(12) STANDARD PATENT (11) Application No. AU 2011241007 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Platform independent presentation composition

(51) International Patent Classification(s)
GOG6F 9/06 (2006.01) GOG6F 9/44 (2006.01)

(21) Application No: 2011241007 (22) Date of Filing: 2011.03.25
(87) WIPO No: WO11/129989

(30) Priority Data

(31) Number (32) Date (33) Country
12/760,565 2010.04.15 us
(43) Publication Date: 2011.10.20

(44) Accepted Journal Date: 2014.08.28

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Bykov, Evgueni N.;Findik, Ferit;Benson, Ryan S.;Otryshko, Volodymyr V.

(74) Agent/ Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

(56) Related Art
US 6237004 B1 (Dodson et al.) 22 May 2001
US 2008/0163164 A1 (Chowdhary et al.) 03 July 2008
US 2010/0023547 A1 (Brid) 28 January 2010
Data Mining Community Top Resource for Analytics, Data Mining, and Data
Science Software, Companies, Data, Jobs, Education, News, and more.
KDnuggets. Home. News 2014 Jul, Opinions, Interviews, Reports, Containers:
The Enabler of YARN.

wO 2011/129989 A3 || D000 0 A A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
20 October 2011 (20.10.2011)

(10) International Publication Number

WO 2011/129989 A3

(51

21

International Patent Classification:
GO6F 9/06 (2006.01) GO6F 9/44 (2006.01)

International Application Number:
PCT/US2011/030068

98052-6399 (US). BENSON, Ryan S.; c/o Microsoft
Corporation, LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US).
OTRYSHKO, Volodymyr V.; c/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,

(22) International Filing Date: Redmond, Washington 98052-6399 (US).

25 March 2011 (25.03.2011) (81) Designated States (unless otherwise indicated, for every
(25) Filing Language: English kind of national protection available): AE, AG, AL, AM,
Lo . AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(26) Publication Language: Engllsh CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(30) Priority Data: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
12/760,565 15 April 2010 (15.04.2010) Us HN, HR, HU, D, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(71) Applicant (for all designated States except US): MI- ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
CROSOFT CORPORATION [US/US]; One Microsoft NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
Way, Redmond, Washington 98052-6399 (US). SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(72) Inventors: BYKOV, Evgueni N.; ¢c/o Microsoft Corpora- TT,TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
tion, LCA - International Patents, One Microsoft Way, (84) Designated States (unless otherwise indicated, for every

Redmond, Washington 98052-6399 (US). FINDIK, Fer-
it; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

[Continued on next page]

(54) Title: PLATFORM INDEPENDENT PRESENTATION COMPOSITION

'e 100

112 ~
HOST, HOSTy
ouTPUT
COMPOSITION
r 108
COMPOSITION
ENGINE
Y 102
r 104 r 106
COMPONENT DATA
DEFINITIONS DEFINITIONS
STORE
FIG. 1

(57) Abstract: Architecture that includes a platform independent, con-
figuration driven, presentation composition engine. The composition
engine that allows dynamic generation of multiplatform user experience
(UX) based on a data contract. By composition, the user can select the
parts, interactions, and constraints between the interaction and parts, as
well as the placement with respect to each other. The UX is dynamical-
ly composed from components that are targeted to particular data class-
es. At runtime, platform dependent component implementations are au-
tomatically selected by the engine based on the execution platform of
the composition host. A user can create or customize the UX without
writing code by composing from a wide variety of presentation widgets
that access a wide variety of data sources that can work on many plat-
forms. Compositions are targeted to both a data class and presentation
type and can be either predefined or generated.

WO YoV /A YaaAS AY(ITIINIIN « vy [y v aa A ol H

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

(88)

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

Date of publication of the international search report:
19 January 2012

30 Apr 2014

2011241007

10

15

20

25

30

H:\dxI\Inter woven\NRPortb\DCC\DX1.\6180246_1.doc-24/04/2014

PLATFORM INDEPENDENT PRESENTATION COMPOSITION

Field of Invention

The present invention relates to a computer-implemented visualization system having
computer readable memory that store executable instructions executed by a processor; and

a computer-implemented visualization method executable via a processor and memory.

Background of Invention

The quality of a user experience (UX) is based on how well the UX is aligned with the user
expectations. Having to deal with many data types, many data sources, and many UX
platforms, designers have to make a choice from unattractive approaches that include
writing presentation code for a specific persona that consumes specific data from data
sources for a specific UX platform, or providing a broadly targeted UX that does not meet

the needs of any single persona.

For example, existing UX composition systems such as HTML (hypertext markup
language), XAML (extensible application markup language), and XSLT (extensible
stylesheet language transformations) are designed such that the markup code be developed
for a specific platform. If the developer wants the code to work on several platforms a
custom logic is to be built in the code to handle the platform differences. Moreover,
existing UX composition systems require specific presentation be explicitly defined for
every data interface element. The functionality that allows dynamic generation of UX
elements based on underlying data structures the elements represent is limited to

nonexistent, especially if the data structures are complex and/or inheritable.

As a result of these limitations, the mass market (e.g., email) may have been served, but
the smaller communities of users (e.g., the exchange administrator or the CRM (customer

relationship management) service owner) are underserved.

30 Apr 2014

2011241007

10

15

20

25

30

H:\dxI\Inter woven\NRPortbNDCC\DX1.\6180246_1.doc-24/04/2014

It is generally desirable to overcome or ameliorate one or more of the above described

difficulties, or to at least provide a useful alternative.

Summary of Invention

According to the present invention, there is provided a computer-implemented
visualization system having computer readable memory that store executable instructions
executed by a processor, comprising:

a store of stored definitions that include component definitions and data definitions
for components and data associated with a user experience; and

a composition engine that, at environment runtime, automatically and declaratively
composes an instance of an output component based on a stored definition and an
execution platform of a composition host in an execution environment, the output
component specific to a user experience of a visualization host in the execution
environment, the output component comprising a platform independent container
component that is a container for a base component, the base component selected based on
a stored definition and the execution platform of the composition host in the execution
environment, wherein the composition engine employs a personalization override that is
composed with a selected component definition to override a global variable with a private

variable.

According to the present invention, there is also provided a computer-implemented
visualization method executable via a processor and memory, comprising:

receiving a request for a component to be employed in an execution environment;

searching for a component definition associated with the component;

selecting one or more data definitions for a found component definition; and

at environment runtime, based on an execution platform of a composition host in
the execution environment, automatically composing the one or more data definitions with
the component definition to output the component in the execution environment, the
component comprising a platform independent container component that is a container for

a base component.

30 Apr 2014

2011241007

10

15

20

25

30

H:\dxI\Inter woven\NRPortb\DCC\DX1.\6180246_1.doc-24/04/2014

-3-

According to the present invention, there is also provided a computer-implemented
visualization method executable via a processor and memory, comprising:

receiving a request for a component based on a component execution environment;

searching for a component definition associated with the component;

selecting one or more data definitions for the component definition if the
component definition is found;

creating a custom component based on a data type related to the requested
component when the component definition is not found;

applying a global variable to the component or custom to enable data exchange
between unrelated data contexts; and

at environment runtime, based on an execution platform of a composition host in
the execution environment, automatically composing the one or more data definitions with
the component definition to output the component in the execution environment, the
component comprising a platform independent container component that is a container for

a base component.

The disclosed architecture includes a platform independent configuration-driven
presentation composition engine. The composition engine allows dynamic generation of
multiplatform user experience (UX) based on a data contract. By composition, the user can
select the parts, interactions, and constraints between the interaction and parts, as well as

the placement with respect to each other.

The UX is dynamically composed from components that are targeted to particular data
classes. At runtime, platform dependent component implementations are automatically

selected by the engine based on the execution platform of the composition host.

The disclosed architecture allows a user to create or customize a UX without writing code
by composing from multiple presentation widgets that can access many data sources that
work on many platforms. Compositions are targeted to both a data class and presentation

type and can be either predefined or generated.

30 Apr 2014

2011241007

10

15

20

25

30

H:\dxI\Inter woven\NRPortbNDCC\DX1.\6180246_1.doc-24/04/2014

-3A -

To the accomplishment of the foregoing and related ends, certain illustrative aspects are
described herein in connection with the following description and the annexed drawings.
These aspects are indicative of the various ways in which the principles disclosed herein
can be practiced and all aspects and equivalents thereof are intended to be within the scope
of the claimed subject matter. Other advantages and novel features will become apparent

from the following detailed description when considered in conjunction with the drawings.

Brief Description of the Drawings

Preferred embodiments of the present invention are hereafter described, by way of non-

limiting example only, with reference to the accompanying drawings, in which:

Figure 1 illustrates a visualization system in accordance with the disclosed architecture.
Figure 2 illustrates an alternative visualization system in accordance with the disclosed
architecture.

Figure 3 illustrates an exemplary composition composed by the composition engine.

Figure 4 illustrates a parent component that includes data context and a visual base
component of a composition system.

Figure 5 illustrates a component definition.

Figure 6 illustrates a component registry for finding or selecting components.

Figure 7 illustrates a declarative diagram that represents the use of variables in the
composition engine.

Figure 8 illustrates a visualization method in accordance with the disclosed architecture.
Figure 9 illustrates further aspects of the method of FIG. 8.

Figure 10 illustrates an alternative visualization method.

Figure 11 illustrates further aspects of the method of FIG. 10.

Figure 12 illustrates a method of obtaining components in the composition engine.

Figure 13 illustrates a more detailed method of obtaining components in the composition
engine.

Figure 14 illustrates a block diagram of a computing system that executes composition in

accordance with the disclosed architecture.

30 Apr 2014

2011241007

10

15

20

25

30

H:\dxI\Inter woven\NRPortb\DCC\DX1.\6180246_1.doc-24/04/2014

-3B -

Detailed Description of Preferred Embodiments of the Invention

The disclosed architecture is a presentation composition engine. The composition engine is
a generic composition framework which is exposed as a set of services that allows the user
to "glue" together (compose) different components, and the composition (output
composition of the engine) of the component(s). By composition, the user can select the
parts, interactions, and constraints between the interaction and parts, as well as the
placement of the parts with respect to each other. The engine is a presentation-neutral

framework for both UI (user interface) and non-UI components.

A component is the smallest reusable building block of UI declaration for the composition
engine, and that is identifiable by name, and optionally, targeted to a data type. A
component can be a base component (unit component) or a container component
(composite component). Data context is an instance of target data for a component. In
other words, the data context is a name/value pair set that represents data associated with a
component. Data context entries support change notifications, and compositions can
initiate changes and/or listen to the changes initiated by other compositions. The
composition engine assembles components for a particular host as a user experience that is
platform independent. The virtualization host is the execution environment of the

composition for a particular platform (runtime).

Compositions are targeted to both a data class and presentation type and can be either
predefined or generated. While there can be multiple components composed, the
component chain ends at the concrete base component (e.g., a TextBox control, database

query component, etc.).

The composition engine allows the dynamic generation of multiplatform UX (user
experience) based on a data contract. The UX is dynamically composed from components
that are targeted to a particular data classes. At runtime, platform dependent component
implementations are automatically selected by the engine based on the execution platform

of the composition host.

2011241007 01 Jul 2014

Document1-27/06/2014

-3C -

Reference is now made to the drawings, wherein like reference numerals are used to refer to
like elements throughout. In the following description, for purposes of explanation, numerous
specific details are set forth in order to provide a thorough understanding thereof. It may be
evident, however, that the novel embodiments can be praéticed without these specific details.

In other instances, well known structures and

10

15

20

25

30

WO 2011/129989 PCT/US2011/030068

devices are shown in block diagram form in order to facilitate a description thereof. The
intention is to cover all modifications, equivalents, and alternatives falling within the spirit
and scope of the claimed subject matter.

[0028] FIG. I illustrates a visualization system 100 in accordance with the disclosed
architecture. The system 100 includes a store 102 of store definitions that include
component definitions 104 and data definitions 106 for components and data associated
with a user experience. The component definitions 104 can include definitions for base
component, container components, and compositions of base and container components.
In this way, an existing composition of the components is readily available for dynamic
selection and composition into the output component 110.

[0029] A composition engine 108 that automatically and declaratively composes an
instance of an output component 110 based on a store definition. The output component is
specific to a user experience of a visualization host of different hosts 112.

[0030] The output component 110 includes a base component, a container component, or
a combination of base and container components. The output component 110 is composed
based on a target data type of the user experience. The system 100 can further comprise a
component registry via which a component is searched based on the target data type. The
output component binds associated component properties to data context elements to link
child components. The composition engine 108 includes global variables that enable data
exchange between output components in unrelated data contexts.

[0031] FIG. 2 illustrates an alternative visualization system 200 in accordance with the
disclosed architecture. The system 200 includes the entities of the system 100 of FIG. 1,
as well as data context 202, a personalization (private) override 204, and component
implementation 206. The output component 110 can be composed based on the data
context 202 rather than an existing component definition. That is, based on the data, a
customized component can be created and output purely based on the context data 202
(instance of data in the target UX). The composition engine 108 employs the
personalization override 204 that is composed with a selected component definition to
override a global variable with a private variable.

[0032] FIG. 3 illustrates an exemplary composition 300 composed by the composition
engine. Here, the composition 300 is described in terms of based components (e.g., a
StackPanel base component 302) and a container component 304. Here, the base

component 302 includes two text box base components: a first text box base component

10

15

20

25

30

35

40

45

50

WO 2011/129989 PCT/US2011/030068

showing text “ABC” and a second text box base component showing text “DEF”. The
base component 302 also includes a button base component.

[0033] The base component is a concrete implementation targeted to specific platforms,
the leaf node of the composition process, and can be visual or non-visual. Following is an
example of a base component definition (in terms of component type rather than

component type).

<ComponentType ID="EventQuery">
<Parameters>
<Parameter Name="Scope" Type="String" />
<Parameter Name="Output" Type="IEnumerable" />
</Parameters>
</ComponentType>
<ComponentImplementation TypelId="EventQuery"s>
<SupportedPlatforms>
<Platform>WPF</Platform>
</SupportedPlatforms>
<Units>
<MefFactory>

<ContractName>Company.EnterpriseManagement .EventQuery</ContractName>
</MefFactory>
<Properties>
<Property Name="QueryVerb" Direction="In">Events</Property>
<Property Name="Scope"
Direction="In">SParameter/ScopeS</Property>
<Property Name="Output"
Direction="Out">$Parameter/OutputS</Propertys
</Properties>
</Unit>
</ComponentImplementations>

The MEF (managed extensibility framework) factory calls an MEF runtime to pull
corresponding types from registered Ul assemblies. Note that MEF is just one way
example implementation; other Factory implementations can be employed as well.

[0034] The container component (also, composite component) is the container for the base
components (also, unit components), does not have a custom implementation, and is

platform independent. Following is an example of a composite component definition.

<ComponentImplementation Typeld="SampleComponent"s
<SupportedPlatforms>
<Platform>All</Platform>
</SupportedPlatforms>
<Composite>
<Variables>
<Variable Id="abc" Type="String" />
</Variables>
<Component Typeld="SampleContainerComponent">
<Parameter Id="Childl"s>
<Component Typeld="SampleComponentl"s>
<Parameter Id="Bla">$Variable/abc$</Parameters
</Component >
</Parameters

10

15

20

25

30

35

40

WO 2011/129989 PCT/US2011/030068

<Parameter Id="Child2">
<Component Typeld="SampleComponent2">
<Parameter Id="Bla">$Variable/abc$</Parameters
</Component >
</Parameters
</Component >
</Composite>
</ComponentImplementations>
[0035] In FIG. 3, the container component 304 combines the base components, as

illustrated in the following code, where PropertyA is “ABC” and PropertyB is “DEF”.

<Component TypelId="StackPanel">
<Parameter Name="Child"s>
<Component TypeId="Edit">
<Target>S$Target/propertyAsS</Target>
</Component >
<Component Typeld="Edit">
<Target>$Target/propertyB$</Target>
</Component >
<Component TypeId="Button"s>
</Component >
</Parameters

[0036] Each component (base or container) is backed with a data context (Data Context)
instance. Data Context is a key(string)-value(object) pair collection which supports
property changed notification and error set notification. The component can bind its
properties to data context elements to link child components together.

[0037] FIG. 4 illustrates a parent component 400 that includes data context 402(as
DataContext elements) and a visual base component 404 (e.g., StackPanel base component
302 of FIG. 3) of a composition system. Here, the data context 402 includes three
properties: PropertyA, PropertyB and PropertyC, with corresponding values “ABC”,
“DEF”, and “XYZ”. The visual base component 404 includes bindings to PropertyA and
PropertyB via corresponding 2-way databinds, while multiple data components 406 of a
view model 408 are bound to PropertyB and PropertyC. In other words, the parent
component 400 is composed that includes bindings of properties to child components (the
text box base components) and bindings of the properties to the data components 406.
[0038] FIG. 5 illustrates an component definition 500. The component definition 500
comprises two parts: a type declaration 502 and an implementation definition 504. Each
component has a name, and optional target type attributes that can be used to look up a
relevant component. An example type declaration (in component terms) is the following:

<ComponentType ID="SampleComponent" Target="String"
Accessibility="Internal">

10

15

20

25

30

35

40

45

WO 2011/129989 PCT/US2011/030068

[0039] A component can also include a Parameters subnode which defines the datashape

(e.g., string) expected to be passed, as illustrated below (in component terms):

<ComponentType ID="AnotherComposition"s
<Parameters>
<Parameter Name="Parameterl" Type="String" />
<Parameter Name="SelectedText" Type="String" BindingDirection="Both"
/>

</Parameters>

[0040] FIG. 6 illustrates a component registry 600 for finding or selecting components.
The registry 600 maintains a list of all defined components and component compositions.
For example, the base component (e.g., StackPanel/Button/Edit of FIG. 3) can be looked
up (searched) based on Typeld and TargetType (target data type). The output is then the
base component that corresponds to the TargetType, or Typeld and TargetType.

[0041] To set a property on an component, a “Parameter” node is used, as shown in the

following sample code:

<Component Id="EventView">
<Parameter Id="Scope"s>Microsoft.SystemCenter.SqlDB </Parameter>

[0042] In this case, the property “Scope” of component “EventView” is set to text
“Company.SystemCenter.SqIDB”. Oftentimes, however, parameters are not static, but are
bound to other elements. In general, reference is in the form $<protocols/<protocol -
specific strings.

[0043] For example, two components are bound to a variable “abc”:

<ComponentImplementation Typeld="SampleComponent"s>
<SupportedPlatforms>
<Platform>All</Platform>
</SupportedPlatforms>
<Composite>
<Variables>
<Variable Id="abc" Type="String" />
</Variables>
<Component TypelId="SampleComponentl"s>
<Parameter Id="A">$Variable/abc$</Parameters>
</Component >
<Component Typeld="SampleComponent2">
<Parameter Id="A">S$Variable/abc$</Parameters
</Component >
</Composite>
</Component Implementations>

[0044] Following is an example list of reference protocols in a Parameter node:

SParameter/<propertyName>$ Parameter passed to component
SVariable/<propertyName>$ Variable declared in component

STarget/<propertyName>S$ Property of a target instance passed to
component
STarget$ Target instance

10

15

20

25

30

35

WO 2011/129989 PCT/US2011/030068

[0045] Global variables can be used to enable data exchange between compositions (base
components and/or container components) in non-related data contexts. First, a global

variable 1s declared:

<GlobalVariable ID="GlobalSelectedItem" Type="String"/>

The variable can be referenced in base component and container components using
$Globalvariable/<variable names>$.

[0046] Any given component (e.g., base, container) can override the variable with a
private implementation so that component children see a private copy of the variable,

illustrated in the following example code:

<Variables>
<GlobalVariableOverride GlobalVariableId="GlobalSelectedItem" />
</Variables>

[0047] FIG. 7 illustrates a declarative diagram 700 that represents the use of variables in
the composition engine. At 702, a global variable “A” is declared. At 704, a parameter
name “Blah” is passed to an component. At 706, a local copy of the global variable is
created. At 708 and 710, local copies of the variable are used rather than the global
variable.

[0048] Included herein is a set of flow charts representative of exemplary methodologies
for performing novel aspects of the disclosed architecture. While, for purposes of
simplicity of explanation, the one or more methodologies shown herein, for example, in
the form of a flow chart or flow diagram, are shown and described as a series of acts, it is
to be understood and appreciated that the methodologies are not limited by the order of
acts, as some acts may, in accordance therewith, occur in a different order and/or
concurrently with other acts from that shown and described herein. For example, those
skilled in the art will understand and appreciate that a methodology could alternatively be
represented as a series of interrelated states or events, such as in a state diagram.
Moreover, not all acts illustrated in a methodology may be required for a novel
implementation.

[0049] FIG. 8 illustrates a visualization method in accordance with the disclosed
architecture. At 800, a request is received for a component to be employed in an
execution environment. At 802, a component definition associated with the component is
secarched. At 804, one or more data definitions are selected for a found component

definition. At 806, the one or more data definitions are automatically composed with the

10

15

20

25

30

WO 2011/129989 PCT/US2011/030068

component definition to output the component in the execution environment at
environment runtime.

[0050] FIG. 9 illustrates further aspects of the method of FIG. 8. At 900, the component
definition is searched based on a data type of the requested component when the
component definition is not found. At 902, a custom component is created based on
absence of the component requested. At 904, a global variable is applied to the
component to enable data exchange between unrelated data contexts. At 906, a global
variable is overridden with a private variable to impose the private variable on child
components of the component. At 908, a container component is created when the
requested component is not found. At 910, the container component is loaded with base
components associate data type properties. At 912, the container component is output as
the component.

[0051] FIG. 10 illustrates an alternative visualization method. At 1000, a request for a
component based is received on a component execution environment. At 1002, a
component definition associated with the component is searched. At 1004, one or more
data definitions for the component definition are selected if the component definition is
found. At 1006, a custom component is created based on a data type related to the
requested component when the component definition is not found. At 1008, a global
variable is applied to the component or custom to enable data exchange between unrelated
data contexts. At 1010, the one or more data definitions are automatically composed with
the component definition to output the component in the execution environment at
environment runtime.

[0052] FIG. 11 illustrates further aspects of the method of FIG. 10. At 1100, the global
variable is overridden with a private variable to impose the private variable on child
components of the component. At 1102, a container component is created when the
requested component is not found. At 1104, the container component is loaded with base
components associate data type properties. At 1106, the container component is output as
the component. At 1108, data to be passed to the component is defined via a parameter
node. At 1110, a parent component is composed that includes bindings of properties to
child components and bindings of the properties to data components.

[0053] FIG. 12 illustrates a method of obtaining components in the composition engine.
At 1200, a component is obtained (e.g., via a “get component” call). At 1202, the target
data type is obtained. At 1204, a check is made to determine of a component exists for the

target data type. If not, flow is to 1206 to create a component container. The component

10

15

20

25

30

WO 2011/129989 PCT/US2011/030068

can have one or more associated data properties. At 1208, property types are obtained for
the component. At 1210, a call “get component” is made for the property types. At 1212,
the component is added to the container. Flow is back to 1208 to continue until
completed. After all data properties and types have been applied to the container, flow is
to 1214 to return the results. At 1204, if the check determines that a component exists for
the target data type, flow is to 1216 to select the component, and then return the results, at
1216.

[0054] FIG. 13 illustrates a more detailed method of obtaining components in the
composition engine. At 1300, function parameters such as target type and data type are
received. At 1302, a check is made for a component defined for the target type and name.
If so, flow is to 1304 to verify the interface. Alternatively, if no component exists for the
target type and names, flow is to 1306 such that for every property using the type system
lookup, is a component defined for the data type. If yes, flow is to 1304 to verify the
interface. Access to the type system 1308 is provided to make the check and verify the
interface. Once the interface is verified, flow is to 1310 to check for the component type.
If a unit component, flow is to 1312 to create an instance of the unit component for the
correct platform and pass all declared parameters to the unit component. At 1314, the
loader can load an assembly for the UX composition system (e.g., XAML, MEF, etc).
[0055] If the component type, at 1310, is a composite component, flow is to 1316 to walk
the child nodes in a configuration (e.g., written in XML) setting the values on the
components of the composition. This includes receiving parameter values from parameter
node(s) 1318, parameters from component node(s) 1320, and a parameter set from child
nodes, as provided from build data from parameters at 1322. The typelD is sent from the
component node 1320 to build data 1322. At 1324, the component referenced by the
target as data and name, as the name for lookup, based on name and target information
received from the component node 1320.

[0056] One or more components can reside within a process and/or thread of execution,
and a component can be localized on one computer and/or distributed between two or
more computers. The word “exemplary” may be used herein to mean serving as an
example, instance, or illustration. Any aspect or design described herein as “exemplary”
1s not necessarily to be construed as preferred or advantageous over other aspects or
designs.

[0057] Referring now to FIG. 14, there is illustrated a block diagram of a computing

system 1400 that executes composition in accordance with the disclosed architecture. In

10

10

15

20

25

30

WO 2011/129989 PCT/US2011/030068

order to provide additional context for various aspects thereof, FIG. 14 and the following
description are intended to provide a brief, general description of the suitable computing
system 1400 in which the various aspects can be implemented. While the description
above 1s in the general context of computer-executable instructions that can run on one or
more computers, those skilled in the art will recognize that a novel embodiment also can
be implemented in combination with other program modules and/or as a combination of
hardware and software.

[0058] The computing system 1400 for implementing various aspects includes the
computer 1402 having processing unit(s) 1404, a computer-readable storage such as a
system memory 1406, and a system bus 1408. The processing unit(s) 1404 can be any of
various commercially available processors such as single-processor, multi-processor,
single-core units and multi-core units. Moreover, those skilled in the art will appreciate
that the novel methods can be practiced with other computer system configurations,
including minicomputers, mainframe computers, as well as personal computers (e.g.,
desktop, laptop, etc.), hand-held computing devices, microprocessor-based or
programmable consumer electronics, and the like, each of which can be operatively
coupled to one or more associated devices.

[0059] The system memory 1406 can include computer-readable storage (physical storage
media) such as a volatile (VOL) memory 1410 (e.g., random access memory (RAM)) and
non-volatile memory (NON-VOL) 1412 (e.g., ROM, EPROM, EEPROM, etc.). A basic
input/output system (BIOS) can be stored in the non-volatile memory 1412, and includes
the basic routines that facilitate the communication of data and signals between
components within the computer 1402, such as during startup. The volatile memory 1410
can also include a high-speed RAM such as static RAM for caching data.

[0060] The system bus 1408 provides an interface for system components including, but
not limited to, the system memory 1406 to the processing unit(s) 1404. The system bus
1408 can be any of several types of bus structure that can further interconnect to a memory
bus (with or without a memory controller), and a peripheral bus (e.g., PCI, PCle, AGP,
LPC, etc.), using any of a variety of commercially available bus architectures.

[0061] The computer 1402 further includes machine readable storage subsystem(s) 1414
and storage interface(s) 1416 for interfacing the storage subsystem(s) 1414 to the system
bus 1408 and other desired computer components. The storage subsystem(s) 1414
(physical storage media) can include one or more of a hard disk drive (HDD), a magnetic

floppy disk drive (FDD), and/or optical disk storage drive (e.g., a CD-ROM drive DVD

11

10

15

20

25

30

WO 2011/129989 PCT/US2011/030068

drive), for example. The storage interface(s) 1416 can include interface technologies such
as EIDE, ATA, SATA, and IEEE 1394, for example.

[0062] One or more programs and data can be stored in the memory subsystem 1406, a
machine readable and removable memory subsystem 1418 (e.g., flash drive form factor
technology), and/or the storage subsystem(s) 1414 (e.g., optical, magnetic, solid state),
including an operating system 1420, one or more application programs 1422, other
program modules 1424, and program data 1426.

[0063] The one or more application programs 1422, other program modules 1424, and
program data 1426 can include the entities and components of the system 100 of FIG. 1,
the entities and components of the system 200 of FIG. 2, the composition 300 of FIG. 3,
the parent component 400 of FIG. 4, the component definition 500 of FIG. 5, the registry
600 of FIG. 6, the diagram 700 of FIG. 7, and the methods represented by the flowcharts
of Figures 8-13, for example.

[0064] Generally, programs include routines, methods, data structures, other software
components, etc., that perform particular tasks or implement particular abstract data types.
All or portions of the operating system 1420, applications 1422, modules 1424, and/or
data 1426 can also be cached in memory such as the volatile memory 1410, for example.
It is to be appreciated that the disclosed architecture can be implemented with various
commercially available operating systems or combinations of operating systems (e.g., as
virtual machines).

[0065] The storage subsystem(s) 1414 and memory subsystems (1406 and 1418) serve as
computer readable media for volatile and non-volatile storage of data, data structures,
computer-executable instructions, and so forth. Such instructions, when executed by a
computer or other machine, can cause the computer or other machine to perform one or
more acts of a method. The instructions to perform the acts can be stored on one medium,
or could be stored across multiple media, so that the instructions appear collectively on the
one or more computer-readable storage media, regardless of whether all of the instructions
are on the same media.

[0066] Computer readable media can be any available media that can be accessed by the
computer 1402 and includes volatile and non-volatile internal and/or external media that is
removable or non-removable. For the computer 1402, the media accommodate the storage
of data in any suitable digital format. It should be appreciated by those skilled in the art

that other types of computer readable media can be employed such as zip drives, magnetic

12

10

15

20

25

30

WO 2011/129989 PCT/US2011/030068

tape, flash memory cards, flash drives, cartridges, and the like, for storing computer
executable instructions for performing the novel methods of the disclosed architecture.
[0067] A user can interact with the computer 1402, programs, and data using external user
input devices 1428 such as a keyboard and a mouse. Other external user input devices
1428 can include a microphone, an IR (infrared) remote control, a joystick, a game pad,
camera recognition systems, a stylus pen, touch screen, gesture systems (e.g., eye
movement, head movement, etc.), and/or the like. The user can interact with the computer
1402, programs, and data using onboard user input devices 1430 such a touchpad,
microphone, keyboard, etc., where the computer 1402 is a portable computer, for example.
These and other input devices are connected to the processing unit(s) 1404 through
input/output (I/0O) device interface(s) 1432 via the system bus 1408, but can be connected
by other interfaces such as a parallel port, IEEE 1394 serial port, a game port, a USB port,
an IR interface, etc. The I/0 device interface(s) 1432 also facilitate the use of output
peripherals 1434 such as printers, audio devices, camera devices, and so on, such as a
sound card and/or onboard audio processing capability.

[0068] One or more graphics interface(s) 1436 (also commonly referred to as a graphics
processing unit (GPU)) provide graphics and video signals between the computer 1402
and external display(s) 1438 (e.g., LCD, plasma) and/or onboard displays 1440 (e.g., for
portable computer). The graphics interface(s) 1436 can also be manufactured as part of
the computer system board.

[0069] The computer 1402 can operate in a networked environment (e.g., IP-based) using
logical connections via a wired/wireless communications subsystem 1442 to one or more
networks and/or other computers. The other computers can include workstations, servers,
routers, personal computers, microprocessor-based entertainment appliances, peer devices
or other common network nodes, and typically include many or all of the elements
described relative to the computer 1402. The logical connections can include
wired/wireless connectivity to a local area network (LAN), a wide area network (WAN),
hotspot, and so on. LAN and WAN networking environments are commonplace in offices
and companies and facilitate enterprise-wide computer networks, such as intranets, all of
which may connect to a global communications network such as the Internet.

[0070] When used in a networking environment the computer 1402 connects to the
network via a wired/wireless communication subsystem 1442 (e.g., a network interface
adapter, onboard transceiver subsystem, etc.) to communicate with wired/wireless

networks, wired/wireless printers, wired/wireless input devices 1444, and so on. The

13

10

15

20

25

30

WO 2011/129989 PCT/US2011/030068

computer 1402 can include a modem or other means for establishing communications over
the network. In a networked environment, programs and data relative to the computer
1402 can be stored in the remote memory/storage device, as is associated with a
distributed system. It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications link between the computers
can be used.

[0071] The computer 1402 is operable to communicate with wired/wireless devices or
entities using the radio technologies such as the IEEE 802.xx family of standards, such as
wireless devices operatively disposed in wireless communication (e.g., IEEE 802.11 over-
the-air modulation techniques) with, for example, a printer, scanner, desktop and/or
portable computer, personal digital assistant (PDA), communications satellite, any piece of
equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news
stand, restroom), and telephone. This includes at least Wi-Fi (or Wireless Fidelity) for
hotspots, WiMax, and Bluetooth™ wireless technologies. Thus, the communications can
be a predefined structure as with a conventional network or simply an ad hoc
communication between at least two devices. Wi-Fi networks use radio technologies
called IEEE 802.11x (a, b, g, etc.) to provide secure, reliable, fast wireless connectivity. A
Wi-Fi network can be used to connect computers to each other, to the Internet, and to wire
networks (which use IEEE 802.3-related media and functions).

[0072] The illustrated and described aspects can be practiced in distributed computing
environments where certain tasks are performed by remote processing devices that are
linked through a communications network. In a distributed computing environment,
program modules can be located in local and/or remote storage and/or memory system.
[0073] What has been described above includes examples of the disclosed architecture. It
is, of course, not possible to describe every conceivable combination of components
and/or methodologies, but one of ordinary skill in the art may recognize that many further
combinations and permutations are possible. Accordingly, the novel architecture is
intended to embrace all such alterations, modifications and variations that fall within the
spirit and scope of the appended claims. Furthermore, to the extent that the term
“Iincludes” is used in either the detailed description or the claims, such term is intended to
be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted

when employed as a transitional word in a claim.

14

30 Apr 2014

2011241007

H:\dxI\Inter woven\NRPortb\DCC\DX1.\6180246_1.doc-24/04/2014

- 15-

The reference in this specification to any prior publication (or information derived from it),
or to any matter which is known, is not, and should not be taken as an acknowledgment or
admission or any form of suggestion that that prior publication (or information derived
from it) or known matter forms part of the common general knowledge in the field of

endeavour to which this specification relates.

30 Apr 2014

2011241007

10

15

20

25

30

H:\dxI\Inter woven\NRPortb\DCC\DX1.\6180246_1.doc-24/04/2014

-16-

Claims Defining the Invention

1. A computer-implemented visualization system having computer readable memory
that store executable instructions executed by a processor, comprising:

a store of stored definitions that include component definitions and data definitions
for components and data associated with a user experience; and

a composition engine that, at environment runtime, automatically and declaratively
composes an instance of an output component based on a stored definition and an
execution platform of a composition host in an execution environment, the output
component specific to a user experience of a visualization host in the execution
environment, the output component comprising a platform independent container
component that is a container for a base component, the base component selected based on
a stored definition and the execution platform of the composition host in the execution
environment, wherein the composition engine employs a personalization override that is
composed with a selected component definition to override a global variable with a private

variable.

2. The system of claim 1, wherein the output component includes the base

component, the container component, or a combination of base and container components.

3. The system of claim 1, wherein the output component is composed based on a

target data type of the user experience.

4. The system of claim 3, further comprising a component registry via which a

component is searched based on the target data type.

S. The system of claim 1, wherein the output component is composed based on a data
context.
6. The system of claim 1, wherein the output component binds associated component

properties to data context elements to link child components.

30 Apr 2014

2011241007

10

15

20

25

30

H:\dxI\Inter woven\NRPortbNDCC\DX1.\6180246_1.doc-24/04/2014

-17-

7. The system of claim 1, wherein the composition engine includes global variables

that enable data exchange between output components in unrelated data contexts.

8. A computer-implemented visualization method executable via a processor and
memory, comprising:

receiving a request for a component to be employed in an execution environment;

searching for a component definition associated with the component;

selecting one or more data definitions for a found component definition; and

at environment runtime, based on an execution platform of a composition host in
the execution environment, automatically composing the one or more data definitions with
the component definition to output the component in the execution environment, the
component comprising a platform independent container component that is a container for

a base component.

9. A method of claim 8, further comprising searching for the component definition
based on a data type of the requested component when the component definition is not

found.

10. The method of claim 8, further comprising creating a custom component based on

absence of the component requested.

11. The method of claim 8, further comprising applying a global variable to the

component to enable data exchange between unrelated data contexts.

12. The method of claim 8, further comprising overriding a global variable with a

private variable to impose the private variable on child components of the component.

13. The method of claim 8, further comprising:
creating the container component when the requested component is not found;
loading the container component with base components associate data type

properties; and

30 Apr 2014

2011241007

10

15

20

25

30

H:\dxI\Inter woven\NRPortb\DCC\DX1.\6180246_1.doc-24/04/2014

- 18-

outputting the container component as the component.

14, A computer-implemented visualization method executable via a processor and
memory, comprising:

receiving a request for a component based on a component execution environment;

searching for a component definition associated with the component;

selecting one or more data definitions for the component definition if the
component definition is found;

creating a custom component based on a data type related to the requested
component when the component definition is not found;

applying a global variable to the component or custom to enable data exchange
between unrelated data contexts; and

at environment runtime, based on an execution platform of a composition host in
the execution environment, automatically composing the one or more data definitions with
the component definition to output the component in the execution environment, the
component comprising a platform independent container component that is a container for

a base component.

15. The method of claim 14, further comprising overriding the global variable with a

private variable to impose the private variable on child components of the component.

16. The method of claim 14, further comprising:
creating the container component when the requested component is not found;
loading the container component with base components associate data type
properties; and

outputting the container component as the component.

17. The method of claim 14, further comprising defining data to be passed to the

component via a parameter node.

18. The method of claim 14, further comprising composing a parent component that

30 Apr 2014

2011241007

10

H:\dxI\Inter woven\NRPortbNDCC\DX1.\6180246_1.doc-24/04/2014

- 19-

includes bindings of properties to child components and bindings of the properties to data

components.

19. The method of claim 14, wherein the component is composed based on a target

data type of a user experience.

20. A computer-implemented visualization system having computer readable memory
that store executable instructions executed by a processor, substantially as hereinbefore

described with reference to the accompanying drawings.

21. A computer-implemented visualization method executable via a processor and
memory, substantially as hereinbefore described with reference to the accompanying

drawings.

WO 2011/129989 PCT/US2011/030068

1/14
i~ 100
112
HOST, HOSTy
A A
110
OUTPUT
COMPOSITION
108
COMPOSITION
ENGINE
A A r 102
104 [~ 106
COMPONENT DATA
DEFINITIONS DEFINITIONS
STORE

FIG. 1

WO 2011/129989 PCT/US2011/030068

2/14
y— 200
112
HOST, HOSTy
t A
110
OUTPUT
COMPOSITION
202 108
DATA COMPOSITION
CONTEXT ENGINE
A A A
104 106
COMPONENT DATA
DEFINITIONS DEFINITIONS
204
COMPOSITION
PERSONALIZATION
OVERRIDE
206

COMPONENT
IMPLEMENTATION

FIG. 2

WO 2011/129989

PCT/US2011/030068

3/14
s 300
r 304
CONTAINER OBJECT
r 302
[Textbox Base Component Y ABC
Textbox Base Component)Y DEF
Button Base Component (BUTTON)
STACKPANEL BASE COMPONENT

FIG. 3

WO 2011/129989

PCT/US2011/030068

s 402

s 404

PROPERTYA | “ABC”

PROPERTYB | “DFE”

“ABC”

“DFE”

‘;(L

PROPERTYC | “XYZ”

VISUAL BASE
COMPONENT

s 408

r 406

DATA CONTEXT

DATA
COMPONENT

VIEW MODEL

PARENT COMPONENT

FIG. 4

/Y69

WO 2011/129989 PCT/US2011/030068

5/14

<ComponentType ID="SampleComponent">
<Parameters />
</ComponentType>

<ComponentImplementation TypeID="SampleComponent">
<SupportedPlatforms>
<Platform>ALL</Platform>
</SupportedPlatforms>

<Composite>
<Component TypeID="AnotherSampleComponent">
<Parameter ID="Bla">Foo</Parameter>
</Component>
</Composite>

<Unit>
<AssemblyFactory>
<Assembly>BlaAssembly,Version=1x.2x.y.y</Assembly>
<Type>Surface.Controls.FooControl</Type>
</AssemblyFactory>
</Unit>

N

</ComponentImplementation>

R

FIG. 5

WO 2011/129989

6/14

PCT/US2011/030068

/- 600
TYPEID——»
COMPONENT
REGISTRY
—TARGETTYPE—

——COMPONENT—>»

FIG. 6

PCT/US2011/030068

WO 2011/129989

714

| ANIDNINOWUSOdWod i

1
T <I9WRIR/>$ T Q[qRLIB A [BQO[D$ <, YR H,,=OWEN IojoWeIed>"" AdOO TVI0TdSN |
Vel _ “oi
= |
AdOD TVD0T SN |
o & | UgoL
O\W _
4. aw.. ATIVIAVA
/«%,\h </ «{/»=PIPIqeLIBA[BqO[D) 9PLLIDAQIQELIEA[EQO[D>

TvdOTO FHL 40 AJOD TVDOTV ALVIID
T

o>

1WeIRd/>§\7 /Q1qeHEATEqO[D <, UBIH,,=oWEN Jojoweled>""" |
LS

Cpos

_

_

_

_

_

_

_ Z,

_ 2 aw/

_ ...A.HOHOEN.HNQ\V%<\®_DNT.W. /\kx O—O%A:SN—@:HOEMZ hOuOEMuN&V. :
a

_

_

_

_

_

_

_

_

_

/ </ Y »=°WEN S[qeHEA[RqO[D>
b o e e e e e e o e e —— —— — a Zde\,N.f\

Mty g o —mmm = - oL

WO 2011/129989 PCT/US2011/030068

8/14

(START)

\ 4

RECEIVE REQUEST FOR COMPONENT 800
TO BE EMPLOYED IN EXECUTION -
ENVIRONMENT

'

SEARCH FOR AN COMPONENT 802
DEFINITION ASSOCIATED WITH -
COMPONENT

'

SELECT ONE OR MORE DATA 804
DEFINITIONS FOR A FOUND 7
COMPONENT DEFINITION

I

AUTOMATICALLY COMPOSE ONE OR
MORE DATA DEFINITIONS WITH THE
COMPONENT DEFINITION TO OUTPUT |_— 806
THE COMPONENT IN THE EXECUTION
ENVIRONMENT AT ENVIRONMENT
RUNTIME

STOP

FIG. 8

WO 2011/129989

(FIG.8 >

PCT/US2011/030068

9/14

~— 900

SEARCH FOR COMPONENT DEFINITION
BASED ON A DATA TYPE OF REQUESTED
COMPONENT WHEN COMPONENT
DEFINITION IS NOT FOUND

— 902

CREATE CUSTOM COMPONENT BASED ON
ABSENCE OF THE COMPONENT REQUESTED

APPLY GLOBAL VARIABLE TO COMPONENT
TO ENABLE DATA EXCHANGE BETWEEN
UNRELATED DATA CONTEXTS

~— 906

A 4

OVERRIDE GLOBAL VARIABLE WITH A
PRIVATE VARIABLE TO IMPOSE THE PRIVATE
VARIABLE ON CHILD COMPONENTS OF THE
COMPONENT

_—908

CREATE CONTAINER COMPONENT WHEN THE
REQUESTED COMPONENT IS NOT FOUND

l —910

LOAD CONTAINER COMPONENT WITH BASE
COMPONENTS ASSOCIATE DATA TYPE
PROPERTIES

l _— 912

OUTPUT CONTAINER COMPONENT AS THE
COMPONENT

FIG. 9

STOP

WO 2011/129989 PCT/US2011/030068

10/14

‘ START >

A 4

RECEIVE REQUEST FOR AN COMPONENT 1000
BASED ON AN COMPONENT EXECUTION P~
ENVIRONMENT

|

SEARCH FOR AN COMPONENT DEFINITION | _— 1002
ASSOCIATED WITH THE COMPONENT

I

SELECT ONE OR MORE DATA DEFINITIONS 1004
FOR THE COMPONENT DEFINITION IF THE P~
COMPONENT DEFINITION IS FOUND

|

CREATE CUSTOM COMPONENT BASED ON A

DATA TYPE RELATED TO THE REQUESTED | — 1006

COMPONENT WHEN THE COMPONENT
DEFINITION IS NOT FOUND

A 4

APPLY GLOBAL VARIABLE TO THE

COMPONENT OR CUSTOM TO ENABLE DATA [_— 1008

EXCHANGE BETWEEN UNRELATED DATA
CONTEXTS

|

AUTOMATICALLY COMPOSE ONE OR MORE
DATA DEFINITIONS WITH THE COMPONENT
DEFINITION TO OUTPUT THE COMPONENT IN 1010
THE EXECUTION ENVIRONMENT AT
ENVIRONMENT RUNTIME

STOP

FIG. 10

WO 2011/129989 PCT/US2011/030068

11/14

(FIG. 10)

_—1100

OVERRIDE GLOBAL VARIABLE WITH A
PRIVATE VARIABLE TO IMPOSE THE PRIVATE
VARIABLE ON CHILD COMPONENTS OF THE
COMPONENT

CREATE CONTAINER COMPONENT WHEN THE
REQUESTED COMPONENT IS NOT FOUND

LOAD CONTAINER COMPONENT WITH BASE
COMPONENTS ASSOCIATE DATA TYPE

PROPERTIES
OUTPUT CONTAINER COMPONENT AS THE
COMPONENT

DEFINE DATA TO BE PASSED TO THE
COMPONENT VIA A PARAMETER NODE

_— 1110

COMPOSE PARENT COMPONENT THAT
INCLUDES BINDINGS OF PROPERTIES TO CHILD
COMPONENTS AND BINDINGS OF THE
PROPERTIES TO DATA COMPONENTS

Y

Y

(stop)

FIG. 11

WO 2011/129989

PCT/US2011/030068

12/14

START

s 1200

OBTAIN COMPONENT

l r 1202

OBTAIN TARGET DATA
TYPE

1204

s 1216

COMPONENT
DEFINED FOR DATA
TYPE?

COMPONENT

s 1206

s 1214

CREATE COMPONENT RETURN
CONTAINER RESULT
A

A 4

FOR EACH DATA
PROPERTY B

l s 1210

CALL “GET COMPONENT”
FOR PROPERTY TYPE

l s 1212

ADD COMPONENT TO
CONTAINER

FIG. 12

PCT/US2011/030068

WO 2011/129989

13/14

£1 °OIA

QaNIJHA 130¥VL dNAOOT Y04 FINVN

—»| SYVIANVN ANV VLVd SV LdD¥V.L

ANV INVN A9 QIONTYAITI 1DArdO SN
peer -
I
(s)jaaoN | . J4aON | fLaanaq SYALANV IV .
YALANVIVd [LNANOJINOD AradAL WO¥d V.LVd aTing
z I
srer - ozer < _ vt
40TVA OL TOMINOD INVLINSTYH
LAY AV LTS LNANOJINOD oL ¥alawvavd 1S
I NO SANTYA ONLLLAS | SAAON ATIHD INO¥A
TNX DIANOD NI 1AS YALANVIVA aT1INd
SAAON ATIHD YTVM
: LI OL SYALANVIVd aaav10ad
JdAL
orer - »l ¢ TIV SSVd ANV INI0ALV1d
dLISOdNOD hﬂmﬁwwﬁou LINO= | 50300 404 LNINOJINOD
40 AONVILSNI ALVIID
(1) £ A
l\ L]
AOVAIALNI el !
mm_ A poeT >E.~m§ _ (J9N “TINVX “89)
: SdA ATANESSY
| vIigl
! S0¢1
QANLIAT INANOAINOD ¢ ANVYN Viva
Vv SI ‘dN3001T €—ON— ozm\ owmmwm:wwmﬁ €—— ddALLADUVL |«
WHLSAS dAL ONISN NANODINOD 'SUALANVIVd
‘ALYAdO¥d AYTAT Y04 NOLLONNA

S D

zoe1 - TS

WO 2011/129989

14/14

PCT/US2011/030068

e 1400
1402
1408 1418
REMOVABLE ~————>
<«—> MEMORY
SUBSYSTEM
1404
PROCESSING v
UNIT(S) ! 1420
27
1™ "ac ~ 7
¥ /M06 08y
MEMORY | 1422
SUBSYSTEM I "L_ APPS |
1410 —_—
" e ~ 1424:
PEEN VOL : LMODULES-i |
1412 1426
V- | — :
g NON-VOL Lo DATA
Y I_ ————
S 1416 ¥ 144
T
STORAGE STORAGE
E le—> PEEN
M INTERFACE(S) SUBSYSTEM(S) 1444
/_
B 1442 NETWORKS,
U / COMPUTERS,
«—» COMMUNICATIONS | » PERIPHERALS,
INPUT
1436 1440 DEVICES,...
| ONBOARD 1438
| GRAPHICS € pigpray L
INTERFACE(S) | ,| EXTERNAL
DISPLAY(S)
1430
V= 1432 ONBOARD
.| USER INPUT 1428
-~ | DEVICES EXTERNAL
«—> H:/T%EEXé%}(ES) < » USER INPUT
j DEVICES
A 1434
,| OUTPUT
PERIPHERALS

FIG. 14

