

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2003/0101559 A1 Silverbrook

Jun. 5, 2003 (43) Pub. Date:

(54) CUSTOM GARMENT DESIGN AND FABRIC PRINTING SYSTEM

(76) Inventor: **Kia Silverbrook**, Balmain (AU)

Correspondence Address: SILVERBROOK RESEARCH PTY LTD 393 DARLING STREET **BALMAIN 2041 (AU)**

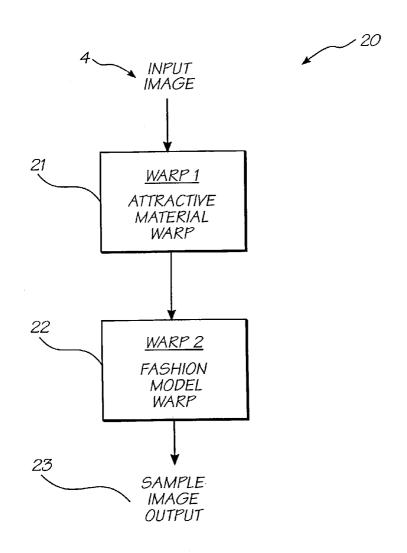
(21) Appl. No.: 10/326,308

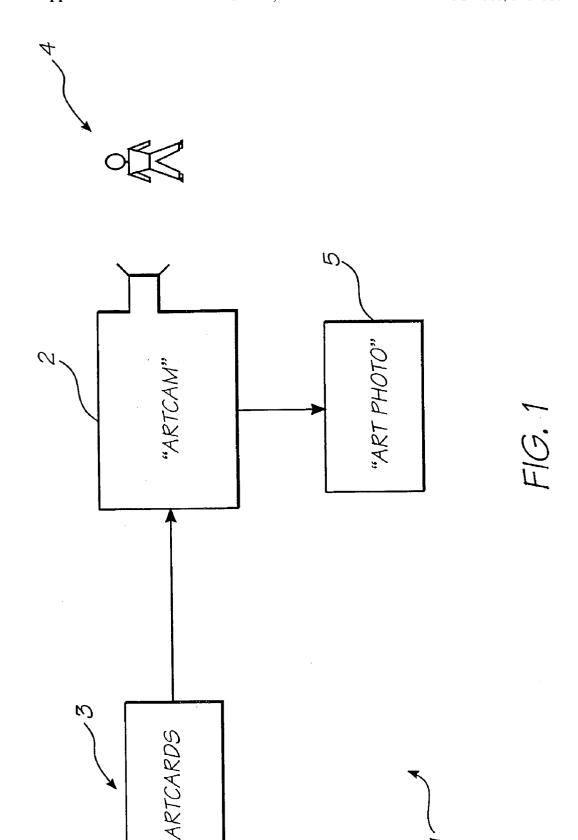
(22) Filed: Dec. 23, 2002

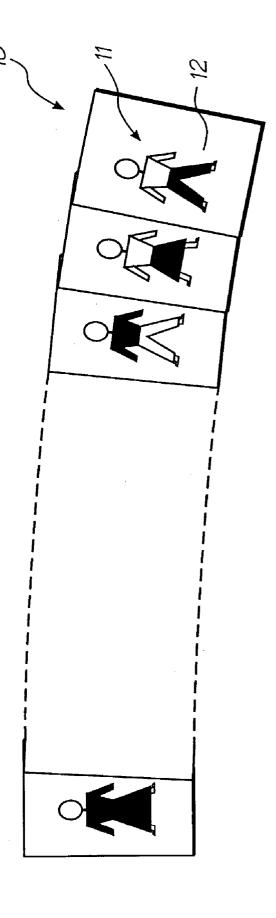
Related U.S. Application Data

(63) Continuation of application No. 09/112,759, filed on Jul. 10, 1998.

(30)Foreign Application Priority Data


Jul. 15, 1997 (AU)......PO8027


Publication Classification


- (51) **Int. Cl.**⁷ **D06B** 1/00; B41J 3/00; D06B 1/02; B05D 5/00

(57) ABSTRACT

This patent describes an alternative form for the automatic creation of garments. The garment creation system includes mapping portions of an arbitrary image sensed by an image sensor device onto a garment and outputting a depiction of the garment. Additionally, a garment fabric printer is adapted to to print out corresponding pieces of the garment including the mapped portions. The printing can include printing out instructions for joining the pieces together on the fabric and printing such that joined pieces of fabric appear to be derived from a continuous pattern.

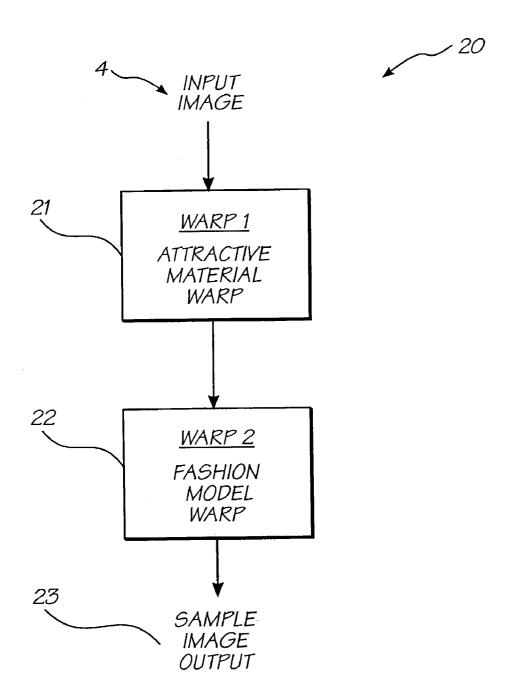
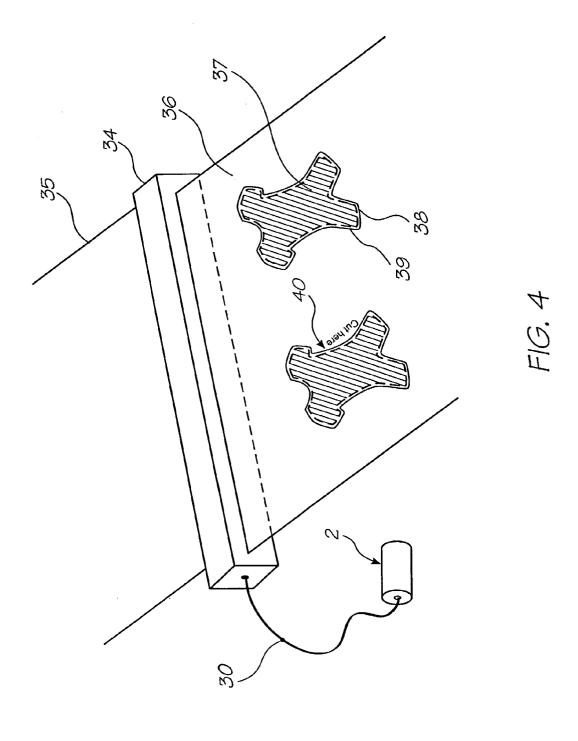



FIG. 3

CUSTOM GARMENT DESIGN AND FABRIC PRINTING SYSTEM

[**0001**] Continuation Application of U.S. Ser. No. 09/112, 759 filed on Jul. 10, 1998

CROSS REFERENCES TO RELATED APPLICATIONS

[0002] The following co-pending US patent applications, identified by their US patent application serial numbers (USSN), were filed simultaneously to the present application on Jul. 10, 1998, and are hereby incorporated by crossreference: Ser. Nos. 09/113,060; 09/113,070; 09/113,073; 09/112,748; 09/112,747; 09/112,776; 09/112,750; 09/112, 746; 09/112,743; 09/112,742; 09/112,741; 09/112,740; 09/112,739; 09/113,053; 09/112,738; 09/113,067; 09/113, 063; 09/113,069; 09/112,744; 09/113,058; 09/112,777; 09/113,224; 09/112,804; 09/112,805; 09/113,072; 09/112, 785; 09/112,797; 09/112,796; 09/113,071; 09/112,824; 09/113,090; 09/112,823; 09/113,222; 09/112,786; 09/113, 051; 09/112,782; 09/113,056; 09/113,059; 09/113,091; 09/112,753; 09/113,055; 09/113,057; 09/113,054; 09/112, 752; 09/112,759; 09/112,757; 09/112,758; 09/113,107; 09/112,829; 09/112,792; 09/112,791; 09/112,790; 09/112, 789; 09/112,788; 09/112,795; 09/112,749; 09/112,784; 09/112,783; 09/112,763; 09/112,762; 09/112,737; 09/112, 761; 09/113,223; 09/112,781; 09/113,052; 09/112,834; $09/113,103; \ 09/113,101; \ 09/112,751; \ 09/112,787; \ 09/112,$ 802; 09/112,803; 09/113,097; 09/113,099; 09/113,084; 09/113,066; 09/112,778; 09/112,779; 09/113,077; 09/113, 061; 09/112,818; 09/112,816; 09/112,772; 09/112,819; 09/112,815; 09/113,096; 09/113,068; 09/113,095; 09/112, 808; 09/112,809; 09/112,780; 09/113,083; 09/113,121; $09/113,122; \ 09/112,793; \ 09/112,794; \ 09/113,128; \ 09/113,$ 127; 09/112,756; 09/112,755; 09/112,754; 09/112,811; 09/112,812; 09/112,813; 09/112,814; 09/112,764; 09/112, 765; 09/112,767; 09/112,768; 09/112,807; 09/112,806; 09/112,820; 09/112,821; 09/112,822; 09/112,825; 09/112, 826; 09/112,827; 09/112,828; 09/113,111; 09/113,108; 09/113,109; 09/113,123; 09/113,114; 09/113,115; 09/113, 129; 09/113,124; 09/113,125; 09/113,126; 09/113,119; 09/113,120; 09/113,221; 09/113,116; 09/113,118; 09/113, 117; 09/113,113; 09/113,130; 09/113,110; 09/113,112; 09/113,087; 09/113,074; 09/113,089; 09/113,088; 09/112, 771; 09/112,769; 09/112,770; 09/112,817; 09/113,076; $09/112,798; \ 09/112,801; \ 09/112,800; \ 09/112,799; \ 09/113,$ 098; 09/112,833; 09/112,832; 09/112,831; 09/112,830; 09/112,836; 09/112,835; 09/113,102; 09/113,106; 09/113, 105; 09/113,104; 09/112,810; 09/112,766; 09/113,085; 09/113,086; 09/113,094; 09/112,760; 09/112,773; 09/112, 774; 09/112,775; 09/112,745; 09/113,092; 09/113,100; 09/113,093; 09/113,062; 09/113,064; 09/113,082; 09/113, 081; 09/113,080; 09/113,079; 09/113,065; 09/113,078; 09/113,075.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0003] Not applicable.

FIELD OF THE INVENTION

[0004] The present invention relates to an image processing method and apparatus and, in particular, discloses a Garment Design and Printing System.

[0005] The present invention further relates to the creation of fabrics and garments utilising automated apparatuses.

BACKGROUND OF THE INVENTION

[0006] A number of creative judgements are made when any garment is created. Firstly, there is the shape and styling of the garment and additionally, there is the fabric colours and style. Often, a fashion designer will try many different alternatives and may even attempt to draw the final fashion product before creating the finished garment.

[0007] Such a process is generally unsatisfactory in providing a rapid and flexible turn around of the garments and also providing rapid judgement of the final appearance of a fashion product on a person.

SUMMARY OF THE INVENTION

[0008] It is an object of the present invention to provide an alternative form for analysing the look of garments and for their creation. A further object of the present invention is to provide for automatic fabric creation.

[0009] In accordance with the first aspect of the present invention there is provided A garment creation system comprising:

[0010] an expected image creation system including an image sensor device and an image display device, said image creation system mapping portions of an arbitrary image sensed by said image sensor device onto a garment and outputting on said display device a depiction of said garment;

[0011] a garment fabric printer adapted to be interconnected to said image creation system for printing out corresponding pieces of said garment including said mapped portions.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings which:

[0013] FIG. 1 illustrates the basic operation of an Artcam device;

[0014] FIG. 2 illustrates a series of Artcards for use with the preferred embodiment;

[0015] FIG. 3 is a flow diagram of the algorithm utilised by the preferred embodiment; and

[0016] FIG. 4 is a schematic illustration of the outputting of printed fabrics produced in accordance with the present invention.

DESCRIPTION OF PREFERRED AND OTHER EMBODIMENTS

[0017] The preferred embodiment is preferably implemented through suitable programming of a hand held camera device such as that described in co-pending U.S. patent application Ser. No. 09/113,060 entitled "Digital Instant Printing Camera with Image Processing Capability" (Docket ARTO1) filed concurrently herewith by the present applicant the content of which is hereby specifically incorporated by cross reference.

[0018] The aforementioned patent specification discloses a camera system, hereinafter known as an "Artcam" type camera, wherein sensed images can be directly printed out by an Artcam portable camera unit. Further, the aforementioned specification discloses means and methods for performing various manipulations on images captured by the camera sensing device leading to the production of various effects in an output image. The manipulations are disclosed to be highly flexible in nature and can be implemented through the insertion into the Artcam of cards having encoded thereon various instructions for the manipulation of images, the cards hereinafter being known as Artcards. The Artcam further has significant onboard processing power provided by an Artcam Central Processor unit (ACP) which is interconnected to a memory device for the storage of important data and images.

[0019] The aforementioned patent specification discloses an Artcam system as indicated 1 in FIG. 1. The Artcam system 1 relies on an Artcam 2 which takes Artcards 3 as an input. The Artcard 3 includes encoded information for manipulation of an image scene 4 so as to produce an output photo 5 which contains substantial manipulation in accordance with the instruction of Artcard 3. The Artcards 3 are designed to be extremely inexpensive and contain on one surface the encoding information and on the other surface a depiction of the likely effect which will be produced by the Artcard 3 when inserted in Artcard 2.

[0020] In accordance with the method of the preferred embodiment, as shown in FIG. 2, a large number of Artcards 3 are prepared and distributed in packs 10. Each pack 10 relates to clothing wear of a specific size and includes images eg. 11 of models having clothing apparel 12 on to which an image captured by the camera will be mapped. The mapping can be to different items of apparel on different Artcards 3. One form of mapping algorithm is as illustrated 20 in FIG. 3 wherein the input image 4 is first warped 21 utilising a warp map which maps the image to a repeating tiling pattern that produces attractive warping effects. Of course, many other forms of algorithms could be provided for producing an attractive form of material with the algorithm being provided on Artcard 3 (FIG. 1).

[0021] Next, a second warp 22 is provided for warping the output of first warp map 21 onto the specific model image in the Artcard. Therefore, warp 22 will be Artcard specific. The result can then be output 23 for printing as an art photo 5. Hence, a user is able to point an Artcam 2 at a design image 4 and produce art photo 5 which has a manipulated version of the image based upon a model's item of fashion apparel or garment. This process can be continued until a desirable result is produced.

[0022] Next, as indicated in FIG. 4, when a final selection has been made, the Artcam 2 can be connected by its USB port, as illustrated at 30, to a fabric printer 34 which can comprise an ink jet fabric printer and associated drive controller electronics etc. Either the Artcam 2 or the inkjet printer 34 can be programmed to print out on fabric 35 the garment pieces eg. 36 having on the surface 37 thereof the original warped image so as to produce a garment corresponding to that depicted by the model on the Artcard.

[0023] The output fabric can include tab portions eg. 38 for alignment and border regions eg. 39 in addition to instructions 40 for joining the garment pieces together.

Preferably, the output program includes providing for warp matching of border regions so as to present a continuous appearance on the garment cross seams. Additionally, a user interface could be provided for utilising the same Artcard with many different output sizes so as to taken into account different shaped bodies. By utilisation of Artcam technology, a system can be provided for customised production of garments and rapid depiction of the likely results by means of utilisation of the Artcam device 2.

[0024] It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiment without departing from the spirit or scope of the invention as broadly described. The present embodiment is, therefore, to be considered in all respects to be illustrative and not restrictive.

[0025] Ink Jet Technologies

[0026] The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.

[0027] The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.

[0028] The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewidth print heads with 19.200 nozzles.

[0029] Ideally, the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new inkjet technologies have been created. The target features include:

[0030] low power (less than 10 Watts)

[0031] high resolution capability (1,600 dpi or more)

[0032] photographic quality output

[0033] low manufacturing cost

[0034] small size (pagewidth times minimum cross section)

[0035] high speed (<2 seconds per page).

[0036] All of these features can be met or exceeded by the ink jet systems described below with differing levels of difficulty. Forty-five different ink jet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part

of separate applications assigned to the present Assignee as set out in the list under the heading Cross References to Related Applications.

[0037] The ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems

[0038] For ease of manufacture using standard process equipment, the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the print head is 100 mm long, with a width which depends upon the ink jet type. The smallest print head designed is covered in U.S. patent application Ser. No. 09/112,764, which is 0.35 mm wide, giving a chip area of 35 square mm. The print heads each contain 19,200 nozzles plus data and control circuitry.

[0039] Ink is supplied to the back of the print head by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The print head is connected to the camera circuitry by tape automated bonding.

[0040] Tables of Drop-on-Demand Ink Jets

[0041] The present invention is useful in the field of digital printing, in particular, ink jet printing. A number of patent applications in this field were filed simultaneously and incorporated by cross reference.

[0042] Eleven important characteristics of the fundamental operation of individual ink jet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.

[0043] The following tables form the axes of an eleven dimensional table of ink jet types.

[0044] Actuator mechanism (18 types)

[0045] Basic operation mode (7 types)

[0046] Auxiliary mechanism (8 types)

[0047] Actuator amplification or modification method (17 types)

[0048] Actuator motion (19 types)

[0049] Nozzle refill method (4 types)

[0050] Method of restricting back-flow through inlet (10 types)

[0051] Nozzle clearing method (9 types)

[0052] Nozzle plate construction (9 types)

[0053] Drop ejection direction (5 types)

[**0054**] Ink type (7 types)

[0055] The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of inkjet nozzle. While not all of the possible combinations result in a viable ink jet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain ink jet types have been investigated in detail. Forty-five such inkjet types were filed simultaneously to the present application.

[0056] Other ink jet configurations can readily be derived from these forty-five examples by substituting alternative configurations along one or more of the 11 axes. Most of the forty-five examples can be made into ink jet print heads with characteristics superior to any currently available ink jet technology.

[0057] Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The simultaneously filed patent applications by the present applicant are listed by USSN numbers. In some cases, a print technology may be listed more than once in a table, where it shares characteristics with more than one entry.

[0058] Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.

[0059] The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.

	Description	Advantages	ONLY TO SELECTED Disadvantages	Examples
Thermal bubble	An electrothermal heater heats the ink to above boiling point, transferring significant heat to the aqueous ink. A bubble nucleates and quickly forms, expelling the ink. The efficiency of the process is low, with typically less than	Large force generated Simple construction No moving parts Fast operation Small chip area required for actuator	High power Ink carrier limited to water Low efficiency High temperatures required High mechanical stress Unusual materials required Large drive transistors	Canon Bubblejet 1979 Endo et al GB patent 2,007,162 Xerox heater-in-pit 1990 Hawkins et al USP 4,899,181 Hewlett-Packard TIJ 1982 Vaught et al USF 4,490,728

	ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS)				
	Description	Advantages	Disadvantages	Examples	
	0.05% of the electrical energy being transformed into kinetic energy of the drop.		Cavitation causes actuator failure Kogation reduces bubble formation Large print heads are difficult to		
Piezo- electric	A piezoelectric crystal such as lead lanthanum zirconate (PZT) is electrically activated, and either expands, shears, or bends to apply pressure to the ink, ejecting drops.	Low power consumption Many ink types can be used Fast operation High efficiency	fabricate Very large area required for actuator Difficult to integrate with electronics High voltage drive transistors required Full pagewidth print heads impractical due to actuator size Requires electrical poling in high field strengths during manufacture	Kyser et al USP 3,946,398 Zoltan USP 3,683,212 1973 Stemme USP 3,747,120 Epson Stylus Tektronix USSN 09/112,803	
Electro- strictive	An electric field is used to activate electrostriction in relaxor materials such as lead lanthanum zirconate titanate (PLZT) or lead magnesium niobate (PMN).	Low power consumption Many ink types can be used Low thermal expansion Electric field strength required (approx. 3.5 V/µm) can be generated without difficulty Does not require electrical poling	Low maximum strain (approx. 0.01%) Large area required for actuator due to low strain Response speed is marginal (~10 µs) High voltage drive transistors required Full pagewidth print heads impractical due to actuator size	Seiko Epson, Usui et all JP 253401/96 USSN 09/112,803	
Ferro- electric	An electric field is used to induce a phase transition between the antiferroelectric (AFE) and ferroelectric (FE) phase. Perovskite materials such as tin modified lead lanthanum zirconate titanate (PLZSnT) exhibit large strains of up to 1% associated with the AFE to FE phase transition.	Low power consumption Many ink types can be used Fast operation (<1 \(\mu s\)) Relatively high longitudinal strain High efficiency Electric field strength of around 3 V/\(\mu\)m can be readily provided	Difficult to integrate with electronics Unusual materials such as PLZSnT are required Actuators require a large area	USSN 09/112,803	
Electro- static plates	conductive plates are separated by a compressible or fluid dielectric (usually air). Upon application of a voltage, the plates attract each other and displace ink, causing drop ejection. The conductive plates may be in a comb or	Low power consumption Many ink types can be used Fast operation	Difficult to operate electrostatic devices in an aqueous environment The electrostatic actuator will normally need to be separated from the ink Very large area required to	USSN 09/112,787; 09/112,803	

	ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS)				
	Description	Advantages	Disadvantages	Examples	
	honeycomb structure, or stacked to increase the surface area and therefore the force.	9	achieve high forces High voltage drive transistors may be required Full pagewidth print heads are not competitive due to	1	
Electrostatic pull on ink	A strong electric field is applied to the ink, whereupon electrostatic attraction accelerates the ink towards the print medium.	Low current consumption Low temperature	actuator size High voltage required May be damaged by sparks due to air breakdown Required field strength increases as the drop size decreases High voltage drive transistors required Electrostatic field attracts dust	1989 Saito et al, USP 4,799,068 1989 Miura et al, USP 4,810,954 Tone-jet	
Permanent magnet electro- magnetic	An electromagnet directly attracts a permanent magnet, displacing ink and causing drop ejection. Rare earth magnets with a field strength around 1 Tesla can be used. Examples are: Samarium Cobalt (SaCo) and magnetic materials in the neodymium iron boron family (NdFeB, NdDyFeBNb, NdDyFeB, etc)	Low power consumption Many ink types can be used Fast operation High efficiency Easy extension from single nozzles to pagewidth print heads	Complex fabrication Permanent magnetic material such as Neodymium Iron Boron (NdFeB) required. High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Pigmented inks are usually infeasible Operating temperature limited to the Curie temperature	USSN 09/113,084; 09/112,779	
Soft magnetic core electro- magnetic	A solenoid induced a magnetic field in a soft magnetic core or yoke fabricated from a ferrous material such as electroplated iron alloys such as CoNiFe [1]. CoFe, or NiFe alloys. Typically, the soft magnetic material is in two parts, which are normally held apart by a spring. When the solenoid is actuated, the two parts attract, displacing the ink.	Low power consumption Many ink types can be used Fast operation High efficiency Easy extension from single nozzles to pagewidth print heads	(around 540 K) Complex fabrication Materials not usually present in a CMOS fab such as NiFe, CoNiFe, or CoFe are required High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Electroplating is required High saturation flux density is required (2.0–2.1 T is achievable with CoNiFe [1])	USSN 09/112,751; 09/113,097; 09/113,066; 09/112,779; 09/113,061; 09/112,816; 09/112,772; 09/112,815	

	ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS)			
	ACTUATOR MECHA	ANISM (APPLIED	ONLY TO SELECTE	D INK DROPS)
	Description	Advantages	Disadvantages	Examples
Lorenz force	The Lorenz force acting on a current carrying wire in a magnetic field is utilized. This allows the magnetic field to be supplied externally to the print head, for example with rare earth permanent magnets. Only the current carrying wire need be fabricated on the print-head, simplifying materials requirements.	Low power consumption Many ink types can be used Fast operation High efficiency Easy extension from single nozzles to pagewidth print heads	Force acts as a twisting motion Typically, only a quarter of the solenoid length provides force in a useful direction High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Pigmented inks are usually infeasible	USSN 09/113,099; 09/113,077; 09/112,818; 09/112,819
Magneto- striction	the actuator uses the giant magnetostrictive effect of materials such as Terfenol-D (an alloy of terbium, dysprosium and iron developed at the Naval Ordnance Laboratory, hence Ter-Fe-NOL). For best efficiency, the actuator should be pre-stressed to approx. 8 MPa.	Many ink types can be used Fast operation Easy extension from single nozzles to pagewidth print heads High force is available	Force acts as a twisting motion Unusual materials such as Terfenol- D are required High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Pre-stressing may be required	Fischenbeck, USP 4,032,929 USSN 09/113,121
Surface tension reduction	Ink under positive pressure is held in a nozzle by surface tension. The surface tension of the ink is reduced below the bubble threshold, causing the ink to egress from the nozzle.	Low power consumption Simple construction No unusual materials required in fabrication High efficiency Easy extension from single nozzles to pagewidth print heads	Requires supplementary force to effect drop separation Requires special ink surfactants Speed may be limited by surfactant properties	Silverbrook, EP 0771 658 A2 and related patent applications
Viscosity reduction	The ink viscosity is locally reduced to select which drops are to be ejected. A viscosity reduction can be achieved electrothermally with most inks, but special inks can be engineered for a 100:1 viscosity reduction.	Simple construction No unusual materials required in fabrication Easy extension from single nozzles to pagewidth print heads	Requires supplementary force to effect drop separation Requires special ink viscosity properties High speed is difficult to achieve Requires oscillating ink pressure A high temperature difference (typically 80 degrees) is required	Silverbrook, EP 0771 658 A2 and related patent applications

	-continued ACTUATOR MECHANISM (APPLIED ONLY TO SELECTED INK DROPS)				
	Description	Advantages	Disadvantages	Examples	
Acoustic	An acoustic wave is generated and focussed upon the drop ejection region.	Can operate without a nozzle plate	Complex drive circuitry Complex fabrication Low efficiency Poor control of drop position Poor control of drop volume	1993 Hadimioglu et al, EUP 550,192 1993 Elrod et al, EUP 572,220	
Thermo- elastic bend actuator	An actuator which relies upon differential thermal expansion upon Joule heating is used.	Low power consumption Many ink types can be used Simple planar fabrication Small chip area required for each actuator Fast operation High efficiency CMOS compatible voltages and currents Standard MEMS processes can be used Easy extension from single nozzles to pagewidth print heads	arop volume Efficient aqueous operation requires a thermal insulator on the hot side Corrosion prevention can be difficult Pigmented inks may be infeasible, as pigment particles may jam the bend actuator	USSN 09/112,802; 09/112,778; 09/112,815; 09/113,096; 09/113,068; 09/113,095; 09/112,808; 09/112,809; 09/112,780; 09/113,083; 09/112,793; 09/112,794; 09/113,128; 09/113,127; 09/112,756; 09/112,755; 09/112,755; 09/112,811; 09/112,814; 09/112,813; 09/112,814; 09/112,764; 09/112,768	
High CTE thermo- elastic actuator	A material with a very high coefficient of thermal expansion (CTE) such as polytetrafluoroethylene (PTFE) is used. As high CTE materials are usually non-conductive, a heater fabricated from a conductive material is incorporated. A 50 µm long PTFE bend actuator with polysilicon heater and 15 mW power input can provide 180 µN force and 10 µm deflection. Actuator motions include: Bend Push Buckle Rotate	High force can be generated Three methods of PTFE deposition are under development: chemical vapor deposition (CVD), spin coating, and evaporation PTFE is a candidate for low dielectric constant insulation in ULSI Very low power consumption Many ink types can be used Simple planar fabrication Small chip area required for each actuator Fast operation High efficiency CMOS compatible voltages and currents Easy extension from single nozzles to pagewidth print heads	Requires special material (e.g. PTFE) Requires a PTFE deposition process, which is not yet standard in ULSI fabs PTFE deposition cannot be followed with high temperature (above 350° C.) processing Pigmented inks may be infeasible, as pigment particles may jam the bend actuator	USSN 09/112,778; 09/112,815; 09/113,096; 09/113,095; 09/112,808; 09/112,809; 09/112,780; 09/113,083; 09/112,793; 09/112,794; 09/113,128; 09/113,127; 09/112,756; 09/112,807; 09/112,806;	

	ACTUATOR MECHA	-contin		D INK DROPS)
	Description	Advantages	Disadvantages	Examples
Conduct-	A polymer with a	High force can	Requires special	USSN 09/113,083
ive	high coefficient of	be generated	materials	
polymer	thermal expansion	Very low power	development	
thermo-	(such as PTFE) is	consumption	(High CTE	
elastic	doped with	Many ink types	conductive	
actuator	conducting substances to	can be used Simple planar	polymer) Requires a PTFE	
	increase its	fabrication	deposition	
	conductivity to	Small chip area	process, which is	
	about 3 orders of	required for	not yet standard in	
	magnitude below	each actuator	ULSI fabs	
	that of copper. The	Fast operation	PTFE deposition	
	conducting polymer	High efficiency	cannot be	
	expands when	CMOS	followed with	
	resistively heated.	compatible	high temperature	
	Examples of	voltages and	(above 350° C.)	
	conducting dopants include:	currents	processing	
	Carbon nanotubes	Easy extension from single	Evaporation and CVD deposition	
	Metal fibers	nozzles to	techniques cannot	
	Conductive	pagewidth print	be used	
	polymers such as	heads	Pigmented inks	
	doped		may be infeasible,	
	polythiophene		as pigment	
	Carbon granules		particles may jam	
			the bend actuator	
Shape	A shape memory	High force is	Fatigue limits	USSN 09/113,122
memory	alloy such as TiNi	available	maximum number	
alloy	(also known as	(stresses of	of cycles	
	Nitinol-Nickel	hundreds of	Low strain (1%) is	
	Titanium alloy	MPa)	required to extend	
	developed at the	Large strain is	fatigue resistance	
	Naval Ordnance	available (more	Cycle rate limited	
	Laboratory) is	than 3%)	by heat removal	
	thermally switched between its weak	High corrosion	Requires unusual	
	martensitic state and	resistance Simple	materials (TiNi) The latent heat of	
	its high stiffness	construction	transformation	
	austenic state. The	Easy extension	must be provided	
	shape of the actuator	from single	High current	
	in its martensitic	nozzles to	operation	
	state is deformed	pagewidth print	Requires pre-	
	relative to the	heads	stressing to distort	
	austenic shape. The	Low voltage	the martensitic	
	shape change causes	operation	state	
	ejection of a drop.			
Linear	Linear magnetic	Linear Magnetic	Requires unusual	USSN 09/113,061
Magnetic	actuators include the	actuators can be	semiconductor	
Actuator	Linear Induction	constructed with	materials such as	
	Actuator (LIA),	high thrust, long	soft magnetic	
	Linear Permanent	travel, and high	alloys (e.g.	
	Magnet	efficiency using	CoNiFe)	
	Synchronous	planar	Some varieties	
	Actuator (LPMSA),	semiconductor	also require	
	Linear Reluctance	fabrication	permanent	
	Synchronous	techniques	magnetic	
	Actuator (LRSA),	Long actuator	materials such as	
	Linear Switched	travel is available	Neodymium iron	
	Reluctance Actuator (LSRA), and the	Medium force is	boron (NdFeB) Requires complex	
	Linear Stepper	available	multi-phase drive	
	Actuator (LSA).	Low voltage	circuitry	
	. 12000001 (1.071).		•	
		operation	High current	

[0060]

		BASIC OPERAT	TION MODE	
	Description	Advantages	Disadvantages	Examples
Actuator directly pushes ink	This is the simplest mode of operation: the actuator directly supplies sufficient kinetic energy to expel the drop. The drop must have a sufficient velocity to overcome the surface tension.	Simple operation No external fields required Satellite drops can be avoided if drop velocity is less than 4 m/s Can be efficient, depending upon the actuator used	Drop repetition rate is usually limited to around 10 kHz. However, this is not fundamental to the method, but is related to the refill method normally used All of the drop kinetic energy must be provided by the actuator Satellite drops usually form if drop velocity is greater than 4.5 m/s	Thermal ink jet Piezoelectric ink jet USSN 09/112,751; 09/112,787; 09/112,802; 09/112,803; 09/113,097; 09/113,009; 09/113,084; 09/112,778; 09/113,077; 09/113,061; 09/112,816; 09/112,819; 09/113,129; 09/112,809; 09/113,121; 09/113,122; 09/113,121; 09/113,122; 09/112,793; 09/113,127; 09/112,756; 09/112,755; 09/112,754; 09/112,811; 09/112,812; 09/112,813; 09/112,814; 09/112,764; 09/112,765; 09/112,767; 09/112,768; 09/112,807; 09/112,806; 09/112,807; 09/112,806;
Proximity	The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by contact with the print medium or a transfer roller.	Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate the drop from the nozzle	Requires close proximity between the print head and the print media or transfer roller May require two print heads printing alternate rows of the image Monolithic color print heads are	Silverbrook, EP 0771 658 A2 and related patent applications
Electro- static pull on ink	The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by a strong electric	Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate the drop from the	difficult Requires very high electrostatic field Electrostatic field for small nozzle sizes is above air breakdown Electrostatic field may attract dust	Silverbrook, EP 0771 658 A2 and related patent applications Tone-Jet
Magnetic pull on ink	field. The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are separated from the ink in the nozzle by a strong magnetic field acting on the magnetic ink.	nozzle Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate the drop from the nozzle	Requires magnetic ink Ink colors other than black are difficult Requires very high magnetic fields	Silverbrook, EP 0771 658 A2 and related patent applications
Shutter	magnetic ins. The actuator moves a shutter to block ink flow to the nozzle. The ink pressure is pulsed at a multiple of the drop ejection frequency.	High speed (>50 kHz) operation can be achieved due to reduced refill time Drop timing can be very accurate The actuator energy can be very low	Moving parts are required Requires ink pressure modulator Friction and wear must be considered Stiction is possible	USSN 09/112,818; 09/112,815; 09/112,808

	BASIC OPERATION MODE				
	Description	Advantages	Disadvantages	Examples	
Shuttered grill	The actuator moves a shutter to block ink flow through a grill to the nozzle. The shutter movement need only be equal to the width of the grill holes.	Actuators with small travel can be used Actuators with small force can be used High speed (>50 kHz) operation can be achieved	Moving parts are required Requires ink pressure modulator Friction and wear must be considered Stiction is possible	USSN 09/113,066; 09/112,772; 09/113,096; 09/113,068	
Pulsed magnetic pull on ink pusher	A pulsed magnetic field attracts an 'ink pusher' at the drop ejection frequency. An actuator controls a catch, which prevents the ink pusher from moving when a drop is not to be ejected.	Extremely low energy operation is possible No heat dissipation problems	Requires an external pulsed magnetic field Requires special materials for both the actuator and the ink pusher Complex construction	USSN 09/112,779	

[0061]

	AUXILIARY MECHANISM (APPLIED TO ALL NOZZLES)			
	Description	Advantages	Disadvantages	Examples
None	The actuator directly fires the ink drop, and there is no external field or other mechanism required.	Simplicity of construction Simplicity of operation Small physical size	Drop ejection energy must be supplied by individual nozzle actuator	Most ink jets, including piezoelectric and thermal bubble. USSN 09/112,751; 09/112,787; 09/112,802; 09/112,803; 09/113,097; 09/113,084; 09/113,078; 09/113,077; 09/113,061; 09/113,107; 09/113,095; 09/112,816; 09/113,095; 09/112,816; 09/113,121; 09/113,122; 09/112,780; 09/113,122; 09/112,793; 09/112,794; 09/112,756; 09/112,755; 09/112,754; 09/112,811; 09/112,812; 09/112,813; 09/112,814; 09/112,764; 09/112,765; 09/112,767; 09/112,768; 09/112,807; 09/112,806;
Oscillating ink pressure (including acoustic stimula- tion)	The ink pressure oscillates, providing much of the drop ejection energy. The actuator selects which drops are to be fired by selectively blocking or enabling nozzles. The ink pressure oscillation may be achieved by vibrating the print head, or preferably by an actuator in the ink supply.	Oscillating ink pressure can provide a refill pulse, allowing higher operating speed The actuators may operate with much lower energy Acoustic lenses can be used to focus the sound on the nozzles	Requires external ink pressure oscillator Ink pressure phase and amplitude must be carefully controlled Acoustic reflections in the ink chamber must be designed for	Silverbrook, EP 0771 658 A2 and related patent applications USSN 09/113,066; 09/112,818; 09/112,772; 09/112,815; 09/113,096; 09/113,068; 09/112,808

-continued

	AUXILIARY	-contin MECHANISM (AI	PPLIED TO ALL N	OZZLES)
	Description	Advantages	Disadvantages	Examples
Media proximity	The print head is placed in close proximity to the print medium. Selected drops protrude from the print head further than unselected drops, and contact the print medium. The drop soaks into the medium fast enough to cause	Low power High accuracy Simple print head construction	Precision assembly required Paper fibers may cause problems Cannot print on rough substrates	Silverbrook, EP 0771 658 A2 and related patent applications
Transfer roller	drop separation. Drops are printed to a transfer roller instead of straight to the print medium. A transfer roller can also be used for proximity drop separation.	Wide range of print substrates	Bulky Expensive Complex construction	Silverbrook, EP 0771 658 A2 and related patent applications Tektronix hot melt piezoelectric ink jet Any of USSN 09/112,751; 09/112,787; 09/112,802; 09/112,803; 09/113,097; 09/113,096; 09/113,084; 09/112,778; 09/112,778; 09/112,816; 09/112,778; 09/112,816; 09/112,815; 09/112,816; 09/112,815; 09/113,068; 09/113,068; 09/113,068; 09/113,068; 09/113,069; 09/112,780; 09/112,815; 09/113,128; 09/113,121; 09/112,793; 09/112,793; 09/112,793; 09/112,793; 09/112,793; 09/112,794; 09/112,793; 09/112,794; 09/112,793; 09/112,794; 09/112,793; 09/112,794; 09/112,795; 09/112,795; 09/112,795; 09/112,795; 09/112,795; 09/112,811; 09/112,812; 09/112,813; 09/112,814; 09/112,816; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,821;
Electro- static	An electric field is used to accelerate selected drops towards the print medium.	Low power Simple print head construction	Field strength required for separation of small drops is near or above air breakdown	Silverbrook, EP 0771 658 A2 and related patent applications Tone-Jet
Direct magnetic field	A magnetic field is used to accelerate selected drops of magnetic ink towards the print medium.	Low power Simple print head construction	Requires magnetic ink Requires strong magnetic field	Silverbrook, EP 0771 658 A2 and related patent applications
Cross magnetic field	The print head is placed in a constant magnetic field. The Lorenz force in a current carrying wire is used to move the actuator.	Does not require magnetic materials to be integrated in the print head manufacturing process	Requires external magnet Current densities may be high, resulting in electromigration problems	USSN 09/113,099; 09/112,819
Pulsed magnetic field	A pulsed magnetic field is used to cyclically attract a paddle, which pushes on the ink. A small actuator moves a catch, which selectively prevents the paddle from moving.	Very low power operation is possible Small print head	Complex print head construction Magnetic materials required in print head	USSN 09/112,779

[0062]

	Description	Advantages	Disadvantages	Examples
	ACTUATOR AN	MPLIFICATION OR	MODIFICATION	METHOD
None	No actuator mechanical amplification is used. The actuator directly drives the drop ejection process.	Operational simplicity	Many actuator mechanisms have insufficient travel, or insufficient force, to efficiently drive the drop ejection process	Thermal Bubble Ink jet USSN 09/112,751; 09/112,787; 09/113,099; 09/113,084; 09/112,819; 09/113,121; 09/113,122
Differential expansion bend actuator	An actuator material expands more on one side than on the other. The expansion may be thermal, piezoelectric, magnetostrictive, or other mechanism. The bend actuator converts a high force low travel actuator mechanism to high travel, lower force mechanism.	Provides greater travel in a reduced print head area	High stresses are involved Care must be taken that the materials do not delaminate Residual bend resulting from high temperature or high stress during formation	Piezoelectric USSN 09/112,802; 09/112,778; 09/112,815; 09/113,096; 09/113,068; 09/113,095; 09/112,808; 09/112,809; 09/112,780; 09/113,083; 09/112,793; 09/113,128; 09/112,755; 09/112,756; 09/112,755; 09/112,812; 09/112,811; 09/112,812; 09/112,813; 09/112,814; 09/112,764; 09/112,765; 09/112,767; 09/112,765; 09/112,807; 09/112,768; 09/112,807;
Fransient oend actuator	A trilayer bend actuator where the two outside layers are identical. This cancels bend due to ambient temperature and residual stress. The actuator only responds to transient heating of one side or the other.	Very good temperature stability High speed, as a new drop can be fired before heat dissipates Cancels residual stress of formation	High stresses are involved Care must be taken that the materials do not delaminate	USSN 09/112,767; 09/112,768
Reverse spring	The actuator loads a spring. When the actuator is turned off, the spring releases. This can reverse the force/distance curve of the actuator to make it compatible with the force/time requirements of the drop ejection.	Better coupling to the ink	Fabrication complexity High stress in the spring	USSN 09/113,097; 09/113,077
Actuator stack	A series of thin actuators are stacked. This can be appropriate where actuators require high electric field strength, such as electrostatic and piezoelectric actuators.	Increased travel Reduced drive voltage	Increased fabrication complexity Increased possibility of short circuits due to pinholes	Some piezoelectric ink jets USSN 09/112,803
Multiple actuators	Multiple smaller actuators are used simultaneously to move the ink. Each actuator need provide only a portion of the force required.	Increases the force available from an actuator Multiple actuators can be positioned to control ink flow accurately	Actuator forces may not add linearly, reducing efficiency	USSN 09/113,061; 09/112,818; 09/113,096; 09/113,095; 09/112,809; 09/112,794; 09/112,807; 09/112,806

	-continued			
	Description	Advantages	Disadvantages	Examples
Linear Spring	A linear spring is used to transform a motion with small travel and high force into a longer travel, lower force motion.	Matches low travel actuator with higher travel requirements Non-contact method of motion transformation	Requires print head area for the spring	USSN 09/112,772
Coiled actuator	A bend actuator is coiled to provide greater travel in a reduced chip area.	Increases travel Reduces chip area Planar implementations are relatively easy to fabricate.	Generally restricted to planar implementations due to extreme fabrication difficulty in other orientations.	USSN 09/112,815; 09/112,808; 09/112,811; 09/112,812
Flexure bend actuator	A bend actuator has a small region near the fixture point, which flexes much more readily than the remainder of the actuator. The actuator flexing is effectively converted from an even coiling to an angular bend, resulting in greater travel of the actuator time.	Simple means of increasing travel of a bend actuator	Care must be taken not to exceed the elastic limit in the flexure area Stress distribution is very uneven Difficult to accurately model with finite element analysis	USSN 09/112,779; 09/113,068; 09/112,754
Catch	tip. The actuator controls a small catch. The catch either enables or disables movement of an ink pusher that is controlled in a bulk manner.	Very low actuator energy Very small actuator size	Complex construction Requires external force Unsuitable for pigmented inks	USSN 09/112,779
Gears	Gears can be used to increase travel at the expense of duration. Circular gears, rack and pinion, ratchets, and other gearing methods can be used.	Low force, low travel actuators can be used Can be fabricated using standard surface MEMS processes	Moving parts are required Several actuator cycles are required More complex drive electronics Complex construction Friction, friction, and wear are possible	USSN 09/112,818
Buckle plate	A buckle plate can be used to change a slow actuator into a fast motion. It can also convert a high force, low travel actuator into a high travel, medium force motion.	Very fast movement achievable	Must stay within elastic limits of the materials for long device life High stresses involved Generally high power requirement	S. Hirata et al, "An Ink-jet Head Using Diaphragm Microactuator", Proc. IEEE MEMS, Feb. 1996, pp 418–423. USSN 09/113,096; 09/112,793
Tapered magnetic pole	A tapered magnetic pole can increase travel at the expense of force.	Linearizes the magnetic force/distance curve	Complex construction	USSN 09/112,816

	Description	Advantages	Disadvantages	Examples
Lever	A lever and fulcrum is used to transform a motion with small travel and high force into a motion with longer travel and lower force. The lever can also reverse the direction of travel.	Matches low travel actuator with higher travel requirements Fulcrum area has no linear movement, and can be used for a fluid seal	High stress around the fulcrum	USSN 09/112,755; 09/112,813; 09/112,814
Rotary impeller	The actuator is connected to a rotary impeller. A small angular deflection of the actuator results in a rotation of the impeller vanes, which push the ink against stationary vanes and out of the nozzle.	High mechanical advantage The ratio of force to travel of the actuator can be matched to the nozzle requirements by varying the number of impeller vanes	Complex construction Unsuitable for pigmented inks	USSN 09/112,794
Acoustic lens	A refractive or diffractive (e.g. zone plate) acoustic lens is used to concentrate sound waves.	No moving parts	Large area required Only relevant for acoustic ink jets	1993 Hadimioglu et al, EUP 550,192 1993 Elrod et al, EUP 572,220
Sharp conductive point	A sharp point is used to concentrate an electrostatic field.	Simple construction ACTUATOR M	Difficult to fabricate using standard VLSI processes for a surface ejecting ink-jet Only relevant for electrostatic ink jets	Tone-jet
Volume expansion	The volume of the actuator changes, pushing the ink in all directions.	Simple construction in the case of thermal ink jet	High energy is typically required to achieve volume expansion. This leads to thermal stress, cavitation, and kogation in thermal ink jet	Hewlett-Packard Thermal Ink jet Canon Bubblejet
Linear, normal to chip surface	The actuator moves in a direction normal to the print head surface. The nozzle is typically in the line of movement.	Efficient coupling to ink drops ejected normal to the surface	implementations High fabrication complexity may be required to achieve perpendicular motion	USSN 09/112,751; 09/112,787; 09/112,803; 09/113,084; 09/113,077; 09/112,816
Parallel to chip surface	The actuator moves parallel to the print head surface. Drop ejection may still be normal to the surface.	Suitable for planar fabrication	Fabrication complexity Friction Stiction	USSN 09/113,061; 09/112,818; 09/112,772; 09/112,754; 09/112,811; 09/112,812; 09/112,813
Membrane push	An actuator with a high force but small area is used to push a stiff membrane that is in contact with the ink.	The effective area of the actuator becomes the membrane area	Fabrication complexity Actuator size Difficulty of integration in a VLSI process	1982 Howkins USP 4,459,601
Rotary	The actuator causes the rotation of some element, such a grill or impeller	Rotary levers maybe used to increase travel Small chip area requirements	Device complexity May have friction at a pivot point	USSN 09/113,097; 09/113,066; 09/112,818; 09/112,794

	Description	Advantages	Disadvantages	Examples
Bend	The actuator bends when energized. This may be due to differential thermal expansion, piezoelectric expansion, magnetostriction, or other form of relative dimensional change.	A very small change in dimensions can be converted to a large motion.	Requires the actuator to be made from at least two distinct layers, or to have a thermal difference across the actuator	1970 Kyser et al USP 3,946,398 1973 Stemme USP 3,747,120 09/112,802; 09/112,778; 09/112,779; 09/113,068; 09/112,780; 09/113,121; 09/113,128; 09/113,127; 09/112,756; 09/112,754; 09/112,754; 09/112,811; 09/112,812
Swivel	The actuator swivels around a central pivot. This motion is suitable where there are opposite forces applied to opposite sides of the paddle, e.g. Lorenz force.	Allows operation where the net linear force on the paddle is zero Small chip area requirements	Inefficient coupling to the ink motion	USSN 09/113,099
Straighten	The actuator is normally bent, and straightens when energized.	Can be used with shape memory alloys where the austenic phase is planar	Requires careful balance of stresses to ensure that the quiescent bend is accurate	USSN 09/113,122; 09/112,755
Double bend	The actuator bends in one direction when one element is energized, and bends the other way when another element is energized.	One actuator can be used to power two nozzles. Reduced chip size. Not sensitive to ambient temperature	Difficult to make the drops ejected by both bend directions identical. A small efficiency loss compared to equivalent single bend actuators.	USSN 09/112,813; 09/112,814; 09/112,764
Shear	Energizing the actuator causes a shear motion in the actuator material.	Can increase the effective travel of piezoelectric actuators	Not readily applicable to other actuator mechanisms	1985 Fishbeck USP 4,584,590
Radial con- striction	The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle.	Relatively easy to fabricate single nozzles from glass tubing as macroscopic structures	High force required Inefficient Difficult to integrate with VLSI processes	1970 Zoltan USP 3,683,212
Coil/ uncoil	A coiled actuator uncoils or coils more tightly. The motion of the free end of the actuator ejects the ink.	Easy to fabricate as a planar VLSI process Small area required, therefore low cost	Difficult to fabricate for non-planar devices Poor out-of- plane stiffness	USSN 09/112,815; 09/112,808; 09/112,811; 09/112,812
Bow	The actuator bows (or buckles) in the middle when energized.	Can increase the speed of travel Mechanically rigid	Maximum travel is constrained High force required	USSN 09/112,819; 09/113,096; 09/112,793
Push-Pull	Two actuators control a shutter. One actuator pulls the shutter, and the other pushes it.	The structure is pinned at both ends, so has a high out-of- plane rigidity	Not readily suitable for ink jets which directly push the ink	USSN 09/113,096
Curl inwards	A set of actuators curl inwards to reduce the volume of ink that they enclose.	Good fluid flow to the region behind the actuator increases efficiency	Design complexity	USSN 09/113,095; 09/112,807

	Description	Advantages	Disadvantages	Examples
Curl outwards	A set of actuators curl outwards, pressurizing ink in a chamber surrounding the actuators, and expelling ink from a nozzle in the chamber.	Relatively simple construction	Relatively large chip area	USSN 09/112,806
Iris	Multiple vanes enclose a volume of ink. These simultaneously rotate, reducing the volume between the vanes.	High efficiency Small chip area	High fabrication complexity Not suitable for pigmented inks	USSN 09/112,809
Acoustic vibration	The actuator vibrates at a high frequency.	The actuator can be physically distant from the ink	Large area required for efficient operation at useful frequencies Acoustic coupling and crosstalk Complex drive circuitry Poor control of drop volume and position	1993 Hadimioglu et al, EUP 550,192 1993 Elrod et al, EUP 572,220
None	In various ink jet designs the actuator does not move.	No moving parts	Various other tradeoffs are required to eliminate moving parts	Silverbrook, EP 0771 658 A2 and related patent applications Tone-jet

[0063]

	_	NOZZLE REFIL	L METHOD	
	Description	Advantages	Disadvantages	Examples
Surface ension	This is the normal way that ink jets are refilled. After the actuator is energized, it typically returns rapidly to its normal position. This rapid return sucks in air through the nozzle opening. The ink surface tension at the nozzle then exerts a small force restoring the meniscus to a minimum area. This force refills the nozzle.	Fabrication simplicity Operational simplicity	Low speed Surface tension force relatively small compared to actuator force Long refill time usually dominates the total repetition rate	Thermal ink jet Piezoelectric ink jet USSN-09/112,751; 09/113,084; 09/112,779; 09/112,816; 09/112,879; 09/112,8816; 09/112,809; 09/113,121; 09/113,083; 09/113,121; 09/113,122; 09/112,756; 09/113,127; 09/112,756; 09/112,811; 09/112,754; 09/112,811; 09/112,812; 09/112,813; 09/112,814; 09/112,764; 09/112,765; 09/112,767; 09/112,768; 09/112,807; 09/112,806; 09/112,807; 09/112,806; 09/112,820;
Shuttered oscillating ink pressure	Ink to the nozzle chamber is provided at a pressure that oscillates at twice the drop ejection frequency. When a drop is to be ejected, the shutter is opened for 3 half cycles:	High speed Low actuator energy, as the actuator need only open or close the shutter, instead of ejecting the ink drop	Requires common ink pressure oscillator May not be suitable for pigmented inks	USSN 09/113,066; 09/112,818; 09/112,772; 09/112,815; 09/113,096; 09/113,068; 09/112,808

	-continued				
		NOZZLE REFIL	L METHOD		
	Description	Advantages	Disadvantages	Examples	
Refill actuator	drop ejection, actuator return, and refill. The shutter is then closed to prevent the nozzle chamber emptying during the next negative pressure cycle. After the main actuator has ejected a drop a second (refill) actuator is energized. The refill actuator pushes ink into the nozzle chamber. The refill actuator returns slowly, to prevent its return from emptying the chamber again.	High speed, as the nozzle is actively refilled	Requires two independent actuators per nozzle	USSN 09/112,778	
Positive ink pressure	The ink is held a slight positive pressure. After the ink drop is ejected, the nozzle chamber fills quickly as surface tension and ink pressure both operate to refill the nozzle.	High refill rate, therefore a high drop repetition rate is possible	Surface spill must be prevented Highly hydrophobic print head surfaces are required	Silverbrook, EP 0771 658 A2 and related patent applications Alternative for: USSN 09/112,751; 09/112,787; 09/112,802; 09/112,803; 09/113,097; 09/113,099; 09/113,084; 09/112,779; 09/113,077; 09/113,061; 09/112,818; 09/112,816; 09/112,818; 09/113,095; 09/112,809; 09/113,121; 09/113,122; 09/112,780; 09/113,122; 09/112,756; 09/112,751; 09/112,756; 09/112,811; 09/112,812; 09/112,811; 09/112,814; 09/112,764; 09/112,765; 09/112,767; 09/112,768; 09/112,807; 09/112,806; 09/112,807; 09/112,806; 09/112,820; 09/112,821	

[0064]

	METHOD OF RESTRICTING BACK-FLOW THROUGH INLET				
	Description	Advantages	Disadvantages	Examples	
Long inlet channel	The ink inlet channel to the nozzle chamber is made long and relatively narrow, relying on viscous drag to reduce inlet back-flow.	Design simplicity Operational simplicity Reduces crosstalk	Restricts refill rate May result in a relatively large chip area Only partially effective	Thermal ink jet Piezoelectric ink jet USSN 09/112,807; 09/112,806	
Positive ink pressure	The ink is under a positive pressure, so that in the quiescent state some of the ink drop already protrudes from the nozzle. This reduces the pressure in the	Drop selection and separation forces can be reduced Fast refill time	Requires a method (such as a nozzle rim or effective hydrophobizing, or both) to prevent flooding of the ejection	Silverbrook, EP 0771 658 A2 and related patent applications Possible operation of the following: USSN 09/112,751; 09/112,787; 09/112,802; 09/112,803; 09/113,097; 09/113,099; 09/113,084;	

	-continued				
	METHOD OF R	ESTRICTING BAC	CK-FLOW THROU	GH INLET	
	Description	Advantages	Disadvantages	Examples	
	nozzle chamber which is required to eject a certain volume of ink. The reduction in chamber pressure results in a reduction in ink pushed out through the inlet.		surface of the print head.	09/112,778; 09/112,779; 09/113,077; 09/113,061; 09/112,816; 09/112,819; 09/113,095; 09/112,809; 09/113,121; 09/113,122; 09/113,121; 09/113,122; 09/112,793; 09/112,794; 09/113,128; 09/113,127; 09/112,756; 09/112,755; 09/112,754; 09/112,811; 09/112,813; 09/112,811; 09/112,764; 09/112,765; 09/112,764; 09/112,765;	
Baffle	One or more baffles are placed in the inlet ink flow. When the actuator is energized, the rapid ink movement creates eddies which restrict the flow through the inlet. The slower refill process is unrestricted, and does not result in eddies.	The refill rate is not as restricted as the long inlet method. Reduces crosstalk	Design complexity May increase fabrication complexity (e.g. Tektronix hot melt Piezoelectric print heads).	HP Thermal Ink Jet Tektronix piezoelectric ink jet	
Flexible flap restricts inlet	In this method recently disclosed by Canon, the expanding actuator (bubble) pushes on a flexible flap that restricts the inlet.	Significantly reduces back- flow for edge- shooter thermal ink jet devices	Not applicable to most ink jet configurations Increased fabrication complexity Inelastic deformation of polymer flap results in creep over extended use	Canon	
Inlet filter	A filter is located between the ink inlet and the nozzle chamber. The filter has a multitude of small holes or slots, restricting ink flow. The filter also removes particles which may block the	Additional advantage of ink filtration Ink filter may be fabricated with no additional process steps	Restricts refill rate May result in complex construction	USSN 09/112,803; 09/113,061; 09/113,083; 09/112,793; 09/113,128; 09/113,127	
Small inlet compared to nozzle	nozzle. The ink inlet channel to the nozzle chamber has a substantially smaller cross section than that of the nozzle, resulting in easier ink egress out of the nozzle than out of the inlet.	Design simplicity	Restricts refill rate May result in a relatively large chip area Only partially effective	USSN 09/112,787; 09/112,814; 09/112,820	
Inlet shutter	A secondary actuator controls the position of a shutter, closing off the ink inlet when the main actuator is energized.	Increases speed of the ink-jet print head operation	Requires separate refill actuator and drive circuit	USSN 09/112,778	
The inlet is located behind the ink- pushing	The method avoids the problem of inlet back-flow by arranging the ink- pushing surface of	Back-flow problem is eliminated	Requires careful design to minimize the negative pressure	USSN 09/112,751; 09/112,802; 09/113,097; 09/113,099; 09/113,084; 09/112,779; 09/113,077; 09/112,816; 09/112,819;	

19

-continued

	Description	Advantages	Disadvantages	Examples
surface	the actuator between the inlet and the nozzle.		behind the paddle	09/112,809; 09/112,780; 09/113,121; 09/112,794; 09/112,756; 09/112,755; 09/112,754; 09/112,811; 09/112,812; 09/112,813; 09/112,765; 09/112,767; 09/112,768
Part of the ctuator noves to hut off he inlet	The actuator and a wall of the ink chamber are arranged so that the motion of the actuator closes off the inlet.	Significant reductions in back-flow can be achieved Compact designs possible	Small increase in fabrication complexity	USSN 09/113,084; 09/113,095; 09/113,122; 09/112,764
Nozzle ctuator loes not esult in nk back- low	In some configurations of ink jet, there is no expansion or movement of an actuator which may cause ink back-flow through the inlet.	Ink back-flow problem is eliminated	None related to ink back-flow on actuation	Silverbrook, EP 0771 658 A2 and related patent applications Valve-jet Tone-jet

[0065]

	Ī	NOZZLE CLEARIN	NG METHOD	
	Description	Advantages	Disadvantages	Examples
Normal nozzle firing	All of the nozzles are fired periodically, before the ink has a chance to dry. When not in use the nozzles are sealed (capped) against air. The nozzle firing is usually performed during a special clearing cycle, after first moving the print head to a cleaning station.	No added complexity on the print head	May not be sufficient to displace dried ink	Most ink jet systems USSN 09/112,751; 09/112,787; 09/112,802; 09/112,803; 09/113,097; 09/113,099; 09/113,0984; 09/112,778; 09/112,779; 09/113,077; 09/113,061; 09/112,816; 09/112,819; 09/113,095; 09/113,083; 09/113,121; 09/113,122; 09/112,780; 09/113,122; 09/112,793; 09/112,794; 09/113,128; 09/113,127; 09/112,754; 09/112,811; 09/112,754; 09/112,811; 09/112,764; 09/112,814; 09/112,765; 09/112,765; 09/112,767; 09/112,765; 09/112,767; 09/112,806; 09/112,807; 09/112,806;
Extra power to ink heater	In systems which heat the ink, but do not boil it under normal situations, nozzle clearing can be achieved by overpowering the heater and boiling ink at the nozzle.	Can be highly effective if the heater is adjacent to the nozzle	Requires higher drive voltage for clearing May require larger drive transistors	Silverbrook, EP 0771 658 A2 and related patent applications
Rapid success- ion of actuator pulses	The actuator is fired in rapid succession. In some configurations, this may cause heat build-up at the nozzle which boils the ink, clearing the	Does not require extra drive circuits on the print head Can be readily controlled and initiated by digital logic	Effectiveness depends substantially upon the configuration of the ink jet nozzle	May be used with: USSN 09/112,751; 09/112,787; 09/112,802; 09/112,803; 09/113,097; 09/113,099; 09/113,094; 09/112,779; 09/112,779; 09/112,816; 09/112,819; 09/113,095; 09/112,809;

	-continued				
]	NOZZLE CLEARIN	NG METHOD		
	Description	Advantages	Disadvantages	Examples	
	nozzle. In other situations, it may cause sufficient vibrations to dislodge clogged nozzles.			09/112,780; 09/113,083; 09/113,121; 09/112,793; 09/112,794; 09/113,128; 09/113,127; 09/112,756; 09/112,755; 09/112,754; 09/112,811; 09/112,813; 09/112,814; 09/112,764; 09/112,765; 09/112,767; 09/112,806; 09/112,807; 09/112,806; 09/112,820; 09/112,821	
Extra power to ink pushing actuator	Where an actuator is not normally driven to the limit of its motion, nozzle clearing may be assisted by providing an enhanced drive signal to the actuator.	A simple solution where applicable	Not suitable where there is a hard limit to actuator movement	May be used with: USSN 09/112,802; 09/112,778; 09/112,819; 09/113,095; 09/113,127; 09/112,780; 09/113,127; 09/113,127; 09/112,756; 09/112,765; 09/112,767; 09/112,768; 09/112,807; 09/112,806; 09/112,807; 09/112,801; 09/112,	
Acoustic resonance	An ultrasonic wave is applied to the ink chamber. This wave is of an appropriate amplitude and frequency to cause sufficient force at the nozzle to clear blockages. This is easiest to achieve if the ultrasonic wave is at a resonant frequency of the ink cavity.	A high nozzle clearing capability can be achieved May be implemented at very low cost in systems which already include acoustic actuators	High implementation cost if system does not already include an acoustic actuator	USSN 09/113,066;	
Nozzle clearing plate	A microfabricated plate is pushed against the nozzles. The plate has a post for every nozzle. A post moves through each nozzle, displacing dried ink.	Can clear severely clogged nozzles	Accurate mechanical alignment is required Moving parts are required There is risk of damage to the nozzles Accurate fabrication is	Silverbrook, EP 0771 658 A2 and related patent applications	
Ink pressure pulse	The pressure of the ink is temporarily increased so that ink streams from all of the nozzles. This may be used in conjunction with actuator energizing.	May be effective where other methods cannot be used	required Requires pressure pump or other pressure actuator Expensive Wasteful of ink	May be used with ink jets covered by USSN 09/112,751; 09/112,787; 09/112,803; 09/113,097; 09/113,097; 09/113,097; 09/113,096; 09/113,077; 09/113,066; 09/112,778; 09/112,779; 09/113,077; 09/113,061; 09/112,818; 09/112,816; 09/112,815; 09/112,819; 09/112,815; 09/113,096; 09/113,068; 09/113,095; 09/112,809; 09/112,780; 09/112,780; 09/112,790; 09/112,793; 09/112,794; 09/113,121; 09/113,127; 09/112,755; 09/112,755; 09/112,755; 09/112,755; 09/112,755; 09/112,811; 09/112,811; 09/112,811; 09/112,814; 09/112,764; 09/112,765; 09/112,767; 09/112,768; 09/112,807; 09/112,806; 09/112,807; 09/112,806; 09/112,820; 09/112,821	

21

-continued

	<u>]</u>	NOZZLE CLEARIN	NG METHOD	
	Description	Advantages	Disadvantages	Examples
Print head wiper	A flexible 'blade' is wiped across the print head surface. The blade is usually fabricated from a flexible polymer, e.g. rubber or synthetic elastomer.	Effective for planar print head surfaces Low cost	Difficult to use if print head surface is non-planar or very fragile Requires mechanical parts Blade can wear out in high volume print systems	Many ink jet systems
Separate ink boiling heater	A separate heater is provided at the nozzle although the normal drop e-ection mechanism does not require it. The heaters do not require individual drive circuits, as many nozzles can be cleared simultaneously, and no imaging is required.	Can be effective where other nozzle clearing methods cannot be used Can be implemented at no additional cost in some ink jet configurations	Fabrication complexity	Can be used with many ink jets covered by USSN 09/112,751; 09/112,787; 09/112,802; 09/112,803; 09/113,097; 09/113,099; 09/113,097; 09/113,066; 09/113,778; 09/113,061; 09/112,778; 09/113,061; 09/112,818; 09/112,816; 09/112,772; 09/112,819; 09/112,815; 09/113,096; 09/112,808; 09/113,095; 09/112,808; 09/113,095; 09/112,780; 09/113,121; 09/113,122; 09/113,121; 09/113,122; 09/113,128; 09/113,128; 09/113,128; 09/113,128; 09/112,794; 09/112,794; 09/112,794; 09/112,794; 09/112,794; 09/112,794; 09/112,794; 09/112,795; 09/112,794; 09/112,794; 09/112,796; 09/112,796; 09/112,796; 09/112,796; 09/112,796; 09/112,796; 09/112,796; 09/112,796; 09/112,796; 09/112,796; 09/112,796; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,801;

[0066]

	NOZZLE PLATE CONSTRUCTION				
	Description	Advantages	Disadvantages	Examples	
Electro- formed nickel	A nozzle plate is separately fabricated from electroformed nickel, and bonded to the print head chip.	Fabrication simplicity	High temperatures and pressures are required to bond nozzle plate Minimum thickness constraints Differential thermal expansion	Hewlett Packard Thermal Ink jet	
Laser ablated or drilled polymer	Individual nozzle holes are ablated by an intense UV laser in a nozzle plate, which is typically a polymer such as	No masks required Can be quite fast Some control over nozzle	Each hole must be individually formed Special equipment required	Canon Bubblejet 1988 Sercel et al., SPIE, Vol. 998 Excimer Beam Applications, pp. 76–83 1993 Watanabe et al., USP 5,208,604	

	-continued				
	NOZZLE PLATE CONSTRUCTION				
	Description	Advantages	Disadvantages	Examples	
	polyimide or polysulphone	profile is possible Equipment required is relatively low cost	Slow where there are many thousands of nozzles per print head May produce thin burrs at exit holes		
Silicon micro- machined	A separate nozzle plate is micromachined from single crystal silicon, and bonded to the print head wafer.	High accuracy is attainable	Two part construction High cost Requires precision alignment Nozzles may be clogged by adhesive	K. Bean, IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, 1978, pp 1185–1195 Xerox 1990 Hawkins et al., USP 4,899,181	
Glass capillaries	Fine glass capillaries are drawn from glass tubing. This method has been used for making individual nozzles, but is difficult to use for bulk manufacturing of print heads with thousands of nozzles.	No expensive equipment required Simple to make single nozzles	Very small nozzle sizes are difficult to form Not suited for mass production	1970 Zoltan USP 3,683,212	
Monolithic, surface micro- machined using VLSI litho- graphic processes	The nozzle plate is deposited as a layer using standard VLSI deposition techniques. Nozzles are etched in the nozzle plate using VLSI lithography and etching.	High accuracy (<1 µm) Monolithic Low cost Existing processes can be used	Requires sacrificial layer under the nozzle plate to form the nozzle chamber Surface may be fragile to the touch	Silverbrook, EP 0771 658 A2 and related patent applications USSN 09/112,751; 09/112,787; 09/113,061; 09/113,077; 09/113,061; 09/113,095; 09/113,096; 09/113,083; 09/112,793; 09/112,794; 09/113,128; 09/113,127; 09/112,756; 09/112,755; 09/112,754; 09/112,811; 09/112,813; 09/112,814; 09/112,813; 09/112,765; 09/112,764; 09/112,765; 09/112,767; 09/112,768; 09/112,807; 09/112,806; 09/112,820	
Monolithic, etched through substrate	The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer.	(<1 \mum) Monolithic Low cost No differential	Requires long etch times Requires a support wafer	USSN 09/112,802; 09/113,097; 09/113,099; 09/113,084; 09/113,066; 09/112,778; 09/112,816; 09/112,818; 09/112,816; 09/112,772; 09/112,819; 09/113,068; 09/112,808; 09/112,780; 09/113,121; 09/113,122	
No nozzle plate	Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms	No nozzles to become clogged	Difficult to control drop position accurately Crosstalk problems	Ricoh 1995 Sekiya et al USP 5,412,413 1993 Hadimioglu et al EUP 550,192 1993 Elrod et al EUP 572,220	
Trough	Each drop ejector has a trough through which a paddle moves. There is no nozzle plate.	Reduced manufacturing complexity Monolithic	Drop firing direction is sensitive to wicking.	USSN 09/112,812	

	NOZZLE PLATE CONSTRUCTION			
	Description	Advantages	Disadvantages	Examples
Nozzle slit instead of individual nozzles	The elimination of nozzle holes and replacement by a sli encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves	No nozzles to become clogged t	Difficult to control drop position accurately Crosstalk problems	1989 Saito et al USP 4,799,068

[0067]

	DROP EJECTION DIRECTION			
	Description	Advantages	Disadvantages	Examples
Edge ('edge shooter')	Ink flow is along the surface of the chip, and ink drops are ejected from the chip edge.	Simple construction No silicon etching required Good heat sinking via substrate Mechanically strong Ease of chip handing	Nozzles limited to edge High resolution is difficult Fast color printing requires one print head per color	Canon Bubblejet 1979 Endo et al GB patent 2,007,162 Xerox heater-in-pit 1990 Hawkins et al USP 4,899,181 Tone-jet
Surface ('roof shooter')	Ink flow is along the surface of the chip, and ink drops are ejected from the chip surface, normal to the plane of the chip.	No bulk silicon etching required Silicon can make an effective heat sink Mechanical strength	Maximum ink flow is severely restricted	Hewlett-Packard TIJ 1982 Vaught et al USP 4,490,728 USSN 09/112,787, 09/113,077; 09/113,061; 09/113,095; 09/112,809
Through chip, forward ('up shooter')	Ink flow is through the chip, and ink drops are ejected from the front surface of the chip.	High ink flow Suitable for pagewidth print heads High nozzle packing density therefore low manufacturing cost	Requires bulk silicon etching	Silverbrook, EP 0771 658 A2 and related patent applications USSN 09/112,803; 09/112,815; 09/113,096; 09/113,083; 09/112,793; 09/112,794; 09/113,128; 09/113,127; 09/112,756; 09/112,755; 09/112,754; 09/112,811; 09/112,812; 09/112,813; 09/112,814; 09/112,767; 09/112,768; 09/112,767; 09/112,768; 09/112,807; 09/112,806; 09/112,820; 09/112,821
Through chip, reverse ('down shooter')	Ink flow is through the chip, and ink drops are ejected from the rear surface of the chip.	High ink flow Suitable for pagewidth print heads High nozzle packing density therefore low manufacturing cost	Requires wafer thinning Requires special handling during manufacture	USSN 09/112,751; 09/112,802; 09/113,097; 09/113,099; 09/113,084; 09/113,066; 09/112,778; 09/112,779; 09/112,818; 09/112,816; 09/112,772; 09/112,819; 09/113,068; 09/112,808; 09/112,780; 09/113,121; 09/113,122

	DROP EJECTION DIRECTION				
	Description	Advantages	Disadvantages	Examples	
Through actuator	Ink flow is through the actuator, which is not fabricated as part of the same substrate as the drive transistors.	Suitable for piezoelectric print heads	Pagewidth print heads require several thousand connections to drive circuits Cannot be manufactured in standard CMOS fabs Complex assembly required	Epson Stylus Tektronix hot melt piezoelectric ink jets	

[0068]

	<u>INK TYPE</u>				
	Description	Advantages	Disadvantages	Examples	
Aqueous, dye	Water based ink which typically contains: water, dye, surfactant, humectant, and biocide. Modern ink dyes have high water- fastness, light fastness	Environmentally friendly No odor	Slow drying Corrosive Bleeds on paper May strikethrough Cockles paper	Most existing ink jets USSN 09/112,751; 09/112,787; 09/112,802; 09/112,803; 09/113,097; 09/113,099; 09/113,084; 09/113,066; 09/112,778; 09/113,061; 09/112,778; 09/112,819; 09/112,818; 09/112,819; 09/112,815; 09/113,095; 09/112,808; 09/113,095; 09/112,808; 09/113,095; 09/112,793; 09/112,809; 09/113,121; 09/113,122; 09/113,121; 09/113,127; 09/113,128; 09/112,755; 09/112,754; 09/112,755; 09/112,754; 09/112,767; 09/112,814; 09/112,767; 09/112,814; 09/112,767; 09/112,816; 09/112,807; 09/112,806; 09/112,807; 09/112,821 Silverbrook, EP 0771 658 A2 and related patent applications	
Aqueous, pigment	Water based ink which typically contains: water, pigment, surfactant, humectant, and biocide. Pigments have an advantage in reduced bleed, wicking and strikethrough.	Environmentally friendly No odor Reduced bleed Reduced wicking Reduced strikethrough	Slow drying Corrosive Pigment may clog nozzles Pigment may clog actuator mechanisms Cockles paper	USSN 09/112,787; 09/112,803; 09/112,808; 09/113,122; 09/112,793; 09/113,127 Silverbrook, EP 0771 658 A2 and related patent applications Piezoelectric ink-jets Thermal ink jets (with significant restrictions)	
Methyl Ethyl Ketone (MEK)	MEK is a highly volatile solvent used for industrial printing on difficult surfaces such as aluminum cans.	Very fast drying Prints on various substrates such as metals and plastics	Odorous Flammable	Significant institutions (1975); USSN 09/112,751; 09/112,802; 09/112,803; 09/113,097; 09/113,099; 09/113,084; 09/113,066; 09/112,778; 09/112,779; 09/113,061; 09/112,818; 09/112,816; 09/112,816; 09/112,815; 09/112,815;	

	-continued				
	Description	Advantages	Disadvantages	Examples	
Alcohol (ethanol, 2-butanol, and others)	Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer photographic printing.	Fast drying Operates at sub-freezing temperatures Reduced paper cockle Low cost	Slight odor Flammable	09/113,096; 09/113,068; 09/113,095; 09/112,808; 09/112,809; 09/112,808; 09/112,809; 09/112,809; 09/113,122; 09/113,122; 09/113,122; 09/113,127; 09/112,754; 09/112,755; 09/112,755; 09/112,755; 09/112,764; 09/112,813; 09/112,814; 09/112,764; 09/112,764; 09/112,764; 09/112,765; 09/112,764; 09/112,765; 09/112,767; 09/112,806; 09/112,807; 09/112,801; 09/112,801; 09/112,801; 09/112,801; 09/112,801; 09/112,801; 09/112,801; 09/112,801; 09/113,097; 09/113,096; 09/113,097; 09/113,096; 09/113,097; 09/113,096; 09/112,818; 09/112,819; 09/112,819; 09/113,095; 09/112,808; 09/113,095; 09/112,809; 09/113,095; 09/112,809; 09/113,095; 09/112,809; 09/113,095; 09/112,809; 09/113,095; 09/112,809; 09/113,095; 09/113,095; 09/112,809; 09/113,121; 09/113,122; 09/112,794; 09/113,125; 09/112,755; 09/112,755; 09/112,764; 09/112,764; 09/112,765; 09/112,764; 09/112,768; 09/112,806; 09/112,806; 09/112,764; 09/112,764; 09/112,768; 09/112,764; 09/112,768; 09/112,806; 09/112	
Phase change (hot melt)	The ink is solid at room temperature, and is melted in the print head before jetting. Hot melt inks are usually wax based, with a melting point around 80° C. After jetting the ink freezes almost instantly upon contacting the print medium or a transfer roller.	No drying time-ink instantly freezes on the print medium Almost any print medium can be used No paper cockle occurs No wicking occurs No bleed occurs No strikethrough occurs	High viscosity Printed ink typically has a 'waxy' feel Printed pages may 'block' Ink temperature may be above the curie point of permanent magnets Ink heaters consume power Long warm-up time	09/112,820; 09/112,821 Tektronix hot melt piezoelectric ink jets 1989 Nowak USP 4,820,346 USSN 09/112,751; 09/112,802; 09/112,803; 09/113,097; 09/113,099; 09/113,098; 09/113,066; 09/112,778; 09/113,061; 09/112,818; 09/112,816; 09/112,818; 09/112,816; 09/112,815; 09/113,095; 09/112,818; 09/113,095; 09/112,808; 09/113,095; 09/112,808; 09/113,095; 09/112,793; 09/113,122; 09/113,122; 09/113,122; 09/113,123; 09/113,121; 09/113,121; 09/112,754; 09/112,755; 09/112,755; 09/112,813; 09/112,813; 09/112,813; 09/112,813; 09/112,814; 09/112,764; 09/112,765; 09/112,764; 09/112,765; 09/112,764; 09/112,768; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806; 09/112,806;	
Oil	Oil based inks are extensively used in offset printing. They have advantages in improved characteristics on paper (especially no wicking or cockle).	High solubility medium for some dyes Does not cockle paper Does not wick through paper	High viscosity: this is a significant limitation for use in ink jets, which usually require a low viscosity.	09/112,820; 09/112,821 USSN 09/112,751; 09/112,787; 09/112,802; 09/113,093; 09/113,084; 09/113,099; 09/113,084; 09/113,066; 09/112,778; 09/112,779; 09/113,077; 09/113,061; 09/112,818; 09/112,816; 09/112,772;	

	INK TYPE			
	Description	Advantages	Disadvantages	Examples
	Oil soluble dies and pigments are required.		Some short chain and multi-branched oils have a sufficiently low viscosity. Slow drying	09/112,819; 09/112,815; 09/113,096; 09/113,068; 09/113,095; 09/112,808; 09/112,809; 09/112,780; 09/113,083; 09/113,121; 09/113,122; 09/112,793; 09/113,127; 09/112,756; 09/112,755; 09/112,754; 09/112,811; 09/112,812; 09/112,813; 09/112,814; 09/112,765; 09/112,765; 09/112,767; 09/112,765; 09/112,767; 09/112,768; 09/112,767; 09/112,806; 09/112,820; 09/112,821
Micro- emulsion	A microemulsion is a stable, self forming emulsion of oil, water, and surfactant. The characteristic drop size is less than 100 nm, and is determined by the preferred curvature of the surfactant.	Stops ink bleed High dye solubility Water, oil, and amphiphilic soluble dies can be used Can stabilize pigment suspensions	Viscosity higher than water Cost is slightly higher than water based ink High surfactant concentration required (around 5%)	USSN 09/112,751; 09/112,787; 09/112,802; 09/112,803; 09/113,097; 09/113,099; 09/113,084; 09/113,096; 09/113,077; 09/113,066; 09/112,778; 09/112,779; 09/113,077; 09/112,819; 09/112,815; 09/112,819; 09/112,815; 09/113,096; 09/112,815; 09/113,096; 09/112,808; 09/113,083; 09/112,780; 09/113,121; 09/113,122; 09/112,793; 09/112,794; 09/113,128; 09/113,127; 09/112,756; 09/112,755; 09/112,754; 09/112,755; 09/112,754; 09/112,811; 09/112,812; 09/112,765; 09/112,765; 09/112,764; 09/112,814; 09/112,765; 09/112,765; 09/112,765; 09/112,765; 09/112,765; 09/112,814; 09/112,765; 09/112,814; 09/112,817; 09/112,814; 09/112,817; 09/112,814; 09/112,817; 09/112,814;

We claim:

- 1. A garment creation system comprising:
- a pattern generating means for generating at least one garment piece outline and a decorative finish to be imparted to said garment piece; and
- a garment fabric printer in communication with said pattern generating means for printing simultaneously said garment piece outline and said decorative finish on to a surface of a bolt of fabric passing through said printer, in use.
- 2. A garment creation system as claimed in claim 1 wherein said garment fabric printer prints simultaneously on the surface of the bolt of fabric, a plurality of garment piece outlines, each with their associated decorative finishes.

- 3. A garment creation system as claimed in claim 2 wherein said garment fabric printer prints out on the surface of said bolt of fabric instructions for joining said garment pieces together.
- 4. A garment creation system as claimed in claim 2 wherein said pattern generating means generates the decorative finishes on each of said pieces so that an image, created by fastening said pieces together to form a garment, appears to be continuous.
- **5**. A garment creation system as claimed in claim 1 wherein the garment fabric printer is an ink jet printer having an image printing width corresponding to a width of the bolt of fabric.
- **6**. A garment creation system as claimed in claim 1 wherein the pattern generating means generates garment pieces of different sizes to cater for different sizes and shapes of bodies.

* * * *