
(12)
(19)

(54)

(51)

(21)

(87)

(30)

(31)

(43)
(44)

(71)

(72)

(74)

(56)

STANDARD PATENT
AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2011241007 B2

Title
Platform independent presentation composition

International Patent Classification(s)
G06F 9/06 (2006.01) G06F 9/44 (2006.01)

Application No: 2011241007 (22) Date of Filing: 2011.03.25

WIPO No: WO11/129989

Priority Data

Number
12/760,565

(32) Date
2010.04.15

(33) Country
US

Publication Date: 2011.10.20
Accepted Journal Date: 2014.08.28

Applicant(s)
Microsoft Corporation

Inventor(s)
Bykov, Evgueni N.;Findik, Ferit;Benson, Ryan S.;Otryshko, Volodymyr V.

Agent / Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

Related Art
US 6237004 B1 (Dodson et al.) 22 May 2001
US 2008/0163164 A1 (Chowdhary et al.) 03 July 2008
US 2010/0023547 A1 (Brid) 28 January 2010
Data Mining Community Top Resource for Analytics, Data Mining, and Data
Science Software, Companies, Data, Jobs, Education, News, and more.
KDnuggets. Home. News 2014 Jul, Opinions, Interviews, Reports, Containers:
The Enabler of YARN.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 October 2011 (20.10.2011) PCT

IIN
(10) International Publication Number

WO 2011/129989 A3

(51) International Patent Classification:
G06F 9/06 (2006.01) G06F 9/44 (2006.01)

(21) International Application Number:
PCT/US2011/030068

(22) International Filing Date:
25 March 2011 (25.03.2011)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
12/760,565 15 April 2010 (15.04.2010) US

(71) Applicant (for all designated States except US): MI­
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: BYKOV, Evgueni N.; c/o Microsoft Corpora­
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). FINDIK, Fer-
it; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington

98052-6399 (US). BENSON, Ryan S.; c/o Microsoft
Corporation, LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US).
OTRYSHKO, Volodymyr V.; c/o Microsoft Corpora­
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

[Continued on next page]

(54) Title: PLATFORM INDEPENDENT PRESENTATION COMPOSITION

¢- too

W
O

 20
11

/1
29

98
9 A

3

112-^

FIG. 1

(57) Abstract: Architecture that includes a platform independent, con­
figuration driven, presentation composition engine. The composition
engine that allows dynamic generation of multiplatform user experience
(UX) based on a data contract. By composition, the user can select the
parts, interactions, and constraints between the interaction and parts, as
well as the placement with respect to each other. The UX is dynamical­
ly composed from components that are targeted to particular data class­
es. At runtime, platform dependent component implementations are au­
tomatically selected by the engine based on the execution platform of
the composition host. A user can create or customize the UX without
writing code by composing from a wide variety of presentation widgets
that access a wide variety of data sources that can work on many plat­
forms. Compositions are targeted to both a data class and presentation
type and can be either predefined or generated.

WO AtIIIIIIIIIIIIIIIIIIIIt ♦)) llllh trrarIIIIIIIIIItIIIII
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted

a patent (Rule 4.17(H))

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(88) Date of publication of the international search report:
19 January 2012

H:\dxlUnterwoven\NRPortbl\DCC\DXL\6180246_l.doc-24/04/2014
20

11
24

10
07

30

 A
pr

 2
01

4

- 1 -

PLATFORM INDEPENDENT PRESENTATION COMPOSITION

Field of Invention

5 The present invention relates to a computer-implemented visualization system having

computer readable memory that store executable instructions executed by a processor; and

a computer-implemented visualization method executable via a processor and memory.

Background of Invention

10

The quality of a user experience (UX) is based on how well the UX is aligned with the user

expectations. Having to deal with many data types, many data sources, and many UX

platforms, designers have to make a choice from unattractive approaches that include

writing presentation code for a specific persona that consumes specific data from data

15 sources for a specific UX platform, or providing a broadly targeted UX that does not meet

the needs of any single persona.

For example, existing UX composition systems such as HTML (hypertext markup

language), XAML (extensible application markup language), and XSLT (extensible

20 stylesheet language transformations) are designed such that the markup code be developed

for a specific platform. If the developer wants the code to work on several platforms a

custom logic is to be built in the code to handle the platform differences. Moreover,

existing UX composition systems require specific presentation be explicitly defined for

every data interface element. The functionality that allows dynamic generation of UX

25 elements based on underlying data structures the elements represent is limited to

nonexistent, especially if the data structures are complex and/or inheritable.

As a result of these limitations, the mass market (e.g., email) may have been served, but

the smaller communities of users (e.g., the exchange administrator or the CRM (customer

30 relationship management) service owner) are underserved.

H:\dxlUnterwoven\NRPortbl\DCC\DXL\6180246_l.doc-24/04/2014
20

11
24

10
07

30

 A
pr

 2
01

4

-2-

It is generally desirable to overcome or ameliorate one or more of the above described

difficulties, or to at least provide a useful alternative.

Summary of Invention

5

According to the present invention, there is provided a computer-implemented

visualization system having computer readable memory that store executable instructions

executed by a processor, comprising:

a store of stored definitions that include component definitions and data definitions

10 for components and data associated with a user experience; and

a composition engine that, at environment runtime, automatically and declaratively

composes an instance of an output component based on a stored definition and an

execution platform of a composition host in an execution environment, the output

component specific to a user experience of a visualization host in the execution

15 environment, the output component comprising a platform independent container

component that is a container for a base component, the base component selected based on

a stored definition and the execution platform of the composition host in the execution

environment, wherein the composition engine employs a personalization override that is

composed with a selected component definition to override a global variable with a private

20 variable.

According to the present invention, there is also provided a computer-implemented

visualization method executable via a processor and memory, comprising:

receiving a request for a component to be employed in an execution environment;

25 searching for a component definition associated with the component;

selecting one or more data definitions for a found component definition; and

at environment runtime, based on an execution platform of a composition host in

the execution environment, automatically composing the one or more data definitions with

the component definition to output the component in the execution environment, the

30 component comprising a platform independent container component that is a container for

a base component.

H:\dxlUnterwoven\NRPortbl\DCC\DXL\6180246_l.doc-24/04/2014
20

11
24

10
07

30

 A
pr

 2
01

4

-3-

According to the present invention, there is also provided a computer-implemented

visualization method executable via a processor and memory, comprising:

receiving a request for a component based on a component execution environment;

searching for a component definition associated with the component;

5 selecting one or more data definitions for the component definition if the

component definition is found;

creating a custom component based on a data type related to the requested

component when the component definition is not found;

applying a global variable to the component or custom to enable data exchange

10 between unrelated data contexts; and

at environment runtime, based on an execution platform of a composition host in

the execution environment, automatically composing the one or more data definitions with

the component definition to output the component in the execution environment, the

component comprising a platform independent container component that is a container for

15 a base component.

The disclosed architecture includes a platform independent configuration-driven

presentation composition engine. The composition engine allows dynamic generation of

multiplatform user experience (UX) based on a data contract. By composition, the user can

20 select the parts, interactions, and constraints between the interaction and parts, as well as

the placement with respect to each other.

The UX is dynamically composed from components that are targeted to particular data

classes. At runtime, platform dependent component implementations are automatically

25 selected by the engine based on the execution platform of the composition host.

The disclosed architecture allows a user to create or customize a UX without writing code

by composing from multiple presentation widgets that can access many data sources that

work on many platforms. Compositions are targeted to both a data class and presentation

30 type and can be either predefined or generated.

H:\dxlUnterwoven\NRPortbl\DCC\DXL\6180246_l.doc-24/04/2014
20

11
24

10
07

30

 A
pr

 2
01

4

-3A-

To the accomplishment of the foregoing and related ends, certain illustrative aspects are

described herein in connection with the following description and the annexed drawings.

These aspects are indicative of the various ways in which the principles disclosed herein

can be practiced and all aspects and equivalents thereof are intended to be within the scope

5 of the claimed subject matter. Other advantages and novel features will become apparent

from the following detailed description when considered in conjunction with the drawings.

Brief Description of the Drawings

10 Preferred embodiments of the present invention are hereafter described, by way of non­

limiting example only, with reference to the accompanying drawings, in which:

Figure 1 illustrates a visualization system in accordance with the disclosed architecture.

Figure 2 illustrates an alternative visualization system in accordance with the disclosed

15 architecture.

Figure 3 illustrates an exemplary composition composed by the composition engine.

Figure 4 illustrates a parent component that includes data context and a visual base

component of a composition system.

Figure 5 illustrates a component definition.

20 Figure 6 illustrates a component registry for finding or selecting components.

Figure 7 illustrates a declarative diagram that represents the use of variables in the

composition engine.

Figure 8 illustrates a visualization method in accordance with the disclosed architecture.

Figure 9 illustrates further aspects of the method of FIG. 8.

25 Figure 10 illustrates an alternative visualization method.

Figure 11 illustrates further aspects of the method of FIG. 10.

Figure 12 illustrates a method of obtaining components in the composition engine.

Figure 13 illustrates a more detailed method of obtaining components in the composition

engine.

30 Figure 14 illustrates a block diagram of a computing system that executes composition in

accordance with the disclosed architecture.

H:\dxlUnterwoven\NRPortbl\DCC\DXL\6180246_l.doc-24/04/2014
20

11
24

10
07

30

 A
pr

 2
01

4

-3B -

Detailed Description of Preferred Embodiments of the Invention

The disclosed architecture is a presentation composition engine. The composition engine is

a generic composition framework which is exposed as a set of services that allows the user

5 to "glue" together (compose) different components, and the composition (output

composition of the engine) of the component(s). By composition, the user can select the

parts, interactions, and constraints between the interaction and parts, as well as the

placement of the parts with respect to each other. The engine is a presentation-neutral

framework for both UI (user interface) and non-UI components.

10

A component is the smallest reusable building block of UI declaration for the composition

engine, and that is identifiable by name, and optionally, targeted to a data type. A

component can be a base component (unit component) or a container component

(composite component). Data context is an instance of target data for a component. In

15 other words, the data context is a name/value pair set that represents data associated with a

component. Data context entries support change notifications, and compositions can

initiate changes and/or listen to the changes initiated by other compositions. The

composition engine assembles components for a particular host as a user experience that is

platform independent. The virtualization host is the execution environment of the

20 composition for a particular platform (runtime).

Compositions are targeted to both a data class and presentation type and can be either

predefined or generated. While there can be multiple components composed, the

component chain ends at the concrete base component (e.g., a TextBox control, database

25 query component, etc.).

The composition engine allows the dynamic generation of multiplatform UX (user

experience) based on a data contract. The UX is dynamically composed from components

that are targeted to a particular data classes. At runtime, platform dependent component

30 implementations are automatically selected by the engine based on the execution platform

of the composition host.

Docunicn(l-27/06/2014
20

11
24

10
07

01

 Ju
l 2

01
4

- 3C -

Reference is now made to the drawings, wherein like reference numerals are used to refer to
like elements throughout. In the following description, for purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding thereof. It may be
evident, however, that the novel embodiments can be practiced without these specific details.

5 In other instances, well known structures and

WO 2011/129989 PCT/US2011/030068

5

10

15

20

25

30

devices are shown in block diagram form in order to facilitate a description thereof. The

intention is to cover all modifications, equivalents, and alternatives falling within the spirit

and scope of the claimed subject matter.

[0028] FIG. 1 illustrates a visualization system 100 in accordance with the disclosed

architecture. The system 100 includes a store 102 of store definitions that include

component definitions 104 and data definitions 106 for components and data associated

with a user experience. The component definitions 104 can include definitions for base

component, container components, and compositions of base and container components.

In this way, an existing composition of the components is readily available for dynamic

selection and composition into the output component 110.

[0029] A composition engine 108 that automatically and declaratively composes an

instance of an output component 110 based on a store definition. The output component is

specific to a user experience of a visualization host of different hosts 112.

[0030] The output component 110 includes a base component, a container component, or

a combination of base and container components. The output component 110 is composed

based on a target data type of the user experience. The system 100 can further comprise a

component registry via which a component is searched based on the target data type. The

output component binds associated component properties to data context elements to link

child components. The composition engine 108 includes global variables that enable data

exchange between output components in unrelated data contexts.

[0031] FIG. 2 illustrates an alternative visualization system 200 in accordance with the

disclosed architecture. The system 200 includes the entities of the system 100 of FIG. 1,

as well as data context 202, a personalization (private) override 204, and component

implementation 206. The output component 110 can be composed based on the data

context 202 rather than an existing component definition. That is, based on the data, a

customized component can be created and output purely based on the context data 202

(instance of data in the target UX). The composition engine 108 employs the

personalization override 204 that is composed with a selected component definition to

override a global variable with a private variable.

[0032] FIG. 3 illustrates an exemplary composition 300 composed by the composition

engine. Here, the composition 300 is described in terms of based components (e.g., a

StackPanel base component 302) and a container component 304. Here, the base

component 302 includes two text box base components: a first text box base component

4

WO 2011/129989 PCT/US2011/030068

5

10

15

20

25

30

35

40

45

50

showing text “ABC” and a second text box base component showing text “DEF”. The

base component 302 also includes a button base component.

[0033] The base component is a concrete implementation targeted to specific platforms,

the leaf node of the composition process, and can be visual or non-visual. Following is an

example of a base component definition (in terms of component type rather than

component type).
«ComponentType ID="EventQuery">

<Parameters>
«Parameter Name="Scope" Type="String" />
«Parameter Name="Output" Type="IEnumerable" />

</Parameters>
</ComponentType>
«Componentimplementation TypeId="EventQuery">

<SupportedPlatforms>
«Platform>WPF</Platform>

</SupportedPlatforms>
<Unit>

«MefFactory>

<ContractName>Company.EnterpriseManagement.EventQuery</ContractName>
</MefFactory>
<Properties>

«Property Name="QueryVerb" Direction="In">Events«/Property>
«Property Name="Scope"

Direction="In">$Parameter/Scope$</Property>
«Property Name="Output"

Direction="Out">$Parameter/Output$</Property>
</Properties>

</Unit>
</Componentlmplementation>

The MEF (managed extensibility framework) factory calls an MEF runtime to pull

corresponding types from registered UI assemblies. Note that MEF is just one way

example implementation; other Factory implementations can be employed as well.

[0034] The container component (also, composite component) is the container for the base

components (also, unit components), does not have a custom implementation, and is

platform independent. Following is an example of a composite component definition.
«ComponentImplementation Typeld="Samplecomponent">

<SupportedPlatforms>
«Platform>All</Platform>

</SupportedPlatforms>
<Composite>

<Variables>
«Variable Id="abc" Type="String" />

</Variables>
«Component Typeld="SampleContainerComponent">

«Parameter Id="Childl">
«Component Typeld="SampleComponentl">

«Parameter Id="Bia">$Variable/abc$</Parameter>
</Component>

</Parameter>

5

5

10

15

20

25

30

35

40

WO 2011/129989 PCT/US2011/030068

«Parameter Id="Child2">
«Component Typeld="SampleComponent2">

«Parameter Id="Bia">$Variable/abc$</Parameter>
</Component>

</Parameter>
</Component>

</Composite>
</Componentlmplementation>

[0035] In FIG. 3, the container component 304 combines the base components, as

illustrated in the following code, where PropertyA is “ABC” and PropertyB is “DEF”.
«Component Typeld="StackPanel">

«Parameter Name="Child">
«Component Typeld="Edit">

«Target>$Target/propertyA$</Target>
</Component>
«Component Typeld="Edit">

«Target>$Target/propertyB$</Target>
</Component>
«Component TypeId="Button">
</Component>

</Parameter>

[0036] Each component (base or container) is backed with a data context (Data Context)

instance. Data Context is a key(string)-value(object) pair collection which supports

property changed notification and error set notification. The component can bind its

properties to data context elements to link child components together.

[0037] FIG. 4 illustrates a parent component 400 that includes data context 402(as

DataContext elements) and a visual base component 404 (e.g., StackPanel base component

302 of FIG. 3) of a composition system. Here, the data context 402 includes three

properties: PropertyA, PropertyB and PropertyC, with corresponding values “ABC”,

“DEF”, and “XYZ”. The visual base component 404 includes bindings to PropertyA and

PropertyB via corresponding 2-way databinds, while multiple data components 406 of a

view model 408 are bound to PropertyB and PropertyC. In other words, the parent

component 400 is composed that includes bindings of properties to child components (the

text box base components) and bindings of the properties to the data components 406.

[0038] FIG. 5 illustrates an component definition 500. The component definition 500

comprises two parts: a type declaration 502 and an implementation definition 504. Each

component has a name, and optional target type attributes that can be used to look up a

relevant component. An example type declaration (in component terms) is the following:

«ComponentType ID="Samplecomponent" Target="String"
Accessibility="Internal">

6

WO 2011/129989 PCT/US2011/030068

[0039] A component can also include a Parameters subnode which defines the datashape

(e.g., string) expected to be passed, as illustrated below (in component terms):

5

10

15

20

25

30

35

40

45

«ComponentType ID="AnotherComposition">
<Parameters>

«Parameter Name="Parameterl" Type="String" />
«Parameter Name="SelectedText" Type="String" BindingDirection="Both"

/ >
</Parameters>

[0040] FIG. 6 illustrates a component registry 600 for finding or selecting components.

The registry 600 maintains a list of all defined components and component compositions.

For example, the base component (e.g., StackPanel/Button/Edit of FIG. 3) can be looked

up (searched) based on Typeld and TargetType (target data type). The output is then the

base component that corresponds to the TargetType, or Typeld and TargetType.

[0041] To set a property on an component, a “Parameter” node is used, as shown in the

following sample code:
«Component Id="EventView">
«Parameter Id="Scope">Microsoft. Systemcenter.SqlDB </Parameter>

[0042] In this case, the property “Scope” of component “EventView” is set to text

“Company.SystemCenter.SqlDB”. Oftentimes, however, parameters are not static, but are

bound to other elements. In general, reference is in the form $<protocol>/«protocol-

specific string>.

[0043] For example, two components are bound to a variable “abc”:
«ComponentImplementation Typeld="Samplecomponent">

<SupportedPlatforms>
<Platform>All</Platform>

</SupportedPlatforms>
<Composite>

<Variables>
«Variable Id="abc" Type="String" />

</Variables>
«Component Typeld="SampleComponentl">

«Parameter Id="A">$Variable/abc$</Parameter>
</Component>
«Component Typeld="SampleComponent2">

«Parameter Id="A">$Variable/abc$</Parameter>
</Component>

</Composite>
</Componentlmplementation>

[0044] Following is an example list of reference protocols in a Parameter node:
$Parameter/<propertyName>$
$Variable/«propertyName>$
$Target/«propertyName>$
component
$Target$

Parameter passed to component
Variable declared in component
Property of a target instance passed to

Target instance

7

WO 2011/129989 PCT/US2011/030068

5

10

15

20

25

30

35

[0045] Global variables can be used to enable data exchange between compositions (base

components and/or container components) in non-related data contexts. First, a global

variable is declared:
<GlobalVariable ID="GlobalSelectedItem" Type="String"/>

The variable can be referenced in base component and container components using

$GlobalVariable/<variable name>$.

[0046] Any given component (e.g., base, container) can override the variable with a

private implementation so that component children see a private copy of the variable,

illustrated in the following example code:
<Variables>

<GlobalVariableOverride GlobalVariableId="GlobalSelectedltem" />
</Variables>

[0047] FIG. 7 illustrates a declarative diagram 700 that represents the use of variables in

the composition engine. At 702, a global variable “A” is declared. At 704, a parameter

name “Blah” is passed to an component. At 706, a local copy of the global variable is

created. At 708 and 710, local copies of the variable are used rather than the global

variable.

[0048] Included herein is a set of flow charts representative of exemplary methodologies

for performing novel aspects of the disclosed architecture. While, for purposes of

simplicity of explanation, the one or more methodologies shown herein, for example, in

the form of a flow chart or flow diagram, are shown and described as a series of acts, it is

to be understood and appreciated that the methodologies are not limited by the order of

acts, as some acts may, in accordance therewith, occur in a different order and/or

concurrently with other acts from that shown and described herein. For example, those

skilled in the art will understand and appreciate that a methodology could alternatively be

represented as a series of interrelated states or events, such as in a state diagram.

Moreover, not all acts illustrated in a methodology may be required for a novel

implementation.

[0049] FIG. 8 illustrates a visualization method in accordance with the disclosed

architecture. At 800, a request is received for a component to be employed in an

execution environment. At 802, a component definition associated with the component is

searched. At 804, one or more data definitions are selected for a found component

definition. At 806, the one or more data definitions are automatically composed with the

8

WO 2011/129989 PCT/US2011/030068

5

10

15

20

25

30

component definition to output the component in the execution environment at

environment runtime.

[0050] FIG. 9 illustrates further aspects of the method of FIG. 8. At 900, the component

definition is searched based on a data type of the requested component when the

component definition is not found. At 902, a custom component is created based on

absence of the component requested. At 904, a global variable is applied to the

component to enable data exchange between unrelated data contexts. At 906, a global

variable is overridden with a private variable to impose the private variable on child

components of the component. At 908, a container component is created when the

requested component is not found. At 910, the container component is loaded with base

components associate data type properties. At 912, the container component is output as

the component.

[0051] FIG. 10 illustrates an alternative visualization method. At 1000, a request for a

component based is received on a component execution environment. At 1002, a

component definition associated with the component is searched. At 1004, one or more

data definitions for the component definition are selected if the component definition is

found. At 1006, a custom component is created based on a data type related to the

requested component when the component definition is not found. At 1008, a global

variable is applied to the component or custom to enable data exchange between unrelated

data contexts. At 1010, the one or more data definitions are automatically composed with

the component definition to output the component in the execution environment at

environment runtime.

[0052] FIG. 11 illustrates further aspects of the method of FIG. 10. At 1100, the global

variable is overridden with a private variable to impose the private variable on child

components of the component. At 1102, a container component is created when the

requested component is not found. At 1104, the container component is loaded with base

components associate data type properties. At 1106, the container component is output as

the component. At 1108, data to be passed to the component is defined via a parameter

node. At 1110, a parent component is composed that includes bindings of properties to

child components and bindings of the properties to data components.

[0053] FIG. 12 illustrates a method of obtaining components in the composition engine.

At 1200, a component is obtained (e.g., via a “get component” call). At 1202, the target

data type is obtained. At 1204, a check is made to determine of a component exists for the

target data type. If not, flow is to 1206 to create a component container. The component

9

WO 2011/129989 PCT/US2011/030068

5

10

15

20

25

30

can have one or more associated data properties. At 1208, property types are obtained for

the component. At 1210, a call “get component” is made for the property types. At 1212,

the component is added to the container. Flow is back to 1208 to continue until

completed. After all data properties and types have been applied to the container, flow is

to 1214 to return the results. At 1204, if the check determines that a component exists for

the target data type, flow is to 1216 to select the component, and then return the results, at

1216.

[0054] FIG. 13 illustrates a more detailed method of obtaining components in the

composition engine. At 1300, function parameters such as target type and data type are

received. At 1302, a check is made for a component defined for the target type and name.

If so, flow is to 1304 to verify the interface. Alternatively, if no component exists for the

target type and names, flow is to 1306 such that for every property using the type system

lookup, is a component defined for the data type. If yes, flow is to 1304 to verify the

interface. Access to the type system 1308 is provided to make the check and verify the

interface. Once the interface is verified, flow is to 1310 to check for the component type.

If a unit component, flow is to 1312 to create an instance of the unit component for the

correct platform and pass all declared parameters to the unit component. At 1314, the

loader can load an assembly for the UX composition system (e.g., XAML, MEF, etc).

[0055] If the component type, at 1310, is a composite component, flow is to 1316 to walk

the child nodes in a configuration (e.g., written in XML) setting the values on the

components of the composition. This includes receiving parameter values from parameter

node(s) 1318, parameters from component node(s) 1320, and a parameter set from child

nodes, as provided from build data from parameters at 1322. The typelD is sent from the

component node 1320 to build data 1322. At 1324, the component referenced by the

target as data and name, as the name for lookup, based on name and target information

received from the component node 1320.

[0056] One or more components can reside within a process and/or thread of execution,

and a component can be localized on one computer and/or distributed between two or

more computers. The word “exemplary” may be used herein to mean serving as an

example, instance, or illustration. Any aspect or design described herein as “exemplary”

is not necessarily to be construed as preferred or advantageous over other aspects or

designs.

[0057] Referring now to FIG. 14, there is illustrated a block diagram of a computing

system 1400 that executes composition in accordance with the disclosed architecture. In

10

WO 2011/129989 PCT/US2011/030068

5

10

15

20

25

30

order to provide additional context for various aspects thereof, FIG. 14 and the following

description are intended to provide a brief, general description of the suitable computing

system 1400 in which the various aspects can be implemented. While the description

above is in the general context of computer-executable instructions that can run on one or

more computers, those skilled in the art will recognize that a novel embodiment also can

be implemented in combination with other program modules and/or as a combination of

hardware and software.

[0058] The computing system 1400 for implementing various aspects includes the

computer 1402 having processing unit(s) 1404, a computer-readable storage such as a

system memory 1406, and a system bus 1408. The processing unit(s) 1404 can be any of

various commercially available processors such as single-processor, multi-processor,

single-core units and multi-core units. Moreover, those skilled in the art will appreciate

that the novel methods can be practiced with other computer system configurations,

including minicomputers, mainframe computers, as well as personal computers (e.g.,

desktop, laptop, etc.), hand-held computing devices, microprocessor-based or

programmable consumer electronics, and the like, each of which can be operatively

coupled to one or more associated devices.

[0059] The system memory 1406 can include computer-readable storage (physical storage

media) such as a volatile (VOF) memory 1410 (e.g., random access memory (RAM)) and

non-volatile memory (NON-VOF) 1412 (e.g., ROM, EPROM, EEPROM, etc.). A basic

input/output system (BIOS) can be stored in the non-volatile memory 1412, and includes

the basic routines that facilitate the communication of data and signals between

components within the computer 1402, such as during startup. The volatile memory 1410

can also include a high-speed RAM such as static RAM for caching data.

[0060] The system bus 1408 provides an interface for system components including, but

not limited to, the system memory 1406 to the processing unit(s) 1404. The system bus

1408 can be any of several types of bus structure that can further interconnect to a memory

bus (with or without a memory controller), and a peripheral bus (e.g., PCI, PCIe, AGP,

EPC, etc.), using any of a variety of commercially available bus architectures.

[0061] The computer 1402 further includes machine readable storage subsystem(s) 1414

and storage interface(s) 1416 for interfacing the storage subsystem(s) 1414 to the system

bus 1408 and other desired computer components. The storage subsystem(s) 1414

(physical storage media) can include one or more of a hard disk drive (HDD), a magnetic

floppy disk drive (FDD), and/or optical disk storage drive (e.g., a CD-ROM drive DVD

11

WO 2011/129989 PCT/US2011/030068

5

10

15

20

25

30

drive), for example. The storage interface(s) 1416 can include interface technologies such

as EIDE, ATA, SATA, and IEEE 1394, for example.

[0062] One or more programs and data can be stored in the memory subsystem 1406, a

machine readable and removable memory subsystem 1418 (e.g., flash drive form factor

technology), and/or the storage subsystem(s) 1414 (e.g., optical, magnetic, solid state),

including an operating system 1420, one or more application programs 1422, other

program modules 1424, and program data 1426.

[0063] The one or more application programs 1422, other program modules 1424, and

program data 1426 can include the entities and components of the system 100 of FIG. 1,

the entities and components of the system 200 of FIG. 2, the composition 300 of FIG. 3,

the parent component 400 of FIG. 4, the component definition 500 of FIG. 5, the registry

600 of FIG. 6, the diagram 700 of FIG. 7, and the methods represented by the flowcharts

of Figures 8-13, for example.

[0064] Generally, programs include routines, methods, data structures, other software

components, etc., that perform particular tasks or implement particular abstract data types.

All or portions of the operating system 1420, applications 1422, modules 1424, and/or

data 1426 can also be cached in memory such as the volatile memory 1410, for example.

It is to be appreciated that the disclosed architecture can be implemented with various

commercially available operating systems or combinations of operating systems (e.g., as

virtual machines).

[0065] The storage subsystem(s) 1414 and memory subsystems (1406 and 1418) serve as

computer readable media for volatile and non-volatile storage of data, data structures,

computer-executable instructions, and so forth. Such instructions, when executed by a

computer or other machine, can cause the computer or other machine to perform one or

more acts of a method. The instructions to perform the acts can be stored on one medium,

or could be stored across multiple media, so that the instructions appear collectively on the

one or more computer-readable storage media, regardless of whether all of the instructions

are on the same media.

[0066] Computer readable media can be any available media that can be accessed by the

computer 1402 and includes volatile and non-volatile internal and/or external media that is

removable or non-removable. For the computer 1402, the media accommodate the storage

of data in any suitable digital format. It should be appreciated by those skilled in the art

that other types of computer readable media can be employed such as zip drives, magnetic

12

WO 2011/129989 PCT/US2011/030068

5

10

15

20

25

30

tape, flash memory cards, flash drives, cartridges, and the like, for storing computer

executable instructions for performing the novel methods of the disclosed architecture.

[0067] A user can interact with the computer 1402, programs, and data using external user

input devices 1428 such as a keyboard and a mouse. Other external user input devices

1428 can include a microphone, an IR (infrared) remote control, a joystick, a game pad,

camera recognition systems, a stylus pen, touch screen, gesture systems (e.g., eye

movement, head movement, etc.), and/or the like. The user can interact with the computer

1402, programs, and data using onboard user input devices 1430 such a touchpad,

microphone, keyboard, etc., where the computer 1402 is a portable computer, for example.

These and other input devices are connected to the processing unit(s) 1404 through

input/output (I/O) device interface(s) 1432 via the system bus 1408, but can be connected

by other interfaces such as a parallel port, IEEE 1394 serial port, a game port, a USB port,

an IR interface, etc. The I/O device interface(s) 1432 also facilitate the use of output

peripherals 1434 such as printers, audio devices, camera devices, and so on, such as a

sound card and/or onboard audio processing capability.

[0068] One or more graphics interface(s) 1436 (also commonly referred to as a graphics

processing unit (GPU)) provide graphics and video signals between the computer 1402

and external display(s) 1438 (e.g., LCD, plasma) and/or onboard displays 1440 (e.g., for

portable computer). The graphics interface(s) 1436 can also be manufactured as part of

the computer system board.

[0069] The computer 1402 can operate in a networked environment (e.g., IP-based) using

logical connections via a wired/wireless communications subsystem 1442 to one or more

networks and/or other computers. The other computers can include workstations, servers,

routers, personal computers, microprocessor-based entertainment appliances, peer devices

or other common network nodes, and typically include many or all of the elements

described relative to the computer 1402. The logical connections can include

wired/wireless connectivity to a local area network (LAN), a wide area network (WAN),

hotspot, and so on. LAN and WAN networking environments are commonplace in offices

and companies and facilitate enterprise-wide computer networks, such as intranets, all of

which may connect to a global communications network such as the Internet.

[0070] When used in a networking environment the computer 1402 connects to the

network via a wired/wireless communication subsystem 1442 (e.g., a network interface

adapter, onboard transceiver subsystem, etc.) to communicate with wired/wireless

networks, wired/wireless printers, wired/wireless input devices 1444, and so on. The

13

WO 2011/129989 PCT/US2011/030068

5

10

15

20

25

30

computer 1402 can include a modem or other means for establishing communications over

the network. In a networked environment, programs and data relative to the computer

1402 can be stored in the remote memory/storage device, as is associated with a

distributed system. It will be appreciated that the network connections shown are

exemplary and other means of establishing a communications link between the computers

can be used.

[0071] The computer 1402 is operable to communicate with wired/wireless devices or

entities using the radio technologies such as the IEEE 8O2.xx family of standards, such as

wireless devices operatively disposed in wireless communication (e.g., IEEE 802.11 over-

the-air modulation techniques) with, for example, a printer, scanner, desktop and/or

portable computer, personal digital assistant (PDA), communications satellite, any piece of

equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news

stand, restroom), and telephone. This includes at least Wi-Fi (or Wireless Fidelity) for

hotspots, WiMax, and Bluetooth™ wireless technologies. Thus, the communications can

be a predefined structure as with a conventional network or simply an ad hoc

communication between at least two devices. Wi-Fi networks use radio technologies

called IEEE 802.1 lx (a, b, g, etc.) to provide secure, reliable, fast wireless connectivity. A

Wi-Fi network can be used to connect computers to each other, to the Internet, and to wire

networks (which use IEEE 802.3-related media and functions).

[0072] The illustrated and described aspects can be practiced in distributed computing

environments where certain tasks are performed by remote processing devices that are

linked through a communications network. In a distributed computing environment,

program modules can be located in local and/or remote storage and/or memory system.

[0073] What has been described above includes examples of the disclosed architecture. It

is, of course, not possible to describe every conceivable combination of components

and/or methodologies, but one of ordinary skill in the art may recognize that many further

combinations and permutations are possible. Accordingly, the novel architecture is

intended to embrace all such alterations, modifications and variations that fall within the

spirit and scope of the appended claims. Furthermore, to the extent that the term

“includes” is used in either the detailed description or the claims, such term is intended to

be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted

when employed as a transitional word in a claim.

14

H:\dxlUnterwoven\NRPortbl\DCC\DXL\6180246_l.doc-24/04/2014
20

11
24

10
07

30

 A
pr

 2
01

4

- 15-

The reference in this specification to any prior publication (or information derived from it),

or to any matter which is known, is not, and should not be taken as an acknowledgment or

admission or any form of suggestion that that prior publication (or information derived

from it) or known matter forms part of the common general knowledge in the field of

5 endeavour to which this specification relates.

H:\dxlUnterwoven\NRPortbl\DCC\DXL\6180246_l.doc-24/04/2014
20

11
24

10
07

30

 A
pr

 2
01

4

- 16-

Claims Defining the Invention

1. A computer-implemented visualization system having computer readable memory

that store executable instructions executed by a processor, comprising:

5 a store of stored definitions that include component definitions and data definitions

for components and data associated with a user experience; and

a composition engine that, at environment runtime, automatically and declaratively

composes an instance of an output component based on a stored definition and an

execution platform of a composition host in an execution environment, the output

10 component specific to a user experience of a visualization host in the execution

environment, the output component comprising a platform independent container

component that is a container for a base component, the base component selected based on

a stored definition and the execution platform of the composition host in the execution

environment, wherein the composition engine employs a personalization override that is

15 composed with a selected component definition to override a global variable with a private

variable.

2. The system of claim 1, wherein the output component includes the base

component, the container component, or a combination of base and container components.

20

3. The system of claim 1, wherein the output component is composed based on a

target data type of the user experience.

4. The system of claim 3, further comprising a component registry via which a

25 component is searched based on the target data type.

5. The system of claim 1, wherein the output component is composed based on a data

context.

30 6. The system of claim 1, wherein the output component binds associated component

properties to data context elements to link child components.

H:\dxlUnterwoven\NRPortbl\DCC\DXL\6180246_l.doc-24/04/2014
20

11
24

10
07

30

 A
pr

 2
01

4

- 17­

7. The system of claim 1, wherein the composition engine includes global variables

that enable data exchange between output components in unrelated data contexts.

8. A computer-implemented visualization method executable via a processor and

5 memory, comprising:

receiving a request for a component to be employed in an execution environment;

searching for a component definition associated with the component;

selecting one or more data definitions for a found component definition; and

at environment runtime, based on an execution platform of a composition host in

10 the execution environment, automatically composing the one or more data definitions with

the component definition to output the component in the execution environment, the

component comprising a platform independent container component that is a container for

a base component.

15 9. A method of claim 8, further comprising searching for the component definition

based on a data type of the requested component when the component definition is not

found.

10. The method of claim 8, further comprising creating a custom component based on

20 absence of the component requested.

11. The method of claim 8, further comprising applying a global variable to the

component to enable data exchange between unrelated data contexts.

25 12. The method of claim 8, further comprising overriding a global variable with a

private variable to impose the private variable on child components of the component.

13. The method of claim 8, further comprising:

creating the container component when the requested component is not found;

30 loading the container component with base components associate data type

properties; and

H:\dxlUnterwoven\NRPortbl\DCC\DXL\6180246_l.doc-24/04/2014
20

11
24

10
07

30

 A
pr

 2
01

4

- 18-

outputting the container component as the component.

14. A computer-implemented visualization method executable via a processor and

memory, comprising:

5 receiving a request for a component based on a component execution environment;

searching for a component definition associated with the component;

selecting one or more data definitions for the component definition if the

component definition is found;

creating a custom component based on a data type related to the requested

10 component when the component definition is not found;

applying a global variable to the component or custom to enable data exchange

between unrelated data contexts; and

at environment runtime, based on an execution platform of a composition host in

the execution environment, automatically composing the one or more data definitions with

15 the component definition to output the component in the execution environment, the

component comprising a platform independent container component that is a container for

a base component.

15. The method of claim 14, further comprising overriding the global variable with a

20 private variable to impose the private variable on child components of the component.

16. The method of claim 14, further comprising:

creating the container component when the requested component is not found;

loading the container component with base components associate data type

25 properties; and

outputting the container component as the component.

17. The method of claim 14, further comprising defining data to be passed to the

component via a parameter node.

30

18. The method of claim 14, further comprising composing a parent component that

H:\dxlUnterwoven\NRPortbl\DCC\DXL\6180246_l.doc-24/04/2014
20

11
24

10
07

30

 A
pr

 2
01

4

- 19-

includes bindings of properties to child components and bindings of the properties to data

components.

19. The method of claim 14, wherein the component is composed based on a target

5 data type of a user experience.

20. A computer-implemented visualization system having computer readable memory

that store executable instructions executed by a processor, substantially as hereinbefore

described with reference to the accompanying drawings.

10

21. A computer-implemented visualization method executable via a processor and

memory, substantially as hereinbefore described with reference to the accompanying

drawings.

WO 2011/129989 PCT/US2011/030068

1/14

^-100

112^

FIG. 1

WO 2011/129989 PCT/US2011/030068

2/14
^200

112^

FIG. 2

WO 2011/129989 PCT/US2011/030068

3/14

300

FIG. 3

WO 2011/129989 PCT/US2011/030068

4/14

^400

PARENT COMPONENT

FIG. 4

WO 2011/129989 PCT/US2011/030068

5/14

500

502

504

FIG. 5

WO 2011/129989 PCT/US2011/030068

6/14

--------------- TYPEID-----

----------TARGETTYPE

COMPONENT
REGISTRY

COMPONENT------- ►

FIG. 6

WO 2011/129989 PCT/US2011/030068

7/14

70
0

F
IG

. 7
_ S-I 1

Ph OhO oU u
H-l H-lu uo o
H-l H-lw w

Γ

71
0

WO 2011/129989 PCT/US2011/030068

8/14

FIG. 8

WO 2011/129989 PCT/US2011/030068

9/14

FIG. 9

WO 2011/129989 PCT/US2011/030068

10/14

1000

1002

1004

1006

1008

1010

FIG. 10

11/14

WO 2011/129989 PCT/US2011/030068

FIG. 11

WO 2011/129989 PCT/US2011/030068

12/14

FIG. 12

WO 2011/129989 PCT/US2011/030068

13/14

WO 2011/129989 PCT/US2011/030068

FIG. 14

