
W. R. McKEEN, JR. POWER TRANSMITTING APPARATUS. APPLICATION FILED DEC. 19, 1905.

973,365.

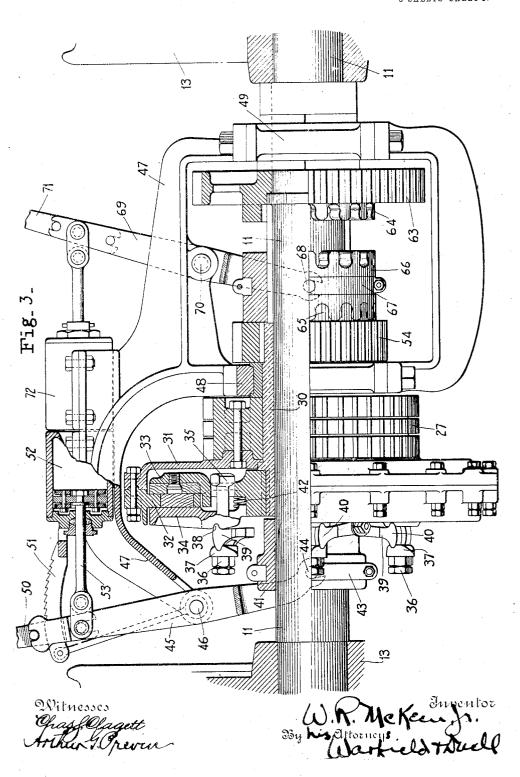
Patented Oct. 18, 1910. 3 SHEETS-SHEET 1.

W. R. McKEEN, Jr.
POWER TRANSMITTING APPARATUS.
APPLICATION FILED DEC. 19, 1905.

973,365.

Patented Oct. 18, 1910.

3 SHEETS-SHEET 2. Fig.


Witnesses Chasfelagett Athur I. Previd

W. W. McKenst Inventor Day Lie attorneys Warfiels Duell

W. R. MCKEEN, Jr.
POWER TRANSMITTING APPARATUS.
APPLICATION FILED DEC. 19, 1905.

973,365.

Patented Oct. 18, 1910. 3 SHEETS-SHEET 3.

UNITED STATES PATENT OFFICE.

WILLIAM R. Mokeen, Jr., of omaha, nebraska, assignor, by mesne assignments, to mokeen motor car company, of omaha, nebraska, a corporation of new jersey.

POWER-TRANSMITTING APPARATUS.

973,365.

Specification of Letters Patent. Patented Oct. 18, 1910.

Application filed December 19, 1905. Serial No. 292,447.

To all whom it may concern.

Be it known that I, WILLIAM R. McKeen, Jr., residing at Omaha, in the county of Douglas and State of Nebraska, have instead certain new and useful Improvements in Power-Transmitting Apparatus, of which the following is a full, clear, and exact description, such as will enable others skilled in the art to which it appertains to make and use the same.

This invention relates to the transmission of power and, more particularly, to the application thereof to the propulsion of

vehicles.

One of the objects of this invention is to provide practical means whereby power may be generated at a point closely adjacent, and efficiently transmitted to its point of final application.

Another object is to provide means of the above type in which both the generating and transmitting mechanism are so positioned as to be under convenient and complete con-

trol at all times.

5 Another object is to provide means in conjunction with clutch mechanism adapted to cushion the action of the parts.

Another object is to provide power-transmitting mechanism having a maximum of compactness consistent with efficiency of action and ease of control.

Another object is to provide means of the above types peculiarly adapted for use in

connection with motor cars.

Other objects will be in part obvious and

in part pointed out hereinafter.

The invention accordingly consists in the features of construction, combinations of elements and arrangement of parts which will be exemplified in the apparatus hereinafter described and the scope of the application of which will be indicated in the following claims.

In the accompanying drawings, wherein is shown one of various possible embediments of my invention, Figure 1 is a side elevation of the same. Fig. 2 is a plan showing the floor-frame of a car body. Fig. 3 is a front elevation of transmitting mechanism.

Similar reference characters refer to similar parts throughout the several views of the drawings.

Preliminary to entering upon a descrip-!

tion of the embodiment of my invention herein set forth and in order to render the 55 full meaning of the same more readily grasped, it may here be noted that in the application of any source of power to accomplish work it is highly desirable that the point of generation of the power be as closely so adjacent its point of final application as is consistent with efficient action and ready control. Among the advantageous features of a short transmission are the lessening of friction and chance of breakage and the 65 lightness of and small space consumed by the transmitting apparatus. This is of peculiar value in the case of motor cars, in which relation this invention is especially adapted for use, as in this case light weight 70 and an economical use of space are highly desirable and ready control is of paramount importance. It may also be noted that it is highly advantageo s, in apparatus of the general nature of that with which this in- 75 vention deals, that the parts be placed so as to group the mechanism requiring especial supervision or employed in controlling the power within convenient reach of a single operator in such manner as to reduce the 80 labor of running the apparatus and place the same under convenient and complete control.

The above and other advantageous features are attained in constructions of the 85 nature of that heroinafter described.

Referring now to Fig. 1 of the accompanying drawings, there are shown at 1 the side bars of a truck frame terminating in pedestals 2 and 3 respectively embracing the 90 axle-boxes 4 and 5 and mounted thereon through equalizers 6 and 7 and equalizersprings 8 and 9. Corresponding to the axleboxes 4 and 5 are axles 10 and 11 respectively provided with wheels 12 and 13, the 95 latter of which are preferably of larger diameter than those first mentioned for a purpose which will hereinafter be rendered obvious. A car body, the floor-frame of which is indicated at 14, is mounted upon the side 100 bars 1 through bolsters 15 and 16, springs 17 and the transoms 18 from which these springs are suspended, the precise details of this construction not being herein shown or described as they form no part of the 105 hyesent invention. Side bars 1 are bridged

by heavy channel-members 19 held in place as by suitable brackets 20 and 21, and upon these cross-members is mounted an engine bed 22 and engine 23, preferably of the internal combustion type. Crank-shaft 24 of the engine is preferably provided with a sprocket-wheel 25 connected as by sprocket-chain 26 with a similar wheel 27 upon the axle 11, this form of transmitting mechanism being found peculiarly adapted for use in the relation shown, although other connections may be used and many of the advantageous features of my invention retained.

As shown in Fig. 1 of the drawings, the engine 23 projects within the body of the car through a suitable opening in the floorframe thereof and the cylinders 28, with the controlling mechanism 29 mounted there-20 on, are thus brought within convenient reach of the engineer without sacrificing efficiency in the matter of the location of the crankshaft, the opening in the floor frame being, as clearly shown in the drawings, sufficiently 25 large to permit any desired relative movement of the engine with respect to the carbody. It may here be noted that the term "controlling mechanism," as used herein with relation to the parts diagrammatically 30 represented at 29, is intended to cover any device or devices by which the action of any portion of the engine is modified. Upon axle 11 is loosely mounted a sleeve 30 upon which is loosely journaled the sprocket-35 wheel 27 having secured thereto what may be termed a "carrier" 31 extending in a plane transverse to the axle as shown in Fig. 3. Carrier 31 is provided with an inwardly directed flange 32 adapted to be gripped or clamped by the clutch-members 33 and 34 disposed upon each side thereof. Clutch-member 33 is keyed to the sleeve 30 and is provided with bolts 35 passing loosely through the clutch-member 34 and having

through the clutch-member 34 and naving held upon their outer ends as by lock-nuts 36 the recessed collars 37. Fitting within these collars and taking against recesses 38 in the clutch-member 34 are actuating levers 39, the outer end portions 40 of which are, in general, of the elliptical form shown and the inner ends of which are secured in any desired manner to a sleeve 41 loosely mounted on the axle. It will thus be seen that upon the sleeve 41 being reciprocated upon the axle, the levers 39 which lie in a plane substantially parallel to that of the carrier 31 are given a swinging movement, resulting in the elliptical ends 40 thereof

moving apart, or permitting to draw together, the collars 37 and the opposite surface of the clutch-member 34. This movement, assuming the levers to be thrown in such direction as to bring the major axis of their elliptical ends more nearly into alinement with the bolts 35, will cause the clutch-

member 34 to be thrown toward the flange 32 and the clutch-member 33 to be drawn outwardly toward the same part by means of the bolts, thus clamping this flange and completing the power-transmitting means 70 from the sprocket-wheel 27 to the sleeve 30. Upon the actuating levers 39 being thrown by sleeve 41 in the opposite direction, however, the outward pressure upon the collars 37 is relieved and lost motion being taken 75 up as by springs 42, the clutch-members 33 and 34 are forced apart, releasing the flange 32. The throwing of sleeve 41 is preferably accomplished by means of a loose band 43 fitted within a groove therein and provided so with trunnions 44 lying within slots in the end of a forked lever 45, pivoted as at 46 to a rigid frame 47 loosely mounted upon the sleeve 30 at 48 and upon the axle 11 at 49. Lever 45 is provided with an extension 50,57 projecting up into the car and may, if desired, be actuated thereby and held in position as by a locking segment 51, although in the preferred use of my invention I mount a cylinder 52 upon the frame 47 and, by 90 proper regulation of the pressure within the respective ends thereof, control through the piston-rod 53 the position of the lever. It will be seen that by the disposition of the parts as above set forth, the friction clutch 95 extends, broadly speaking, in a plane transverse of the axle, and it is to be understood that expressions defining this disposition of the friction clutch are intended to be broadly construed as covering a general disposition 100 of the parts in or near such a plane.

Fixed upon sleeve 30 upon the opposite side of sprocket-wheel 27 from the clutch mechanism above described is a gear 54 meshing with the gear 55 upon a counter-shaft 56 105 journaled within an extending portion 57 of the frame 47. This extension is resiliently mounted upon an end bar 58 of the truckframe, as by means of the depending rods 59 passing therethrough, and the springs 60 110 and 61 disposed upon these rods. Mounted upon shaft 56 is a second gear 62 meshing with a gear 63 loosely mounted upon the axle 11 and provided with a clutch-member 64 oppositely disposed to a similar part 65 115 upon the first-mentioned gear 54. Keyed upon axle 11 between the opposing clutchmembers 64 and 65, is a double-faced clutchmember 66 adapted in mid position to be free from either of those first mentioned, 120 but, upon being swung in either direction, to engage and interlock with the corresponding parts upon the gears 54 or 63. The clutch-teeth formed upon these several clutch-members are preferably slightly un- 125 dercut, as indicated in the drawings, so as to permit the members when thrown into engagement automatically to tend to hold themselves in operative relation one to another. The throwing of clutch-member 66 139 is accomplished by means of a ring or band 67 loosely clamped about the same and provided with trumions 68 taking into slots in the end of a forked-lever 69 pivoted at 70 to 5 the frame 47. Lever 69 is preferably provided with an extension 71 passing upwardly into the car-body and permitting these parts to be thrown by hand, but in the preferred use of my invention 1 provide a 10 cylinder 72, mounted upon the frame 47, similar in construction and function to cylinder 52 above described.

The operation of the above-described embodiment of my invention and method of use of the several features thereof is sub-

stantially as follows:

Assuming the clutch-member 66 to be in mid position and the flange 32 to be free from the co-acting clutch-members, if it be 20 desired to start the ear, the engine is first put in motion and the clutch-member 66 thrown into engagement with either clutchmember 65 or clutch-member 64, according as high or low speed of driving is desired, 25 it being understood that by means of the gearing upon shaft 56 the gears 54 and 63 are driven at different rates of speed. The friction-clutch is then thrown in, either by power or by a manual actuation of the lever 80 45, and power is thus transmitted from the engine through the sprocket-chain and friction-clutch to the sleeve 30 from which it passes through the gear 54 direct to member 66 and thence to axle 11 or through the counter-shaft and gears 55 and 63, according to the position of the double-faced clutchmember, and thence through the latter part to the axle 11 and wheels 13. When it is desired to change the speed, the friction-40 clutch is first thrown out and the speed changed by means of the positive clutch, whereupon the friction-clutch is again thrown in, thus greatly reducing the strain upon the teeth of the positive clutch by rea-45 son of the fact that the parts into engagemen with which it is thrown are either relatively stationary or their relative movement is that due to momentum only. The shock, moreover, is still further reduced by reason 50 of the resilient suspension of the frame 47 whereby the counter-shaft 56 with the gears mounted thereon may swing to a slight extent about the axle as a center and thus further cushion the action of the parts. The 55 vehicle may be brought to a standstin either by stopping the engine, throwing out the friction-clutch or throwing out the positive clutch, but is preferably accomplished by the second-mentioned means. By reason of

the several ways in which the car may be

brought to a standstill, however, it will

readily be seen that this may be accom-

plished with a quickness and certainty

It will thus be seen that I have provided |

which might be otherwise impracticable.

apparatus well adapted to accomplish the several objects of my invention and that this is of the simplest and most compact construction. The engine is resiliently mounted upon the axles, thus avoiding the excessive 70 jar to the somewhat delicate mechanism thereof which would be occasioned by the absence of cushioning means between these parts. It is, nevertheless, so mounted with relation to the axle as not only to reduce 75 the length of transmission to a minimum consistent with efficient action, but to be so disposed as to move only slightly with reference thereto. The cylinders of the engine, moreover, with their controlling mechanism 80 project within the car so as to be instantly accessible to the engineer and yet do not interfere with the mounting of the car-body in such manner as to have the easiest riding qualities on account of the interposition of 85 the springs 17 between the car-body and the truck-frame. The advantages of this feature are more clearly apparent in view of the difficulties which would arise in providing an efficient transmission between the axle 99 and the car-body if the latter were mounted with sufficient resiliency to have the desired riding qualities and the engine were positioned within the car. The transmitting mechanism mounted upon the axle, more- 95 over, is so compactly disposed as readily to be positioned upon a single driving axle and yet is of the most efficient character. (In account of the controlling means projecting from the transmission upon the axle into 100 the car, it will be seen that these parts are not only within convenient reach of the engineer, but are, together with the engine, so grouped that all features of the powergenerating and controlling apparatus is 105 within instant reach of a single man. Another feature to which attention should be called in this connection is the peculiar adaptability of the entire apparatus described for use in connection with a motor 110 car adapted to travel upon rails and to be propelled at a high rate of speed. The entire apparatus is thus of the simplest and most efficient construction and, by reason of these features together with its ease of 115 control, is well adapted to meet the requirements of practical use in the above-noted relation.

As many changes could be made in the above construction and many apparently 120 widely different embodiments of my invention could be made without departing from the scope thereof, I intend that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. I desire it also to be understood that the language used in the following claims is intended to cover all of the generic and specific features of the invention herein 130

described and all statements of the scope of the invention, which, as a matter of language, might be said to fall therebetween.

Certain features herein shown and de-5 scribed are shown, described and claimed in my co-pending application, Serial No. 292,448, filed December 19th, 1905, and my Patent No. 862,186, granted August 6, 1907, and accordingly are not claimed herein.

Having described my invention, what I claim as new and desire to secure by Let-

ters Patent, is:-

1. In apparatus of the class described, in combination, a car truck having a car body 15 mounted thereon, an internal combustion engine mounted on said truck, power transmitting means leading from said engine to drive said truck, a clutch interposed in said power transmitting means, and fluid con-20 trolled means mounted on said truck and controlling said clutch.

2. In apparatus of the class described, in combination, a car truck having a car body mounted thereon, an internal combustion en-25 gine mounted on said truck, power transmitting means leading from said engine to drive said truck, a speed changing device interposed in said power transmitting means, and fluid controlled means mounted 30 on said truck and controlling said speed

changing means.

3. In apparatus of the class described, in combination, a car truck having a car body mounted thereon, an internal combustion 35 engine mounted on said truck, power transmitting means leading from said engine to drive said truck, a clutch and a speed changing device interposed in said power transmitting means, and separate fluid controlled means mounted on said truck and respectively controlling said clutch and said speed changing device.

4. In apparatus of the class described, in combination, a truck comprising side-bars 45 and two pairs of wheels, the wheels of one of said pairs being of greater diameter than those of the other of said pairs, an internal combustion engine mounted upon said sidebars and positioned nearer said wheels of 50 greater diameter than said wheels of lesser diameter, and means adapted to drive said wheels of greater diameter from said engine, said means comprising a sprocket chain and a clutch mounted upon the axle of said

55 wheels of greater diameter.

5. In an apparatus of the class described, in combination, a truck comprising side bars and wheels, cushioning means interposed between said side bars and said wheels, a rigid 60 engine support bridged across and secured to said side bars and bracing said side bars, an internal combustion engine mounted upon said support, a car body mounted upon said truck and into which said engine pro-

jects, and means adapted to drive said 65 wheels from said engine.

6. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, a driving member upon said axle, and a friction-clutch upon said axle 70 comprising a flange disposed in a plane transverse of the axle and a pair of members positioned adjacent said flange and parellel thereto and adapted to grip said flange to transmit power from said driving member 75 to said wheels.

7. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, a driving member upon said axle, a friction-clutch upon said axle extend- 80 ing in a plane transverse thereof and adapted to transmit power from said driving member to said wheels, and clutch-levers lying in a plane substantially transverse to said axle adapted to actuate said clutch.

8. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, a driving member mounted upon said axle, a clutch-member mounted upon said axle and connected with said 90 driving member, clutch-members adapted to clamp said first - mentioned clutch - member and transmit power therefrom to said wheels, and levers controlling the position of said second-mentioned clutch-members 95 lying in a plane substantially transverse to said axle.

9. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, a driving member, a gear upon 100 said axle, a second gear upon said axle, gearing connecting said first-mentioned gears and adapted to drive the same at different rates of speed, a double-faced clutch-member through which said axle is 105 adapted to be driven, and means adapted to throw said double-faced clutch-member into engagement with co-acting parts upon either of said first-mentioned gears, said gears being driven from said driving member.

10. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, a driving member, a pair of gears upon said axle, a shaft positioned parallel to said axle, a pair of gears upon said 115 shaft respectively intermeshing with said first-mentioned gears and adapted to drive the same at different rates of speed, and a double-faced clutch-member mounted upon and adapted to drive said axle adapted to 120 be thrown into engagement with co-acting parts on either of said first-mentioned gears, said gears being driven from said driving member.

11. In apparatus of the class described, in 125 combination, a car-truck comprising wheels and an axle, a driving member, a pair of gears upon said axle, a shaft positioned par-

allel to said axle, a pair of gears upon said shaft respectively intermeshing with said first-mentioned gears and adapted to drive the same at different rates of speed, a double-5 faced clutch-member mounted upon and adapted to drive said axle adapted to be thrown into engagement with co-acting parts on either of said first-mentioned gears, and means adapted automatically to hold said clutch-member in engagement with the parts toward which it is thrown, said gears being

driven from said driving member.

12. In apparatus of the class described, in ombination, a car-truck comprising wheels to and an axle, a driving member upon said ele, a friction-clutch upon said axle, a pair gears upon said anle to one of which said friction-clutch is adapted to transmit power, gearing connecting said pair of gears adapt-20 til to drive the same at different rates of speed, and a double-faced clutch-member, positioned upon and adapted to drive said axle, adapted to be thrown into engagement with co-acting parts upon either of said first-mentioned gears, said friction-clutch being driven from said driving member.

13. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, a driving member upon said 30 axle, a friction-clutch upon said axle, a pair of gears upon said axle to one of which said friction-clutch is adapted to transmit power, gearing connecting said pair of gears adapted to drive the same at different rates of 35 speed, and a double-faced clutch-member, positioned upon and adapted to drive said axle, adapted to be thrown into engagement with co-acting parts upon either of said firstmentioned gears, said driving member being 40 positioned between said friction-clutch and said first-mentioned gears and adapted to

drive one of the same.

14. In apparatus of the class described, in combination, a car-truck comprising wheels 45 and an axle, a driving member mounted upon said axle, a friction-clutch, said clutch comprising a flange and means adapted to clamp said flange, a pair of gears upon said axle one of which is adapted to be driven 50 through said friction-clutch, gearing connecting said gears adapted to drive the same at different rates of speed, and a doublefaced clutch-member positioned upon said axle and adapted to drive the same, adapted 55 to be thrown into engagement with co-acting parts upon either of said first-mentioned gears, said friction-clutch being driven from said driving member.

15: In apparatus of the class describ. I, 60 in combination, a car-truck comprising wheels and an axle, a driving member mounted upon said axle, a friction-clutch, said clutch comprising a flange and means adapted to clamp said flange, a pair of gears 65 upon said axle one of which is adapted to be driven through said friction-clutch, gearing connecting said gears adapted to drive the same at different rates of speed, and a doubled - faced clutch - member positioned upon said axle and adapted to drive the 70 same, adapted to be thrown into engagement with co-acting parts upon either of said first-mentioned gears, said driving member being positioned between said friction-clutch and said gears and adapted to 75

drive one of the same.

16. In an apparatus of the class described, in combination, a car-truck comprising wheels and an axle, a driving member, a gear upon said axle adapted to be driven from 80 said driving member, a second gear upon said axle, gearing connecting said gears adapted to drive the same at different rates of speed, a supporting member upon which said gearing is mounted, means resiliently 85 supporting a portion of said supporting member upon said truck, a double-faced clutch positioned upon said axle and adapted to drive the same, and means adapted to throw said clutch into engagement with co- 90 acting parts upon either of said first-mentioned gears.

17. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, a driving member, a pair 95 of gears upon said axle, one of which is adapted to be driven from said driving member, a frame mounted upon and adapted to swing about said axle, a shaft upon said frame, a pair of gears mounted upon said 100 shaft respectively meshing with said firstmentioned gears and adapted to drive the same at different rates of speed, means resiliently mounting a portion of said frame upon the frame of the truck, a double-faced 105 clutch-member positioned upon said axle and adapted to drive the same, and means adapted to throw said clutch-member into engagement with co-acting parts upon either

of said first-mentioned gears.

18. In apparatus of the class described. in combination, a car body, a car truck, resilient means interposed between said car body and said car truck, an internal combustion engine comprising a plurality of 115 cylinders mounted upon said truck and projecting into said car body, a crank shaft mounted upon said truck and extending transversely thereof and connected with the several cylinders of said engine, power 120 transmitting means connecting said crank shaft with one of the axles of said truck and adapted to drive said truck and means within said car body controlling said power transmitting means.

19. In apparatus of the class described. in combination, a car-body, a car-truck, an internal combustion engine mounted upon said truck and adapted to drive the same, the cylinders of said engine projecting with- 130

in said car-body, and resilient means interposed between said car-body and said cartruck.

6

20. In apparatus of the class described, 5 in combination, a car-body, a car-truck, an internal combustion engine mounted upon said truck and adapted to propel the same, the cylinders of said engine having mounted thereon controlling mechanism and pro-10 jecting with said controlling mechanism within said car-body, and resilient means interposed between the truck-frame and said car-body and between the frame and axles of said truck.

21. In apparatus of the class described, in combination, a car-body, a car-truck comprising wheels and an axle, a driving member upon said axle, a friction-clutch upon said axle extending in a plane transverse 20 thereof adapted to transmit power to said wheels, and means controlling said frictionclutch extending within said car-body said friction clutch comprising a flange lying in a plane transverse to said axle, and a pair 25 of flat members positioned adjacent said flange and adapted to grip the same.

22. In apparatus of the class described, in combination, a car-body, a car-truck comprising wheels and an axle, a driving mem-30 ber, a pair of gears upon said axle, one of which is adapted to be connected with said driving member, gearing connecting said gears adapted to drive the same at different rates of speed, a double-faced clutch-mem-35 ber positioned upon and adapted to drive said axle, adapted to be thrown into engagement with co-acting parts upon either of said first-mentioned gears, and means controlling the position of said double-faced 40 clutch extending within said car-body.

23. In apparatus of the class described, in combination, a car-body, a car-truck comprising wheels and an axle, a driving member upon said axle, a friction-clutch upon 45 said axle, a pair of gears upon said axle, one of which is adapted to be driven through said friction-clutch, gearing connecting said gears adapted to drive the same at different rates of speed, a double-faced clutch-mem-50 ber positioned upon and adapted to drive said axle, adapted to be thrown into engagement with co-acting parts upon either of said first-mentioned gears, and means connected with and adapted to control said 55 friction-clutch and said double-faced clutchmember extending within said car-body, said friction-clutch being driven from said driving member.

24. In apparatus of the class described, in 60 combination, a truck comprising wheels and an axle, an engine mounted upon said truck, a member upon said axle driven from said engine, a gear upon said axle, a second gear upon said axle, gearing connecting said 65 gears adapted to drive the same at different

rates of speed, means connecting one of said gears with said first-mentioned member, a double-faced clutch through which said axle is adapted to be driven, and means adapted to throw said double-faced clutch member 70 into engagement with co-acting par upon

either of said gears.

25. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, an engine mounted upon said 71 truck, a member upon said axle driven from said engine, a friction-clutch upon said axle, a pair of gears upon said axle to one of which said friction-clutch is adapted to transmit power from said first-mentioned 80 member, gearing connecting said pair of gears adapted to drive the same at different rates of speed, and a double-faced clutchmember positioned upon and adapted to drive said axle adapted to be thrown into 85 engagement with co-acting parts upon either of said gears.

26. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, an engine mounted upon said 90 truck, a member upon said axle driven from said engine, a friction-clutch upon said axle, a pair of gears upon said axle to one of which said friction-clutch is adapted to transmit power from said first-mentioned 95 member, gearing connecting said pair of gears adapted to drive the same at different rates of speed, and a double-faced clutchmember positioned upon and adapted to drive said axle adapted to be thrown into 100 engagement with co-acting parts upon either of said gears, said first member being positioned upon said axle between said friction-clutch and said gears.
27. In apparatus of the class described, in 105

combination, a car-truck, a car-body, cushioning means interposed between said truck and said body, an engine mounted upon said truck, an axle, a member upon said axle driven from said engine, a friction-clutch 110 upon said axle, a pair of gears upon said axle to one of which said friction-clutch is adapted to transmit power from said driven member, gearing connecting said pair of gears adapted to drive the same at different 115 rates of speed, and a double-faced clutchmember positioned upon and adapted to drive said axle adapted to be thrown into engagement with co-acting parts upon either of said gears.

28. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, an engine mounted upon said truck, a member upon said axle driven from said engine, a gear upon said axle connected 125 with said driven member, a second gear upon said axle, gearing connecting said gears adapted to drive the same at different rates of speed, a supporting member upon which said gearing is mounted, means resiliently 130

120

supporting a portion of said supporting member upon said truck, a double-faced clutch positioned upon said axle and adapted to drive the same, and means adapted to 5 throw said clutch into engagement with coacting parts upon either of said gears.

29. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, an engine mounted upon said 10 truck, a member upon said axle driven from said engine, a gear upon said axle connected with said driven member, a second gear upon said axle, gearing connecting said gears adapted to drive the same at different 15 rates of speed, a supporting member upon which said gearing is mounted, means resiliently supporting a portion of said supporting member upon said truck, a double-faced clutch positioned upon said axle and adapt-20 ed to drive the same, and means adapted to throw said clutch into engagement with coacting parts upon either of said gears, said supporting member being mounted upon and adapted to swing about said axle.

30. In apparatus of the class described, in combination, a car-truck, a car-body mounted thereon, cushioning means interposed between said car-body and said car-truck, supporting means mounted upon said truck, an 30 internal combustion engine mounted upon said supporting means and projecting within said car body, a crank shaft mounted upon said supporting means and connected with the cylinders of said engine, power 35 transmitting means connecting said crank shaft with one of the axles of said truck, and upright members extending from said supporting means and connected adjacent the cylinders of said engine and adapted to 40 brace the same.

31. In apparatus of the class described, in combination, a car-body, a car-truck comprising an axle, cushioning means interposed between said car-body and car-truck, a driv-45 ing member mounted upon said axle, a friction-clutch upon said axle adapted to transmit power from said driving member to the wheels of said truck, means controlling said friction-clutch projecting within said car-50 body and an internal combustion engine mounted upon said truck and adapted to transmit power to said driving member, the cylinders of said engine being disposed within said car body adjacent said control-55 ling means

32. In apparatus of the class described, in combination, a car-body, a car-truck comprising wheels and an axle, a driving member upon said axle, speed-changing mechanism 60 mounted upon said axle adapted to transmit power from said driving member to the wheels of said truck, and means controlling said mechanism projecting within said carbody.

combination, a car-truck, a car-body mounted thereon, an engine mounted upon said truck and projecting within said car-body, a pair of gears on an axle of said truck, gearing connecting said gears and adapted to 70 drive the same at different rates of speed, means connecting one of said gears with said engine adapted to drive said gear from said engine, a double-faced clutch-member from which said axle is adapted to be driven, 76. means adapted to throw said double-faced clutch-member into engagement with co-acting parts upon either of said gears, a supporting frame mounted upon said axle and adapted to swing with respect thereto and 80 having mounted thereon said gearing, and resilient means connecting said supporting frame with the frame of said truck.

34. In apparatus of the class described, in combination, a car-truck, a car-body resili- 85. ently mounted thereon, an internal combustion engine mounted upon said truck and projecting within said car-body, a member upon an axle of said truck adapted to be driven from said engine, and a friction- 90 clutch upon said axle and adapted to transmit power from said driven member to the wheels of said truck.

35. In apparatus of the class described, in combination, a car-truck, a car-body resili- 95: ently mounted thereon, an internal combustion engine mounted upon the frame of saidtruck projecting within said car-body, a member upon an axle of said truck adapted to be driven from said engine, a friction-100 clutch upon said axle adapted to transmit power from said driven member to the wheels of said truck, and means positioned within said car-body adapted to control said clutch.

36. In apparatus of the class described, in combination, a car-body, a car-truck comprising wheels and an axle, an engine mounted upon said truck, a member upon said axle adapted to be driven from said engine, a 110 pair of gears upon said axle one of which is connected with said driven member, gearing connecting said gears adapted to drive the same at different rates of speed, a doublefaced clutch-member positioned upon and 115 adapted to drive said axle adapted to be thrown into engagement with co-acting parts upon either of said gears, and means controlling the position of said double-faced clutch-member positioned within said car- 120.

37. In apparatus of the class described, in combination, a car-body, a car-truck comprising wheels and an axle, an engine mounted upon said truck, a member upon 125 said axie adapted to be driven from said engine, a friction-clutch upon said axle, a pair of gears upon said axle, one of which is adapted to be driven through said friction-33. In apparatus of the class described, in | clutch, gearing connecting said gears adapt- 130

ed to drive the same at different rates of speed, a double-faced clutch-member positioned upon and adapted to drive said axle adapted to be thrown into engagement with co-acting parts upon either of said gears, and means connected with and adapted to control said friction-clutch and said clutchmember extending within said car-body.

38. In apparatus of the class described, in 10 combination, a car-body, a car-truck comprising wheels and an axle, an engine mounted upon said truck, a member upon said axle adapted to be driven from said engine, a friction clutch upon said axle, a pair of 15 gears upon said axle, one of which is adapted to be driven through said friction-clutch, gearing connecting said gears adapted to drive the same at different rates of speed, a double-faced clutch-member positioned upon 20 and adapted to drive said axle adapted to be thrown into engagement with co-acting parts upon either of said gears, and means connected with and adapted to control said friction-clutch and said clutch-member ex-25 tending within said car-body, said frictionclutch extending in a plane transverse of said axle and being driven from said first member.

39. In apparatus of the class described, in 30 combination, a car-body, a car-truck comprising wheels and an axle, an engine mounted upon said truck, a member upon said axle adapted to be driven from said engine, a friction clutch upon said axle, a pair of 35 gears upon said axle one of which is adapted to be driven through said friction-clutch, gearing connecting said gears adapted to drive the same at different rates of speed, a double-faced clutch-member positioned upon 40 and adapted to drive said axle adapted to be thrown into engagement with co-acting parts upon either of said gears, and means connected with and adapted to control said friction-clutch and said clutch-member ex-

45 tending within said car-body, a supporting frame mounted upon said axle having mounted thereon said gearing, and means resiliently connecting said frame with the frame of said truck, said friction-clutch be-50 ing driven from said first member.

40. In apparatus of the class described, in combination, a car-body, a car-truck comprising wheels and an axle, an engine mounted upon said truck and projecting 55 within said car-body, a member upon said axle adapted to be driven from said engine, a pair of gears upon said axle one of which is connected with said driven member, gearing connecting said gears adapted to drive 60 the same at different rates of speed, a supporting frame having mounted thereon said gearing mounted upon and adapted to swing with reference to said axle, a double-faced clutch-member positioned upon and adapted 65 to drive said axle adapted to be thrown into | mounted upon said truck, an internal com-

engagement with co-acting parts upon either of said gears, and means controlling the position of said clutch-member extending within said car-body.

41. In apparatus of the class described, 70 in combination, a car-truck comprising wheels and an axle, an engine mounted upon said truck, means comprising a frictionclutch and a positive clutch adapted to transmit power from said engine to said 75 wheels to propel said truck and a car-body resiliently mounted upon said car-truck.

42. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, an engine mounted upon 80 said truck, and means comprising a frictionclutch and a positive clutch adapted to transmit power from said engine to said wheels to propel said truck, said friction-clutch and said positive clutch being mount- 85

ed upon said axle.

43. In apparatus of the class described, in combination, a car-truck comprising wheels and an axle, an engine mounted upon said truck, and means comprising a friction- 90 clutch and a positive clutch adapted to transmit power from said engine to said wheels to propel said truck, said friction-clutch and said positive clutch being mounted upon said axle and being serially con- 95 nected with said engine in said order.

44. In apparatus of the class described, in combination, a car truck, an internal combustion engine mounted upon said truck, a car body resiliently mounted upon said truck 100 into which the cylinders of said engine project, a friction clutch mounted upon said truck, and means adapted to transmit power from said engine to the wheels of said truck

through said friction clutch. 45. In apparatus of the class described, in combination, a car truck, an internal combustion engine mounted upon said truck, a car body resiliently mounted upon said truck into which the cylinders of said engine 110 project, a friction clutch mounted upon said truck, means adapted to transmit power from said engine to the wheels of said truck

through said friction clutch, and means controlling said friction clutch and extending 115 within said car body adjacent said cylinders.

46. In apparatus of the class described, in combination, a car truck, a car body resiliently mounted upon said truck, an internal combustion engine mounted upon said 120 truck and projecting within said car body, speed changing means mounted upon said truck, means adapted to transmit power from said engine to the wheels of said truck through said speed changing means and 125 means within said car body controlling said speed-changing means.

47. In apparatus of the class described, in combination, a car truck, a car body

105

bustion engine mounted upon said truck and projecting within said car body, a friction clutch mounted upon an axle of said truck, means adapted to transmit power 5 from said engine to the wheels of said truck through said friction clutch, and means controlling said friction clutch and extending within said car body adjacent the cylinders of said engine.

48. In apparatus of the class described, in combination, a truck comprising a frame, a bolster, and a driving axle, a car body mounted upon said bolster, a rigid engine support mounted upon said truck frame and 5 bridged across the side bars thereof between said bolster and said driving axle, an internal combustion engine mounted upon said support and projecting upwardly into said car body, and means adapted to drive said

20 axle from said engine.

49. In apparatus of the class described, in combination, a car truck, a car body mounted upon said truck and comprising a pair of side sills and a pair of spaced members ex-25 tending across from sill to sill at a point above said truck and formed to provide an unobstructed floor space forward of said cross-members, an engine support bridging the side-bars of said truck and bracing the 30 same, a multi-cylinder internal combustion engine mounted upon said engine support and projecting upwardly into said car body between said cross-members, means adapted to transmit power from said engine to drive 35 said truck, and means within said car body controlling said power transmitting means. 50. In apparatus of the class described, in

combination, a truck, a car body mounted upon said truck having its floor framing 40 formed to provide an opening over said truck, and unobstructed floor spaces both forward and at the rear of said opening, resilient means interposed between said car body and said truck, an internal combus-45 tion engine mounted upon said truck and projecting upwardly through said opening

into the car body, and means adapted to

drive said truck from said engine.

51. In apparatus of the class described, in 50 combination, a truck comprising side bars, rigid means bridged across and secured to said side bars, an internal combustion engine mounted upon said rigid means and having its crank shaft disposed transversely 55 of the truck, means comprising a friction clutch adapted to transmit power from said engine to drive said truck, and fluid-controlled means controlling said clutch.

52. In apparatus of the class described, in Jo combination, a car body, a pair of support-

ing members mounted beneath said car body, an engine mounted upon said supporting members, a driving axle, a rigid support mounted upon said driving axle, means comprising a clutch adapted to transmit power 65 from said engine to said axle, and a compressed air cylinder upon said support adapted to control said clutch.

53. In apparatus of the class described, in combination, a car body, a pair of support- 70 ing members mounted beneath said car body, an engine mounted upon said supporting members, a driving axle, a rigid support mounted upon said driving axle, means comprising a clutch adapted to transmit power 75 from said engine to said axle, and a compressed air cylinder upon said support adapted to control said clutch, said support having a limited, cushioned swinging movement with respect to said axle.

54. In apparatus of the class described, in combination, a truck, a car body mounted upon said truck, an engine mounted upon said truck and projecting upwardly within said car body, a plurality of gears mounted 85 upon an axle of said truck, means adapted to drive said gears from said engine at different rates of speed, and means comprising clutch elements adapted to make connection between said gears and said axle respec- 90

55. In apparatus of the class described, in combination, a car body, a pair of supporting members extending longitudinally with respect to said car body, an engine mounted 95 upon said supporting members, a driving axle, means adapted to make connection between said engine and said driving axle and comprising a sprocket-chain and a doublefaced clutch member, and means adapted to 100 slide said double-faced clutch member from one to another of two operative positions.

56. In apparatus of the class described, in combination, a truck, a car body mounted upon said truck, an engine mounted upon 105 said truck and projecting upwardly into said car body, power-transiting means comprising a friction clutch and a positive clutch interposed between said engine and the driving axle of said truck, and means 110 extending within the same portion of said car body whereby said friction clutch and said positive clutch are controlled.

In testimony whereof I affix my signature, in presence of two witnesses.

WILLIAM R. McKEEN, JR.

Witnesses:

ARTHUR H. FETTERS. James G. Hope.