
(12) United States Patent
Bosworth et a].

US007266814B2

US 7,266,814 B2
Sep. 4, 2007

(10) Patent N0.:
(45) Date of Patent:

(54)

(75)

(73)

(21)

(22)

(86)

(87)

(65)

(60)

(51)

(52)
(58)

NAMESPACE BASED FUNCTION
INVOCATION

Inventors: Adam BosWorth, Mercer Island, WA
(US); David Bau, III, GladWyne, PA
(US); Kenneth Eric Vasilik, Redmond,

Assignee:

Notice:

Appl. No.:

PCT Filed:

PCT No.:

§ 371 (c)(1
(2), (4) Date:

PCT Pub. No.:

WA (US)

BEA Systems, Inc., San Jose, CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 659 days.

10/0s9,197

Nov. 9, 2001

PCT/US01/46712

),
Apr. 28, 2003

WO02/39274

PCT Pub. Date: May 16, 2002

US 2004/0031043 A1

Prior Publication Data

Feb. 12, 2004

Related U.S. Application Data

Provisional application No. 60/246,915, ?led on Nov.
10, 2000.

Int. Cl.
G06F 9/45 (2006.01)
U.S. Cl. 717/166

Field of Classi?cation Search 717/ 166,

717/ 140
See application ?le for complete search history.

No

~ 220

Infer refd Function as Java
factory, and attempt to locate

No

instantiate proxy 8: pass
invocation parameters, if any
to remote ?mc?on ~ 228

(56) References Cited

U.S. PATENT DOCUMENTS

5,930,512 A 7/1999 Boden et :11.
6,066,181 A 5/2000 DeMaster
6,115,741 A 9/2000 Domenikos et a1.
6,260,078 B1 7/2001 FoWloW
6,308,224 B1 10/2001 Leymann et 31.
6,327,624 B1 12/2001 Mathewson, 11 et a1.
6,442,748 B1* 8/2002 BOWman-Amuah 717/108

6,675,353 B1* 1/2004 Friedman 715/513

6,678,724 B2* 1/2004 Nakajima et a1. 709/219
2002/0069399 A1* 6/2002 Miloushey et a1. 717/108
2004/0028049 A1* 2/2004 Wan 370/394

* cited by examiner

Primary Examinerilohn Chavis
(74) Attorney, Agent, or FirmiSchWabe, Williamson &
Wyatt, PC.

(57) ABSTRACT

A data representation is read and parsed. A declaration
referencing an executable namespace is recognized. An
expression is recognized. A name (declared Within the
executable namespace) Within the expression having zero or
more additional data representations is also recognized. In
response, functions corresponding to the name and addi
tional data representations are recursively resolved, and
caused to be invoked and executed, With the execution
results of the inner functions successively provided for use
in the execution of the outer functions. For each function, the
function or a creator to create the function is instantiated.

The instantiating is eifectuated by folloWing a path enumer
ated in the declaration for locating functions of the
namespace. If a creator of the function is located and

instantiated, the function is created using the function cre
ator, and then the created function is instantiated. Upon
instantiation, the referenced function is invoked and
executed.

21 Claims, 5 Drawing Sheets

Invoke XSLT
~ 218

lnstant'iate Java
factory ~ 224

1
Generate & instantiate

Java Class ~ 226

Successful?
~ 230

Error

U.S. Patent Sep. 4, 2007 Sheet 1 0f 5 US 7,266,814 B2

Computing Environment ~102

DP Representations ~ 106

- Namespace Dec1~ 108 ’ Ex?cutitm Engine
+ Function Dec] ~ 110 ~ 104

1

Directories/Packages ~ 112

- Functions 114

Figure 1

U.S. Patent Sep. 4, 2007

E
NmSp:
Function

Locate next nesting branch
(if >1, starts with “top”
nesting branch) ~ 201

1
Locate next Function (if

>1, starts with “innermost”
function) ~ 202

Resolve and Invoke
Function ~ 203

Outer Function‘?
~ 204

Figure 2a

Sheet 2 of 5

Fn has nested
Fn?~ 205

Perform process 200
for nested function(s)

~ 206

US 7,266,814 B2

U.S. Patent Sep. 4, 2007 Sheet 3 of 5 US 7,266,814 B2

Resolve a
Function

Infer ret‘d Function as Java Class,
and attempt to locate

~ 207

Yes .

Successful? lnglannataz‘gagva
~ 208 ass N

Infer ref’d Function as compilable
Java Resource, and attempt to locate

~ 210

Successful? Compile ~ 212
~21l

Infer ref’d Function as XSLT
resource, and attempt to locate

~ 214

@
Figure 2b

U.S. Patent Sep. 4, 2007 Sheet 4 0f 5 US 7,266,814 B2

Invoke XSLT
~ 2 l 8

No

Infer ref’ d Function as Java I
factory, and attempt to locate _
N 220 lnstantlate Java

factory ~ 224

Yes Generate & Instantiate
Java Class ~ 226

No

Instantiate proxy & pass
invocation parameters, if any ‘

to remote function ~ 228 '

Figure 2c

U.S. Patent Sep. 4, 2007 Sheet 5 0f 5 US 7,266,814 B2

1.9

System Memory
;0_4

Processor Execution Engine &
A); Local Functions

~ 11 42

212

Mass Storage
M 1/0 Devices Comm. Intf.

§0_8 £9
Execution Engine
& Local Functions
~ 314b

Figure 3

US 7,266,814 B2
1

NAMESPACE BASED FUNCTION
INVOCATION

RELATED APPLICATIONS

This non-provisional application is related to and claims
priority to provisional application No. 60/246,915 entitled
“A Data Processing Method Employing Cell Based Data
FloW Description”, ?led on Nov. 10, 2000, Which is hereby
fully incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to the ?eld of data process

ing. More speci?cally, the present invention relates to the
employment of namespaces to facilitate local and remote
function invocation.

2. Background Information
Ever since the invention of the ?rst computer, computer

scientists have continuously tried to improve the productiv
ity of programmers, such that more applications can be
developed With feWer resources to take advantage of the
continuous advancements being made in the art of computer
and related technologies. First assembler languages Were
developed to replace machine languages. Then, high level
languages, such as FORTRAN, COBOL, PL/I and so forth,
Were developed to further improve the productivity of
programmers. Development of high level languages Were
folloWed by structured languages such as Pascal and C, and
then object oriented programming languages such as C++.
To facilitate development of the Internet and the World Wide
Web, “neW” languages such as the Hypertext Markup Lan
guage (HTML), Java, Javascript, Perl and CGI Were devel
oped.

Most languages also support function calls, Which may be
user-de?ned functions or pre-packaged functions, such as
those included With the languages’ runtime libraries. HoW
ever, in the earlier days, to be invocable, the functions must
exist on the same system as the callers of the functions. Later
on, to facilitate development of client-server computing,
remote procedure call (RPC), a messaging protocol, Was
developed to facilitate a program executing on one computer
to remotely invoke and access the service of a function on
another computer. More recently, to facilitate development
of Web based applications, and employment of object ori
ented programming techniques, remote method invocation
(RMI) Was developed to facilitate interacting With objects on
a server.

With the advance of public netWorks, such as the Internet,
numerous function resources exist in different parts of the
netWorks, Written in different languages on different plat
forms. It is desirable to be able to invoke these function
resources, regardless of their location, host language or host
platform Without limitation to the relationship betWeen the
invoking computing device and the function hosting com
puting device. Thus, an approach that can ef?ciently realiZe
this potential is desired.

SUMMARY OF THE INVENTION

A data processing representation is read and parsed. A
namespace declaration is recogniZed and identi?ed as
“executable.” An expression is recogniZed. A name (de
clared Within the executable namespace) Within the expres
sion having Zero or more additional data representations is
also recognized. In response, functions corresponding to the

20

25

30

35

40

45

50

55

60

65

2
name and additional data representations are recursively
resolved, and caused to be invoked and executed, With the
execution results of the inner functions successively pro
vided for use in the execution of the outer functions.

For each function, the function or a creator to create the
function is located and instantiated based on the namespace
and the name. In one embodiment, the declaration includes
a URI to help locate functions. If a creator of the function is
located and instantiated, the function is created using the
function creator, and then the created function is instanti
ated. Upon instantiation of the referenced function, the
function is executed.

In one embodiment, an execution engine is provided to
effectuate the namespace based-function invocation. For the
embodiment, the execution engine ?rst looks for loadable
Java class, thereafter a compilable Java resource, next, an
XSLT style sheet and ?nally, a Java class factory. Further,
for the embodiment, if the function is resolved to be a remote
function, the execution engine creates a local proxy, causing
the function to be remotely invoked and executed, passing
the remote function With invocation parameters, Where
applicable.

BRIEF DESCRIPTION OF DRAWINGS

The present invention Will be described by Way of exem
plary embodiments, but not limitations, illustrated in the
accompanying draWings in Which like references denote
similar elements, and in Which:

FIG. 1 illustrates an overvieW of the namespace based
function invocation the present invention, in accordance
With one embodiment;

FIGS. 2a-2c illustrate the relevant operational How of the
execution engine of FIG. 1, in accordance With one embodi
ment; and

FIG. 3 illustrates a computer system suitable for use to
practice the present invention, in accordance With one
embodiment.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention includes namespace based invoca
tion of local or remote functions. In the folloWing descrip
tion, various aspects of the present invention Will be
described. HoWever, it Will be apparent to those skilled in
the art that the present invention may be practiced With only
some or all aspects of the present invention. For purposes of
explanation, speci?c numbers, materials and con?gurations
are set forth in order to provide a thorough understanding of
the present invention. HoWever, it Will also be apparent to
one skilled in the art that the present invention may be
practiced Without the speci?c details. In other instances, Well
knoWn features are omitted or simpli?ed in order not to
obscure the present invention.

Parts of the description Will be presented in terms of
operations performed by a computer system, using terms
such as data, values, tags, references, and the like, consistent
With the manner commonly employed by those skilled in the
art to convey the substance of their Work to others skilled in
the art. As Well understood by those skilled in the art, these
quantities take the form of electrical, magnetic, or optical
signals capable of being stored, transferred, combined, and
otherWise manipulated through mechanical and electrical
components of the computer system; and the term computer
system includes general purpose as Well as special purpose

US 7,266,814 B2
3

data processing machines, systems, and the like, that are
standalone, adjunct or embedded.

Various operations Will be described as multiple discrete
steps in turn, in a manner that is most helpful in understand
ing the present invention, hoWever, the order of description
should not be construed as to imply that these operations are
necessarily order dependent. In particular, these operations
need not be performed in the order of presentation.

Overview

Referring noW to FIG. 1, Wherein a block diagram illus
trating an overvieW of the namespace based function invo
cation of the present invention, in accordance With one
embodiment. As illustrated, in accordance With the present
invention, a computing environment 102 is provided With an
execution engine 104 equipped to recogniZe, construct, and
e?fectuate invocation references in a data representation 106
to one or more local or remote functions 114. As Will be

described in more details beloW, locations 112 of functions
114 are resolved by their af?liations to quali?ed names 110
declared in namespaces 108, Which may be local or remote.
As a result, function invocation is advantageously stream
lined.

In general, except for the teachings of the present inven
tion incorporated in execution engine 104, and the exploi
tation of these abilities to process data representations 106,
data representations 106 are intended to represent a broad
range of data representation methodologies knoWn in the art,
and execution engine 104 is intended to represent a broad
range of the corresponding engines in support of these
methodologies. Typically, each execution engine 104 is
designed to support a particular manner of representing data
or a particular programming language, although in different
embodiments, execution engine 104 may support multiple
data representation methodologies/programming languages.
Similarly, except for the ability of execution engine 104
being able to invoke functions 114 af?liated With quali?ed
names 110 declared in namespaces 108, functions 114 and
their locations 112 are also intended to represent a broad
range of these elements knoWn in the art.

Further, computing environment 102 may be disposed in
a single or multi-processor system, or a collection of net
Worked systems. In the case of netWorked systems, the
systems may be netWorked locally, or across a number of
private and/or public netWorks, including the Internet.

The manner in Which data representations 106 reference
functions 114 af?liated With quali?ed names 110 declared in
namespaces 108, and the manner in Which engine 104
recognizes, constructs and e?‘ectuates these invocations Will
be described in turn beloW.

Invocation of Functions Af?liated With Namespaces

In one embodiment, the present invention contemplates
that a data representation 106 Would associate a quali?ed
name 110 With a function 114 by ?rst declaring a namespace
as “executable”, using a specially formed URI, with eg the
folloWing syntax

<math add xmlns:math:“x://bestuniversity.edu/mathdept/
mathlibr ”>

Where “xmlns” speci?es an XML namespace is being
declared
“math” is the pre?x of the XML namespace, used to

qualify names in this namespace.
“x://bestuniversity.edu/mathdept/mathlibr ” is a the

unique name of the namespace.

20

25

30

35

40

45

50

55

60

65

4
x:” is a special URI scheme recogniZed by the corre
sponding execution engine as identifying the XML
namespace (associated With the pre?x “math”) being
declared as executable, and

“bestuniversity.edu” is the URI authority or hostname and
“/mathdep/mathlibr/” is a relative path. These are used
to locate the functions associated With the quali?ed
names in the XML namespace being declared.

“mathzadd” is a quali?ed name indicating “ad ” is the
name of a function Within the executable namespace
“x://bestuniversity.edu/mathdept/mathlibr ”.

The present invention further contemplates that the execu
tion engine 104 Would then process each data representation
106 associated With (e.g., nested Within) the quali?ed name
110 recursively, concatenate the results together in order of
occurrence, pass the concatenated results to a function 114
af?liated With the quali?ed name 110 and replace the quali
?ed name With the result returned by the function, with eg
the folloWing syntax

<math: squareroot xmlns :math:“x ://bestuniversity. edu/
mathdep/mathlibr ”>
<math:add>

<math:square>4</math:square>
<math:square>3</math:square>

</math:add>
</math: squareroot>
By virtue of the namespace pre?x “mat ”, the names

“squareroot” “add” and “square” are interpreted as refer
ences to a “squareroot”, an “ad ” and a “square” function

Within namespace “x://bestuniversity.edu/mathdept/math
libr ”. Together, the statements operate to “square” the
values 3 and 4, add the results together, and then generate the
square root of the sum (i.e., 5), using the “squareroot”, “add”
and “square” functions associated With the quali?ed names
in the declared namespace. Thus, math functions (or other
functions of the like) available on the netWork from various
third parties, may be easily invocable folloWing the
described approach.

Execution Engine

FIGS. 2a-2c illustrate the operational How of the relevant
aspects of execution engine 104 in accordance With one
embodiment. More speci?cally, FIG. 2a illustrates the gen
eral operational How of execution engine 104 for handling
an invocation of a function, and FIG. 2b-2c illustrate the
operation How of execution engine 104 in resolving each of
the nested functions (if any) Within the function, and the
function itself, being invoked. Recall from earlier descrip
tion, the function, including each of the nested functions (if
any), is a?iliated With a quali?ed name 110 declared in a
namespace 108. Further, the embodiment, assumes, execu
tion engine 104, like other conventional execution engines
of prior art data representations, upon invocation, Would
parse and interpret the statements of data representation 106.
Thus, as illustrated in FIG. 2a, for the embodiment, upon
encountering an expression referencing a function With Zero
or more nested functions, execution engine 104 ?rst locates
a ?rst “branch” With nested function(s), starting With the
“topmost branch”, block 201. (Note that usage of the term
“branch” and “topmost” are merely referential With respect
to a “horizontal” vieW of the nesting structure, i.e.
AQB—>C, for ease of understanding). Next, execution
engine 104 locates the innermost function along the selected
branch Within the function being invoked, block 202. Natu
rally, if the there is no nested function Within the function
being invoked, the function itself is considered the inner

US 7,266,814 B2
5

most function located on the topmost branch. Upon locating
the innermost function, execution engine 104 resolves the
location of the function, and causes the function to be
invoked and executed, block 203.

Then, execution engine 104 determines if there is another
outer function, block 204. If so, execution engine 104 further
determines if the function has other nested functions along
other branches, block 205. If not, the process continues back
at block 203, With execution engine 104 resolving and
invoking the next outer function, passing the execution
result of the previous invoked function(s) to the next outer
function being invoked.
Back at block 205, if the function is determined to have

additional nested functions along other “loWer” branches,
execution engine 104 recursively perform process 200 until
all nested functions along these “loWer” branches have been
recursively invoked and executed, block 206.

The process continues as earlier described until the out
ermost function has also been resolved and invoked. At such
time, the recursively generated execution result becomes the
?nal execution result.

FIGS. 2b-2c illustrate the manner in Which execution
engine 104 resolves a function af?liated With a quali?ed
name pre?x:name. As illustrated, execution engine 104
Would ?rst search for an invocable Java Class based on the
declared namespace, and attempt to load and instantiate the
referenced Java Class, block 204. In the above example,
execution engine 104 Would use the quali?ed name and URI
included in the namespace declaration, and construct a fully
quali?ed name for the assumed Java Class, eg in the case
of the “squareroot” function, “edu.bestuniversity.mathedept,
mathlibr.squareroot”, and attempt to load the Java Class
from a classpath derived from the URI.

At block 205, execution engine 104 Would determine if
the attempt loading Was successful or e. g. an error code Was
returned. If the loading attempt Was successful, execution
engine 104 Would instantiate the so loaded Java Class, block
206, and execute the function accordingly. If not, for the
embodiment, execution engine 104 Would next infer the
reference as a reference to a compilable Java resource based

on the declared namespace, and attempt to retrieve the
referenced Java resource for compilation, block 208. In the
above example, execution engine 104 Would use the quali
?ed name and URI included in the namespace declaration,
and construct a path name for the assumed Java resource,
eg in the case of the “squareroot” function, “/mathedept/
mathlibr/squareroot.java”, and attempt to retrieve the com
pilable Java resource from a search path derived from the
URI.

As before, at block 210, execution engine 104 Would
determine if the attempt retrieval Was successful or eg an
error code Was returned. If the retrieval attempt Was suc
cessful, execution engine 104 Would compile the retrieved
Java resource, block 212, and instantiate the compiled code,
block 206. Thereafter, the function is executed accordingly.
If not, for the embodiment, execution engine 104 Would next
infer the reference as a reference to an Extensible Stylesheet
Language Transformation @(SLT) based on the declared
namespace, and attempt to retrieve the referenced XSLT
sheet, block 214. In the above example, execution engine
104 Would use the quali?ed name and URI included in the
namespace declaration, and construct a path name for the
assumed XSLT sheet, eg in the case of the “squareroot”
function, "/mathedept/mathlibr/squareroot.xslt”, and
attempt to retrieve the XSLT sheet from a search path
derived from the URI.

25

30

35

40

45

50

55

60

65

6
At block 216, execution engine 104 Would determine if

the attempt retrieval Was successful or e. g. an error code Was

returned. If the retrieval attempt Was successful, execution
engine 104 Would invoke the retrieved XSLT sheet, block
218, and execute the function accordingly. If not, for the
embodiment, execution engine 104 Would next infer the
reference as a reference to a Java Factory, and attempt to
retrieve the referenced Java Factory, block 220. In the above
example, execution engine 104 Would use the quali?ed
name and URI included in the namespace declaration, and
construct a fully quali?ed name for the assumed Java class
factory, eg in the case of the “squareroot” function,
“edu.bestuniversity.mathedept.mathlibrFactory”, and
attempt to retrieve the Java class factory from a class path
derived from the URI.

Again, at block 222, execution engine 104 Would deter
mine if the retrieval attempt Was successful or eg an error
code Was returned. If the retrieval attempt Was successful,
execution engine 104 Would instantiate the Java class fac
tory, block 224, and generate the Java Class using the
instantiated Java class factory accordingly, block 226.
Thereafter, the referenced function Would be executed
accordingly.

If not, for the embodiment, execution engine 104 Would
next infer the reference as a reference to a remote function.
Accordingly, execution engine 104 creates a local proxy, and
attempts to call the function remotely, including passing any
applicable invocation parameters to the remote function, if
applicable, block 230. In the above example, execution
engine 104 Would use the URI included in the namespace
declaration, to create a local proxy function for invoking the
remote function, eg in the case of the “squareroot” func
tion, a proxy function Would be created to send the entire
<math:squareroot> element to "bestuniversity.edu/mathe
dept/mathlibr” for remote evaluation (e.g., using HTTP
POST), and return the remote response as the proxy function
result. Thereafter, the referenced proxy function Would be
executed accordingly.

While for ease of understanding, the above description
has enumerated only Java class, XSLT sheets, Java factory,
and so forth, the present invention is not so limited. The
present invention may be practiced With more or less pro
gramming methodologies/languages, including but not lim
ited to JavaScript, XML ?les, Xsheets, and so forth. Xsheet
is a cell based data processing methodology, Which is the
subject matter of US. patent application Ser. No. 09/741,
219, entitled “Cell Based Data Processing”, ?led on Dec. 19,
2000, Which is a non-provisional application of the earlier
enumerated US. provisional patent application 60/246,915.
Readers are referred to the ’219 application for further
details.

Accordingly functions Written in a variety of languages,
on a variety of host platforms, located at different locations
of interconnected netWorks may be remotely invoked, based
on their af?liation to namespaces, making it a lot easier for
their access and invocation, as compared to prior art
approaches.

EXAMPLE COMPUTER SYSTEM

FIG. 3 illustrates a computer system suitable for use to
practice the present invention, in accordance With one
embodiment. As shoWn, computer system 300 includes one
or more processors 302 and system memory 304. Addition
ally, computer system 300 includes mass storage devices
306 (such as diskette, hard drive, CDROM and so forth),
input/output devices 308 (such as keyboard, cursor control

US 7,266,814 B2
7

and so forth) and communication interfaces 310 (such as
network interface cards, modems and so forth). The ele
ments are coupled to each other via system bus 312, Which
represents one or more buses. In the case of multiple buses,
they are bridged by one or more bus bridges (not shoWn).
Each of these elements performs its conventional functions
knoWn in the art. In particular, system memory 304 and mass
storage 306 are employed to store a Working copy and a
permanent copy of the programming instructions imple
menting the execution engine With the namespace based
function invocation support. The permanent copy of the
programming instructions may be loaded into mass storage
306 in the factory, or in the ?eld, as described earlier,
through a distribution medium (not shoWn) or through
communication interface 310 (from a distribution server (not
shoWn). The constitution of these elements 302-312 are
knoWn, and accordingly Will not be further described.

CONCLUSION AND EPILOGUE

Thus, it can be seen from the above descriptions, a novel
method and apparatus for elfectuating function invocation
has been described. While the present invention has been
described in terms of the above illustrated embodiments,
those skilled in the art Will recogniZe that the invention is not
limited to the embodiments described. The present invention
can be practiced With modi?cation and alteration Within the
spirit and scope of the appended claims. The description is
thus to be regarded as illustrative instead of restrictive on the
present invention.
What is claimed is:
1. A method comprising:
reading and parsing, by a computer system, a data pro

cessing representation, the data processing representa
tion including a declaration reference to an executable
namespace and an expression referencing a function of
the executable namespace;

recognizing, by the computer system, the declaration
reference and the expression;

instantiating, by the computer system, the referenced
function or a function creator to create the function,
then instantiate the created function; and

evaluating, by the computer system, the expression using
the instantiated function.

2. The method of claim 1, Wherein said declaration
includes a path in said executable namespace to be folloWed
to locate functions of the executable namespace; and said
instantiation comprises folloWing said path to locate said
referenced function or the function creator of the referenced
function.

3. The method of claim 2, Wherein said instantiating
comprises

determining if a loadable Java class exists under a fully
quali?ed name formed With said path and said refer
enced function; and

if the loadable Java class exists under the fully quali?ed
name, instantiating said loadable Java class folloWing
said path.

4. The method of claim 2, Wherein said instantiating
comprises

determining if a loadable resource exists under a class
path formed With said path said referenced function,
and a class name; and

if the loadable resource exists under the class path,
retrieving said loadable resource folloWing said path,
compiling said retrieved resource, and instantiating
said compiled resource.

20

25

30

35

40

45

50

55

60

65

8
5. The method of claim 2, Wherein said instantiating

comprises
determining if a loadable XSLT style sheet exists under a

class path formed With said path said referenced func
tion, and an XSLT style sheet extension; and

if the loadable resource exists under the class path,
retrieving said loadable XSLT style sheet folloWing
said class path, and calling said XSLT style sheet as a
function section.

6. The method of claim 2, Wherein said instantiating
comprises

determining if a loadable resource exists under a class
path formed With said path and a function creator name
of said function; and

if the loadable resource exists under the class path,
retrieving said loadable resource folloWing said path,
creating said function using said loadable resource, and
instantiating said created function.

7. The method of claim 1, Wherein said instantiating
comprises ?rst determining if a loadable Java class corre
sponding to the referenced function exists, and if not,
Whether a compilable resource corresponding to the refer
enced function exists.

8. The method of claim 1, Wherein said instantiating
comprises ?rst determining if a Java resource corresponding
to the referenced function in executable or compilable exists,
and if not Whether an XSLT style sheet resource correspond
ing to the referenced function exists.

9. The method of claim 1, Wherein said instantiating
comprises ?rst determining if an XSLT style sheet corre
sponding to the referenced function resource exists, and if
not Whether a Java class factory corresponding to the
referenced function exists.

10. The method of claim 1, Wherein said method further
comprises recognizing at least one other function nested
Within said referenced function of the expression, and said
evaluation comprises recursively invoking and instantiating
the nested functions.

11. An apparatus comprising:
at least one storage unit having stored thereon program
ming instructions designed to

read and parse a data processing representation, the data
processing representation including a declaration ref
erence to an executable namespace and an expression
referencing a function of the executable namespace;

recogniZe the declaration reference and the expression;
instantiate the referenced function or a function creator to

create the function, then instantiate the created func
tion; and

evaluate the expression using the instantiated function;
and

at least one processor coupled to said at least one storage
unit to execute said programming instructions.

12. The apparatus of claim 11, Wherein said programming
instructions are designed to recogniZe said declaration hav
ing including a path in said executable namespace to be
folloWed to locate functions of the executable namespace;
and to effectuate said instantiation by folloWing said path to
locate said referenced function or the function creator of the
referenced function.

13. The apparatus of claim 12, Wherein said programming
instructions are designed to

determine if a loadable Java class exists under a fully
quali?ed name formed With said path and said refer
enced function, and

US 7,266,814 B2

if the loadable Java class exists under the fully quali?ed
name, instantiate said loadable Java class following
said path.

14. The apparatus of claim 12, Wherein said programming
instructions are designed to

determine if a loadable resource exists under a class path
formed With said path said referenced function, and a
class name, and

if the loadable resource exists under the class path,
retrieve said loadable resource folloWing said path,
compile said retrieved resource, and instantiate said
compiled resource.

15. The apparatus of claim 12, Wherein said programming
instructions are designed to

determine if a loadable XSLT style sheet exists under a
class path formed With said path said referenced func
tion, and an XSLT style sheet extension, and

if the loadable resource exists under the class path,
retrieve said loadable XSLT style sheet folloWing said
class path, and call said XSLT style sheet as a function
section.

16. The apparatus of claim 12, Wherein said programming
instructions are designed to

determine if a loadable resource exists under a class path
formed With said path and a function creator name of
said function, and

if the loadable resource exists under the class path,
retrieve said loadable resource folloWing said path,
create said function using said loadable resource, and
instantiate said created function.

17. The apparatus of claim 11, Wherein said programming
instructions are designed to effectuate said instantiation by
?rst determining if a loadable Java class corresponding to
the referenced function exists, and if not, Whether a com
pilable resource corresponding to the referenced function
exists.

20

25

30

35

10
18. The apparatus of claim 11, Wherein said programming

instructions are designed to effectuate said instantiation by
?rst determining if a Java resource corresponding to the
referenced function in executable or compilable exists, and
if not Whether an XSLT style sheet resource corresponding
to the referenced function exists.

19. The apparatus of claim 11, Wherein said programming
instructions are designed to effectuate said instantiation by
?rst determining if an XSLT style sheet resource corre

sponding to the referenced function exists, and if not
Whether a Java class factory corresponding to the referenced
function exists.

20. The apparatus of claim 11, Wherein said programming
instructions are further designed to recogniZe one or more

functions nested Within said referenced function of the
expression, and recursively invoke and instantiate the nested
functions.

21. An apparatus including a processor comprising:

means for reading and parsing a data processing repre
sentation, the data processing representation including
a declaration reference to an executable namespace,
and an expression referencing a function of the execut
able namespace;

means for recognizing a declaration reference and the
expression;

means for instantiating, folloWing said path, the refer
enced function or a function creator to create the

function, then instantiate the created function; and
means for evaluating the expression using the instantiated

function.

