发明名称：利用石化污泥制备吸附剂用于回收水表面溢油的方法

摘要

一种利用石化污泥制备吸附剂用于回收水表面溢油的方法，属于环境保护技术领域。其特征在于：利用污泥中的水分，在300～350℃的碳化温度下，采用碳化和活化合二为一的新工艺。制备的吸附剂具有亲油疏水性，可长时间悬浮于水表面，悬浮率为100%，具有发达的大孔，1克吸附剂可吸附14.2克原油，去除率>99.6%，按照美国材料试验标准（ASTM），制备的吸附剂属回收水表面溢油最好的一类。
1. 一种利用石化污泥制备吸附剂，用于回收水表面染油，其特征在于：所制备的吸附剂由活性炭，含有$-\text{CH}_3,=\text{CH}_2,=\text{CH}$基团的有机物和含有$\text{Al}_2\text{O}_3,\text{CaO},\text{SiO}_2,\text{Fe}_2\text{O}_3$的无机物所组成，各组分的重量百分比为：活性炭17.4~29.9%，有机物54.8~40.9%，无机物29.8~31.2%，比重0.56~0.69，悬浮率为100%。

2. 一种按权利要求1所述的吸附剂的制备方法，其特征在于其制备步骤为：污泥在炭化加热炉中以大于25℃/分的快速加热速度加热到300~350℃，炭化时间大于2小时后取出，冷却、破碎、筛分和包装后即得到吸附剂。

3. 根据权利要求2所述的吸附剂的制备方法，其特征在于：炭化前污泥不经过脱水。

4. 根据权利要求1所述的吸附剂用于回收水表面油的技术，其特征在于：吸附剂破碎的粒度小于1毫米，用筛网孔径50~150目包装吸附剂成圆形毡形，厚度<3毫米，直径1~10米。

5. 根据权利要求4所述的回收水表面油，同时再生吸附剂技术，再生温度50~105℃。
利用石化污泥制备吸附剂用于回收水表面溢油的方法

本发明涉及一种有害固体废物的资源化方法，具体是一种利用石化污泥制备吸附剂用于回收水表面溢油的方法及其产品，属于环境保护科学技术领域。

石化废水污泥由于对环境的危害性，必须进行处理和处置。
目前使污泥无害化的途径有：焚烧和填埋。焚烧和填埋只是使污泥无害化的途径，并没有得到有价值的产品。而且处理费用相当高。
使污泥资源化的途径有：用作农肥，制取沼气，制作建筑材料。
用作农肥，制取沼气和制作建筑材料虽然是使污泥得到资源化的途径，但污泥造成的二次污染仍然存在，如污泥含有的有机物经氧化、蒸发和渗透会对周围水域造成危害；另外污泥中含有的微生物细菌必须加热到大于80℃时才能杀死。而上述方法无法达到。

CN 86101176 A 专利公开了一种利用类似原料制备吸附剂的方法，其方法是将污泥和由磷酸等物质组成的助剂一起放进一个附有单向排气阀的封闭反应器中，置于预先加热的反应炉内进行无氧加热分解，温度控制在600℃至1000℃之间，反应结束后快速冷却。该产品经过破碎、活化等工艺可以制成吸附剂、炭黑等产品。该方法的缺点是：1.反应温度高，能耗高；2.制备过程中加入磷酸等物质组成的助剂，增加了生产成本；3.工艺流程长，反应炉内进行无氧加热分解后，还要进一步活化。4.制备的吸附剂的性能和应用领域没有阐明。

国内外一些文献报道中所指出的利用石化污泥制备活性炭，制备工艺复杂，采用碳化和活化两步工艺，且温度较高，产品主要由活性炭组分组成；活性炭由于主要含有发达的微孔和过渡孔，且悬浮性差，不适用于吸附水表面溢油。

本发明的目的，在于提供一种利用石化污泥制备吸附剂用于回收水表面溢油的新的工艺方法及产品，采用碳化和活化合二为一的新工艺，碳化温度较低。用此方法制得的吸附剂，其组成除了活性炭组分之外，还含有相当数量的有机物，且含有发达的大孔，具有很好的亲油疏水性和100%的悬浮率。

本发明的目的是通过以下技术方案实现的：污泥在碳化加热炉中以大于25℃/分的速度快速加热到300～350℃，碳化2小时后取出，冷却、破碎、筛分和包装后即得到吸附剂。简要工艺流程如图1。
炭化温度为 300 ~ 350 ℃，废气循环使用是指炭化过程产生的不可冷凝气体的循环使用，以减少废气处理成本，并可回收热能。吸附剂破碎的粒度小于 1 毫米，用筛网孔径 50 ~ 150 目包装吸附剂成圆筒形，厚度<3 毫米，直径 1 ~ 10 米。所制备的吸附剂由活性炭，含有-CH_{3}、-CH_{2}、-CH 基团的有机物和含有 Al_{2}O_{3}、CaO、SiO_{2}、Fe_{2}O_{3} 的无机物所组成，各组分的重量百分比为：活性炭 17.4~29.9%，有机物 54.8~40.9%，无机物 29.8~31.2%，比重 0.56~0.69，悬浮率为 100%。

制备的吸附剂用于回收水表面溢油和再生吸附剂流程为图 2。

利用油的粘度随温度升高而降低的特性，饱和的吸附剂被加热到 50 ~ 105 ℃，可使吸附剂得到再生，同时油可得到回收。

本发明特点是利用污泥中原有的水分，炭化加热过程中由于水蒸汽的蒸馏和活化作用，增大了吸附剂的孔结构，即采用炭化和活化合二为一的新工艺。本工艺具有以下特点：1. 反应温度低，即能耗低；2. 制备过程不加入任何助剂，减少生产成本；3. 工艺流程短，采用炭化和活化合二为一的新工艺。

本发明特点为制备的吸附剂具有亲油疏水性，可长时间悬浮于水表面，可达一个月以上，悬浮率为 100%，1 克吸附剂可吸附 14.2 克原油，去除率>99.6%，被吸附的油可得到回收，吸附剂可再生利用，重复利用次数>5 次，按照美国材料试验标准 (ASTM)，制备的吸附剂属于回收水表面溢油最好的一类。

美国材料试验标准 (ASTM)

<table>
<thead>
<tr>
<th>吸收率</th>
<th>吸附剂类别</th>
</tr>
</thead>
<tbody>
<tr>
<td>>10:1</td>
<td>最好</td>
</tr>
<tr>
<td>5:1 ~ 10:1</td>
<td>较好</td>
</tr>
<tr>
<td><5:1</td>
<td>一般</td>
</tr>
</tbody>
</table>
目前用于吸附水表面溢油的吸附剂有：

有机吸附剂——包括稻草，泥炭，锯屑，木片，玉米杆，羽毛，石棉，羊毛和其他含碳的材料，这些材料在自然界中大量存在。大部分有机吸附剂的吸收率在1～10g油/1g吸附剂，最近国外合成一种高效吸油新材料——胶原蛋白泡沫，大部分有机吸附剂是亲油疏水的，可以是粉状，粒状，松散状或其包装物。

无机吸附剂——一般是一些矿物质，如珍珠岩，蛭石，玻璃纤维，火山岩。无机吸附剂的吸收率1～8g油/1g吸附剂，在许多情况下其吸收率小于2g油/1g吸附剂，无机吸附剂的缺点是吸附率小，由于其比重大，并具有亲水性，很容易沉到水底，虽然消除了水表面油污染，但不能减少总的油污染对环境造成的损害，危害水生生物的生长，并且被吸附的油也得不到回收利用，由于这些粉末状无机吸附剂对呼吸系统的危害性，要求操作人员带呼吸面具，无机吸附剂的优点是来源丰富，价格便宜。

合成吸附剂——包括人造聚合材料，如聚氯乙烯，聚乙烯，聚丙烯，尼龙纤维，聚乙酸乙烯树脂泡沫，合成吸附剂是理想的吸附材料用于吸附水表面石油类污染物，缺点是造价昂贵。

本发明一方面使有害污泥资源化，同时制备的吸附剂处于用于处理水表面溢油各类吸附剂产品中较好的水平，且使用该吸附剂对环境无二次污染（通过吸吸附后水的监测），由于采用300～350℃炭化温度，可将污泥中存在的细菌全部杀死，因此，该吸附剂同时符合环境卫生学的要求。

实 施 例

1. 制备吸附剂

制备吸附剂所用石化厂污泥组成如下：

<table>
<thead>
<tr>
<th>试样</th>
<th>水分（%）</th>
<th>有机物（占干基）（%）</th>
<th>无机物（占干基）（%）</th>
<th>固定碳（占干基）（%）</th>
<th>灰分中水溶物（%）</th>
<th>比重（20℃）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>82.1</td>
<td>72.1</td>
<td>18.2</td>
<td>9.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>81.6</td>
<td>73.0</td>
<td>18.6</td>
<td>8.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>81.2</td>
<td>72.0</td>
<td>18.8</td>
<td>9.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>83.4</td>
<td>71.3</td>
<td>18.5</td>
<td>10.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>85.4</td>
<td>63.9</td>
<td>28.6</td>
<td>7.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>平均</td>
<td>82.3</td>
<td>70.6</td>
<td>19.2</td>
<td>10.2</td>
<td>18.7</td>
<td>0.50</td>
</tr>
</tbody>
</table>

当炭化加热炉温度升到300～350℃，放入60克平均试样，2小时后，从炭化
加热炉取出试样，先在空气中冷却，然后在干燥器中冷却至室温后称重。制备的吸附剂在研钵中研磨，筛分，分成小于 1\,\text{mm} 粒度的组分，为了使吸附饱和的吸附剂更容易从水表面分离，用 50 - 150 目筛网制成直径 4\,\text{厘米} 的圆形薄袋，粒度小于 1 毫米，200 毫克吸附剂均匀铺在袋子内。

2. 吸附水表面原油测试

在 100\,\text{毫升}烧杯（内径 5\,\text{厘米}）中加入 60\,\text{毫升}蒸馏水，滴入 3.2\,\text{克}原油，原油逐渐扩散在水表面而形成圆形的油膜，厚度 1.73\,\text{mm}，用上述制备的包装的吸附剂在温度室温 20\,\text{℃}，吸收时间 1 小时进行测试，吸附率为 14.2\,\text{克}原油/克吸附剂，水表面剩余油采用二级吸附，去除率为 99.6\%。

在实验室最佳条件下制备用于回收水表面溢油的吸附剂的重量百分比组成和比重如下：

<table>
<thead>
<tr>
<th>吸附剂粒度 (mm)</th>
<th>吸附剂组成</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>比重</td>
<td>无机物 (%)</td>
<td>有机物 (%)</td>
<td>活性碳组分 (%)</td>
</tr>
<tr>
<td><0.5</td>
<td>0.69</td>
<td>29.8</td>
<td>54.8</td>
<td>17.4</td>
</tr>
<tr>
<td>0.5～1.0</td>
<td>0.56</td>
<td>31.2</td>
<td>40.9</td>
<td>29.9</td>
</tr>
</tbody>
</table>

3. 回收被吸附的油，再生吸附剂。

在再生温度为 50 - 105\,\text{℃} 的条件下，对上述饱和的吸附剂进行油的回收，同时再生吸附剂，吸附 1.73\,\text{mm} 厚的油膜饱和后，进行 5 次回收油和再生吸附剂。结果见下表：

<table>
<thead>
<tr>
<th>回收次数</th>
<th>吸附率 (g/g)</th>
<th>回收率 (%)</th>
<th>残留率 (g/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.6</td>
<td>65.2</td>
<td>4.1</td>
</tr>
<tr>
<td>2</td>
<td>5.9</td>
<td>60.0</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>4.4</td>
<td>52.7</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>3.7</td>
<td>48.3</td>
<td>3.9</td>
</tr>
<tr>
<td>5</td>
<td>3.4</td>
<td>46.5</td>
<td>4.0</td>
</tr>
</tbody>
</table>

多次回收后的废吸附剂可通过热分解炭化重新制备吸附剂，或作为燃料，其发热量为 6700 - 7800 千卡/公斤。