US008279096B2

a2 United States Patent 10) Patent No.: US 8,279,096 B2
Novy (45) Date of Patent: Oct. 2,2012
(54) PARALLEL COMPRESSION FOR OTHER PUBLICATIONS
DICTIONARY-BASED SEQUENTIAL CODERS Definition of “Dictionary coder”, Wikipedia. <http://en.wikipedia.
) e ave ; org/wiki/Dictionary_coder>, Date of access: May 18, 2010, 3 pp.
(75) Inventor: Jindfich Novy, Brno (CZ) Definition of “Lempel-Ziv-Markov chain algorithm”, Wikipedia.
. . <http://en.wikipedia.org/wiki/L.zma>, Date of access: May 18, 2010,
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) 4pp.
Definition of “LZ77 and 1L.Z78”, Wikipedia. <http://en.wikipedia.
(*) Notice: Subject to any disclaimer, the term of this org/wiki/L.Z77>, Date of access: May 18, 2010., 3 pp.
patent is extended or adjusted under 35 Definition of “Parallel computing”, Wikipedia. <http://en.wikipedia.
U.S.C. 154(b) by 147 days. org/wiki/Parallel _ computing>, Date of access: May 18, 2010, 19 pp.
Definition of “XZ”, Wikipedia. <http://en.wikipedia.org/wiki/Xz>,
R Date of access: May 18, 2010, 2 pp.
(21) Appl. No.: 12/782,892 TUKAANLORG, “XZ Utils”, <http:/tukaani.org/xz/>, Date of
. : May 18, 2010, 2 pp.
(22) Filed: May 19,2010 access: Vay bp
* cited by examiner
(65) Prior Publication Data
Primary Examiner — Brian Young
US 2011/0285556 Al Nov. 24,2011 (74) Attorney, Agent, or Firm — Lowenstein Sandler PC
(51) Imt.ClL
HO3M 7/00 (2006.01) 7 ABSTRACT
. ictionary-based sequential compression is performed in
(52) US.CL oo 341/107; 341/106 ~ Dictionary-based sequential compression is performed i
(58) Field of Classification Search 341/51, ~ parallel on input data using multiple cores of a computer
341/87. 106 107’ system. The compression can be performed by first determin-
See application file for complete search hist’ory. ’ ing a dictionary size for data compression, followed by deter-
mining a block size for partitioning the input data. The block
(56) References Cited size is greater than the dictionary size. The multiple cores of

U.S. PATENT DOCUMENTS

5,729,228 A * 3/1998 Franaszeketal. ... 341/106
7,180,433 B1* 2/2007 Grotmol 341/51
7,616,137 B2* 11/2009 Fuin 341/106
7,668,162 B1* 2/2010 Alboccoocveviiviinnne 370/389

the computer system then execute multiple threads in parallel,
with each thread compressing one block of the input data
according to a dictionary-based sequential compression
scheme.

19 Claims, 6 Drawing Sheets

RECEIVE A REQUESTED COMPRESSION LEVEL

300
<

~310

'

DETERMINE A DICTIONARY SIZE CORRESPONDING
TO THE REQUESTED COMPRESSION LEVEL

320

Y

DETERMINE AN INPUT BLOCK SIZE BASED ON THE
DICTIONARY SIZE

330

'

PARTITION INPUT DATA INTO DATA BLOCKS

~,340

!

EXECUTE MULTIPLE THREADS OF DATA
COMPRESSION IN PARALLEL ON MULTIPLE CORES

360

/

STORE COMPRESSED BLOCKS IN DATA STORAGE

360

US 8,279,096 B2

Sheet 1 of 6

Oct. 2, 2012

U.S. Patent

} 'Ol

AT

08t
FOVHOLS VIva

o
~

I

0p) HOSS300Hd

o™

PLIM00 | |

¢hl JH09D

A
y

i

L A
—

=

A

0S) WALSAS ONILYHIHO

01 ¥3OYNYIN NOISSTHAINOD

00} WALSAS ¥3LNdWOD

N

I

OE} ¥IOVNYI NOISSTHdIN0D3A

0¢k LN

US 8,279,096 B2

Sheet 2 of 6

Oct. 2, 2012

U.S. Patent

¢ Old

9¢ OVAHILNI 434SN

01 ¥39VNYI NOISSIHAW0D

01 WH1IH09 T
NOISSIHdNOD TVILNIND3S
3SVE-AHVYNOILOId

A

y

A

N

A

\ 4

022 3INAOW
NOILYNINY3LIA
37IS AYYNOLLOIC

0€¢ 3INACW
ONINOILILYVd
v1va

[

7l §54090

0} W3LSAS d93.1NdNOD

U.S. Patent Oct. 2, 2012 Sheet 3 of 6 US 8,279,096 B2

300
i

RECEIVE A REQUESTED COMPRESSION LEVEL ~_,310

Y

DETERMINE A DICTIONARY SIZE CORRESPONDING
TO THE REQUESTED COMPRESSION LEVEL

v

DETERMINE AN INPUT BLOCK SIZE BASED ON THE 330
DICTIONARY SIZE

Y

PARTITION INPUT DATA INTO DATA BLOCKS 340

!

EXECUTE MULTIPLE THREADS OF DATA
COMPRESSION IN PARALLEL ON MULTIPLE CORES

Y

STORE COMPRESSED BLOCKS IN DATA STORAGE 360

320

~350

FIG. 3

US 8,279,096 B2

Sheet 4 of 6

Oct. 2, 2012

U.S. Patent

¥ 'Old

€1 4IOVNVIN NOISSTFddN023d

0}y WHLIMODTY NOISSTHdINGDIA
VILNINDIS FSVE-AYVYNOILIT

H

H H

0cy 3INCON zmm&w%m@
ONINOILILYYd o
027 LNTTD

U.S. Patent Oct. 2, 2012 Sheet 5 of 6 US 8,279,096 B2

500
/

RECEIVE COMPRESSED DATA ~,510

v

PARTITION THE RECEIVED DATA INTO DATA BLOCKS ~,520

y

IDENTIFY ONE OR MORE BLOCKS OF INTEREST ~ ™~\,930

v

DETERMINE WHETHER TO DECOMPRESS THE
IDENTIFIED DATA BLOCKS SEQUENTIALLY ORIN ~540
PARALLEL

' _

DECOMPRESS THE IDENTIFIED DATABLOCKS 950

FIG. 5

U.S. Patent Oct. 2, 2012 Sheet 6 of 6 US 8,279,096 B2

/\ 600
\ e
602 a7 — 610
PROCESSING DEVICE
COMPRESSION/ | [- » VIDEO DISPLAY
| IDECOMPRESSION|— 622
LOGIC
630
— 604 — L~ 612
MAIN MEMORY
N COMPRESSION | ¢ ALPHA-NUMERIC
DECOMPRESSIONN—— 622 INPUT DEVICE
1 LOGIC
- 606 - 614
CURSOR
STATIC MEMORY = -t | CONTROL
DEVICE
[p]
]
(a8]
- 608 — 616
NETWORK SIGNAL
INTERFACE | - » GENERATION
DEVICE DEVICE
\V 618
\
‘/\ 620 /
SECONDARY MEMORY
MACHINE READABLE 631
STORAGE MEDIUM T T~
- T COMPRESSION 622
628 DECOMPRESSION —+1
/a " LOGIC
COMPRESSION/
DECOMPRESSION |
LOGIC
~
N

US 8,279,096 B2

1
PARALLEL COMPRESSION FOR
DICTIONARY-BASED SEQUENTIAL CODERS

TECHNICAL FIELD

Embodiments of the present invention relate to data com-
pression, and more specifically, to parallel compression on a
multi-processor computer system.

BACKGROUND

Data compression is the process of encoding information
using fewer bits than the unencoded information. One of the
best performing compression schemes, in terms of archive
size and decompression speed, is a dictionary-based sequen-
tial coder that uses a compression algorithm such as Lempel-
Ziv 77 (LZ77), Lempel-Ziv 78 (LZ78), Lempel-Ziv-Markov
chain algorithm (LZMA), or a variant of these algorithms.

A dictionary-based sequential coder (also known as a “dic-
tionary coder” or a “substitution coder”) implements a class
of lossless data compression algorithms which operate by
searching for matches between the text to be compressed and
a set of strings contained in a data structure (also known as the
“dictionary”). The dictionary is maintained by the encoder.
When the encoder finds a match, it replaces the text with a
reference to the string’s position in the dictionary to gain
compression.

Dictionary-based sequential coders, particularly LZMA,
typically have a very slow compression speed. Convention-
ally, sequential coders (including dictionary-based sequential
coders) process an input byte-by-byte (that is, sequentially).
Sequential processing inherent in the sequential coders pre-
vents parallelization of data compression. Therefore, dictio-
nary-based sequential coders are typically slower than some
other coders (e.g., block sorting coders), which are easier to
parallelize.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation, and can be more fully understood
with reference to the following detailed description when
considered in connection with the figures in which:

FIG. 1is a block diagram illustrating one embodiment of a
network environment in which a computer system may oper-
ate.

FIG. 2 is a block diagram illustrating one embodiment of a
compression manager in the computer system of FIG. 1.

FIG. 3 is a flow diagram illustrating a method for parallel
data compression, in accordance with one embodiment of the
present invention.

FIG. 4 is a block diagram illustrating one embodiment of a
decompression manager.

FIG. 5 is a flow diagram illustrating a method for data
decompression, in accordance with one embodiment of the
present invention.

FIG. 6 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system.

DETAILED DESCRIPTION

Described herein is a method and system for parallel data
compression. In one embodiment, dictionary-based sequen-
tial compression is performed in parallel on input data using
multiple cores of a computer system. The compression can be
performed by first determining a dictionary size for data
compression, followed by determining a block size for parti-

20

25

30

35

40

45

50

55

60

65

2

tioning the input data. The block size is greater than the
dictionary size. The multiple cores of the computer system
then execute multiple threads in parallel, with each thread
compressing one block of the input data according to a dic-
tionary-based sequential compression scheme. Compression
speed can be significantly improved.

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and devices
are shown in block diagram form, rather than in detail, in
order to avoid obscuring the present invention.

FIG. 1 illustrates a network architecture in which embodi-
ments of the present invention may operate. The network
architecture includes a computer system 100 coupled to one
or more client machines (“clients) 120 over a network 125.
The network 125 may be a private network (e.g., a local area
network (LAN), a wide area network (WAN), intranet, etc.) or
a public network (e.g., the Internet). The computer system
100 includes multiple processors 140, with each processor
140 including one or more processing cores (“cores”) 142.
The computer system 100 runs an operating system 150 for
allocating system resources. The computer system 100 is also
coupled to data storage 180. The data storage 180 includes
one or more mass storage devices (e.g., disks), which form a
storage pool shared by all of the processors 140 and cores 142
in the computer system 100.

In one embodiment, the computer system 100 may include
one or more servers. The client 120 may be a computer (e.g.,
a server, a workstation, a personal computer (PC), a laptop,
etc.), amobile phone, a hand-held computing device, a game
station, a personal digital assistant (PDA), etc. In one embodi-
ment, the computer system 100 is hosted by a service provider
that distributes software packages to the clients 120. Some of
the packages may have one or more gigabytes. To store and
transfer the packages efficiently, the computer system 100
may compress the software packages into compressed files
that have fewer bits than the original data. In one embodi-
ment, the computer system 100 may include a compression
manager 170 to manage compression of the original data. One
or more of the client 120 may include a decompression man-
ger 130 to manage decompression of the data received from
the computer system 100. In one embodiment, the data com-
pression is based on a dictionary-based sequential compres-
sion algorithm, which can be executed in parallel to increase
the compression speed. The data decompression may be par-
allel, sequential, or as selected by a user of the client 120. The
choice of the data decompression scheme may be dependent
on the hardware capability of the client 120 and the need of
the user.

FIG. 2 illustrates a block diagram of an embodiment of the
compression manager 170 in the computer system 100. The
compression manager 170 includes memory to store a dictio-
nary-based sequential compression algorithm 210 executable
by the cores 142. In one embodiment, the dictionary-based
sequential compression algorithm 210 is based on Lempel-
Ziv compression algorithm or its variants, e.g., LZ77, LZ78,
LZMA, etc. The compression manager 170 also includes a
dictionary size determination module 220 for determining the
size of the dictionary to be used in the compression process.
In one embodiment, the dictionary size is proportional to a
compression level selected by a user or a system administra-
tor. For example, a user can select from a number of com-
pression levels (e.g., from 1 to 9) provided by the computer
system 100. The lower the compression level is, the smaller
the dictionary size is to be used. A smaller dictionary size
corresponds to a smaller input block size (e.g., the block size

US 8,279,096 B2

3

may be three times of the dictionary size), which means that
the compression input can be split into a larger number of
threads. In a system with a large number of cores, parallel
execution of a large number of threads can significantly
increase the compression speed.

However, a large dictionary typically provides better a
compression result in terms of the compressed data size. A
dictionary defines a sliding window that extends from the
encoding position backwards in a compressed file. An
encoder uses this sliding window to find a match between the
data at the encoding position and the set of strings in the
dictionary. With a large dictionary, it is more likely that the
encoder finds a match in the dictionary and encodes data with
a reference in the dictionary. Thus, the size of the dictionary
may be determined by balancing the factors that include the
number of threads to be executed in parallel and the com-
pressed data size.

In one embodiment, each compression level provided by
the computer system 100 for user selection is associated with
a penalty in the compressed data size. The lowest compres-
sion level (e.g., 1), which corresponds to parallel execution
with the smallest dictionary size, is associated with the largest
penalty. There is also a penalty associated with compression
executed in parallel, which is caused by a fact that a sliding
window cannot reach data before the beginning of a data
block and therefore a compression starts with an empty dic-
tionary for each data block (when starting a compression of
each data block, the sliding window is truncated and the
dictionary is empty). However, even the largest penalty,
caused by partitioning to blocks, incurs only a small increase
in the compressed data size (e.g., 1%-3%) when compared
with a single-threaded sequential execution if data blocks are
sufficiently large. The comparison is made with the same
compression level and therefore the same dictionary size, so
that one can find out how much penalty is caused by splitting
the input data into independent data blocks. Therefore, a
system administrator can evaluate system requirements and
constraints to determine a desired compression speed and
compressed data output.

As an example, the following table shows dictionary sizes
for particular compression levels (where the MiB unit stands
for mebibytes, which is 2°° bytes):

Compression
Level

Dictionary
Size (MiB)

(o I IC NV U S
N
3

674

For example, the tests for parallel compression in compari-
son with single-threaded sequential compression were
executed with a default compression level 6 (, with dictionary
size of 94 Mbytes). It is understood that a different compres-
sion level may be used. In alternative embodiments, each
compression level may correspond to a dictionary size difter-
ent from the above table.

The compression manager 170 also includes a data parti-
tioning module 230 to partition the input data into a number of
data blocks. In one embodiment, the size of each data block is
chosen to be greater than the dictionary size for improved

20

25

30

35

40

45

50

55

60

65

4

compression performance (with respect to the compressed
data size). In one embodiment, the size of each data block is
set to be an integer multiple of the dictionary size (e.g., three
times the dictionary size). In one embodiment, the size of the
compressed data output may increase linearly when smaller
data blocks per thread are used. This correlation of com-
pressed data size and the size of the data blocks exist when
there is sufficient entropy in data to be compressed (i.e., the
data is not trivial, does not contain runs of the same letters,
etc.). Nevertheless, the increase in the compressed data size is
negligible.

After the dictionary size is determined and the data blocks
are partitioned, the compression manager 170 sends (CxP)
data blocks to the cores 142, where C is the number of cores
142 and P is the number of processors 140 that are available
for performing data compression. The cores 142 then com-
press the (CxP) data blocks in parallel using the dictionary-
based sequential compression algorithm 210.

In one embodiment, the computer system 100 is coupled to
auser interface device 260 (e.g., a display that provides a user
interface) to display compression information, such as the
name of a file to be compressed and the selectable compres-
sion levels. The user interface device 260 also receives user
inputs, such as a desired compression level.

With parallel execution of the dictionary-based sequential
compression, the computer system 100 can speed up the
compression time significantly. For example, the speed up
can be as much as 65%, which means that the parallel com-
pression takes only 35% of the time that the same input data
is compressed in a single thread. The speed up can be obtained
with a small penalty of increased final archive size by about
1%.

The parallel compression scheme described herein allows
a user (e.g., a system administrator) to obtain a compression
speed as fast as possible with a defined compression penalty.
When a user defines a penalty (e.g., 3%) that he is willing to
sacrifice by choosing a compression level, the parallel com-
pression scheme may allow the compression to speed up by a
factor close to 80%. The compression speed up increases
almost linearly with the number of cores that perform the
compression. The increase in compression speed is much
greater than the negligible increase in the compressed output
size caused by the parallel compression.

FIG. 3 is a flow diagram illustrating one embodiment of a
method 300 for parallel data compression. The method 300
may be performed by a computer system 600 of FIG. 6 that
may comprise hardware (e.g., circuitry, dedicated logic, pro-
grammable logic, microcode, etc.), software (e.g., instruc-
tions run on a processing device), or a combination thereof. In
one embodiment, the method 300 is performed by the com-
puter system 100 of FIG. 1.

Referring to FIG. 3, in one embodiment, the method 300
begins when the computer system 100 receives a data com-
pression request (e.g., from a system administrator via a user
interface) that indicates a requested compression level (block
310). In response to the request, the compression manager
170 determines a dictionary size corresponding to the
requested compression level (block 320). The association
between each compression level and the corresponding dic-
tionary size may be pre-determined (e.g., before compression
runtime). Based on the dictionary size, the compression man-
ager 170 determines an input block size (block 330). To
optimize the compression, the input block size is set to be
greater than the dictionary size. In one embodiment, the input
block size is set to be an integer multiple of the dictionary size
(e.g., three times the dictionary size).

US 8,279,096 B2

5

Upon receiving the input data (e.g., a document to be
compressed), the compression manager 170 partitions the
input data into a number of data blocks, with each data block
having the block size determined at block 330 (block 340).
The compression manager 170 sends the data blocks to the
available cores in the computer system 100 for parallel execu-
tion, using the dictionary-based sequential compression algo-
rithm (block 350). In one embodiment, the number of the
available cores is equal to (CxP), where C is the number of
cores in each processor and P is the number of processors. The
cores execute multiple threads of data compression in paral-
lel, with each core executing one thread for compressing one
or more data blocks. The compressed data can be stored in
data storage as a compressed archive (block 360). In one
embodiment, the compressed archive can be transferred to a
recipient (e.g., the client 120) upon request. In an alternative
embodiment, the data compression may be performed in real
time upon the request of the client 120.

If there is more input data to be compressed, the compres-
sion manager 170 can further partition the remaining input
data into data blocks for parallel execution. The method 300
terminates when all of the input data is compressed.

In one embodiment, the computer system 100 transfers the
compressed data to the client 120 upon request of the client
120. After receiving the compressed data, the client 120
decompresses the data to obtain the original data. Embodi-
ments of data decompression at the client 120 are described
with reference to FIGS. 4 and 5.

FIG. 4 illustrates a block diagram of an embodiment of the
decompression manager 130 of the client 120. The decom-
pression manager 130 includes memory to store a dictionary-
based sequential decompression algorithm 410 executable by
the client 120. The dictionary-based sequential decompres-
sion algorithm 410 decompresses the data that has been com-
pressed by the computer system 100. In one embodiment, the
dictionary-based sequential decompression algorithm 410 is
based on Lempel-Ziv compression algorithm or its variants,
eg., LZ77, 1778, LZMA, etc. The client 120 may be
informed of the dictionary to be used by the computer system
100 or by a user of the client 120.

The decompression manager 130 may decompress the data
from the computer system 100 sequentially or in parallel on
multiple cores. The determination of whether to decompress
the data sequentially or in parallel may be made by the user of
the client 120, or automatically made by the client 120
according to the available processors and cores in the client
120. The decompression manager 130 includes a partition
module 420 that uses the block size determined by the com-
puter system 100 to partition the received data streams into a
sequence of data blocks. The client 120 may be informed of
the block size by the computer system 100 or by a user of the
client 120.

In one embodiment, the client 120 may decompress the
data selectively. For example, the data of interest to the user
may be contained in one or more of the data blocks. The client
120 may identify the location of the data blocks in the
received data stream, and decompress only these data blocks.
The identified data blocks may be decompressed sequentially
or in parallel. In one embodiment, the decompression man-
ager 130 may include a block identification module 420 that
identifies the location of the one or more blocks of interest.
The identification of the data blocks may be directed by the
user, or automatically by the client 120 based on the data that
is currently needed. The capability of selective decompres-
sion can significantly reduce the computation load of the
client 120.

20

25

30

35

40

45

50

55

60

65

6

FIG. 5 is a flow diagram illustrating one embodiment of a
method 500 for data decompression. The method 500 may be
performed by computer system 600 of FIG. 6 that may com-
prise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (e.g., instructions run
on a processing device), or a combination thereof. In one
embodiment, the method 500 is performed by the client 120
of FIG. 1.

Referring to FIG. 5, in one embodiment, the method 500
begins when the client 120 receives an input data stream that
contains the data to be decompressed (block 510). The
decompression manager 130 of the client 120 partitions the
received data into data blocks, using the block size deter-
mined by the computer system 100 during the compression
process (block 520). The decompression manager 130 then
identifies one or more data blocks to be decompressed auto-
matically or as directed by the user (block 530). The client
120 then determines whether to decompress the identified
datablocks sequentially or in parallel, based on the number of
cores that are available in the client 120 (block 540). The
client 120 then decompresses the identified data blocks using
a dictionary-based sequential decompression algorithm,
which is the counterpart of the compression algorithm used
by the computer system 100 (block 550). The decompressed
data can be installed on the client 120 to perform updates or
other operations.

FIG. 6 illustrates a diagrammatic representation of a
machine in the exemplary form of a computer system 600
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a Local Area Network (LAN), an intranet, an
extranet, or the Internet. The machine may operate in the
capacity of a server or a client machine in a client-server
network environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine may be a
personal computer (PC), a tablet PC, a set-top box (STB), a
Personal Digital Assistant (PDA), a cellular telephone, a web
appliance, a server, a network router, switch or bridge, or any
machine capable of executing a set of instructions (sequential
or otherwise) that specitfy actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines (e.g., computers) that individually or jointly
execute a set (or multiple sets) of instructions to perform any
one or more of the methodologies discussed herein.

The exemplary computer system 600 includes a processing
device 602, a main memory 604 (e.g., read-only memory
(ROM), flash memory, dynamic random access memory
(DRAM) such as synchronous DRAM (SDRAM) or Rambus
DRAM (RDRAM), etc.), a static memory 606 (e.g., flash
memory, static random access memory (SRAM), etc.), and a
secondary memory 618 (e.g., a data storage device), which
communicate with each other via a bus 630.

The processing device 602 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device 602 may be a complex instruction set computing
(CISC) microprocessor, reduced instruction set computing
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, processor implementing other instruction
sets, or processors implementing a combination of instruction
sets. The processing device 602 may also be one or more
special-purpose processing devices such as an application
specific integrated circuit (ASIC), a field programmable gate
array (FPGA), a digital signal processor (DSP), network pro-

US 8,279,096 B2

7

cessor, or the like. The processing device 602 is configured to
execute compression/decompression logic 622 for perform-
ing the operations and steps discussed herein.

The computer system 600 may further include a network
interface device 608. The computer system 600 also may
include a video display unit 610 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 612 (e.g., a keyboard), a cursor control device 614
(e.g., a mouse), and a signal generation device 616 (e.g., a
speaker).

The secondary memory 618 may include a machine-read-
able storage medium (or more specifically a computer-read-
able storage medium) 631 on which is stored one or more sets
of instructions (e.g., compression/decompression logic 622)
embodying any one or more of the methodologies or func-
tions described herein (e.g., the compression manager 170 or
the decompression manager 130 of FIG. 1). The compres-
sion/decompression logic 622 may also reside, completely or
at least partially, within the main memory 604 and/or within
the processing device 602 during execution thereof by the
computer system 600; the main memory 604 and the process-
ing device 602 also constituting machine-readable storage
media. The compression/decompression logic 622 may fur-
ther be transmitted or received over a network 620 via the
network interface device 608.

The machine-readable storage medium 631 may also be
used to store the compression/decompression logic 622 per-
sistently. While the machine-readable storage medium 631 is
shown in an exemplary embodiment to be a single medium,
the term “machine-readable storage medium” should be
taken to include a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of instructions.
The term “machine-readable storage medium” shall also be
taken to include any medium that is capable of storing or
encoding a set of instructions for execution by the machine
that cause the machine to perform any one or more of the
methodologies of the present invention. The term “machine-
readable storage medium” shall accordingly be taken to
include, but not be limited to, solid-state memories, and opti-
cal and magnetic media.

The computer system 600 may additionally include a com-
pression/decompression module 628 for implementing the
functionalities of the compression manager 170 or the
decompression manager 130 of FIG. 1. The module 628,
components and other features described herein (for example
in relation to FIG. 1) can be implemented as discrete hard-
ware components or integrated in the functionality of hard-
ware components such as ASICS, FPGAs, DSPs or similar
devices. In addition, the module 628 can be implemented as
firmware or functional circuitry within hardware devices.
Further, the module 628 can be implemented in any combi-
nation of hardware devices and software components.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic represen-
tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,

20

25

30

35

40

45

50

55

60

65

8

principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “executing”, “determining”, “compressing”’, “decom-
pressing”, or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s registers
and memories into other data similarly represented as physi-
cal quantities within the computer system memories or reg-
isters or other such information storage, transmission or dis-
play devices.

Embodiments of the present invention also relates to an
apparatus for performing the operations herein. This appara-
tus may be specially constructed for the required purposes, or
it may comprise a general purpose computer system selec-
tively programmed by a computer program stored in the com-
puter system. Such a computer program may be stored in a
computer readable storage medium, such as, but not limited
to, any type of disk including optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic disk storage media, optical storage media, flash memory
devices, other type of machine-accessible storage media, or
any type of media suitable for storing electronic instructions,
each coupled to a computer system bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear as set forth in the descrip-
tion below. In addition, the present invention is not described
with reference to any particular programming language. It
will be appreciated that a variety of programming languages
may be used to implement the teachings of the invention as
described herein.

Itis to be understood that the above description is intended
to be illustrative, and not restrictive. Many other embodi-
ments will be apparent to those of skill in the art upon reading
and understanding the above description. Although the
present invention has been described with reference to spe-
cific exemplary embodiments, it will be recognized that the
invention is not limited to the embodiments described, but can
be practiced with modification and alteration within the spirit
and scope of the appended claims. Accordingly, the specifi-
cation and drawings are to be regarded in an illustrative sense
rather than a restrictive sense. The scope of the invention
should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

What is claimed is:
1. A method, implemented by a computer system pro-
grammed to perform the following, comprising:

determining, by the computer system, a dictionary size for
data compression based on a received compression
level,

determining, by the computer system, a block size greater
than the dictionary size for partitioning input data; and

US 8,279,096 B2

9

executing multiple threads in parallel using multiple cores

of the computer system, each thread compressing one

block of the input data according to a dictionary-based
sequential compression scheme.

2. The method of claim 1, wherein the dictionary-based
sequential compression scheme is based on a Lempel-Ziv
compression algorithm or a variant thereof.

3. The method of claim 1, wherein the block size is an
integer multiple of the dictionary size.

4. The method of claim 1, further comprising:

receiving an input from a user that indicates the compres-

sion level.

5. The method of claim 1, further comprising:

providing a plurality of compression levels for user selec-

tion, each compression level associated with a penalty of

increased compressed data size.

6. A system comprising:

data storage to store input data; and

a computer system coupled to the data storage, the com-

puter system comprising:

a compression manager to determine a dictionary size
based on a received compression level and to deter-
mine a block size that is greater than the dictionary
size for partitioning input data; and

a plurality of cores to execute multiple threads in paral-
lel, each thread to compress one block of the input
data according to a dictionary-based sequential com-
pression scheme to generate the compressed data.

7. The system of claim 6, wherein the dictionary-based
sequential compression scheme is based on a Lempel-Ziv
compression algorithm or a variant thereof.

8. The system of claim 6, wherein the block size is an
integer multiple of the dictionary size.

9. The system of claim 6, further comprising:

a user interface to receive, from a user, the compression

level, based on which the dictionary size is determined.

10. The system of claim 6, wherein the computer system
provides a plurality of compression levels for user selection,
each compression level associated with a penalty of increased
compressed data size.

11. A non-transitory computer readable storage medium
including instructions that, when executed by a processing
system, cause the processing system to perform a method
comprising:

determining a dictionary size for data compression based

on a received compression level;

determining a block size greater than the dictionary size for

partitioning input data; and

20

25

30

35

10

executing multiple threads in parallel using multiple cores
of a computer system, each thread compressing one
block of the input data according to a dictionary-based
sequential compression scheme.

12. The computer readable storage medium of claim 11,
wherein the dictionary-based sequential compression scheme
is based on a Lempel-Ziv compression algorithm or a variant
thereof.

13. The computer readable storage medium of claim 11,
wherein the block size is an integer multiple of the dictionary
size.

14. The computer readable storage medium of claim 11,
wherein the method further comprises:

receiving an input from a user that indicates the compres-

sion level.

15. The computer readable storage medium of claim 11,
wherein the method further comprises:

providing a plurality of compression levels for user selec-

tion, each compression level associated with a penalty of
increased compressed data size.

16. A method, implemented by a client machine pro-
grammed to perform the following, the method comprising:

partitioning, by the client machine, compressed data into a

plurality of data blocks;

determining whether to decompress the plurality of data

blocks sequentially or in parallel; and

decompressing the data blocks accordingly by the client

machine using a dictionary-based sequential decom-
pression scheme.

17. The method of claim 16, wherein determining whether
to decompress the data blocks of interest sequentially or in
parallel is based on the number of available cores in the client
machine.

18. A non-transitory computer readable storage medium
including instructions that, when executed by a processing
system, cause the processing system to perform a method
comprising:

partitioning compressed data into a plurality of data

blocks;

determining whether to decompress the data blocks of

interest sequentially or in parallel;

and decompressing the data blocks accordingly by the

client machine using a dictionary-based sequential
decompression scheme.

19. The computer readable storage medium of claim 18,
wherein determining whether to decompress the data blocks
of'interest sequentially or in parallel is based on the number of
available cores in the client machine.

#* #* #* #* #*

