

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2011/0103978 A1 Handzel

May 5, 2011 (43) **Pub. Date:**

(54) TURBINE WITH IMPROVED SOUND REDUCTION

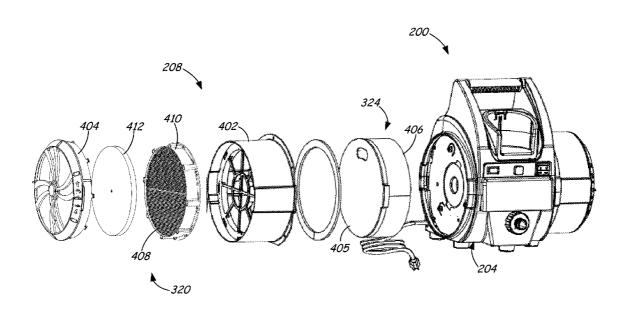
(75) Inventor: James J. Handzel, Golden Valley,

MN (US)

WAGNER SPRAY TECH Assignee:

CORPORATION, Plymouth, MN

(21) Appl. No.: 12/609,900


Oct. 30, 2009 (22) Filed:

Publication Classification

(51) **Int. Cl.** F04D 29/66 (2006.01) (52)U.S. Cl. 417/312

ABSTRACT

The present disclosure generally relates to a turbine for a fluid delivery system and more specifically, but not by limitation, to a portable air turbine for a fluid delivery system having improved sound reduction. In one exemplary embodiment, a portable turbine apparatus is provided and includes a motor and a turbine configured to be driven by the motor for providing pressurized air to an outlet. A first inlet airflow path delivers air to the motor. A first silencer component having sound absorptive material is positioned along the first inlet airflow path and includes at least one orifice formed therethrough for the first inlet airflow path, the at least one orifice having a cross-sectional area of at least 0.01 square inches. A second inlet airflow path delivers air to the turbine. A second silencer component having sound absorptive material is positioned along the second inlet airflow path and includes at least one orifice formed therethrough for the second inlet airflow path, the at least one orifice having a cross-sectional area of at least 0.01 square inches.

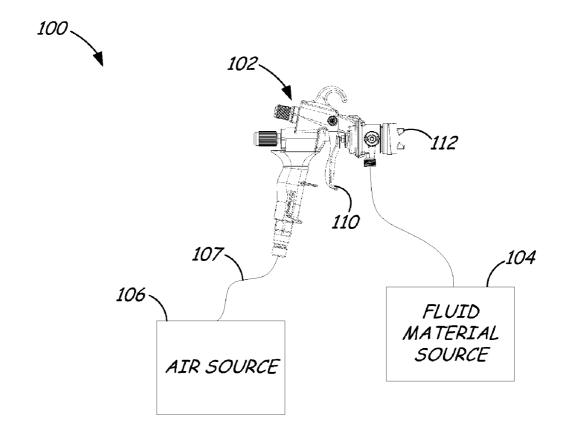


FIG. 1

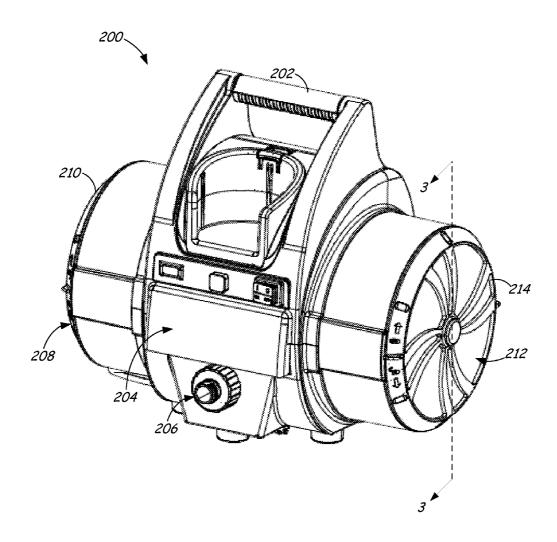
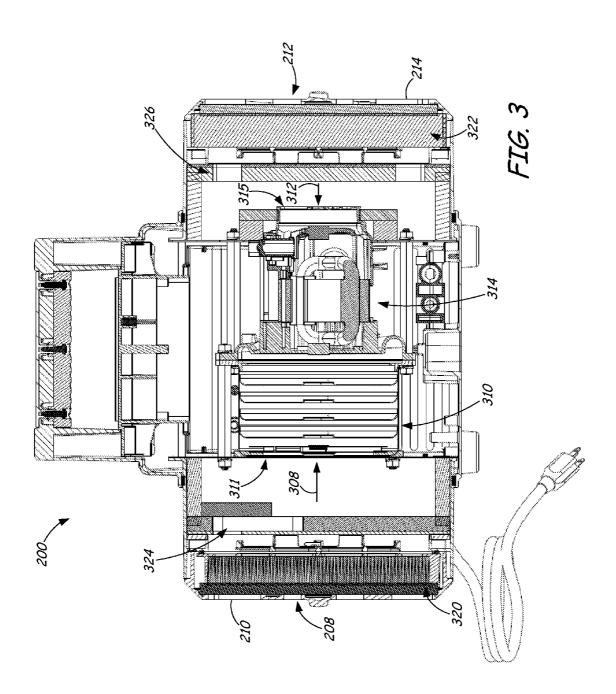
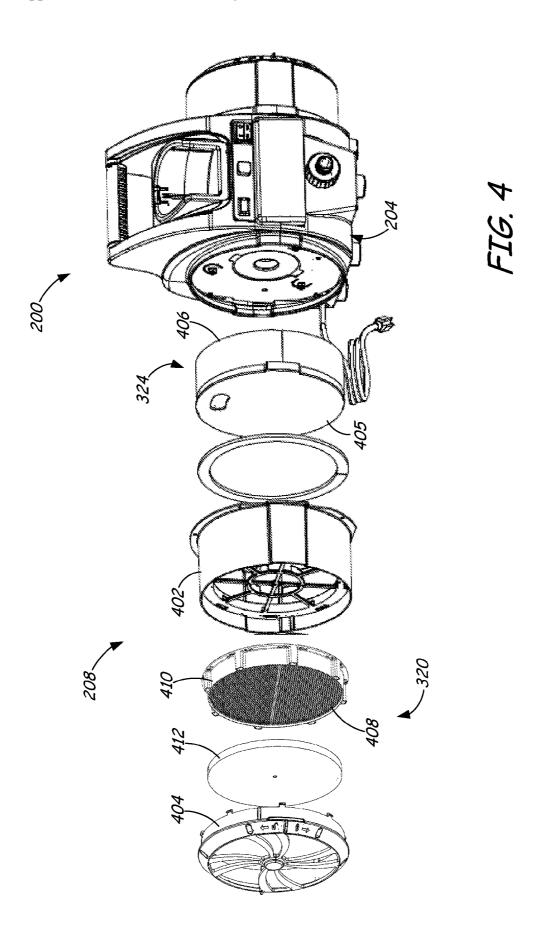
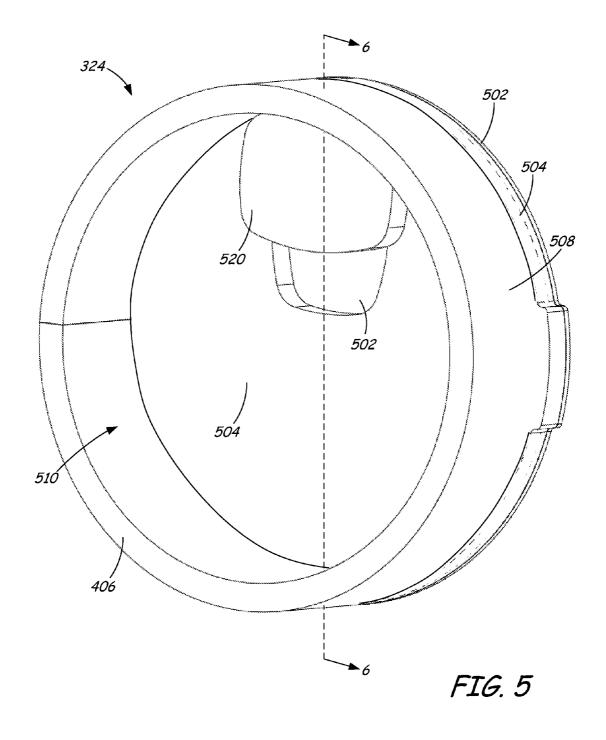
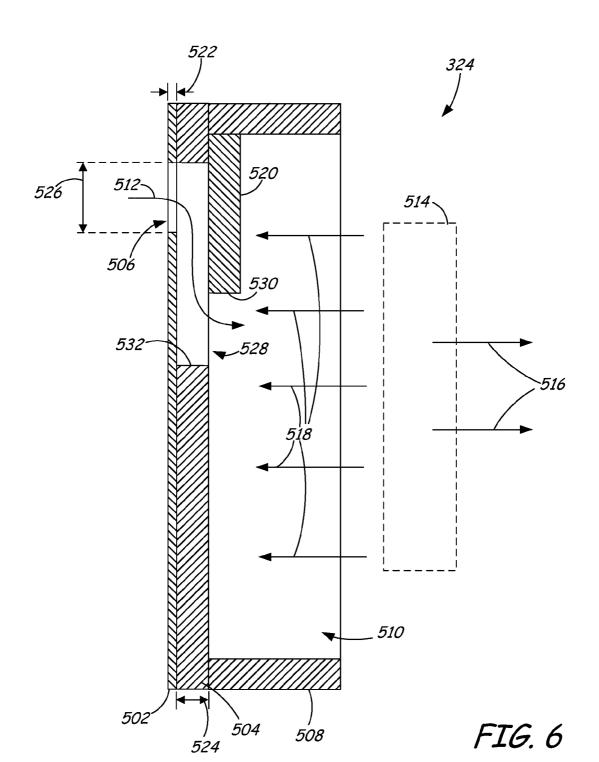






FIG. 2

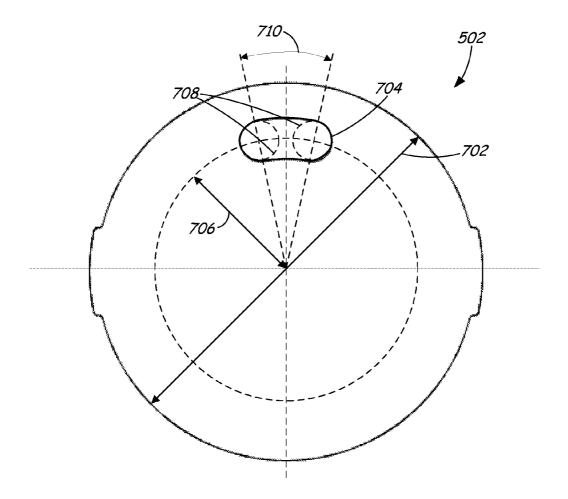


FIG. 7

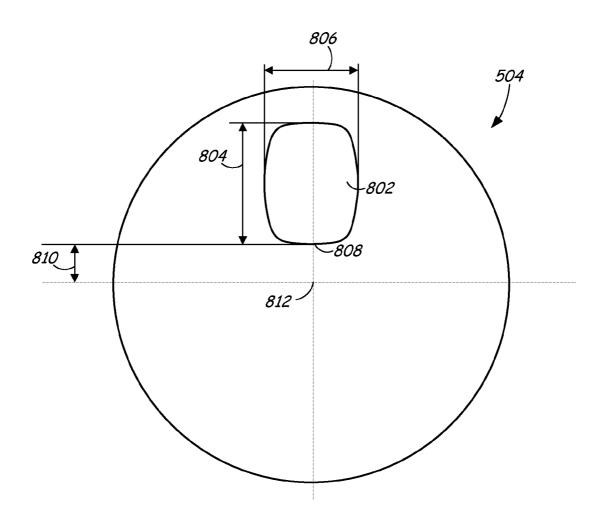
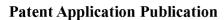
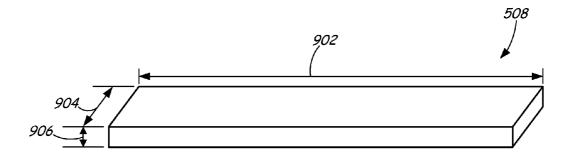




FIG. 8

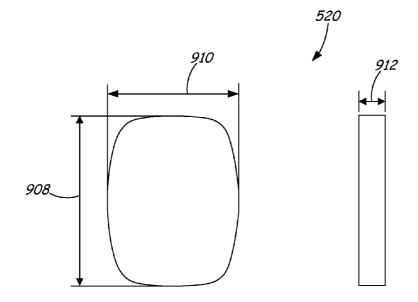


FIG. 9

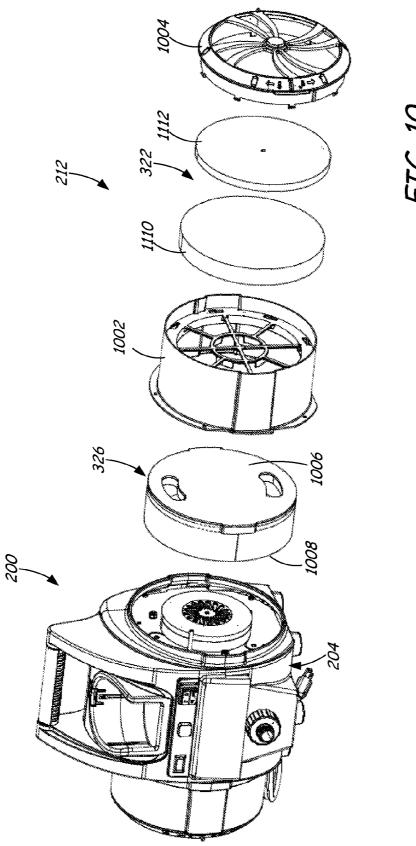


FIG. 10

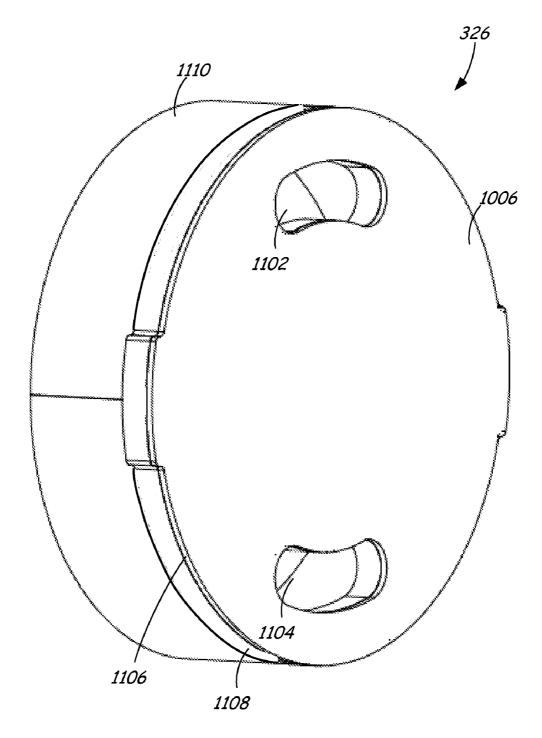


FIG. 11

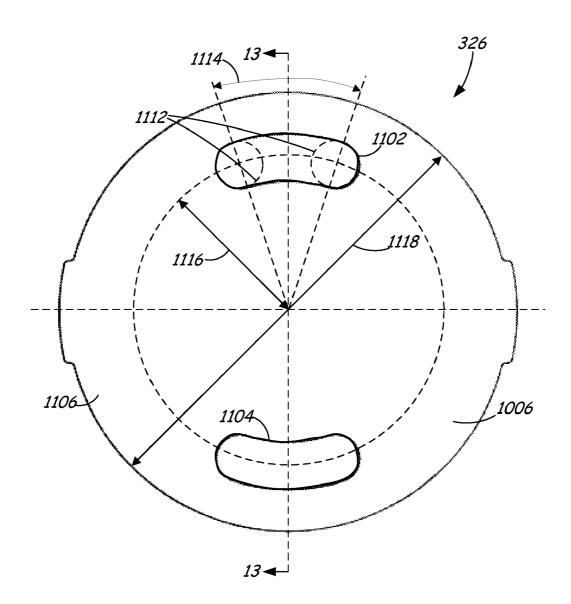


FIG. 12

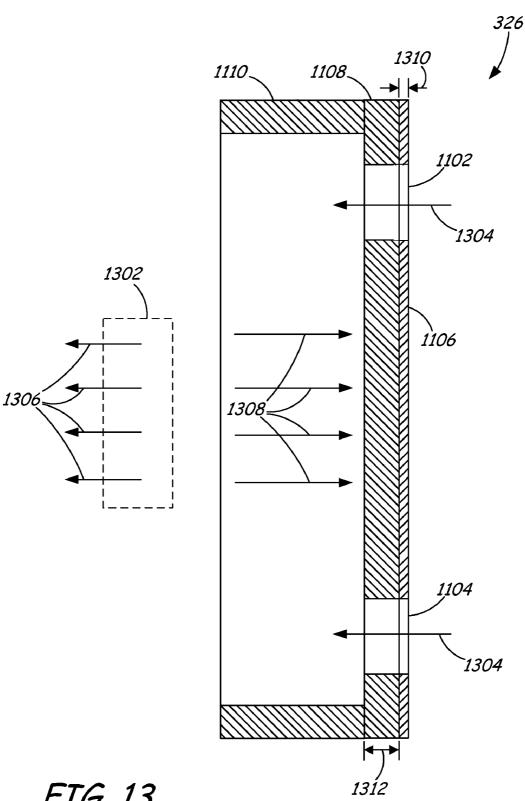


FIG. 13

TURBINE WITH IMPROVED SOUND REDUCTION

BACKGROUND

[0001] The present disclosure generally relates to a turbine for a fluid delivery system and more specifically, but not by limitation, to a portable air turbine for a fluid delivery system having improved sound reduction.

[0002] One example of a fluid delivery system comprises a spray-coating system having a device configured to spray a fluid material (e.g., paint, ink, varnish, texture, etc.) through the air onto a surface. Such spray-coating systems often include a fluid material source and, depending on the particular configuration or type of system, a motor for providing pressurized fluid material and/or air to an output nozzle or tip that directs the fluid material in a desired spray pattern. For example, some common types of fluid delivery systems employ compressed gas, such as air compressed by an air compressor or propelled by a turbine, to direct and/or atomize fluid material particles onto a surface. Fluid material is provided from the fluid material source using pressure feed, suction feed, and/or gravity feed mechanisms, for example.

[0003] Air turbines used in fluid delivery systems are often portable and are positioned within a housing having a handle that allows the apparatus to be carried by a user, for example. However, despite retention of the apparatus within the housing, the emitted noise level can make it difficult for a user of the equipment to talk with others and can be audibly uncomfortable for those who work near the equipment for extended periods of time. Further, portable turbines can include weight considerations or constraints as they are frequently moved (i.e., carried by a user) between job sites, for example. Accordingly, a need exists for a quieter turbine having suitable performance and weight characteristics.

[0004] The discussion above is merely provided for general background information and is not intended to be used as an aid in determining the scope of the claimed subject matter.

SUMMARY

[0005] The present disclosure generally relates to a turbine for a fluid delivery system and more specifically, but not by limitation, to a portable turbine for a fluid delivery system having improved sound reduction.

[0006] In one exemplary embodiment, a portable turbine apparatus is provided and includes a motor and a turbine configured to be driven by the motor for providing pressurized air to an outlet. A first inlet airflow path delivers air to the motor. A first silencer component having sound absorptive material is positioned along the first inlet airflow path and includes at least one orifice formed therethrough for the first inlet airflow path, the at least one orifice having a cross-sectional area of at least 0.01 square inches. A second inlet airflow path delivers air to the turbine. A second silencer component having sound absorptive material is positioned along the second inlet airflow path and includes at least one orifice formed therethrough for the second inlet airflow path, the at least one orifice having a cross-sectional area of at least 0.01 square inches.

[0007] In one exemplary embodiment, a portable apparatus is provided and includes a motor and a first inlet airflow path for delivering air to the motor. The apparatus also includes a mechanism driven by the motor for compressing air received from a second inlet airflow path. The compressed air is pro-

vided to an outlet of the apparatus. The apparatus also includes a first silencer component positioned along the first inlet airflow path. At least a portion of the first inlet airflow path passes through the first silencer component. The first silencer component comprising a first layer that includes sound absorptive material and a second layer that includes acoustic barrier material. The apparatus also includes a second silencer component positioned along the second inlet airflow path. At least a portion of the second inlet airflow path passes through the second silencer component. The second silencer component comprises a first layer that includes sound absorptive material and a second layer that includes acoustic barrier material.

[0008] In one exemplary embodiment, a portable turbine apparatus is provided and includes a housing, a motor positioned within the housing, and a turbine positioned within the housing and configured to be driven by the motor for providing compressed air to an outlet. The apparatus also includes a first inlet airflow path from a first side of the housing to the motor and a second inlet airflow path from a second, opposite side of the housing to the turbine. A first silencer component having a sound absorbent material is positioned along the first inlet airflow path and a second silencer component having a sound absorbent material is positioned along the second inlet airflow path.

[0009] These and various other features and advantages will be apparent from a reading of the following Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. The claimed subject matter is not limited to implementations that solve any or all disadvantages noted in the background.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a diagram of an exemplary fluid delivery system.

[0011] FIG. 2 is a perspective view of a portable turbine apparatus, under one embodiment.

[0012] FIG. 3 is a cross-sectional view of the portable turbine apparatus illustrated in FIG. 2.

[0013] FIG. 4 is a partially exploded perspective view of a portable turbine apparatus, under one embodiment.

 $\cite{[0014]}$ FIG. 5 is a perspective view of a silencer component, under one embodiment.

[0015] FIG. 6 is a cross-sectional view of the silencer component illustrated in FIG. 5.

[0016] FIG. 7 illustrates a backing plate of the silencer component shown in FIG. 6, under one embodiment.

[0017] FIG. 8 illustrates a sound absorptive panel of the silencer component shown in FIG. 6, under one embodiment.

[0018] FIG. 9 illustrates a sidewall panel and a baffle panel of the silencer component shown in FIG. 6, under one embodiment.

[0019] FIG. 10 is a partially exploded perspective view of a portable turbine apparatus, under one embodiment.

[0020] FIG. 11 is a perspective view of a silencer component, under one embodiment.

[0021] FIG. 12 is an end view of the silencer component illustrated in FIG. 11.

[0022] FIG. 13 is a cross-sectional view of the silencer component illustrated in FIG. 11.

DETAILED DESCRIPTION

[0023] FIG. 1 is a diagram illustrating an exemplary fluid delivery system 100. System 100 includes a spray gun 102 configured to spray fluid material from an output 112 when a trigger 110 is actuated (i.e., pulled). Output 112 comprises a nozzle or tip configured to discharge the fluid material in a desired spray pattern. In one embodiment, the fluid material is entrained in an airflow from spray gun 102. In one particular example, spray gun 102 is configured to atomize the fluid material that is sprayed through the air. Examples of fluid materials include, but are not limited to, primers, inks, paints, varnishes, block fillers, elastomerics, drywall mud, textures, popcorn, and splatter finishes, herbicides, insecticides, and food products, to name a few.

[0024] In the illustrated embodiment, fluid delivery system 100 comprises an air-driven system that employs pressurized air provided from an air source (e.g., air compressed by an air compressor or a turbine) to propel material from output 112. A fluid material source 104 is configured to provide fluid material to spray gun 102. Fluid material is provided from the fluid material source 104 using pressure feed, suction feed, and/or gravity feed mechanisms, for example. Material source 104 can be mounted to spray gun 102 (e.g., an onboard hopper or container) and/or can be remote from (e.g., not mounted to) spray gun 102. One example of a fluid material container that can be utilized with spray gun 102 is illustrated in commonly assigned U.S. Pat. No. 5,655,714, the content of which is hereby incorporated by reference in its entirety.

[0025] Air source 106 is configured to provide air to spray gun 102 that is used to atomize and propel the fluid material provided from fluid material source 104. In the embodiment illustrated in FIG. 1, air source 106 comprises a portable air turbine apparatus that provides pressurized air to spray gun 102 through a tube 107.

[0026] FIG. 2 is a perspective view of one embodiment of a portable air turbine assembly 200 for use in a fluid delivery system, such as system 100 illustrated in FIG. 1. Turbine assembly 200 includes a handle 202 connected to a turbine housing 204. Turbine housing 204 houses a motor configured to drive a turbine that provides a source of pressurized air to an air outlet 206. It is noted that turbine assembly 200 can include multiple motors and/or multiple turbines. In one embodiment, air outlet 206 is connected via an air hose (not shown) to a hand-held paint spray gun, such as an HVLP type spray gun, which uses air to atomize paint.

[0027] Turbine assembly 200 includes a first air intake assembly 208 at a first end 210 of turbine housing 204 and a second air intake assembly 212 at a second, opposite end 214 of housing 204. Air intake assembly 208 provides a first inlet airflow path that delivers air to be compressed by the turbine in housing 204. Air intake assembly 212 provides a second inlet airflow path that delivers air for cooling the motor in housing 204.

[0028] FIG. 3 is a cross-sectional view of turbine assembly 200 taken at line 3-3 illustrated in FIG. 2. As shown, the first inlet airflow path (generally illustrated by arrow 308) provided from air intake assembly 208 is provided to an input 311 of turbine 310. Turbine 310 compresses the air, which is then delivered to air outlet 206 (illustrated in FIG. 2). The second inlet airflow path (generally illustrated by arrow 312) provided from air intake assembly 212 is provided to an input 315 of motor 314 to aid in cooling motor 314.

[0029] A first air filter assembly 320 is provided in the first inlet airflow path between end 210 and turbine 310. A second air filter assembly 322 is provided in the second inlet airflow path between end 214 and motor 314.

[0030] In accordance with one embodiment, turbine assembly 200 includes a first silencer component 324 positioned along the first inlet airflow path and a second silencer component 326 positioned along the second inlet airflow path. Silencer components 324 and 326 are configured to allow the inlet airflows 308 and 312 while providing sound attenuation qualities. In one embodiment, silencer component 324 is positioned between filter 320 and turbine 310 and silencer component 326 is positioned between air filter 322 and motor 314.

[0031] FIG. 4 is a perspective view of turbine assembly 200, illustrating air intake assembly 208 in exploded view. Intake assembly 208 includes an intake assembly housing 402 that is mounted to turbine housing 204, for example using fasteners such as screws and/or bolts. An air filter assembly 320 is positioned between an intake assembly cap 404 and intake assembly housing 402. Air filter assembly 320 illustratively comprises a two-stage filter having a main filter 408 and a pre-filter 412. Pre-filter 412 comprises a foam or foamlike material, for example, and is configured to filter large particles in the inlet airflow, prior to the airflow passing through main filter 408.

[0032] In one example, pre-filter 412 is easily removable for cleaning and/or replacement, as desired. Main filter 408 is retained in a filter frame 410 and comprises a pleated material (such as paper or paper-like materials), for example. Main filter 408 has finer filtration capabilities as compared to pre-filter 412 and operates to keep some or all particles out of the atomizing air provided by the turbine. In one embodiment, filter frame 410 is retained within a portion of intake assembly housing 402 and can comprise a seal (not shown in FIG. 4), such as an o-ring and the like, positioned between the filter frame 410 and housing 402.

[0033] Silencer component 324 is positioned between intake assembly housing 402 and turbine housing 204. A first side 404 of silencer component 324 faces air filter assembly 320 and a second side 406 of silencer component 324 faces turbine housing 204.

[0034] FIG. 5 is a perspective view of silencer component 324 taken from side 406. FIG. 6 is a cross-sectional view of silencer component 324 taken at line 6-6, illustrated in FIG. 5. As shown, silencer component 324 comprises a multi-layered structure and includes at least one aperture formed therethrough. In one embodiment, the at least one aperture has a cross-sectional area of at least 0.01 square inches. A first layer 502 and a second layer 504 are substantially planar and form an inlet orifice 506. Silencer component 324 also includes a sidewall 508 that forms an outlet 510. Arrow 512 generally illustrates the flow of air through silencer component 324 between the inlet 506 and the outlet 510. In one embodiment, the airflow from silencer component 324 enters the turbine input (i.e., input 311 illustrated in FIG. 11), which is generally illustrated by dashed box 514. The airflow into the input of the turbine is generally illustrated by arrows 516.

[0035] Silencer component 324 operates to significantly reduce the amount of sound emanating from the turbine side (i.e., side 210) of assembly 200 without an appreciable change in the airflow through intake assembly 208 into the turbine. In one embodiment, at least one layer of silencer component 324 comprises sound absorptive material(s) (also referred to as acoustical insulation) configured to absorb the sound (generally illustrated by arrows 518) emanating from the input of the turbine (generally illustrated by dashed box 514), for example. For instance, layer 504 (which is substan-

tially planar) and/or sidewall **508** can be made of foam or foam-like material, such as, but not limited to, low-density polyester-based open cell urethane foam and the like. In one embodiment, layer **504** and/or sidewall **508** are made of material having a density of approximately two pounds per cubic foot (lbs/ft³).

[0036] In one embodiment, at least one layer of silencer component 324 comprises an acoustic barrier material. The acoustic barrier material has lower sound absorption qualities (as compared to the sound absorptive material used for layer 504 and/or sidewall 508, for example) and is configured to provide sound barrier and vibration dampening qualities. For example, in one embodiment silencer component 324 comprises a layer 502 (that is substantially planar) that is configured to absorb and/or deflect at least a portion of the sound that passes through layer 504. Layer 502 is also referred to as a backing plate to which layer 504 is adhered. In one embodiment, layer 502 comprises an acoustic barrier material such as, but not limited to, extruded elastomeric materials and the like. For example, the acoustic barrier layer can comprise poly-vinyl-chloride (PVC)/vinyl. In one embodiment, layer 502 is formed of a material having a density of approximately one pound per square foot (lb/ft²).

[0037] Silencer component 324 can also include a baffle layer 520 that is attached to layer 504 and allows the airflow 512 to flow through silencer component 324 while operating to absorb sound that would otherwise emanate through inlet 506. Baffle layer 502 can be formed of the same, or substantially similar, material as layer 504.

[0038] FIG. 7 illustrates backing plate 502. Backing plate 502 has an outer diameter 702 and at least one orifice 704 formed therethrough. In one embodiment, outer diameter 702 is approximately 9.25 inches and orifice 704 is centered at a radius 706 from the center of plate 502. In one embodiment, radius 706 is approximately 3.25 inches.

[0039] In one example, orifice 704 is formed by two circular apertures 708 spaces apart at an angle 710. In one embodiment, the circular aperture 708 each have a diameter of approximately 1 inch and angle 710 comprises an angle of approximately 22 degrees. In one embodiment, plate 502 has a thickness 522 (illustrated in FIG. 6) of approximately 0.1 to 0.2 imples

[0040] FIG. 8 illustrates sound absorptive layer 504. An orifice 802 is formed in layer 504 and has a height 804 and a width 806. In one embodiment, height 804 is approximately 3.25 inches and width 806 is approximately 2.5 inches. A bottom 808 of orifice 802 is spaced a distance 810 from the center 812 of panel 504. In one embodiment, distance 810 is approximately 0.5 inches. In one embodiment, panel 504 has a thickness 524 (illustrated in FIG. 6) of approximately 0.5 inches.

[0041] FIG. 9 illustrates sidewall 508 and baffle 520. Sidewall 508 is illustrated in an "unrolled" state. In one embodiment, sidewall 508 is formed of a material that is the same, or substantially similar, to panel 504. Sidewall 508 has a length 902, a width 904, and a thickness 906. In one embodiment, length 902 is approximately 26.9 inches, width 904 is approximately 2.4 inches and thickness 906 is approximately 0.5 inches.

[0042] In one embodiment, baffle 520 is formed of material that is removed from panel 504 to form orifice 802. In this embodiment, baffle 520 has a height 908, width 910, and

thickness 912 that is substantially similar to height 804, width 806 and thickness 524, respectively, illustrated in FIG. 6 and FIG. 8.

[0043] Referring to FIG. 6, in one embodiment the height 526 of the orifice formed in panel 502 is substantially similar to the gap 528 formed between the bottom surface 530 of baffle 520 and the bottom surface 532 of the orifice formed in panel 504.

[0044] FIG. 10 is a perspective view of turbine assembly 200 illustrating air intake assembly 212 in exploded view. As shown, air filter assembly 322 is positioned between an intake assembly housing 1002 and an intake assembly cap 1004. In one embodiment, air filter assembly 322 comprises a two-stage filter including a main filter 1110 and a pre-filter 1112. In one example, pre-filter 1112 comprises a foam or foamlike and can be similar to pre-filter 412 illustrated in FIG. 4. Pre-filter 1112 is configured to filter large particles in the inlet airflow, prior to the airflow passing through main filter 1110. In one example, pre-filter 1012 is easily removable for cleaning and/or replacement, as desired.

[0045] In one embodiment, filter 1110 is substantially similar to filter 408, illustrated in FIG. 4. In one embodiment, filter 1110 is different than filter 408 and can comprise a foam or foam-like material, for example. In one example, filter 1110 is configured to allow a greater airflow rate therethrough and/or lesser particle filtration as compared to filter 408. In this manner, the airflow rate into the motor side of assembly 200 can be greater than the airflow rate into the turbine side of assembly 200.

[0046] The second silencer component 326 is positioned between the intake assembly housing 1002 and the turbine housing 204. Intake assembly housing 1002 can be attached to turbine housing 204, for example using fasteners such as screws and/or bolts. A first side 1006 of silencer component 326 faces air filter assembly 322 and a second side 1008 of silencer component 326 faces turbine housing 204.

[0047] FIG. 11 is a perspective view of silencer component 326. As shown, silencer component 326 comprises a multi-layered structure that includes at least one aperture formed therethrough. In one embodiment, the at least one aperture has a cross-sectional area of at least 0.01 square inches. A first layer 1106 and a second layer 1108 are substantially planar and include first and second apertures 1102 and 1104 formed therethrough. FIG. 12 is an end view of silencer component 326 taken from side 1006. FIG. 13 is a cross-sectional view of silencer component 326 taken from line 13-13 illustrated in FIG. 12.

[0048] Silencer component 326 includes at least one layer of sound absorptive material. In the illustrated embodiment, layer 1108 comprises a layer of sound absorptive material that is adhered to a backing layer 1106. In one embodiment, layer 1108 is formed of a material that is the same as, or substantially similar to, layer 504 (illustrated in FIGS. 5 and 6) and layer 1106 is formed of a material that is the same as, or substantially similar to, layer 502 (illustrated in FIGS. 5 and 6). Component 326 also includes a sidewall 1110. In one embodiment, sidewall 1110 is substantially similar to sidewall 508 (illustrated in FIGS. 5 and 6).

[0049] Referring to FIG. 12, orifice 1102 is formed by two circular apertures 1112 spaced apart at an angle 1114 along a radius 1116. In one embodiment, radius 1116 is approximately 3.25 inches and circular apertures 1112 have a diameter of approximately 1 inch. In one embodiment, the angle 1114 is approximately 36 degrees and the overall diameter

1118 of component 326 is approximately 9.25 inches. In one embodiment, aperture 1104 is substantially similar to and a mirror image of, aperture 1102.

[0050] Referring to FIG. 13, silencer component 326 operates to significantly reduce the amount of sound emanating from the motor side (i.e., side 214) of assembly 200 without an appreciable change in the airflow through intake assembly 212 into the motor. As illustrated, sound (generally illustrated by arrows 1308) emanating from the input of motor 314 (generally illustrated in FIG. 13 by box 1302) is absorbed by silencer component 326. The airflow (generally illustrated by arrows 1304) enters silencer component 326 through orifices 1102 and 1104. The airflow (generally illustrated by arrows 1306) then enters the motor input (generally illustrated by block 1302). As shown, an offset exists between the silencer input orifices (i.e., orifices 1102 and 1104) and the motor input (i.e., box 1302), which acts as a baffle to reduce the sound emanating from the turbine assembly through the intake assembly 212.

[0051] In one embodiment, thickness 1310 of layer 1106 is substantially similar to thickness 522 of layer 502 and thickness 1312 of layer 1108 is substantially similar to thickness 524 of layer 504. Further, in one embodiment sidewall 1110 is substantially similar to sidewall 508.

[0052] As mentioned above, in one example turbine assembly 200 is portable (e.g., turbine assembly 200 is carried by a user between job sites). In accordance with one embodiment, silencer components 324 and 326 are designed to be lightweight (e.g., components 324 and 326 do not significantly add to the overall weight of turbine assembly 200, components 324 and 326 comprise a small percentage of the overall weight of assembly 200, etc.), while providing improved sound attention qualities that significantly reduce the overall noise emanating from turbine assembly 200. For example, in one embodiment the combined weight of components 324 and 326 is less than approximately 1.25 pounds (lbs). In one embodiment, the combined weight of components 324 and **326** is approximately 1 pound (lb). In one particular example, components 324 and 326 have a weight of approximately 0.53 and 0.5 lbs., respectively.

[0053] In one particular embodiment, turbine assembly 200 comprises a 5-stage turbine having an overall weight of approximately 22 lbs. Silencer components 324 and 326 comprise approximately 1.03 lbs, which is approximately 4.7 percent of the overall weight of turbine assembly 200.

[0054] It is noted that these are examples of particular illustrative embodiments of turbine assembly 200 and silencer components 324 and 326, and are not meant to limit the scope of the concepts described herein.

[0055] While various embodiments of the invention have been set forth in the foregoing description, together with details of the structure and function of various embodiments of the disclosure, this disclosure is illustrative only, and changes may be made in detail, especially in matters of structure and arrangement of parts within the principles of the present disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. For example, the particular elements may vary depending on the particular application for the system or method while maintaining substantially the same functionality without departing from the scope and spirit of the present disclosure and/or the appended claims.

What is claimed:

- 1. A portable turbine apparatus comprising:
- a motor:
- a turbine configured to be driven by the motor for providing pressurized air to an outlet;
- a first inlet airflow path for delivering air to the motor, wherein a first silencer component having sound absorptive material is positioned along the first inlet airflow path and includes at least one orifice formed therethrough for the first inlet airflow path, the at least one orifice having a cross-sectional area of at least 0.01 square inches; and
- a second inlet airflow path for delivering air to the turbine, wherein a second silencer component having sound absorptive material is positioned along the second inlet airflow path and includes at least one orifice formed therethrough for the second inlet airflow path, the at least one orifice having a cross-sectional area of at least 0.01 square inches.
- 2. The portable turbine apparatus of claim 1, and further comprising:
 - an air filter positioned in the first inlet airflow and spaced apart from the first silencer component.
- 3. The portable turbine apparatus of claim 2, wherein the first silencer component is positioned between the air filter and the motor.
- **4**. The portable turbine apparatus of claim **1**, and further comprising:
 - an air filter positioned in the second inlet airflow and spaced apart from the second silencer component.
- 5. The portable turbine apparatus of claim 4, wherein the second silencer component is positioned between the air filter and the turbine.
- **6**. The portable turbine apparatus of claim **1**, wherein the first silencer component comprises a multi-layered structure that includes at least first and second layers that are substantially planar.
- 7. The portable turbine apparatus of claim 6, wherein the first silencer component comprises a first orifice formed through the first and second layers and a second orifice formed through the first and second layers, wherein the first and second orifices are spaced equidistant from a center of the multi-layered structure.
- **8**. The portable turbine apparatus of claim **1**, wherein the second silencer component comprises a multi-layered structure that includes at least first and second layers that are substantially planar, wherein the at least one orifice is formed through both the first and second layers.
- **9**. The portable turbine apparatus of claim **8**, and further comprising a baffle positioned over at least a portion of the at least one orifice formed through the second silencer component
 - 10. A portable apparatus comprising:
 - a motor;
 - a first inlet airflow path for delivering air to the motor;
 - a mechanism driven by the motor for compressing air received from a second inlet airflow path, wherein the compressed air is provided to an outlet of the apparatus;

- a first silencer component positioned along the first inlet airflow path, wherein at least a portion of the first inlet airflow path passes through the first silencer component, the first silencer component comprising a first layer that includes sound absorptive material and a second layer that includes acoustic barrier material; and
- a second silencer component positioned along the second inlet airflow path, wherein at least a portion of the second inlet airflow path passes through the second silencer component, the second silencer component comprising a first layer that includes sound absorptive material and a second layer that includes acoustic barrier material.
- 11. The portable apparatus of claim 10, wherein the mechanism comprises an air turbine, the air turbine and motor being enclosed by a turbine housing of the apparatus.
- 12. The portable apparatus of claim 10, wherein the first inlet airflow enters a first side of the turbine housing and the second inlet airflow enters a second, opposite side of the turbine housing.
- 13. The portable apparatus of claim 10, wherein the first silencer component is positioned within a first inlet housing that is removably coupled to the turbine housing.
- 14. The portable apparatus of claim 13, wherein the second silencer component is positioned within a second inlet housing that is removably coupled to the turbine housing.
- 15. The portable apparatus of claim 14, wherein each of the first and second silencer components comprise multi-layered structures having at least one sound absorptive material layer attached to a backing layer comprising the acoustic barrier material.

- 16. A portable turbine apparatus comprising:
- a housing;
- a motor positioned within the housing;
- a turbine positioned within the housing and configured to be driven by the motor for providing compressed air to an outlet:
- a first inlet airflow path from a first side of the housing to the motor and a second inlet airflow path from a second, opposite side of the housing to the turbine;
- a first silencer component having a sound absorbent material positioned along the first inlet airflow path; and
- a second silencer component having a sound absorbent material positioned along the second inlet airflow path.
- 17. The portable apparatus of claim 16, wherein the first silencer component comprises a multi-layered structure that includes at least first and second layers that are substantially planar.
- 18. The portable apparatus of claim 16, wherein the first silencer component comprises a first orifice formed through the first and second layers and a second orifice formed through the first and second layers, wherein the first and second orifices are spaced equidistant from a center of the multi-layered structure.
- 19. The portable apparatus of claim 16, wherein the second silencer component comprises a multi-layered structure that includes at least first and second layers that are substantially planar, wherein the at least one orifice is formed through both the first and second layers.
- 20. The portable apparatus of claim 16, and further comprising a baffle positioned over at least a portion of the at least one orifice formed through the second silencer component.

* * * * *