제목: RELAYING SYSTEM AND METHOD FOR TRANSMITTING IP ADDRESS OF CLIENT TO SERVER USING ENCAPSULATION PROTOCOL

발명의 영역: 컴퓨터 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중개 시스템 및 방법

Abstract: The present invention relates to a relaying system and method for transmitting an IP address of a client to a server using an encapsulation protocol. The relaying system comprises: a first proxy, and at least one second proxy or a bridge router. The first proxy reconstitutes a packet by receiving an archetype packet which includes an IP address of a client in a header thereof, and then adding the archetype packet to the inside of an encapsulation packet consisting of a header and a payload using a predetermined encapsulation protocol. At least one second proxy or a bridge router extracts the archetype packet attached to the inside of the encapsulation packet, and then transmits information on the IP address of the client to a server. According to the present invention, a host server is capable of providing a service using information of a packet header such as an IP address of a terminal. Also, the presence of a proxy cannot be known. In addition, tunneling communications are conducted between two terminals, and can be conducted without special modification to the terminal and the host server or installing a program. Furthermore, there is an advantage in terms of security because the encapsulation protocol is used, and it is possible to rapidly find the encapsulation packet.

요약서:
본 발명은 갤럭시 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템 및 방법에 관한 것으로
서, 그 중계시스템은 클라이언트의 IP 주소를 헤더에 포함하고 있는 원형 패킷을 수신하고, 헤더와 패킷을 이용하여
지정의 클라이언트에 송신된 원형 패킷을 추출하여 클라이언트의 IP 주소 정보를 서버로 전송하는 방법에
의 제2프로토콜 또는 브릿지 라우터를 포함한다. 본 발명에 의하면, 호스트 서버는 단말기의 IP 주소 중 패킷 헤더의
정보를 이용한 서비스가 가능하다. 그리고 프로토콜의 존재를 알지 못한다. 또한 두 단말 사이에는 터널링 통신을 주고 받
게 되며, 단말기와 호스트 서버의 별도의 수신 및 프로그램 설치 없이 가능하다. 또한 갤럭시 프로토콜을 이용함으로써
보안상 유리하며, 갤럭시 패킷을 신속하게 전송할 수 있다.
명세서
발명의 명칭: 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템 및 방법

기술분야

[1] 본 발명은 통신망을 동한 클라이언트와 서버 간의 중계시스템에 관한 것으로서, 특히 중계장비 예를 들어 프록시(Proxy) 또는 게이트웨이(Gateway)를 통한 유무선 통신 시 사용자(클라이언트)가 전송한 패킷의 원형을 그대로 목적지(서버)로 전송하는, 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템(Proxy, Bridge Router) 및 방법에 관한 것이다.

배경기술

[5] 프록시 서버를 이용한 시스템의 경우 프록시는 기능적으로는 IS들과 같은 역할을 하지만 실제로는 ES가 된다. 사용자의 PC와 프록시 간의 통신과, 프록시와 서버 간의 통신은 별개의 2개의 네트워크이며 프록시가 데이터를 중개해줄 뿐이다. 이 과정에서 전달되는 패킷 헤더(Packet Header)의 소스 IP 주소(Source IP Address)는 사용자 PC와 프록시 간의 통신에서는 사용자의 PC의 IP 주소가 되고 프록시와 서버 간의 통신에서는 프록시의 IP 주소가 된다. 따라서 서버는 패킷의 Source IP Address를 이용한 서비스 전 처리를 할 수 없다는 불편함이 있다.

발명의 상세한 설명

기술적 과제

[6] 본 발명이 해결하고자 하는 과제는 상술한 바와 같은 불편함을 해결하기 위한 것으로, 프록시 등과 같은 중계 서버를 이용한 시스템에 있어서 클라이언트 또는 목적지 서버 사이에서 주고 받는 패킷 헤더에 기록된 주소지 정보를 수정하여 데이터를 송신한 클라이언트의 정보(IP Address)를 목적지 서버에 전달하는, 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계
시스템(Proxy, Bridge Router)을 제공하는 것이다.

본 발명이 해결하고자 하는 다른 과제는 상술한 바와 같은 불편함을 해결하고, 프로토콜과 같은 중계 서버를 이용한 시스템에서 클라이언트 또는 목적지 서버 사이에서 주고 받는 패킷 헤더에 기록된 주소지 정보를 수정하여 데이터를 송신한 클라이언트 정보(IP Address)를 목적지 서버에 전달하는, 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 방법을 제공하는 것이다.

본 발명이 해결하고자 하는 또 다른 과제는 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템에 사용되는 중계장치를 제공하는 것이다.

과제 해결 수단

상기 기술적 과제를 이루기 위한 본 발명에 의한 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템은, 클라이언트의 IP 주소를 서버로 전송하는 중계시스템에 있어서, 상기 클라이언트의 IP 주소를 헤더에 포함하고 있는 원형 패킷을 수신하고, 헤더와 페이로드로 이루어지는 캡슐화 패킷 내부에 소정의 캡슐화 프로토콜을 이용하여 상기 원형 패킷을 집부하여 패킷을 재구성하는 제1프로토콜; 및 상기 캡슐화 패킷 내부에 집부된 원형 패킷을 추출하여 클라이언트의 IP 주소 정보를 서버로 전송하는 적어도 하나의 제2프로토콜 또는 브릿지 라우터를 포함한다.

본 발명의 일체에 의한 상기 제1프로토콜은 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하고, 소정의 캡슐화 프로토콜을 이용하여 상기 변경된 원형 패킷을 헤더와 페이로드로 이루어지는 캡슐화 패킷 내부에 집부하여 캡슐화를 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 순방향 패킷 재구성부; 및 상기 재구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 순방향 경로재생부를 포함하고, 상기 적어도 하나의 제2프로토콜 또는 브릿지 라우터는 상기 재구성 패킷의 헤더를 제거하고 상기 제구성 패킷의 캡슐화 패킷에 있는 상기 변경된 원형 패킷을 목적지로 전송하는 재구성 패킷 해체부를 포함하는 것을 특징으로 한다.

본 발명의 다른 측면에 의한 상기 제1프로토콜은 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷 내부에 집부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 순방향 패킷 재구성부; 및 상기 재구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 순방향 경로재생부를 포함하고, 상기 적어도 하나의 제2프로토콜 또는 브릿지 라우터는 상기 재구성 패킷의 헤더를 제거하고 상기 재구성된 패킷의 캡슐화 패킷에 있는 원형 패킷 헤더의 목적지 주소를 서버 주소로 변경하는 재구성 패킷 해체부를 포함하는 것을 특징으로 한다.
상기 적어도 하나의 제2프로토콜 또는 브릿지 라우터는 클라이언트 IP주소를
헤더에 포함하고 있는 서버 원형 패킷을 수신하여 상기 서버 원형 패킷 헤더의
소스 주소를 상기 제1프로토콜 주소로 변경한 후 상기 변경된 서버 원형 패킷을
소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화
패킷 내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여
서버 제구성 패킷으로 재구성하는 역방향 패킷 재구성부; 및 상기 서버 제구성
패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 역방향 경로제어부를
더 포함하고, 상기 제1프로토콜스는 상기 서버 제구성 패킷의 헤더를 제거하고 상기
소스 주소가 변경된 서버 원형 패킷의 목적지 주소로 전송하는 역방향 제구성
패킷 재구성을 더 포함하는 것을 특징으로 한다.

본 발명의 일측면에 의한 상기 적어도 하나의 제2프로토콜 또는 브릿지 라우터는
클라이언트 IP주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여 상기
서버 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로
이루어지는 캡슐화 패킷 내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여
서버 제구성 패킷으로 재구성하는 역방향 패킷 재구성부; 및 상기 서버 제구성
패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 역방향 경로제어부를
더 포함하고, 상기 제1프로토콜스는 상기 서버 제구성 패킷의 헤더를 제거하고 상기
서버 원형 패킷의 목적지 주소로 전송하는 역방향 제구성 패킷 해체부를 더
포함하는 것을 특징으로 한다.

상기 다른 기술적 과제를 이루기 위한 본 발명에 의한 캡슐화 프로토콜을
이루려하여 클라이언트의 IP 주소를 서버로 전송하는 중계 방법은, 클라이언트의
IP주소를 중계시스템을 통해 서버로 전송하는 방법에 있어서, 제1중계장치가
클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버
주소로 변경하는 단계; 상기 제1중계장치가 상기 변경된 원형 패킷을 상정의
캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷
내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여
패킷을 재구성하는 단계; 상기 제1중계장치가 상기 재구성된 패킷을 미리
설정된 경로를 이용하여 목적지로 전송하는 단계; 및 제2중계장치가 상기
재구성된 패킷의 헤더를 제거하고 상기 캡슐화 패킷을 추출하여 상기 캡슐화
패킷에 있는 상기 변경된 원형 패킷을 목적지로 전송하는 단계를 포함한다.

본 발명의 일측면에 의한 상기 패킷 재구성 단계는 클라이언트 IP주소를
헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된
원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로
이루어지는 캡슐화 패킷의 페이로드에 첨부하여 캡슐화 하고, 상기 캡슐화
패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 한다.
헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하여 상기 변경된 원형 패킷의 헤더에 포함된 정보를 원형패킷의 데이터 영역에 포함시키고, 상기 원형패킷의 데이터 영역에 포함된 정보를 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 페이로드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 한다.

본 발명의 또 다른 측면에 의한 상기 패킷 재구성 단계는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷 헤더에 포함된 클라이언트의 IP주소를 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 헤드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 단계; 상기 1중계장치가 상기 재구성된 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 단계; 및 제2중계장치가 상기 재구성된 패킷의 헤더를 제거하고 상기 캡슐화 패킷을 추출하여 상기 추출된 캡슐화 패킷에 있는 원형 패킷 헤더의 목적지 주소를 서버 주소로 변경하는 단계를 포함한다.

본 발명의 일측면에 의한 상기 패킷 재구성 단계는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 페이로드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 한다.

본 발명의 다른 측면에 의한 상기 패킷 재구성 단계는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 헤더에 포함된 정보를 원형패킷의 데이터 영역에 포함시키고, 상기 원형패킷의 데이터 영역에 포함된 정보를 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 페이로드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 한다.

본 발명의 또 다른 측면에 의한 상기 패킷 재구성 단계는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 헤더에 포함된 클라이언트의 IP주소를 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 헤드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 한다.

상기 다른 기술적 과제를 이루어기 위한 본 발명에 의한 캡슐화 프로토콜을
이용한 클라이언트 IP주소로의 데이터 패킷 중계 방법은, 제1중계장치가 클라이언트 IP주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여 상기 서버 원형 패킷 헤더의 소스 주소를 상기 제1프록시 주소로 변경하는 단계; 상기 제1중계장치가 상기 변경된 서버 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷 내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 서버 제구성 패킷으로 생성하는 단계; 상기 제1중계장치가 상기 서버 제구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 단계; 및 제2중계장치가 상기 서버 제구성 패킷의 헤더를 제거하여 캡슐화 패킷을 추출하고 상기 추출된 캡슐화 패킷에 있는 서버 원형 패킷을 상기 서버 원형 패킷의 목적지 주소로 전송하는 단계를 포함한다.

상기 다른 기술적 과제를 이루기 위한 본 발명의 한 헤더에 의한 클라이언트의 IP 주소를 이용한 클라이언트 IP주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여 상기 서버 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷 내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 서버 제구성 패킷으로 생성하는 단계; 상기 제1중계장치가 상기 서버 제구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 단계; 제2중계장치가 상기 서버 제구성 패킷의 헤더를 제거하여 캡슐화 패킷을 추출하고 상기 추출된 캡슐화 패킷에 있는 서버 원형 패킷의 헤더에 있는 소스 주소를 상기 제1프록시 주소로 변경하는 단계; 및 상기 제2중계장치가 상기 변경된 서버 원형 패킷을 미리 설정된 경로로 상기 서버 원형 패킷의 목적지 주소로 전송하는 단계를 포함한다.

상기 다른 기술적 과제를 이루기 위한 본 발명의 한 헤더에 의한 클라이언트의 IP 주소를 서버로 전송하는 중계 장치는, 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷 내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 제구성하는 순방향 패킷 제구성부; 및 상기 제구성된 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 순방향 경로제어부를 포함한다.

본 발명의 일측면에 의한 상기 순방향 패킷 제구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 페이로드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 제구성하는 것을 특징으로 한다.

상기 순방향 패킷 제구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하여 상기 변경된 원형 패킷의 헤더에 포함된 정보를 원형패킷의 헤더 영역에 포함시켜, 상기 원형패킷의 테이터
영역에 포함된 정보를 소정의 개수화 프로토콜을 이용하여 헤더와 패킷으로 이루어지는 개수화 패킷의 헤더로에 첨부하여 개수화 하고, 상기 개수화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 한다.

본 발명의 다른 측면에 의한 상기 순방향 패킷 재구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷 헤더에 포함된 클라이언트의 IP주소를 소정의 개수화 프로토콜을 이용하여 헤더와 패킷으로 이루어지는 개수화 패킷의 헤더에 첨부하여 개수화 하고, 상기 개수화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 한다.

상기 다른 기술적 과제를 이루어기 위한 본 발명의 클라이언트의 IP 주소를 서버로 전송하는 중계 장치는, 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 소정의 개수화 프로토콜을 이용하여 헤더와 패킷으로 이루어지는 개수화 패킷의 헤더에 첨부하여 개수화 하고, 상기 개수화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 순방향 패킷 재구성부; 및 상기 재구성된 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 순방향 경로제어부를 포함한다.

본 발명의 일측면에 의한 상기 순방향 패킷 재구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 소정의 개수화 프로토콜을 이용하여 헤더와 패킷으로 이루어지는 개수화 패킷의 헤더에 첨부하여 개수화 하고, 상기 개수화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 한다.

상기 순방향 패킷 재구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 헤더에 포함된 정보를 원형패킷의 데이터 영역에 포함시키고, 상기 원형패킷의 데이터 영역에 포함된 정보를 소정의 개수화 프로토콜을 이용하여 헤더와 패킷으로 이루어지는 개수화 패킷의 헤더에 첨부하여 개수화 하고, 상기 개수화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 한다.

본 발명의 다른 측면에 의한 상기 순방향 패킷 재구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 헤더에 포함된 클라이언트의 IP주소를 소정의 개수화 프로토콜을 이용하여 헤더와 패킷으로 이루어지는 개수화 패킷의 헤더에 첨부하여 개수화 하고, 상기 개수화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 한다.

상기 다른 기술적 과제를 이루어기 위한 본 발명의 클라이언트의 IP 주소를 서버로 전송하는 중계 장치는, 클라이언트 IP주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여 상기 서버 원형 패킷 헤더의 소스 주소를 제1프록시 주소로 변경한 후 상기 변경된 서버 원형 패킷을 소정의 개수화 프로토콜을 이용하여 헤더와 패킷으로 이루어지는 개수화 패킷 내부에 첨부하여 개수화 하고, 상기 개수화 패킷에 새로운 헤더를 부가하여 서버 재구성 패킷으로 재구성하는 역방향 패킷 재구성부; 및 상기 서버 재구성 패킷을 미리 설정된
경로를 이용하여 목적지로 전송하는 역방향 경로제어를 포함한다.

33. 상기 다른 기술적 과제를 이루기 위한 본 발명에 의한 클라이언트의 IP 주소를 서버로 전송하는 중계 장치는, 클라이언트 IP 주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여 상기 서버 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 레이어로 이루어지는 캡슐화 패킷 내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 서버 제구성 패킷으로 재구성하는 역방향 패킷 제구성부; 및 상기 서버 제구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 역방향 경로제어를 포함한다.

34. 그리고 상기 기재된 발명을 프로세서에 의해 실행되는 프로그램을 기록한 프로세서에 의해 읽을 수 있는 기록매체를 제공한다.

발명의 효과

35. 본 발명에 따른 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템(Proxy, Bridge Router) 및 방법에 의하면, 클라이언트와 서버 상호간 패킷의 원형을 전달받기 때문에 호스트 서버는 단말기의 IP 주소 등 헤더의 정보를 이용한 서비스가 가능하다. 즉 서버 측 L3 장비에서 상기한 정보를 이용할 수 있다.

36. 그리고 본 발명에 의하면, 클라이언트와 서버는 상호간의 통신이 마치 프록시를 이용하지 않고 클라이언트/서버 통신환경의 패킷을 주고 받게 되는 것처럼 보이므로, 프록시의 존재를 알지 못한다.

37. 또한 두 단말 사이에는 터널링 통신을 주고받게 되며, 단말기와 호스트 서버의 별다른 수정 및 프로그램 설치 없이 가능하다.

38. 또한 본 발명에 의하면, 캡슐화 프로토콜을 이용함으로써 보안상 유리하며, 캡슐화 패킷을 신속하게 찾을 수 있다.

도면의 간단한 설명

39. 도 1은 본 발명에 의한 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템의 구성에 대한 일시시예를 블록도로 나타낸 것이다.

40. 도 2는 도 1의 순방향 또는 역방향 전송시의 프로시스 및 브릿지 라우터의 구성에 대한 일 예를 블록도로 나타낸 것이다.

41. 도 3a는 본 발명의 실시예에서 사용되는 패킷 구조를 간단하게 나타낸 것이다.

42. 도 3b는 본 발명에 의한 중계시스템이 순방향 전송으로 동작할 때 상기 중계시스템 제1시시예의 패킷 구조를 나타낸 것이다.

43. 도 3c는 본 발명에 의한 중계시스템이 순방향 전송으로 동작할 때 상기 중계시스템 제2시시예의 패킷 구조를 나타낸 것이다.

44. 도 4a는 본 발명에 의한 중계시스템이 역방향 전송으로 동작할 때 상기 중계시스템 제1시시예의 패킷 구조를 나타낸 것이다.

45. 도 4b는 본 발명에 의한 중계시스템이 역방향 전송으로 동작할 때 상기
중계시스템 제2설시에의 패킷 구조를 나타낸 것이다.
[46] 도 5는 본 발명에 의한 중계시스템을 구성하는 프록시의 일 구현 예를 별도로 나타낸 것이다.
[47] 도 6은 본 발명에 의한 중계시스템을 구성하는 브릿지 라우터의 일 구현 예를 별도로 나타낸 것이다.
[48] 도 7a 내지 도 7c는 본 발명에 의한 중계시스템의 구성에 대한 다양한 실시예를 나타낸 것이다.
[49] 도 8은 클라이언트 1이 본 발명에 의한 중계시스템을 통해 서버1 또는 서버2로 패킷을 전송할 경우의 네트워크 구성도를 나타낸 것이다.
[50] 도 9는 본 발명에 의한 중계시스템의 전체적인 동작을 나타낸 것이다.
[51] 도 10은 순방향 전송시, 본 발명에 의한 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 방법에 대한 일시시 예를 흐름도로 나타낸 것이다.
[52] 도 11은 순방향 전송시, 본 발명에 의한 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 방법에 대한 다른 실시예를 흐름도로 나타낸 것이다.
[53] 도 12는 도 10 또는 도 11에 의한 순방향 전송이 이루어지고 난 후, 역방향 전송시 본 발명에 의한 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 방법에 대한 일시시예를 흐름도로 나타낸 것이다.
[54] 도 13은 도 10 또는 도 11에 의한 순방향 전송이 이루어지고 난 후, 역방향 전송시 본 발명에 의한 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 방법에 대한 다른 실시예를 흐름도로 나타낸 것이다.
[55] 도 14는 도 5에서 설명한 프록시에서의 패킷 처리흐름을 나타낸 것이다.
[56] 도 15는 도 6에서 설명한 브릿지 라우터에서의 패킷 처리흐름을 나타낸 것이다.
[57] 도 16은 본 발명에 의한 중계시스템을 통해 송수신되는 패킷의 일 예를 OSI 7 Layers중 Layer 3에서 나타낸 것이다.
[58] 도 17은 실제적인 범용 TCP 동신 패킷의 구조를 나타낸 것이다.
[59] 도 18은 TCP의 상위 계층(layer)의 데이터 암호 안에 필요한 정보를 점투한 패킷 형태를 나타낸 것이다.
[60] 도 19는 IP의 상위 계층에 캡슐화 프로프로토콜을 이용하여 필요한 정보를 점투한 패킷을 나타낸 것이다.
[61] 도 20은 CP 패로드 내부에 도 21 내지 도 24와 같은 형태의 패킷이 설리에 있는 것을 나타낸 것이다.
[63] 도 22는 캡슐화 프로토콜을 이용한 캡슐화 패킷의 패로드 영역 내부에 하위 계층의 헤더 L3, L4 헤더를 통해 필요한 클라이언트 정보를 점투한 패킷 형태를
나타낸 것이다.

[64] 도 23은 캡슐화 프로토콜을 이용한 캡슐화 패킷의 메이드 영역 내부에 하위 계층의 헤더를 포함시키지 않고 상위 계층의 데이터 내부에 필요한 정보를 첨부한 패킷 형태를 나타낸 것이다.

[65] 도 24는 캡슐화 프로토콜을 이용한 캡슐화 패킷의 메이드 영역은 상위 계층 데이터의 동일, 즉 필요한 정보는 캡슐화 프로토콜 헤더에 모두 첨부하는 것을 나타낸 것이다.

[66] 도 25는 캡슐화 프로토콜을 이용할 경우 클라이언트가 전송한 원형 패킷(2500)을 참조하여 목적지로 전송하기 위한 패킷을 생성하는 것을 나타낸 것이다.

발명의 실시에 대한 최선의 형태

[67] 이하, 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사항을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 근동물과 변형예들로 있을 수 있을음을 이해하여야 한다.

[68] 본 발명은 통신망에서 프록시(Proxy)를 이용하여 구성된 시스템에 접속하는 클라이언트의 정보를 서버에 제공하며, 특히 통신망에서 각종 중계장비를 이용하여 구축된 서버 통신망에서 클라이언트의 정보를 제공한다. 이 때 접속한 클라이언트가 전송하는 패킷 원형을 클라이언트와 서버의 변경 없이 제공한다. 여기서 패킷 원형이라 함은 클라이언트가 프록시에 전송하는 패킷의 원형이 아니라 클라이언트와 서버가 프록시 없이 직접 통신을 한다고 가정할 때, 클라이언트가 서버에 보내게 되는 패킷을 말한다.

[69] 도 1은 본 발명에 의한 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템의 구성에 대한 일시적 등을 블록도로 나타낸 것으로서, 상기 중계시스템(10)은 프록시(120) 및 브릿지 라우터(130)를 포함하여 이루어진다.

[70] 여기서, 설명의 편의를 위해, 클라이언트(110)에서 생성된 패킷을 프록시(120) 및 브릿지 라우터(130)를 통해 서버(140)로 전송하는 것을 순방향 전송이라 하고, 서버(140)에서 생성된 패킷을 브릿지 라우터(130) 및 프록시(120)를 통해 클라이언트(110)로 전송하는 것을 역방향 전송이라 정하기로 한다.

[71] 도 2는 도 1의 순방향 또는 역방향 전송시의 프록시(120, 210) 및 브릿지 라우터(130, 230)의 구성에 대한 일 예를 블록도로 나타낸 것이다. 프록시(120, 210)는 순방향으로 동작할 때, 순방향 판단부(212), 순방향 패킷제 구성부(214) 및 순방향 장로제어부(216)를 포함하고, 역방향으로 동작할 때는 역방향 변조패킷 해체부(218)를 포함한다.

[72] 그리고 브릿지 라우터(130, 230)는 순방향으로 동작할 때, 순방향 제구성패킷
해체부(238)을 포함하고, 역방향으로 동작할 때는 역방향 판단부(342), 역방향 패킷제구성부(234) 및 역방향 경로제어부(236)를 포함한다.

도 3a는 본 발명의 실시예에서 사용되는 패킷의 구조로 간단하게 나타낼 것으로서, 상기 패킷은 SA(300), DA(302) 및 DATA(304) 세 영역으로 구성될 수 있다. SA(Source Address, 300)는 소스(Source) 주소가 실리는 영역이며, DA(Destination Address, 302)는 목적지 주소가 실리는 영역으로서, SA 및 DA는 패킷의 헤더를 구성한다. DATA(304)는 전송하고자 하는 실제 데이터가 실리는 영역을 나타낸다. 패킷의 데이터 영역에 해당한다. 도 3a의 패킷 구조는 도 3b 내지 도 3c 및 도 4a 와 도 4b에서 동일하게 적용된다.

먼저, 순방향 전송시 본 발명에 의한 중계시스템(10)의 구성에 대한 실시예를 설명하기로 한다. 순방향 전송시 본 발명에 의한 중계시스템(10)은 프록시(120, 210) 및 브릿지 라우터(130, 230)를 포함하여 이루어지고, 브릿지 라우터(130)는 적어도 하나의 프록시 및 브릿지 라우터를 포함하여 구성될 수도 있다.

프록시(120, 210)는 클라이언트(110)의 IP주소를 헤더에 포함하고 있는 원형 패킷을 수신하고, 헤더와 페이로드로 이루어지는 컨술파 패킷 내부에 소정의 컨술파 프로토콜을 이용하여 상기 원형 패킷을 첨부하여 패킷을 재구성한다. 브릿지 라우터(130)는 상기 컨술파 패킷 내부에 첨부된 원형 패킷을 추출하여 클라이언트의 IP주소 정보를 서버(140)로 전송한다.

도 3b는 본 발명에 의한 중계시스템(10)의 순방향 전송으로 동작할 때 상기 중계시스템 제1실시예의 패킷 구조를 나타낸 것이다. 패킷 내의 숫자 1은 클라이언트의 IP주소, 2는 프록시(120)의 IP주소, 4는 서버의 IP주소, D는 데이터 영역을 나타낸다.

프록시(120,210)는 순방향 판단부(212), 순방향 패킷제구성부(214) 및 순방향 경로제어부(216)를 포함하여 이루어진다.

순방향 판단부(210)는 원형 패킷(320)의 변경이 필요하지 판단하고, 원형 패킷(320) 변경이 필요하면 패킷의 변경을 요청한다. 여기서 원형 패킷(320)에는 클라이언트(110)의 IP주소(1)를 헤더의 SA영역에 포함하고 있으며, DA영역에는 프록시 IP 주소(2)가 포함되어 있고, 데이터 영역(DATA)에는 데이터가 포함되어 있다.

순방향 패킷제구성부(214)는 순방향 판단부(212)의 패킷 변경 요청이 있으며, 원형 패킷(320)을 컨술파하여 제구성 패킷(330)으로 만든다. 보다 구체적으로 설명하면, 순방향 패킷제구성부(214)는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한다. 즉 상기 원형 패킷 헤더의 목적지 주소(2)를 서버주소(4)로 변경한다. 그리고 나서 소정의 컨술파 프로토콜을 이용하여 상기 변경된 원형패킷을 헤더와 페이로드로 이루어지는 컨술파 패킷 내부에 첨부하여 컨술파를 수행한다. 상기 컨술파 패킷에 새로운 헤더를 부가하여 제구성된 패킷(330)을 생성한다. 상기 새로운 헤더는 제구성 패킷(330)의 헤더로서, SA영역에는 소스 주소로서 프록시의 IP주소(2)가
포함되며, DA영역에는 목적지 주소로서 서버의 IP(4)가 포함된다. 참조번호 332는 재구성 패킷(370) 속에 캡슐화된 목적지 주소가 변경된 원형 패킷을 나타낸다. 상기 새로운 헤더는 SA영역에 소스주소로서 프록시(120)의 IP주소(2)를 포함하고, DA영역에는 목적지 주소로서 서버(140)의 IP주소(4)를 포함한다.

순방향 경로제어부(216)는 상기 재구성 패킷(330)을 미리 설정된 경로를 이용하여 목적지로 전송한다.

이 때 브릿지 라우터(130, 230)는 순방향 재구성 패킷 해체부(238)를 구비하며, 순방향 재구성 패킷 해체부(238)는 재구성 패킷(330)의 헤더를 제거(점선으로 표시)하고 상기 재구성 패킷의 캡슐화 패킷에 있는 상기 변경된 원형 패킷을 목적지인 서버(140)로 전송한다. 참조번호 340은 브릿지 라우터(130)에서 재구성 패킷(330)의 헤더를 제거(점선으로 표시)한 후의 패킷을 나타낸다. 참조번호 350은 서버(140)에서 수신한 패킷을 나타낸다. 여기서, 상기 브릿지 라우터(130)는 적어도 하나의 제2프록시 또는 브릿지 라우터로 구성될 수도 있다. 상술한 순방향 전송시 중계시스템의 제11단계는 원형패킷(320)의 목적지 주소(2)를 프록시(120)가 변경하여 캡슐화하는 것이 특징이다.

순방향 전송시 본 발명에 의한 중계시스템의 제21단계의 구성도 설명하기로 한다. 순방향 전송시 중계시스템의 제21단계는 원형 패킷(320)의 목적지 주소(2)를 프록시(120)에서 변경하지 않고 브릿지 라우터(130)에서 변경한다.

도 3c는 본 발명에 의한 중계시스템(10)이 순방향 전송으로 동작할 때 상기 중계시스템 제21단계의 패킷 구조를 나타낸 것이다. 패킷 내의 속자 1은 클라이언트의 IP주소, 2는 프록시(120)의 IP주소, 4는 서버(140)의 IP 주소, D는 데이터 영역을 나타낸다.

도 2와 도 3c를 참조하면, 순방향 판단부(212)는 원형 패킷(360)의 변경이 필요하지 판단하고, 패킷 변경이 필요하면 패킷의 변경을 요청한다.

순방향 판단부(212)의 패킷 변경 요청이 있으면, 순방향 패킷 재구성부(214)는 원형패킷(360)을 재구성 패킷(370)으로 재구성한다. 구체적으로 설명하면, 순방향 패킷 재구성부(214)는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 패이러드로 이루어지는 캡슐화 패킷 내부에 수록하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성한다.

참조번호 372는 재구성 패킷(370) 속에 캡슐화된 원형 패킷을 나타낸다. 상기 새로운 헤더는 재구성 패킷(330)의 헤더로서, SA영역에는 소스 주소로서 프록시의 IP주소(2)가 포함되며, DA영역에는 목적지 주소로서 서버의 IP(4)가 포함된다.

순방향 경로제어부(216)는 상기 재구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송한다.

그리고 브릿지 라우터(130, 230)은 순방향 재구성 패킷 해체부(238)를
구비하며, 순방향 제구성 패킷 해체부(238)는 상기 제구성 패킷(370)의 헤더를 제거하고 제구성 패킷(370)의 데이터 영역에 있는 원형 패킷 헤더의 목적지 주소를 서버 주소로 변경한다. 즉, 원형패킷의 DA 영역에 있는 프록시 IP 주소(2)를 서버의 IP 주소(4)로 변경한다. 참조번호 382는 원형 패킷의 목적지 주소(2)가 서버의 IP 주소(4)로 변경된 것을 나타낸다. 여기서, 상기 브릿지 라우터(130, 230)는 적어도 하나의 제2프록시 또는 브릿지 라우터로 구성될 수도 있다.

[89] 다음으로, 역방향 전송시 본 발명에 의한 중계시스템(110)의 구성에 대한 일시예를 설명하기로 한다.

[90] 도 4a는 본 발명에 의한 중계시스템(10)이 역방향 전송으로 동작할 때 상기 중계시스템 제1실시예의 패킷 구조를 나타낸 것이다. 패킷 내의 숫자 1은 클라이언트의 IP 주소, 2는 프록시(120)의 IP 주소, 3은 브릿지 라우터(130)의 IP 주소, 4는 서버(140)의 IP 주소, D는 데이터 영역을 나타낸다.

[91] 역방향 전송시 본 발명에 의한 중계시스템의 제1실시예에 구성의 브릿지 라우터(130, 230) 및 프록시(120, 210)를 포함하여 이루어진다. 상기 브릿지 라우터(130, 230)는 적어도 하나의 프록시 및 브릿지 라우터로 구성될 수도 있다.

[92] 브릿지 라우터(130, 230)는 도 2에 도시된 바와 같이 역방향 패킷 제구성부(234) 및 역방향 경로여부(236)를 포함하여 이루어지며, 역방향 판단부(232)를 더 포함할 수도 있다.

[93] 도 2와 도 4a를 참조하여, 역방향 전송시 본 발명에 의한 중계시스템의 제1실시예의 구성을 설명하기로 한다.

[94] 역방향 판단부(232)는 서버 원형 패킷(440)을 수신하여 서버 원형 패킷(440)의 변경이 필요할지 판단하고, 패킷 변경이 필요하면 패킷의 변경을 요청한다. 서버 원형 패킷(440)은 클라이언트(110)의 IP 주소를 헤더에 포함하고 있으며, 헤더의 SA 영역에는 서버(140)의 IP 주소, 헤더의 DA 영역에는 클라이언트(110)의 IP 주소(1)가 포함되어 있고, 데이터 영역에는 서버(140)가 클라이언트(110)에게 전송하는 데이터(D)가 포함되어 있다.

[95] 역방향 패킷 제구성부(234)는 역방향 판단부(232)의 패킷 변경 요청이 있으면, 클라이언트 IP 주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여 서버 원형 패킷(440)의 소스 주소를 상기 프록시(120, 210) 주소로 변경한 후 상기 변경된 서버 원형 패킷을 소정의 컨슈머 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 컨슈머 패킷 내부에 첨부하여 컨슈머를 수행하고, 상기 컨슈머 패킷에 새로운 헤더를 부가하여 서버 제구성 패킷으로 재구성한다.

[96] 도 4a를 설명하면, 서버 원형 패킷(440)은 SA 영역에는 서버의 IP 주소(4)가 포함되어 있고, DA 영역에는 클라이언트의 IP 주소(1)가 포함되어 있다. 역방향 패킷 제구성부(214)에 의해, 서버 원형 패킷(440)은 컨슈머화되고, 컨슈머화된 서버 원형 패킷(432)에 새로운 헤더가 부가되어 제구성 패킷(430)이 생성된다. 상기 새로운 헤더는 SA 영역에 서버(140)의 IP 주소(4)가 포함되고, DA 영역에는...
프폭시(120)의 IP주소(2)가 포함된다.

[97] 역방향 경로제어부(236)는 상기 서버 제구성 패킷(430)을 미리 설정된 경로로 이용하여 목적지로 전송한다.

[98] 프폭시(120, 210)는 역방향 제구성 패킷 해제부(218)를 더 포함하며, 역방향 제구성 패킷 해체부(218)는 서버 제구성 패킷(430)의 헤더를 제거하고 미리 설정된 경로로 상기 변경된 서버 원형 패킷(422) 헤더의 DA영역에 포함된 클라이언트 IP 주소(1)를 이용하여 클라이언트(110)로 전송한다.

[99] 역방향 전송시 본 발명에 의한 중계시스템(110)의 구성에 대한 제2실시예를 설명하기로 한다.

[100] 도 4b는 본 발명에 의한 중계시스템(10)의 역방향 전송으로 동작할 때 상기 중계시스템 제2실시예의 패킷 구조를 나타낸 것이다. 패킷 내의 숫자 1은 클라이언트의 IP주소, 2는 프폭시(120)의 IP주소, 3은 브릿지 라우터(130)의 IP주소, 4는 서버(140)의 IP 주소, D는 데이터 영역을 나타낸다.

[101] 역방향 전송시 본 발명에 의한 중계시스템의 제2실시예의 구성은 브릿지 라우터(130, 230) 및 프폭시(120, 210)를 포함하여 이루어진다. 상기 브릿지 라우터(130, 230)은 적어도 하나의 프폭시 및 브릿지 라우터로 구성될 수도 있다.

[102] 브릿지 라우터(130, 230)는 도 2에 도시된 바와 같이 역방향 패킷 제구성부(234) 및 역방향 경로제어부(236)를 포함하여 이루어지며, 역방향 판단부(232)를 더 포함할 수도 있다.

[103] 도 2와 도 4b를 참조하여, 역방향 전송시 본 발명에 의한 중계시스템의 제2실시예의 구성은 설명하기로 한다.

[104] 역방향 판단부(232)는 서버 원형 패킷(440)을 수신하여 서버 원형 패킷(440)의 변경이 필요하지 판단하고, 패킷 변경이 필요하면 패킷의 변경을 요청한다. 상기 서버 원형 패킷(440)은 클라이언트(110) IP주소를 헤더에 포함하고 있으며, 헤더의 SA영역에는 서버(140)의 IP 주소, 헤더의 DA 영역에는 클라이언트(110)의 IP주소(1)가 포함되어 있고, 데이터영역에는 서버(140)가 클라이언트(110)에게 전송하는 데이터(D)가 포함되어 있다.

[105] 역방향 패킷 제구성부(234)는 역방향 판단부(232)의 패킷 변경 요청이 있으면, 클라이언트 IP주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여 상기 서버 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷 내부에 첨부하여 캡슐화를 수행하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 서버 제구성 패킷(470)으로 재구성한다. 상기 새로운 헤더는 SA 영역에 서버(140)의 IP주소(4)가 포함되고, DA 영역에는 프폭시(120)의 IP주소(2)가 포함된다.

[106] 그리고 브릿지 라우터(130, 230)의 역방향 경로제어부(236)는 상기 서버 제구성 패킷(470)을 미리 설정된 경로를 이용하여 목적지로 전송한다.

[107] 그리고 프폭시(120, 210)는 역방향 패킷 해체부(218)를 더 구비한다. 상기 역방향 패킷 해체부(218)는 상기 서버 제구성 패킷(470)의 헤더를 제거하고 상기
서버 원형 패킷 헤더(472)의 소스 주소를 서버주소(4)에서 프록시 주소(2)로 변경한 후 변경된 서버 원형 패킷(462)을 상기 변경된 서버 원형 패킷(462)의 목적지 주소인 클라이언트의 IP주소(1)를 이용하여 클라이언트(110)로 전송한다.

도 5는 본 발명에 의한 중계시스템을 구성하는 프록시의 일 구현 예를 복록도로 나타낸 것으로서, 제1송수신부(510), 판단부(520), 차단부(530), 패킷변경부(540), 제2송수신부(550), 상태보고부(560) 및 설정부(570)를 포함하여 이루어진다.

제1송수신부(510)는 세션을 생성하여 설정된 목적지로 패킷을 중계한다. 판단부(520)는 판단 또는 판단의 입력 패킷에 대해 변조/복조 및 캡슐화/캡슐해제(encapsulation/decapsulation) 여부는 판단한다. 차단부(530)는 비정상 패킷에 대해 정상적으로 처리할 지 차단할지를 판단한다. 패킷변경부(540)는 전송된 패킷을 변경하는 모듈로서, Encapsulatin 또는 Decapsulation을 수행한다. 상기 Encapsulatin 또는 Decapsulation에 대해서는 후술하기로 한다.

상태보고부(560)는 장치의 상태 및 이상유무를 보고하는 모듈이다. 설정부(570)는 입력되는 패킷 또는 출력되는 패킷에 처리정책을 포함하는 저장하는 모듈이다. 여기서, 중계시스템의 구성 환경에 따라 차단부(530)는 제외 가능하다.

도 6은 본 발명에 의한 중계시스템을 구성하는 브릿지 라우터의 일 구현 예를 복록도로 나타낸 것으로서, 제1송수신부(610), 판단부(620), 패킷변경부(630), 판단부(640), 제2송수신부(650), 상태보고부(660) 및 설정부(670)를 포함하여 이루어진다.

제1송수신부(610)는 세션을 생성하여 설정된 목적지로 패킷을 중계한다. 판단부(620, 640)는 판단 또는 판단의 입력 패킷에 대해 변조/복조 및 캡슐화/캡슐해제(encapsulation/decapsulation) 여부는 판단한다. 패킷변경부(630)는 전송된 패킷을 변경하는 모듈로서, Encapsulatin 또는 Decapsulation을 수행한다. Encapsulatin 또는 Decapsulation에 대해서는 후술하기로 한다.

상태보고부(660)는 장치의 상태 및 이상유무를 보고하는 모듈이다. 설정부(670)는 입력되는 패킷 또는 출력되는 패킷에 처리정책을 포함하는 저장하는 모듈이다.

도 7a 내지 도 7c는 본 발명에 의한 중계시스템의 구성에 대한 다양한 실시예를 나타낸 것으로서, 중계장치 또는 프록시 소프트웨어가 적어도 2개 존재해야 한다. 중계장치는 다양한 네트워크 환경에 따라 클라이언트 또는 서버에 결합되어 구성될 수 있으며 별개의 장치로 클라이언트 또는 서버와 같은 네트워크 또는 다른 네트워크에 설치되어 사용될 수 있다.

도 7a에서 클라이언트(710)과 서버(716) 간의 패킷 송수신을 위한 중계시스템은 프록시(712) 및 브릿지 라우터(714)로 구성되고, 도 7b에서는
클라이언트(720)과 서버(726) 간의 패킷 송수신을 위한 중개시스템은 클라이언트에 설치된 프록시 소프트웨어(721), 프록시(722) 및 브릿지 라우터(724)로 구성된다. 도 7에서 클라이언트(730)과 서버(736) 간의 패킷 송수신을 위한 중개시스템은 프록시(732) 및 프록시(734)로 구성되고, 도 7d에서는 클라이언트(740)과 서버(744) 간의 패킷 송수신을 위한 중개시스템은 프록시(742) 및 서버(744)에 설치된 프록시 소프트웨어(745)로 구성되며, 프록시 소프트웨어(745)는 도 7a의 브릿지 라우터(714) 기능을 대체한다. 도 7e에서 클라이언트(750)과 서버(758) 간의 패킷 송수신을 위한 중개시스템은 브릿지 라우터(752), 프록시(754) 및 브릿지 라우터(756)로 구성된다.

[117] 도 8은 클라이언트 1(800)이 프록시(830), 라우터(840) 및 브릿지 라우터(850)으로 구성되는 본 발명에 의한 중개시스템을 통해 서버 1(880) 또는 서버 2(880)로 패킷을 전송할 경우의 네트워크 구성도를 나타낸 것이다. 클라이언트 1(800)이 프록시(830)를 통해 서버 1(880)에게 전달하는 경우, 프록시(830)는 클라이언트 1(800)이 전달한 패킷의 목적지 IP주소를 수정한 뒤 데이터 영역에 추가하고 라우터(840)에게 전달한다. 브릿지 라우터(850)는 패킷이 수정되었음을 통해, 프록시(830)를 이용한 클라이언트 1(800)의 정보와 프록시(830) 사용 여부를 판단한 뒤 서버 1(880)에게 패킷을 전달하고 서버 1(880)의 응답을 프록시(830)에 중계해 준다.

[118] 그리고 클라이언트 2(860)는 본 발명에 의한 중개시스템을 사용하지 않고 서버 1(880) 또는 서버 2(880)를 통해 서비스를 요청하고 서비스를 제공받는 경우를 나타낸다. 클라이언트 2(860)가 프록시(830)를 통하지 않고 서버 2(880)에게 직접 전달하는 경우, 브릿지 라우터(850)는 패킷의 수정 없이 서버 2(880)에게 바이패스(bypass)할 수 있다. 클라이언트 1, 클라이언트 2의 목적지가 서버 1(880) 또는 서버 2(880)가 아닌 경우 그대로 바이패스한다.

[119] 도 9는 본 발명에 의한 중개시스템의 전체적인 동작을 나타낸 것이다. 클라이언트(910)와 서버(940)에 존재하는 본 발명에 의한 중개시스템은 프록시(920) 및 브릿지 라우터(930)로 구성될 수 있으며, 클라이언트(910)가 서버(940)에게 접속할 경우, 프록시(920)는 클라이언트(910)가 전달한 패킷의 목적지 IP주소를 수정한 뒤 데이터 영역에 추가하고(encapsulation) 브릿지 라우터(930)에게 전달한다. 브릿지 라우터(930)는 패킷이 수정되었음을 알게, 프록시(920)를 이용한 클라이언트(910)의 정보와 프록시(920) 사용 여부를 판단한 뒤 프록시(920)에서 추가된 헤더를 제거하고(Decapsulation) 서버 (940)에게 패킷을 전달하고 서버(940)의 응답을 프록시(920)에 중계해 준다.

[120] 그리고, 클라이언트(950)와 서버(970) 간에 본 발명에 의한 중개시스템을 사용하지 않고 클라이언트(950)가 서버(970)에게 서비스를 요청하고 서비스를 제공 받을 경우에는, 프록시를 통하지 않고 브릿지 라우터(960)를 통해 패킷의 수정없이 패킷 송수신이 이루어진다.

[121] 도 10은 순방향 전송시, 본 발명에 의한 캡슐화 프로토콜을 이용하여
클라이언트의 IP 주소를 서버로 전송하는 중계 방법에 대한 일시시를 흐름도로 나타낸 것이다.

[122] 먼저, 제1중계장치가 패킷 송수신부를 통해 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 수신하고(S1010단계), 순방향 판단부를 통해 원형 패킷의 변경이 필요하지 판단하여 원형 패킷 변경이 필요하면 패킷의 변경을 요청한다.(S1010단계)

[123] 상기 제1중계장치는, 순방향 패킷변조부를 통해 상기 패킷 변경 요청이 있으면 상기 원형 패킷 헤더의 목적지 주소를 서버주소로 변경한 후(S1020단계), 상기 제1중계장치가 상기 변경된 원형 패킷을 소정의 컨슈미스 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 컨슈미스 패킷 내부에 첨부하여 컨슈미스화를 수행하고(S1030단계), 상기 컨슈미스화 패킷에 새로운 헤더를 부가하여 제구성 패킷을 생성하고, 순방향 경로제어부를 통해 상기 변조 패킷을 미리 설정된 경로를 이용하여 목적지로 전송한다.(S1040단계)

[124] 제2중계장치는 순방향 제구성 패킷 해체부를 통해 상기 제구성 패킷의 헤더를 제거하고 상기 컨슈미스 패킷을 추출하여(S1050단계), 상기 컨슈미스 패킷에 있는 상기 변경된 원형 패킷을 목적지로 전송한다.(S1060단계) 만일 원형 패킷의 변경이 필요하지 판단하여(S1010단계), 원형 패킷의 변경이 필요하지 않으면 원형패킷을 변조하지 않고 미리 설정된 경로를 따라 전송한다.(S1070단계)

[125] 이 11은 순방향 전송 시, 본 발명에 의한 클라이언트의 IP 주소를 서버로 전송하는 중계 방법에 대한 다른 실시예를 흐름도로 나타낸 것이다.

[126] 먼저, 제1중계장치는 패킷 송수신부를 통해 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 수신하고(S1100단계), 순방향 판단부는 원형 패킷의 변경이 필요하지 판단하여(S1110단계), 원형 패킷 변경이 필요하면 패킷의 변경을 요청한다.

[127] 상기 제1중계장치는, 순방향 패킷 제구성부를 통해 상기 패킷 변경 요청이 있으면, 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 소정의 컨슈미스 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 컨슈미스화 패킷 내부에 첨부하여 컨슈미스화를 수행하고(S1120단계), 상기 컨슈미스화 패킷에 새로운 헤더를 부가하여 제구성 패킷을 생성하고, 순방향 경로제어부를 통해 상기 제구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송한다.(S1130단계)

[128] 그리고 나서 제2중계장치는, 상기 제구성 패킷을 수신하여 순방향 제구성 패킷 해체부를 통해 제구성 패킷의 헤더를 제거하고 상기 컨슈미스화 패킷을 추출하여(S1140단계), 상기 추출된 컨슈미스화 패킷에 있는 원형 패킷 헤더의 목적지 주소를 서버주소로 변경한다.(S1150단계) 그리고 나서 상기 제구성 패킷의 데이터 영역에 있는 상기 변경된 원형 패킷을 목적지로 전송한다.(S1160단계) 만일 원형패킷의 변경이 필요하지 판단하여(S1110단계), 원형 패킷의 변경이 필요하지 않으면 원형패킷을 변조하지 않고 미리 설정된 경로를 따라
진송한다. (S1170단계)

[130] 상술한 도 10에서 캠플립 프로토콜을 이용하여 원형패킷을 캠플립 할 때 도 10의 S1020 단계 내지 S1040단계는 다음과 같이 이루어질 수 있다.

[131] 순방향 패킷 재구성은 도 18 또는 도 19에 도시된 패킷 형태와 같이, 제1심시에로서, 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷을 소정의 캠플립 프로토콜을 이용하여 헤더와 데이터로 이루어지는 캠플립 패킷(도 18의 1830 및 1840 또는 도 19의 1920 및 1930) 내부에 첨부하여 캠플립하고, 상기 캠플립 패킷에 새로운 헤더를 부가하여 패킷을 재구성한다.

[132] 상술한 도 11에서 캠플립 프로토콜을 이용하여 원형패킷을 캠플립 할 때 도 11의 S1120 단계 및 S1130단계는 다음과 같이 이루어질 수 있다. 순방향 패킷 재구성부(214)는 도 18 또는 도 19에 도시된 패킷 형태와 같이, 제2심시에로서, 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 목적지 주소 변경없이 소정의 캠플립 프로토콜을 이용하여 헤더와 데이터로 이루어지는 캠플립 패킷(도 18의 1830 및 1840 또는 도 19의 1920 및 1930) 내부에 첨부하여 캠플립하고, 상기 캠플립 패킷에 새로운 헤더를 부가하여 패킷을 재구성한다.

[133] 보다 구체적으로, 도 10 및 도 11에서의 상기 순방향 패킷 재구성은 변경된 원형패킷에 실린 클라이언트 정보를 상기 캠플립 패킷의 헤이로드에 첨부하거나 헤더에 첨부할 수 있다.

[134] 도 21 및 도 22는 순방향 패킷 재구성이 변경된 원형패킷에 실린 클라이언트 정보를 상기 캠플립 패킷의 헤이로드에 첨부한 경우의 일 예를 나타낸 것이다. 이 때 도 10에서의 순방향 패킷 재구성은 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷을 소정의 캠플립 프로토콜을 이용하여 헤더와 데이터로 이루어지는 캠플립 패킷의 헤이로드에 첨부하여 캠플립하고, 상기 캠플립 패킷에 새로운 헤더를 부가하여 패킷을 재구성한다. 또한 도 11에서의 순방향 패킷 재구성은 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하지 않고 원형 패킷을 그대로 소정의 캠플립 프로토콜을 이용하여 헤더와 데이터로 이루어지는 캠플립 패킷의 헤이로드에 첨부하여 캠플립하고, 상기 캠플립 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것에 의해 이루어질 수도 있다.

[135] 도 23은 순방향 패킷 재구성이 변경된 원형패킷에 실린 클라이언트 정보를 상기 캠플립 패킷의 헤이로드에 첨부한 경우의 다른 예를 나타낸 것이다. 이 때 도 10에서의 순방향 패킷 재구성은 다음과 같이 이루어진다. 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하여 상기 변경된 원형 패킷의 헤더에 포함된 정보를 원형패킷의 데이터 영역에 포함시킨 후, 상기 원형패킷의 데이터 영역에 포함된 정보(2310)를 소정의 캠플립 프로토콜을 이용하여 헤더와 헤이로드로 이루어지는 캠플립
패킷의 페이로드(2300)에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 제구성한다. 또한 도 11에서의 순방향 패킷 제구성은 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하지 않고 상기 원형 패킷의 헤더에 포함된 정보를 원형패킷의 데이터 영역에 포함시킨 후, 상기 원형패킷의 데이터 영역에 포함된 정보(2310)를 소정의 히트스톤 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 페이로드(2300)에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 제구성하는 것에 의해 이루어질 수도 있다.

도 24는 순방향 패킷 제구성을 위해, 변경된 원형패킷에 실린 클라이언트 정보를 상기 캡슐화 패킷의 헤더에 첨부한 경우를 나타낸 것이다. 이 때 도 10에서의 순방향 패킷 제구성은 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷 헤더에 포함된 클라이언트의 IP주소를 소정의 히트스톤 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 헤더(2010)에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 제구성함에 의해 이루어진다.

또한 도 11에서의 상기 순방향 패킷 제구성은 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하지 않고 원형 패킷 헤더에 포함된 클라이언트의 IP주소를 소정의 히트스톤 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 헤더(2010)에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 제구성함에 의해 이루어질 수도 있다.

도 12은 도 10 또는 도 11에 의한 순방향 전송이 이루어지고 난 후, 역방향 전송시 본 방행에 의한 클라이언트의 IP주소를 서버로 전송하는 채널 방법에 대한 일시시해를 흘러도르 나타낸 것이다.

먼저, 제1중계장치는 패킷 송수신부를 통해 클라이언트 IP주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하고(S1200단계), 역방향 탐색부를 통해 상기 서버 원형 패킷의 변경이 필요하지 판단하고, 패킷 변경이 필요하면 패킷의 변경을 요청한다.(S1210단계)

상기 패킷 변경 요청이 있으면, 상기 제1중계장치는 역방향 패킷변조부를 통해 상기 서버 원형 패킷 헤더의 소스 주소를 상기 제1프록시 주소로 변경하고(S1220단계), 상기 제1중계장치가 상기 변경된 서버 원형 패킷을 소정의 히트스톤 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷 내부에 첨부하여 캡슐화를 수행하고(S1230단계), 상기 데이터 영역에 새로운 헤더를 부가하여 서버 제구성 패킷을 생성하고, 역방향 경로제어부를 통해 상기 서버 제구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송한다.(S1240단계)

그리고 나서 제2중계장치는 역방향 제구성 패킷 해체부를 통해 상기 서버
제2중계장치는 양방향 패킷 제구성패킷 해체부로 통한 서비스 변조 패킷을 수신한 후 전송하는 서비스 역량을 제한하여 패킷 수신에 할당되게 한다. 패킷 수신을 수신하는 서버 모드의 환경을 제한하여 패킷 수신을 수신한 서버 모드의 환경을 제한한다. 패킷 수신을 수신한 서버 모드의 환경을 제한한다.(S160단계)

도 5에서 설명한 프록시에서의 패킷 처리흐름을 나타낸 것이다. 먼저, 제2중계장치는 패킷 수신을 수신하면, 패킷 처리에 필요한 패킷 적용시 주소를 설정한다. 패킷 적용시 주소를 설정한 후, 패킷 적용시 주소를 설정한 패킷 적용시 주소를 설
도 15는 도 6에서 설명한 브렛지 라우터에서의 패킷 처리흐름을 나타낸 것이다. 먼저, 제1송수신부(610)가 패킷을 수신하면(S1500단계), 설정부(670)는 패킷 처리정책을 판단한다.(S1510단계) 패킷 재구성이 필요하면(S1520단계), 패킷을 재구성하고(S1530단계), 재구성된 패킷을 전송한다.(S1540단계) 만일 패킷 재구성이 필요하지 않으면 수신된 패킷을 재구성하지 않고 패킷을 전송한다.(S1550단계)

도 16은 본 발명에 의한 중계시스템을 통해 송수신되는 패킷의 일 예를 OSI 7 Layers중 Layer 3에서 나타낸 것이다.

한편, 본 발명에 의한 중계시스템이 적용된 서버와 클라이언트 간의 통신을 통하여 en-capsulation과 de-capsulation과정에 대한 실제적인 구현 예를 설명하기로 한다.

도 17은 실제적인 범용 TCP 통신 패킷의 구조를 나타낸 것으로서, Mac 헤더(1700), IP 헤더(1710), TCP 헤더(1720), 상위계층 데이터(1730), FCS(1740)로 구성된다.

먼저, 도 1을 참조하여, 클라이언트(110)가 TCP 정보를 전송하고 서버(140)가 응답을 하는 것으로 가정한다. 순방향 전송에서의 인캡슐레이션(en-capusluation)과 디캡슐레이션(de-capusluation)을 설명한다. 도 1을 참조하면, 클라이언트(110)가 프록시(120)에게 보내는 데이터는 도 17에 도시된 형태의 패킷이다. OSI 7 layer의 layer 3에 해당하는 L3 IP 헤더(1710)의 소스 주소(source address)는 클라이언트(110)의 주소이며, 목적지 주소(destination address)는 프록시(120)의 IP 주소이다. 마찬가지로 layer 4인 L4 TCP 헤더(1720)의 소스 포트(port)는 클라이언트(110)의 출발지 포트이고, 목적지 포트는 프록시(120)의 열려있는(bound) 포트이다.

프록시(120)는 설정된 값에 따라 프록시(120)로 접근하는 클라이언트(110)의 정보를 이용하여 전송하고자 하는 패킷에 캡슐화 프로토콜을 이용하여 클라이언트(110)의 정보를 첨부하고, 도 18 또는 도 19와 같은 형태의 패킷을 재구성하는데, 이를 인캡슐레이션(En-Capsulation)이라 한다.

여기서 클라이언트(110)에서 소프트웨어적으로 인캡슐레이션 할 수도 있는데, 이러한 경우에는 프록시(120)는 별도의 인캡슐레이션을 수행하지 않고 바이패스(bypass)한다. 또한 상기 인캡슐레이션을 클라이언트(110)에서 소프트웨어적으로 하고 싶다고 프록시(120)에서 수행할 수도 있다. 이 때 프록시(120)에서의 패킷 설정된 값의 인캡슐레이션은 클라이언트(110)에서 소프트웨어적으로 처리했는지 아니면 프록시(120)에서 인캡슐레이션할지를 나타내는 값이 된다.

도 25는 캡슐화 프로토콜을 이용할 경우 클라이언트가 전송한 원형 패킷(2500)을 참조하여 목적지로 전송하기 위한 패킷을 생성하는 것을 나타낸 것이다.

도 25를 참조하면, 캡슐화 프로토콜을 이용하여, 도 18 또는 19와 같이
침부는 위치를 설정할 수 있다. 도 25에서 오리지널 패킷의 변조하한 오리지널 패킷(2500)을 목적지로 전송하기 위한 패킷(2510)으로 생성할 때, CP 페이로드(2520)에 오리지널 패킷(2500) 중에서 도 21 내지 도 24와 같은 형태의 패킷이 설립할 수 있는 것을 말한다. 즉 클라이언트가 전송한 오리지널 패킷 중 목적지 정보를 프록시가 아닌 서버의 주소로 변경해 준다.

[158] 보다 구체적으로 도 24와 같이 CP 헤더(1830, 1920) 안에 클라이언트 정보를 포함시키거나 도 21 내지 도 24와 같이 CP 페이로드(1840, 1930)안에 클라이언트 정보를 첨부할 수 있다. 도 20은 CP 페이로드 내부에 도 21 내지 도 24와 같은 형태의 패킷이 설립할 것을 나타낸 것이다. 이 외에 많은 경우의 수가 존재하며, 중요한 것은 클라이언트 정보를 프록시(120)가 패킷 내부에 캡슐화 프로토콜을 이용하여 첨부한다는 것이다. 상기 오리지널 패킷 변조 기능은 프록시와 브릿지 라우터 들 중 어디에서든 이루어질 수 있다.

[159] 그리고, 상술한 인캡슐레이션은 본 발명에 의한 중개장치의 순방향 패킷 재구성부로 구성될 수 있다. 여기서 중개장치는 도 1과 도 2에 도시된 프록시(120, 210) 또는 브릿지 라우터(130, 230)가 될 수 있다. 본 발명에 의한 중개장치는 순방향 패킷 재구성부(214)와 순방향 패킷 경로제어부(216)를 포함하여 이루어진다.

[160] 순방향 패킷 재구성부(214)는 도 18 또는 도 19에 도시된 패킷 형태와 같이, 제1실시예에서, 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷(도 18의 1830 및 1840 또는 도 19의 1920 및 1930) 내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성한다.

[161] 순방향 패킷 재구성부(214)는 도 18 또는 도 19에 도시된 패킷 형태와 같이, 제2실시예에서, 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 목적지 주소 변경없이 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷(도 18의 1830 및 1840 또는 도 19의 1920 및 1930) 내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성한다.

[162] 그리고 순방향 경로제어부는 재구성된 패킷을 미리 설정된 경로를 이용하여 목적지로 전송한다.

[163] 보다 구체적으로, 순방향 패킷 재구성부(214)는 변경된 원형패킷에 설린 클라이언트 정보를 상기 캡슐화 패킷의 페이로드에 첨부하거나 헤더에 첨부할 수 있다.

[164] 도 21 및 도 22는 순방향 패킷 재구성부(214)가 변경된 원형패킷에 설린 클라이언트 정보를 상기 캡슐화 패킷의 페이로드에 첨부한 경우의 일 예를 나타낸 것이다. 이 때 순방향 패킷 재구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형
패킷을 소정의 캐스캐일프로토콜을 이용하여 헤더와 패이로드로 이루어지는 캐스캐일패킷의 패이로드에 포함하여 캐스캐일화하고, 상기 캐스캐일패킷에 새로운 헤더를 부가하여 패킷을 재구성한다. 또한 순방향 패킷 제구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하지 않고 원형 패킷을 그대로 소정의 캐스캐일프로토콜을 이용하여 헤더와 패이로드로 이루어지는 캐스캐일패킷의 패이로드에 포함하여 캐스캐일화하고, 상기 캐스캐일패킷에 새로운 헤더를 부가하여 패킷을 재구성할 수도 있다.

도 23은 순방향 패킷 제구성부(214)가 변경된 원형패킷에 설린 클라이언트 정보를 상기 캐스캐일패킷의 패이로드에 포함한 경우의 다른 예를 나타낸 것이다. 이 때 순방향 패킷 제구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하여 상기 변경된 원형 패킷의 헤더에 포함된 정보를 원형패킷의 테이터 영역에 포함시킨 후, 상기 원형패킷의 테이터 영역에 포함된 정보(2310)를 소정의 캐스캐일프로토콜을 이용하여 헤더와 패이로드로 이루어지는 캐스캐일패킷의 패이로드(2300)에 첨부하여 캐스캐일화하고, 상기 캐스캐일패킷에 새로운 헤더를 부가하여 패킷을 재구성한다. 또한 순방향 패킷 제구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하지 않고 상기 원형 패킷의 헤더에 포함된 정보를 원형패킷의 테이터 영역에 포함시킨 후, 상기 원형패킷의 테이터 영역에 포함된 정보(2310)를 소정의 캐스캐일프로토콜을 이용하여 헤더와 패이로드로 이루어지는 캐스캐일패킷의 패이로드(2300)에 첨부하여 캐스캐일화하고, 상기 캐스캐일패킷에 새로운 헤더를 부가하여 패킷을 재구성할 수도 있다.

도 24는 순방향 패킷 제구성부(214)가 변경된 원형패킷에 설린 클라이언트 정보를 상기 캐스캐일패킷의 헤더에 첨부한 경우를 나타낸 것이다. 이 때 순방향 패킷 제구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷 헤더에 포함된 클라이언트의 IP주소를 소정의 캐스캐일프로토콜을 이용하여 헤더와 패이로드로 이루어지는 캐스캐일패킷의 헤더(210)에 첨부하여 캐스캐일화하고, 상기 캐스캐일패킷에 새로운 헤더를 부가하여 패킷을 재구성한다. 또한 상기 순방향 패킷 제구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하지 않고 원형 패킷 헤더에 포함된 클라이언트의 IP주소를 소정의 캐스캐일프로토콜을 이용하여 헤더와 패이로드로 이루어지는 캐스캐일패킷의 헤더(210)에 첨부하여 캐스캐일화하고, 상기 캐스캐일패킷에 새로운 헤더를 부가하여 패킷을 재구성할 수도 있다.

그리고, 본 발명에 의한 중계장치가 도 2의 브릿지 라우터가 될 경우, 역방향 패킷 제구성부(234)를 더 포함할 수 있다. 이 때, 상기 역방향 패킷 제구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여 상기 서버 원형 패킷 헤더의 소스 주소를 제1프록시 주소로 변경한 후 상기 변경된 서버 원형 패킷을 소정의 캐스캐일프로토콜을 이용하여 헤더와 패이로드로
이루어지는 커뮤터 패킷 내부에 첨부하여 커뮤터화 하고, 상기 커뮤터화 패킷에 새로운 헤더를 부가하여 서버 제구성 패킷으로 제구성한다. 또한 상기 역방향 패킷 제구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여, 상기 서버 원형 패킷 헤더의 소스 주소를 제1프로토시 주소로 변경하지 않고 상기 서버 원형 패킷을 소정의 커뮤터 프로토콜을 이용하여 헤더와 페이드리포 이루어지는 커뮤터화 패킷 내부에 첨부하여 커뮤터화 하고, 상기 커뮤터화 패킷에 새로운 헤더를 부가하여 서버 제구성 패킷으로 제구성할 수도 있다.

[168] 한편 순방향 전송에서 de-capsulation을 설명하면, 브릿지 라우터(130)는 서버(140)로 향하는 패킷을 탐지하여, 첨부되어 있는 클라이언트(110)의 정보를 추출한다.

[169] 커뮤터 프로토콜을 이용하여 CP 페이로그(1840, 1930)에 클라이언트 정보가 실려있는 경우, 즉 CP 페이로그(1840, 1930) 내부에 미리 수신된 하위 계층의 헤더가 포함된 경우, CP헤더와 CP 헤더 앞단의 데이터를 제거하고 CP 페이로그 내용을 서버로 전송한다.

[170] 커뮤터 프로토콜을 이용하여 CP 헤더(1830, 1920)에 클라이언트 정보가 실려있는 경우, CP 헤더를 제거한 후, L3 IP 헤더와 L4 TCP 헤더의 정보(소스 주소, 소스 포트)를 수정한다.

[171] 이 때, 클라이언트(110)의 정보와 실제 데이터 전송지인 프록시(120)의 정보를 소스 테이블에 기록해 둔다. 그 후 클라이언트(110)의 정보를 이용하여 패킷을 도 17과 같은 형태로 제구성하는데, 이를 디컴플레이션(de-capsulation)이라 한다.

[172] 서버(140)에 도착한 패킷의 출발지 정보는 본 발명에서 의도한 대로 클라이언트(110)의 정보가 되며, 서버(140)는 해당 정보를 이용할 수 있다.

[173] 여기에서, 상기 de-capsulation은 en-capsulation에서 클라이언트 정보를 첨부하는 방식에 따라 달라진다. 본 발명에서 중요한 것은 서버(140)로 라우팅되는 패킷의 정보를 추출하여 출발지를 클라이언트로 변조한다는 것과 변조되는 패킷의 클라이언트 정보와 실제 송신자인 프록시(120)의 정보를 캐싱(caching)한다는 것이다.

[174] 다음으로 역방향 전송에서의 en-capsulation(en-capsulation)와 de-capsulation(de-capsulation)을 설명한다. 도 1을 참조하면, 서버(140)는 응답으로, 클라이언트(110)에게 데이터를 전송한다. 여기서, 서버(140)가 수신한 데이터는 프록시(120)로부터 요청된 데이터이지만 브릿지 라우터(130)에 의해 패킷이 변조되어 요청데이터의 소스 주소로 서버(140)의 응답 데이터를 전송한다.

[175] 브릿지 라우터(130)는 출력되는 패킷의 out bound 패킷의 목적지 주소를 주소 테이블의 목록에서 검색한다. 여기서 상기 주소 테이블은 상기 순방향 전송에서 기록해 둔 클라이언트(110)의 정보와 실제 데이터 전송지의 정보 테이블이다. 매칭되는 주소가 존재할 경우 브릿지 라우터(130)는 해당 정보를 이용하여 패킷을 제구성한다. 여기서 정상적인 네트워크 통신이 이루어지기 위해 목적지를 클라이언트가 아닌 실제 데이터 전송지로 변경한다.
프록시(120)는 수신한 패킷을 도 3의 형태로 재구성(de-capsulation)한 후 클라이언트(110)로 중계해 준다. 패킷의 출발지 정보는 프록시(120)의 정보로 변경된다.

클라이언트(110)는 프록시(120)로부터 응답 패킷을 받는다.

본 발명은 컴퓨터로 읽을 수 있는 기록 매체에 컴퓨터(정보 처리 기능을 갖는 장치를 모두 포함한다)가 읽을 수 있는 코드로서 구성하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록 매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록 장치를 포함한다. 컴퓨터가 읽을 수 있는 기록 장치의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등이 있다.

본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사항에 의해 정해져야 할 것이다.

산업상 이용가능성

통신망을 통한 클라이언트와 서버 간의 중계시스템에 이용가능하다. 특히 중계장비 예를 들어 프록시(Proxy) 또는 게이트웨이(Gateway)를 통한 유무선 통신 시에 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템(Proxy, Bridge Router)에 이용가능하다.
청구범위

[청구항 1] 클라이언트의 IP주소를 서버로 전송하는 중계 시스템에 있어서, 상기 클라이언트의 IP주소를 헤더에 포함하고 있는 원형 패킷을 수신하고, 헤더와 페이지로드로 이루어지는 캡슐화 패킷 내부에 소정의 캡슐화 프로토콜을 이용하여 상기 원형 패킷을 첨부하여 패킷을 재구성하는 제1프로토스; 및
상기 캡슐화 패킷 내부에 첨부된 원형 패킷을 추출하여 클라이언트의 IP주소 정보를 서버로 전송하는 적어도 하나의 제2프로토스 또는 브릿지 라우터를 포함하는 것을 특징으로 하는 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템.

[청구항 2] 제1항에 있어서, 상기 제1프로토스는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하고, 소정의 캡슐화 프로토콜을 이용하여 상기 변경된 원형패킷을 헤더와 페이지로드로 이루어지는 캡슐화 패킷 내부에 첨부하여 캡슐화를 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 순방향 패킷 재구성부; 및
상기 재구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 순방향 경로제어부를 포함하고.
상기 적어도 하나의 제2프로토스 또는 브릿지 라우터는 상기 재구성 패킷의 헤더를 제거하고 상기 재구성 패킷의 캡슐화 패킷에 있는 상기 변경된 원형 패킷을 목적지로 전송하는 재구성 패킷 해체부를 포함하는 것을 특징으로 하는 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템.

[청구항 3] 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이지로드로 이루어지는 캡슐화 패킷 내부에 첨부하여 캡슐화를 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 순방향 패킷 재구성부; 및
상기 재구성된 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 순방향 경로제어부를 포함하고.
상기 적어도 하나의 제2프로토스 또는 브릿지 라우터는 상기 재구성된 패킷의 헤더를 제거하고 상기 재구성된 패킷의 캡슐화 패킷에 있는 원형 패킷 헤더의 목적지 주소를 서버 주소로 변경하는 재구성 패킷 해체부를 포함하는 것을 특징으로 하는
[청구항 4]
클래스화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템.
제1항에 있어서, 상기 적어도 하나의 제2프로토시 또는 브릿지 라우터는
클라이언트 IP주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여 상기 서버 원형 패킷 헤더의 소스 주소를 상기 제1프로토시 주소로 변경한 후 상기 변경된 서버 원형 패킷을 소정의 클래스화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 클래스화 패킷 내부에 첨부하여 클래스화 하고, 상기 클래스화 패킷에 새로운 헤더를 부가하여 서버 제구성 패킷으로 제구성하는 역방향 패킷 제구성부; 및
상기 서버 제구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 역방향 경로제어부를 더 포함하고,
상기 제1프로토시는
상기 서버 제구성 패킷의 헤더를 제거하고 상기 소스 주소가 변경된 서버 원형 패킷의 목적지 주소로 전송하는 역방향 제구성 패킷 해체부를 더 포함하는 것을 특징으로 하는 클래스화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템.

[청구항 5]
제1항에 있어서, 상기 적어도 하나의 제2프로토시 또는 브릿지 라우터는
클라이언트 IP주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여 상기 서버 원형 패킷을 소정의 클래스화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 클래스화 패킷 내부에 첨부하여 클래스화 하고, 상기 클래스화 패킷에 새로운 헤더를 부가하여 서버 제구성 패킷으로 제구성하는 역방향 패킷 제구성부; 및
상기 서버 제구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 역방향 경로제어부를 더 포함하고,
상기 제1프로토시는
상기 서버 제구성 패킷의 헤더를 제거하고 상기 서버 원형 패킷 헤더의 소스 주소를 상기 제1프로토시 주소로 변경한 후 변경된 서버 원형 패킷을 미리 설정된 경로로 상기 서버 원형 패킷의 목적지 주소로 전송하는 역방향 제구성 패킷 해체부를 더 포함하는 것을 특징으로 하는 클래스화 프로토콜을 이용하여 클라이언트의 IP 주소를 서버로 전송하는 중계 시스템.

[청구항 6]
클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷을 소정의 클래스화
프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷 내부에 포함하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 순방향 패킷 재구성부; 및 상기 재구성된 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 순방향 경로제어부를 포함하는 것을 특징으로 하는 중계장치.

[청구항 7] 제6항에 있어서, 상기 순방향 패킷 재구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 페이로드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 하는 중계장치.

[청구항 8] 제7항에 있어서, 상기 순방향 패킷 재구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하여 상기 변경된 원형 패킷의 헤더에 포함된 정보를 원형패킷의 데이터 영역에 포함시키고, 상기 원형패킷의 데이터 영역에 포함된 정보를 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 페이로드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 하는 중계장치.

[청구항 9] 제6항에 있어서, 상기 순방향 패킷 재구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷 헤더에 포함된 클라이언트의 IP주소를 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 헤더에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특징으로 하는 중계장치.

[청구항 10] 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷 내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 순방향 패킷 재구성부; 및 상기 재구성된 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 순방향 경로제어부를 포함하는 것을 특징으로 하는 중계장치.

[청구항 11] 제10항에 있어서, 상기 순방향 패킷 재구성부는
클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 소정의 캐스처 프로토콜을 이용하여 헤더와 페이지로 이루어지는 캐스처 패킷의 페이지로에 할당하여 캐스처화 하여, 상기 캐스처화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특정으로 하는 중계장치.

[청구항 12] 제11항에 있어서, 상기 순방향 패킷 재구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 헤더에 포함된 정보를 원형패킷의 데이터 영역에 포함시키고, 상기 원형패킷의 데이터 영역에 포함된 정보를 소정의 캐스처 프로토콜을 이용하여 헤더와 페이지로 이루어지는 캐스처 패킷의 헤드에 할당하여 캐스처화 하고, 상기 캐스처화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특정으로 하는 중계장치.

[청구항 13] 제10항에 있어서, 상기 순방향 패킷 재구성부는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 헤더에 포함된 클라이언트의 IP주소를 소정의 캐스처 프로토콜을 이용하여 헤더와 페이지로 이루어지는 캐스처 패킷의 헤드에 할당하여 캐스처화 하고, 상기 캐스처화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특정으로 하는 중계장치.

[청구항 14] 클라이언트 IP주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여 상기 서버 원형 패킷 헤더의 소스 주소를 제1프로토콜 주소로 변경한 후 상기 변경된 서버 원형 패킷을 소정의 캐스처 프로토콜을 이용하여 헤더와 페이지로 이루어지는 캐스처 패킷 내부에 할당하여 캐스처화 하고, 상기 캐스처화 패킷에 새로운 헤더를 부가하여 서버 재구성 패킷으로 재구성하는 역방향 패킷 재구성부; 및 상기 서버 재구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 역방향 경로제어부를 포함하는 중계장치.

[청구항 15] 클라이언트 IP주소를 헤더에 포함하고 있는 서버 원형 패킷을 수신하여 상기 서버 원형 패킷을 소정의 캐스처 프로토콜을 이용하여 헤더와 페이지로 이루어지는 캐스처 패킷 내부에 할당하여 캐스처화 하고, 상기 캐스처화 패킷에 새로운 헤더를 부가하여 서버 재구성 패킷으로 재구성하는 역방향 패킷 재구성부; 및 상기 서버 재구성 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 역방향 경로제어부를 포함하는 중계장치.

[청구항 16] 클라이언트의 IP주소를 중계시스템을 통해 서버로 전송하는 방법에 있어서,
제1중계장치가 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하는 단계;
상기 제1중계장치가 상기 변경된 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷 내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 단계;
상기 제1중계장치가 상기 재구성된 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 단계; 및
제2중계장치가 상기 재구성된 패킷의 헤더를 제거하고 상기 캡슐화 패킷을 추출하여 상기 캡슐화 패킷에 있는 상기 변경된 원형 패킷을 목적지로 전송하는 단계를 포함하는 것을 특별으로 하는 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 중계시스템을 통해 서버로 전송하는 방법.

[청구항 17]

제16항에 있어서, 상기 패킷 재구성 단계는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 페이로드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특별으로 하는 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 중계시스템을 통해 서버로 전송하는 방법.

[청구항 18]

제17항에 있어서, 상기 패킷 재구성 단계는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경하여 상기 변경된 원형 패킷의 헤더에 포함된 정보를 원형패킷의 데이터 영역에 포함시키고, 상기 원형패킷의 데이터 영역에 포함된 정보를 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 페이로드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특별으로 하는 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 중계시스템을 통해 서버로 전송하는 방법.

[청구항 19]

제16항에 있어서, 상기 패킷 재구성 단계는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 목적지 주소를 서버 주소로 변경한 후 변경된 원형 패킷 헤더에 포함된 클라이언트의 IP주소를 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 헤드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특별으로 하는 캡슐화 프로토콜을 이용하여
클라이언트의 IP 주소를 중계시스템을 통해 서버로 전송하는 방법.

[청구항 20]
제1중계장치가 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷 내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 단계; 상기 제1중계장치가 상기 재구성된 패킷을 미리 설정된 경로를 이용하여 목적지로 전송하는 단계; 및 제2중계장치가 상기 재구성된 패킷의 헤더를 제거하고 상기 캡슐화 패킷을 추출하여 상기 추출된 캡슐화 패킷에 있는 원형 패킷 헤더의 목적지 주소를 서버 주소로 변경하는 단계를 포함하는 것을 특별히 하는 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 중계시스템을 통해 서버로 전송하는 방법.

[청구항 21]
제19항에 있어서, 상기 패킷 재구성 단계는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷을 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 페이로드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특별히 하는 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 중계시스템을 통해 서버로 전송하는 방법.

[청구항 22]
제21항에 있어서, 상기 패킷 재구성 단계는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 헤더에 포함된 정보를 원형패킷의 테이터 영역에 포함시키고, 상기 원형패킷의 테이터 영역에 포함된 정보를 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 페이로드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특별히 하는 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 중계시스템을 통해 서버로 전송하는 방법.

[청구항 23]
제20항에 있어서, 상기 패킷 재구성 단계는 클라이언트 IP주소를 헤더에 포함하고 있는 원형 패킷의 헤더에 포함된 클라이언트의 IP주소를 소정의 캡슐화 프로토콜을 이용하여 헤더와 페이로드로 이루어지는 캡슐화 패킷의 헤드에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 헤더를 부가하여 패킷을 재구성하는 것을 특별히 하는 캡슐화 프로토콜을 이용하여 클라이언트의 IP 주소를 중계시스템을 통해 서버로 전송하는 방법.
제1중계장치가 클라이언트 IP주소를 해더에 포함하고 있는 서버
원형 패킷을 수신하여 상기 서버 원형 패킷 해더의 소스 주소를
상기 제1프로토시 주소로 변경하는 단계;
상기 제1중계장치가 상기 변경된 서버 원형 패킷을 소정의 캡슐화
프로토콜을 이용하여 해더와 페이로드로 이루어지는 캡슐화 패킷
내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 해더를
부가하여 서버 제구성 패킷으로 생성하는 단계;
상기 제1중계장치가 상기 서버 제구성 패킷을 미리 설정된 경로를
이용하여 목적지로 전송하는 단계; 및
제2중계장치가 상기 서버 제구성 패킷의 해더를 제거하여 캡슐화
패킷을 추출하고 상기 추출된 캡슐화 패킷에 있는 서버 원형
패킷을 상기 서버 원형 패킷의 목적지 주소로 전송하는 단계를
포함하는 것을 특징으로 하는 캡슐화 프로토콜을 이용한
클라이언트 IP주소의 데이터 패킷 중계 방법.

제1중계장치가 클라이언트 IP주소를 해더에 포함하고 있는 서버
원형 패킷을 수신하여 상기 서버 원형 패킷을 소정의 캡슐화
프로토콜을 이용하여 해더와 페이로드로 이루어지는 캡슐화 패킷
내부에 첨부하여 캡슐화 하고, 상기 캡슐화 패킷에 새로운 해더를
부가하여 서버 제구성 패킷으로 생성하는 단계;
상기 제1중계장치가 상기 서버 제구성 패킷을 미리 설정된 경로를
이용하여 목적지로 전송하는 단계;
제2중계장치가 상기 서버 제구성 패킷의 해더를 제거하여 캡슐화
패킷을 추출하고 상기 추출된 캡슐화 패킷에 있는 서버 원형
패킷의 해더에 있는 소스 주소를 상기 제1프로토시 주소로 변경하는
단계; 및
상기 제2중계장치가 상기 변경된 서버 원형 패킷을 미리 설정된
경로로 상기 서버 원형 패킷의 목적지 주소로 전송하는 단계를
포함하는 것을 특징으로 하는 수신한 클라이언트 IP주소의
데이터 패킷 중계 방법.

제16항 내지 제25항 중 어느 항에 기재된 발명을 처리 장치에서
실행시키기 위한 프로그램을 기록한 프로세서로 읽을 수 있는
기록매체.
[Fig. 1]
[Fig. 8]
[Fig. 10]

시작

S1000 → 원형 패킷 수신

S1010 → 패킷 변경?

예 → S1020 → 원형 패킷 헤더의 목적지 주소 변경

S1030 → 캡슐화 프로토콜 이용하여 변경된 원형 패킷 캡슐화

S1040 → 재구성 패킷 생성 및 전송

S1050 → 재구성 패킷 헤더 제거 및 캡슐화 패킷 추출

S1060 → 변경된 원형 패킷 전송

아니오 → S1070 → 원형 패킷 전송

종료
[Fig. 11]

시작

S1100 원형 패킷 수신

S1110 패킷 변경?

예

S1120 캡슐화 프로토콜 이용하여 원형 패킷을 캡슐화

S1130 재구성 패킷 생성 및 전송

S1140 재구성 패킷 헤더 제거 및 캡슐화 패킷 추출

S1150 원형 패킷 헤더의 목적지 주소를 서버 주소로 변경

S1160 변경된 원형 패킷 전송

S1170 원형 패킷 전송

종료
[Fig. 12]

시작

S1200 - 서버 원형 패킷 수신

S1210 - 패킷 변경?

예 - S1220 - 서버 원형 패킷 헤더의 소스주소를 변경

S1230 - 캡슐화 프로토콜 이용하여 변경된 서버원형 패킷을 캡슐화

S1240 - 서버 재구성 패킷 생성 및 전송

S1250 - 서버 재구성 패킷 헤더 제거 및 캡슐화 패킷 추출

S1260 - 변경된 서버 원형 패킷을 전송

종료

S1270 - 서버 원형 패킷 전송
[Fig. 13]

시작

S1300: 서버 원형 패킷 수신

S1310: 패킷 변경?

예

S1320: 캡슐화 프로토콜 이용하여 서버 원형 패킷을 캡슐화

S1330: 서버 재구성 패킷 생성 및 전송

S1340: 서버 재구성 패킷 헤더 제거 및 캡슐화 패킷 추출

S1350: 서버 원형 패킷 헤더의 소스 주소 변경

S1360: 변경된 서버 원형 패킷을 전송

S1370: 서버 원형 패킷을 전송

종료
[Fig. 14]

시작

S1400 -> 패킷 수신

S1410 -> 설정부의 처리 정책 판단

S1420 -> 정상 패킷?

예

S1430 -> 패킷 재구성?

예

S1440 -> 패킷 재구성

S1450 -> 재구성된 패킷 전송 패킷 전송

종료

아니오

아니오

S1460
[Fig. 15]

시작

S1500 → 패킷 수신

S1510 → 설정부의 처리 정책 판단

S1520 → 패킷 재구성?

예

S1530 → 패킷 재구성

S1540 → 재구성된 패킷 전송

S1550 → 패킷 전송

종료

[Fig. 16]

<table>
<thead>
<tr>
<th>바이트 1</th>
<th>바이트 2</th>
<th>바이트 3</th>
<th>바이트 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vers</td>
<td>IHL</td>
<td>Service Type</td>
<td>Packet Length</td>
</tr>
<tr>
<td>Identification</td>
<td>Flag</td>
<td>Flag Offset</td>
<td></td>
</tr>
<tr>
<td>Time to Live</td>
<td>Protocol</td>
<td>Header Checksum</td>
<td></td>
</tr>
<tr>
<td>Source Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td>Padding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Fig. 17]

1700 1710 1720 1730 1740

Mac. (L2) 헤더 | IP. (L3) 헤더 | TC.P (L4) 헤더 | 상위계층 데이터 | FCS
[Fig. 24]

2400

상위계층 데이터

[Fig. 25]

2500

Mac. (L2) 헤더 IP. (L3) 헤더 TCP. (L4) 헤더 상위계층 데이터

FCS

오리지널 패킷 변조

2510

Mac. (L2) 헤더 IP. (L3) 헤더 TCP. (L4) 헤더 CP 헤더

2520

CP 페이로드
A. CLASSIFICATION OF SUBJECT MATTER

H04L 12/951(2013.01), H04L 29/06(2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04L 12/951; G06F 15/16; H04L 12/66; G06F 15/177; H04L 29/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Utility models and applications for Utility models: IPC as above

Japanese Utility models and applications for Utility models: IPC as above

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

eKOMPASS (KIPO internal) & Keywords: IP, encapsulation, proxy, routing, packet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CHOI, Yong Rak, SO, U Yeong, LEE, Jae Gwang, LEE, Im Yeong, Communication Security, THRID EDITION, Green, 16 January 2006 See pages 509-516.</td>
<td>1,10-13,15</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2005-0002541 A (KT CORPORATION) 07 January 2005 See abstract, claims 1-3 and figures 1-4.</td>
<td>2-9,14,16-26</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

17 SEPTEMBER 2014 (17.09.2014)

Date of mailing of the international search report

17 SEPTEMBER 2014 (17.09.2014)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2005-0002541 A</td>
<td>07/01/2005</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분류(IPC))
H04L 12/951(2013.01i), H04L 29/06(2006.01i)

B. 조사된 분야
조사된 최소문헌(국제특허분류를 기재)
H04L 12/951; G06F 15/16; H04L 12/66; G06F 15/177; H04L 29/06
조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국특허등록공보 및 한국공개등록공보: 조사된 최소문헌에 기재된 IPC
일본특허등록공보 및 일본공개등록공보: 조사된 최소문헌에 기재된 IPC
국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
eKOMPASS(특허청 내부 검색시스템) & 카이워드: IP, 컴플리, 프록시, 라우팅, 제작

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 청구항</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>최용락, 소유영, 이계광, 이임영, 컴퓨터 통신보안, THIRD EDITION, 그린, 2006.0 1.16, 509-516 페이지 참조.</td>
<td>1,10-13,15</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2005-0002541 A (주식회사 캐디) 2005.01.07 요약, 청구항 1-3 및 도면 1-4 참조.</td>
<td>2-9,14,16-26</td>
</tr>
</tbody>
</table>

加重文字は、C(계속)에 기재되어 있습니다。

* 인용문헌의 특별 카테고리:
"A" 특별한 관련이 있는 것으로 보이는 일반적인 기술수준을 인정한 문헌
"B" 국제특허문헌보다 빠른 출원일 또는 우선일을 가진다(국제출원일 이후 에 공개된 출원일 또는 특허문헌
"L" 우선권 주장에 의문을 제기하는 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이유(이유를 명시)를 벌리기 위하여 인용된 문헌
"O" 구두 개시, 사후, 전시 또는 기타 수단을 인용하고 있는 문헌
"P" 우선일 이후에 공개되었으나 국제출원일 이전에 공개된 문헌

国際発表
2014년 09월 17일 (17.09.2014)

ISA/KR의 명칭 및 우편주소 : 대한민국 특허청 (302-701) 대전광역시 서구 청소로 189, 4동 (우편번호, 정부대전정사) 팩스 번호 : +82-42-472-7140

서식 PCT/ISA/210 (두 번째 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-2005-0002541 A</td>
<td>2005/01/07</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>

서식 PCT/ISA/210 (대응특허 추가용지) (2009년 7월)