claim 35, wherein the antibody or antigen binding fragment comprises a light chain variable region having complementary determining regions identical to those of SEQ ID NO.:10 and a heavy chain variable having a CDR1 as set forth in SEQ ID NO.:6, a CDR2 as set forth in SEQ ID NO.:7 and a CDR3 as set forth in SEQ ID NO.:166.

40. The monoclonal antibody or antigen binding fragment of claim 39, wherein the CDR1 is as set forth in SEQ ID NO.:86.

41. The monoclonal antibody or antigen binding fragment of claim 39, wherein the CDR2 is as set forth in SEQ ID NO.:120.

42. The monoclonal antibody or antigen binding fragment of claim 35, wherein the antibody or antigen binding fragment comprises a light chain variable region having complementary determining regions identical to those of SEQ ID NO.:11 and a heavy chain variable having a CDR1 as set forth in SEQ ID NO.:6, a CDR2 as set forth in SEQ ID NO.:7 and a CDR3 as set forth in SEQ ID NO.:167.

43. The monoclonal antibody or antigen binding fragment of claim 42, wherein the CDR1 is as set forth in SEQ ID NO.:87.

44. The monoclonal antibody or antigen binding fragment of claim 42, wherein the CDR2 is as set forth in SEQ ID NO.:121.

45. A conjugate comprising a) an antibody or antigen binding fragment capable of specific binding to a β-subunit of human clusterin, wherein said monoclonal antibody binds to an epitope including amino acids 421-443 of the β-subunit of human clusterin and b) an agent having anti-tumor activity or a contrast agent.

46. The conjugate of claim 45, wherein the agent having anti-tumor activity is a toxin.

47. A pharmaceutical composition comprising the antibody or antigen binding fragment of claim 31.

48. A pharmaceutical composition comprising the antibody or antigen binding fragment of claim 35.

49. A pharmaceutical composition comprising the conjugate of claim 45.

50. The pharmaceutical composition, wherein the agent having anti-tumor activity is a toxin.

* * * *