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(57) Abstract: A cloning technique enables efficient and substantially instantaneous creation of a clone that is a writable copy of a
"parent" virtual volume (vvol) in an aggregate of a storage system. A base snapshot is provided from the parent vvol. In addition,

& anew vvol is created, along with a new file system identifier, a new subdirectory in the aggregate and a new storage label file. The
new vvol is embodied as a clone and comprises an appropriately sized container file, wherein initially the container file has no data.

e
=

Moreover, a volume information (volinfo) block for the clone is created that is a slightly modified version of the volinfo block from
the base snapshot; the modified volinfo block is written to the container file. The clone is then instantiated by loading a file system
associated with the new vvol onto the clone and bringing the clone "online".
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CLONING TECHNIQUE FOR EFFICIENTLY CREATING A
COPY OF A VOLUME IN A STORAGE SYSTEM

FIELD OF THE INVENTION

The present invention relates to storage systems and, more specifically, to a

technique that enables efficient copying of a volume of a storage system.

BACKGROUND OF THE INVENTION

A storage system typically comprises one or more storage devices into which
information may be entered, and from which information may be obtained, as desired.
The storage system includes a storage operating system that functionally organizes the
system by, inter alia, invoking storage operations in support of a storége service im-
plemented by the system. The storage system may be implemented in accordance with
a variety of storage architectures including, but not limited to, a network-attached stor-
age environment, a storage area network and a disk assembly directly attached to a cli-
ent or host computer. The storage devices are typically disk drives organized as a disk
array, wherein the term "disk" commonly describes a self-contained rotating magnetic
media storage device. The term disk in this context is synonymous with hard disk drive
(HDD) or direct access storage device (DASD).

Storage of information on the disk array is preferably implemented as one or
more storage "Qolumes" of physical disks, defining an overall logical arrangeinent of
disk space. The disks within a volume are typically organized as one or more groups,
wherein each group may be operated as a Redundant Array of Independent (or Inex-
pensive) Disks (RAID). Most RAID implementations enhance the reliability/integrity
of data storage through the redundant writing of data "stripes" across a given number of
physical disks in the RAID group, and the appropriate storing of redundant information
(parity) with respect to the striped data. The physical disks of each RAID group may
include disks configured to store striped data (i.e., data disks) and disks configured to
store parity for the data (i.e., parity disks). The parity may thereafter be retrieved to

enable recovery of data lost when a disk fails. The term “RAID” and its various im-
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plementations are well-known and disclosed in 4 Case for Redundant Arrays of Inex-
pensive Disks (RAID), by D. A. Patterson, G. A. Gibson and R. H. Katz, Proceedings of
the International Conference on Management of Data (SIGMOD), June 1988.

The storage operating system of the storage system may implement a high-level
module, such as a file system, to logically organize the information stored on the disks
as a hierarchical structure of directories, files and blocks. For example, each “on-disk”
file may be implemented as set of data structures, i.e., disk blocks, configured to store
information, such as the actual data for the file. These data blocks are organized within
a volume block number (vbn) space that is maintained by the file system. The file sys-
tem may also assign each data block in the file a corresponding “file offset” or file
block number (fbn). The file system typically assigns sequences of fbns on a per-file
basis, whereas vbns are assigned over a larger volume address space. The file system
organizes the data blocks within the vbn space as a "logical volume"; each logical vol-
ume may be, although is not necessarily, associated with its own file system. The file
system typically consists of a contiguous range of vbns from zero to », for a file system

of size n-1 blocks.

A known type of file system is a write-anywhere file system that does not over-
write data on disks. If a data block is retrieved (read) from disk into a memory of the
storage system and “dirtied” (i.e., updated or modified) with new data, the data block is
thereafter stored (written) to a new location on disk to optimize write performance. A
write-anywhere file system may initially assume an optimal layout such that the data is
substantially contiguously arranged on disks. The optimal disk layout results in effi-
cient access operations, particularly for sequential read operations, directed to the disks.
An example of a write-anywhere file system that is configured to operate on a storage
system is the Write Anywhere File Layout (WAFL™) file system available from Net-

work Appliance, Inc., Sunnyvale, California.

The storage operating system may further implement a storage module, such as
a RAID system, that manages the storage and retrieval of the information to and from
the disks in accordance with input/output (I/O) operations. The RAID system is also
responsible for parity operations in the storage system. Note that the file system only

"sees" the data disks within its vbn space; the parity disks are "hidden" from the file
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system and, thus, are only visible to the RAID system. The RAID system typically or-
ganizes the RAID groups into one large "physical” disk (i.e., a physical volume), such
that the disk blocks are concatenated across all disks of all RAID groups. The logical
volume maintained by the file system is then “disposed over” (spread over) the physical

volume maintained by the RAID system.

The storage system may be configured to operate according to a client/server
model of information delivery to thereby allow many clients to access the directories,
files and blocks stored on the system. In this model, the client may comprise an appli-
cation, such as a database application, executing on a computer that “connects” to the
storage system over a computer network, such as a point-to-point link, shared local area
network, wide area network or virtual private network implemented over a public net-
work, such as the Internet. Each client may request the services of the file system by
issuing file system protocol messages (in the form of packets) to the storage system
over the network. By supporting a plurality of file system protocols, such as the con-
ventional Common Internet File System (CIFS) and the Network File System (NFS)

protocols, the utility of the storage system is enhanced.

When accessing a block of a file in response to servicing a client request, the
file system specifies a vbn that is translated at the file system/RAID system boundary
into a disk block number (dbn) location on a particular disk (disk, dbn) within a RAID
group of the physical volume. Each block in the vbn space and in the dbn space is
typically fixed, e.g., 4k bytes (kB), in size; accordingly, there is typically a one-to-one
mapping between the information stored on the disks in the dbn space and the informa-
tion organized by the file system in the vbn space. The (disk, dbn) location specified
by the RAID system is further translated by a disk driver system of the storage operat-
ing system into a plurality of sectors (e.g., a 4kB block with a RAID header translates
to 8 or 9 disk sectors of 512 or 520 bytes) on the specified disk.

The requested block is then retrieved from disk and stored in a buffer cache of
the memory as part of a buffer tree of the file. The buffer tree is an internal representa-
tion of blocks for a file stored in the buffer cache and maintained by the file system.
Broadly stated, the buffer tree has an inode at the root (top-level) of the file. An inode

is a data structure used to store information, such as metadata, about a file, whereas the
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data blocks are structures used to store the actual data for the file. The information
contained in an inode may include, e.g., ownership of the file, access permission for the
file, size of the file, file type and references to locations on disk of the data blocks for
the file. The references to the locations of the file data are provided by pointers, which
may further reference indirect blocks that, in turn, reference the data blocks, depending
upon the quantity of data in the file. Each pointer may be embodied as a vbn to facili-
tate efficiency among the file system and the RAID system when accessing the data on
disks.

The RAID system maintains information about the geometry of the underlying
physical disks (e.g., the number of blocks in each disk) in raid labels stored on the
disks. The RAID system provides the disk geometry information to the file system for
use when creating and maintaining the vbn-to-disk,dbn mappings used to perform write
allocation operations and to translate vbns to disk locations for read operations. Block
allocation data structures, such as an active map, a snapmap, a space map and a sum-
mary map, are data structures that describe block usage within the file system, such as
the write-anywhere file system. These mapping data structures are independent of the
geometry and are used by a write allocator of the file system as existing infrastructure

for the logical volume.

Specifically, the snapmap denotes a file including a bitmap associated with the
vacancy of blocks of a snapshot. The write-anywhere file system (such as the WAFL
file system) has the capability to generate a snapshot of its active file system. An "ac-
tive file system" is a file system to which data can be both written and read, or, more
generally, an active store that responds to both read and write I/O operations. It should
be noted that “snapshot” is a trademark of Network Appliance, Inc. and is used for pur-
poses of this patent to designate a persistent consistency point (CP) image. A persistent
consistency point image (PCPI) is a space conservative, point-in-time read-only image
of data accessible by name that provides a consistent image of that data (such as a stor-
age system) at some previous time. More particularly, a PCPI is a point-in-time repre-
sentation of a storage element, such as an active file system, file or database, stored on
a storage device (e.g., on disk) or other persistent memory and having a name or other

identifier that distinguishes it from other PCPIs taken at other points in time. In the
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case of the WAFL file system, a PCPI is always an active file system image that con-
tains complete information about the file system, including all metadata. A PCPI can
also include other information (metadata) about the active file system at the particular
point in time for which the image is taken. The terms “PCPI” and “snapshot” may be
used interchangeably through out this patent without derogation of Network Appli-

ance’s trademark rights.

The active map denotes a file including a bitmap associated with a free status of
the active file system. As noted, a logical volume may be associated with a file system;
the term “active file system” thus also refers to a consistent state of a current file sys-
tem. The summary map denotes a file including an inclusive logical OR bitmap of all
snapmaps. By examining the active and summary maps, the file system can determine
whether a block is in use by either the active file system or any snapshot. The space
map denotes a file including an array of numbers that describe the number of storage
blocks used in a block allocation area. In other words, the space map is essentially a
logical OR bitmap between the active and summary maps to provide a condensed ver-
sion of available "free block" areas within the vbn space. Examples of snapshot and
block allocation data structures, such as the active map, space map and summary map,
are described in U.S. Patent Application Publication No. US2002/0083037 Al, titled
Instant Snapshot, by Blake Lewis et al. and published on June 27, 2002, which applica-

tion is hereby incorporated by reference.

The write-anywhere file system typically performs write allocation of blocks in
a logical volume in response to an event in the file system (e.g., dirtying of the blocks
in a file). When write allocating, the file system uses the block allocation data struc-
tures to select free blocks within its vbn space to which to write the dirty blocks. The
selected blocks are generally in the same positions along the disks for each RAID group
(i.e., within a stripe) so as to optimize use of the parity disks. Stripes of positional
blocks may vary among other RAID groups to, e.g., allow overlapping of parity update
operations. When write allocating, the file system traverses a small portion of each
disk (corresponding to a few blocks in depth within each disk) to essentially "lay down"

a plurality of stripes per RAID group. In particular, the file system chooses vbns that
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are on the same stripe per RAID group during write allocation using the vbn-to-

disk,dbn mappings.

The write-anywhere file system further supports multiple snapshots that are
generally created on a regular schedule. Each snapshot refers to a copy of the file sys-
tem that diverges from the active file system over time as the active file system is modi-
fied. In the case of the WAFL file system, the active file system diverges from the
snapshots since the snapshots stay in place as the active file system is written to new
disk locations. Each snapshot is a restorable version of the storage element (e.g., the
active file system) created at a predetermined point in time and, as noted, is “read-only”
accessible and "space-conservative". Space conservative denotes that common parts of
the storage element in multiple snapshots share the same file system blocks. Only the
differences among these various snapshots require extra storage blocks. The multiple
snapshots of a storage element are not independent copies, each consuming disk space;
therefore, creation of a snapshot on the file system is instantaneous, since no entity data
needs to be copied. Read-only accessibility denotes that a snapshot cannot be modified
because it is closely coupled to a single writable image in the active file system. The
closely coupled association between a file in the active file system and the same file in
a snapshot obviates the use of multiple "same" files. In the example of a WAFL file
system, snapshots are described in TR3002 File System Design for a NFS File Server
Appliance by David Hitz et al., published by Network Appliance, Inc. and in U.S. Pat-
ent No. 5,819,292 entitled Method for Maintaining Consistent States of a File System
and For Creating User-Accessible Read-Only Copies of a File System, by David Hitz et
al., each of which is hereby incorporated by reference as though full set forth herein.

Broadly stated, a snapshot is stored on-disk along with the active file system,
and is called into the memory of the storage system as requested by the storage operat-
ing system. The on-disk organization of the snapshot and the active file system can be
understood from the following description of an exemplary file system inode structure
100 shown in Fig. 1. The inode for an inode file 105 contains information describing
the inode file associated with a file system. In this exemplary file system inode struc-
ture, the inode for the inode file 105 contains a pointer that references (points to) an

inode file indirect block 110. The inode file indirect block 110 contains a set of point-
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ers that reference inode file blocks, each of which contains an array of inodes 117,
which in turn contain pointers to indirect blocks 119. The indirect blocks 119 include
pointers to file data blocks 120A, 120B and 120C. Each of the file data blocks 120(A-
C) is capable of storing, e.g., 4 kilobytes (kB) of data.

When the file system generates a snapshot of its active file system, a snapshot
inode is generated as shown in Fig. 2. The snapshot inode 205 is, in essence, a dupli-
cate copy of the inode for the inode file 105 of the file system 100 that shares common
parts, such as inodes and blocks, with the active file system. For example, the exem-
plary file system structure 200 includes the inode file indirect blocks 110, inodes 117,
indirect blocks i19 and file data blocks 120A-C as in Fig. 1. When a user modifies a
file data block, the file system writes the new data block to disk and changes the active
file system to point to the newly created block. Fig. 3 shows an exemplary inode file
system structure 300 after a file data block has been modified. In this example, file
data block 120C is modified to file data block 120C’. As a result, the contents of the
modified file data block are written to a new location on disk as a function of the ex-
emplary file system. Because of this new location, the indirect block 319 must be re-
written. Due to this changed indirect block 319, the inode 317 must be rewritten.
Similarly, the inode file indirect block 310 and the inode for the inode file 305 must be

rewritten.

Thus, after a file data block has been modified the snapshot inode 205 contains
a pointer to the original inode file indirect block 110 which, in turn, contains pointers
through the inode 117 and indirect block 119 to the original file data blocks 120A,
120B and 120C. The newly written indirect block 319 also includes pointers to un-
modified file data blocks 120A and 120B. That is, the unmodified data blocks in the
file of the active file system are shared with corresponding data blocks in the snapshot
file, with only those blocks that have been modified in the active file system being dif-
ferent than those of the snapshot file.

However, the indirect block 319 further contains a pointer to the modified file
data block 120C’ representing the new arrangement of the active file system. A new
inode for the inode file 305 is established representing the new structure 300. Note that
metadata (not shown) stored in any snapshotted blocks (e.g., 205, 110, and 120C) pro-
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tects these blocks from being recycled or overwritten until they are released from all
snapshots. Thus, while the active file system inode for the inode file 305 points to new
blocks 310, 317, 319, 120A, 120B and 120C’, the old blocks 205, 110 and 120C are

retained until the snapshot is fully released.

Users, such as database clients, often need copies of their data for, e.g., experi-
mental purposes. In many cases, the data is organized as a large database and creating
a copy of such a large database using a conventional copying solution is a significant
task. For example, conventional copying requires reading (retrieving) all files in the
database, sending them to their new location and writing (storing) them to disk.
Clearly, this copying solution is a time consuming, resource intensive process that also
requires additional disk space. As aresult, it is desirable to provide a form of "wri-

table" snapshot that has the benefits of snapshots but allows writable modifications.

Snapshots provide a versatile feature that is essential for data recovery opera-
tions, such as backup and recovery of storage elements. However, since snapshots are
read-only accessible and their contents cannot be modified, their use may be somewhat
limited, particularly for operating systems and applications that do not have a notion of
a read-only data store (a read-only file system) and that expect to write metadata at any
time that the file system is accessible. When a storage element that is held in a snap-
shot is exported to a client and contains the data for such a problematic file system, an
issue arises in that the client attempts to write data to the read-only image. Thisisa
fundamental issue in the design of a reliable system for backups. In general, once a
backup image is made (via a mechanism like a snapshot), that image should be invio-
late. Modifying a snapshot ("backup”) image could have serious consequences in that
the data of the snapshot may no longer be a "point-in-time" copy and a consistent im-
age of the storage element data may no longer be available for subsequent recovery op-

erations.

This limitation may be overcome by using writable read-only snapshots as de-
scribed in U.S. Patent Application Serial No. 10/412,478 entitled Writable Read Only
Snapshots, by Vijayan Rajan and filed on April 11, 2003. The writable, read-only
snapshot comprises a read-only “image” (file) residing in a snapshot and a writable vir-

tual disk (vdisk) file residing in the active file system. The writable vdisk is a
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“shadow” image of the snapshot file image and, as such, includes an attribute that
specifies the snapshot file to be used as the backing store. A write operation directed to
the writable read-only snapshot is "trapped" such that the data associated with the op-
eration is stored on the shadow, vdisk image in the active file system. The writable
vdisk is a sparse file containing only that data written by the client to the read-only

snapshot image subsequent to a snapshot operation to a volume underlying the vdisk.

To the client, the data retrieved from the writable, read-only snapshot is always
the latest data written. The client "sees" the writable vdisk data first (if it exists) and is
served that data, the underlying read-only snapshot image being inaccessible for the
range of valid data in the writable vdisk. Read-only data from the underlying snapshot
image is delivered to the client when no valid data overlying the range exists in the wri-
table vdisk. The underlying snapshot image is accessible and recoverable via a non-
translucent path of directly accessing the snapshot image. However, the writable read-
only snapshot requires traversal of two buffer trees, i.e., the writable vdisk and snapshot
file buffer trees, if no valid data exists in the writable vdisk. In addition, the writable
vdisk approach is “file-centered” and, as such, is not an efficient solution when dealing

with a large number of files

SUMMARY OF THE INVENTION

The present invention is directed to a cloning technique that enables efficient
and substantially instantaneous creation of a clone that is a writable copy of a “parent”
virtual volume (vvol) in an aggregate of a storage system. According to the cloning
technique, a base snapshot is provided either by generating a snapshot within the parent
vvol or by choosing an existing snapshot from the parent vvol. In addition, a new vvol
is created, along with a new file system identifier (fsid) subdirectory in the aggregate
and a new storage label file. The new vvol is embodied as a clone and comprises an
appropriately sized container file, wherein initially the container file has no data.
Moreover, a volume information (volinfo) block for the clone is created that is a
slightly modified version of the volinfo block from the base snapshot; the modified

volinfo block is written to the container file.
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The clone is then instantiated by, €.g., loading a file system associated with the
new vvol onto the clone and bringing the clone “online”, with the only blocks owned
by the clone comprising its modified volinfo block. The file system executes on the
clone as it would on a typical vvol, such as the parent vvol. In fact, the file system
within the clone resembles the file system within the base snapshot, since they com-
prise substantially the same blocks on disk. The resulting clone is thus a “full-fledged”
vvol, i.e., it can service storage (read and write) requests and has its own logical proper-
ties, such as snapshot operation functionality. A restriction is that the base snapshot
forming the basis of the clone cannot be deleted in the parent vvol while the clone ex-
ists. As aresult, the cloning technique enables the clone and parent vvol to share on-
disk blocks of data in a zero-copy fashion, similar to a conventional snapshot, while

also allowing for modifications (unlike the conventional snapshot).

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the invention may be better understood by
referring to the following description in conjunction with the accompanying drawings
in which like reference numerals indicate identical or functionally similar elements:

Fig. 1 is a schematic block diagram of an exemplary file system inode structure;

Fig. 2 is a schematic block diagram of the exemplary file system inode structure
of Fig. 1 including a snapshot inode;

Fig. 3 is a schematic block diagram of an exemplary file system inode structure
of Fig. 2 after a data block has been rewritten;

Fig. 4 is a schematic block diagram of an environment including a storage sys-
tem that may be advantageously used with the present invention;

Fig. 5 is a schematic block diagram of a storage operating system that may be
advantageously used with the present invention;

Fig. 6 is a schematic block diagram of an inode that may be advantageously
used with the present invention;

Fig. 7 is a schematic block diagram of a buffer tree of a file that may be advan-

tageously used with the present invention;
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Fig. 8 is a schematic block diagram of an embodiment of an aggregate that may
be advantageously used with the present invention;

Fig. 9 is a schematic block diagram of an on-disk representation of an aggre-
gate;

Fig. 10 is a schematic block diagram of a container file that may be advanta-
geously used with the present invention;

Fig. 11 is a schematic block diagram of an owner map that may be advanta-
geously used with the present invention;

Fig. 12 is a schematic block diagram illustrating an embodiment of the aggre-
gate including a clone in accordance with the present invention;

Fig. 13 is a schematic block diagram of an on-disk representation of the clone
according to the present invention; and

Fig. 14 is a flowchart illustrating a sequence of steps for creating the clone in

accordance with a novel cloning technique.

DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS

Fig. 4 is a schematic block diagram of an environment 400 including a storage
system 420 that may be advantageously used with the present invention. The storage
system is a computer that provides storage service relating to the organization of infor-
mation on storage devices, such as disks 430 of a disk array 460. The storage system
420 comprises a processor 422, a memory 424, a network adapter 426 and a storage
adapter 428 interconnected by a system bus 425. The storage system 420 also includes
a storage operating system 500 that preferably implements a high-level module, such as
a file system, to logically organize the information as a hierarchical structure of directo-
ries, files and special types of files called virtual disks (hereinafter “blocks™) on the
disks.

In the illustrative embodiment, the memory 424 comprises storage locations that
are addressable by the processor and adapters for storing software program code. A
portion of the memory may be further organized as a “buffer cache” 470 for storing
data structures associated with the present invention. The processor and adapters may,

in turn, comprise processing elements and/or logic circuitry configured to execute the
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software code and manipulate the data structures. Storage operating system 500, por-
tions of which are typically resident in memory and executed by the processing ele-
ments, functionally organizes the system 420 by, inter alia, invoking storage operations
executed by the storage system. It will be apparent to those skilled in the art that other
processing and memory means, including various computer readable media, may be
used for storing and executing program instructions pertaining to the inventive tech-

nique described herein.

The network adapter 426 comprises the mechanical, electrical and signaling cir-
cuitry needed to connect the storage system 420 to a client 410 over a computer net-
work 440, which may comprise a point-to-point connection or a shared medium, such
as a local area network. Illustratively, the computer network 440 may be embodied as
an Ethernet network or a Fibre Channel (FC) network. The client 410 may communi-
cate with the storage system over network 440 by exchanging discrete frames or pack-
ets of data according to pre-defined protocols, such as the Transmission Control Proto-
col/Internet Protocol (TCP/IP).

The client 410 may be a general-purpose computer configured to execute appli-
cations 412. Moreover, the client 410 may interact with the storage system 420 in ac-
cordance with a client/server model of information delivery. That is, the client may
request the services of the storage system, and the system may return the results of the
services requested by the client, by exchanging packets 450 over the network 440. The
clients may issue packets including file-based access protocols, such as the Common
Internet File System (CIFS) protocol or Network File System (NFS) protocol, over
TCP/IP when accessing information in the form of files and directories. Alternatively,
the client may issue packets including block-based access protocols, such as the Small
Computer Systems Interface (SCSI) protocol encapsulated over TCP (iSCSI) and SCSI
encapsulated over Fibre Channel (FCP), when accessing information in the form of
blocks.

The storage adapter 428 cooperates with the storage operating system 500 exe-
cuting on the system 420 to access information requested by a user (or client). The in-
formation may be stored on any type of attached array of writable storage device media

such as video tape, optical, DVD, magnetic tape, bubble memory, electronic random
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access memory, micro-electro mechanical and any other similar media adapted to store
information, including data and parity information. However, as illustratively de-
scribed herein, the information is preferably stored on the disks 430, such as HDD
and/or DASD, of array 460. The storage adapter includes input/output (I/O) interface
circuitry that couples to the disks over an I/O interconnect arrangement, such as a con-

ventional high-performance, FC serial link topology.

Storage of information on array 460 is preferably implemented as one or more
storage “volumes” that comprise a collection of physical storage disks 430 cooperating
to define an overall logical arrangement of volume block number (vbn) space on the
volume(s). Each logical volume is generally, although not necessarily, associated with
its own file system. The disks within a logical volume/file system are typically organ-
ized as one or more groups, wherein each group may be operated as a Redundant Array

of Independent (or Inexpensive) Disks (RAID). Most RAID implementations, such as

‘a RAID-4 level implementation, enhance the reliability/integrity of data storage

through the redundant writing of data “stripes” across a given number of physical disks
in the RAID group, and the appropriate storing of parity information with respect to the
striped data. An illustrative example of a RAID implementation is a RAID-4 level im-
plementation, although it should be understood that other types and levels of RAID im-
plementations may be used in accordance with the inventive principles described

herein.

To facilitate access to the disks 430, the storage operating system 500 imple-
ments a write-anywhere file system that cooperates with virtualization modules to “vir-
tualize™ the storage space provided by disks 430. The file system logically organizes
the information as a hierarchical structure of named directories and files on the disks.
Each “on-disk” file may be implemented as set of disk blocks configured to store in-
formation, such as data, whereas the directory may be implemented as a specially for-
matted file in which names and links to other files and directories are stored. The vir-
tualization modules allow the file system to further logically organize information as a
hierarchical structure of blocks on the disks that are exported as named logical unit

numbers (luns).
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In the illustrative embodiment, the storage operating system is preferably the
NetApp® Data ONTAP™ operating system available from Network Appliance, Inc.,
Sunnyvale, California that implements a Write Anywhere File Layout (WAFL™) file
system. However, it is expressly contemplated that any appropriate storage operating
system may be enhanced for use in accordance with the inventive principles described
herein. As such, where the term “WAFL” is employed, it should be taken broadly to
refer to any storage operating system that is otherwise adaptable to the teachings of this

invention.

Fig. 5 is a schematic block diagram of the storage operating system 500 that
may be advantageously used with the present invention. The storage operating system
comprises a series of software layers organized to form an integrated network protocol
stack or, more generally, a multi-protocol engine that provides data paths for clients to
access information stored on the storage system using block and file access protocols.
The protocol stack includes a media access layer 510 of network drivers (e.g., gigabit
Ethernet drivers) that interfaces to network protocol layers, such as the IP layer 512 and
its supporting transport mechanisms, the TCP layer 514 and the User Datagram Proto-
col (UDP) layer 516. A file system protocol layer provides multi-protocol file access
and, to that end, includes support for the Direct Access File System (DAFS) protocol
518, the NFS protocol 520, the CIFS protocol 522 and the Hypertext Transfer Protocol
(HTTP) protocol 524. A VI layer 526 implements the VI architecture to provide direct
access transport (DAT) capabilities, such as RDMA, as required by the DAFS protocol
518.

An iSCSI driver layer 528 provides block protocol access over the TCP/IP net-
work protocol layers, while a FC driver layer 530 receives and transmits block access
requests and responses to and from the storage system. The FC and iSCSI drivers pro-
vide FC-specific and iSCSI-specific access control to the blocks and, thus, manage ex-
ports of luns to either iSCSI or FCP or, alternatively, to both iSCSI and FCP when ac-
cessing the blocks on the storage system. In addition, the storage operating system in-
cludes a storage module embodied as a RAID system 540 that manages the storage and

retrieval of information to and from the volumes/disks in accordance with I/O opera-
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tions, and a disk driver system 550 that implements a disk access protocol such as, e.g.,

the SCSI protocol.

Bridging the disk software layers with the integrated network protocol stack
layers is a virtualization system that is implemented by a file system 580 interacting
with virtualization modules illustratively embodied as, e.g., vdisk module 590 and
SCSI target module 570. The vdisk module 590 is layered on the file system 580 to
enable access by administrative interfaces, such as a user interface (UI) 575, in re-
sponse to a user (system administrator) issuing commands to the storage system. The
SCSI target module 570 is disposed between the FC and iSCSI drivers 528, 530 and the
file system 580 to provide a translation layer of the virtualization system between the
block (lun) space and the file system space, where luns are represented as blocks. The
UI 575 is disposed over the storage operating system in a manner that enables adminis-

trative or user access to the various layers and systems.

The file system is illustratively a message-based system that provides logical
volume management capabilities for use in access to the information stored on the stor-
age devices, such as disks. That is, in addition to providing file system semantics, the
file system 580 provides functions normally associated with a volume manager. These
functions include (i) aggregation of the disks, (ii) aggregation of storage bandwidth of
the disks, and (iii) reliability guarantees, such as mirroring and/or parity (RAID). The
file system 580 illustratively implements the WAFL file system (hereinafter generally
the “write-anywhere file system”) having an on-disk format representation that is
block-based using, e.g., 4 kilobyte (kB) blocks and using index nodes (“inodes™) to
identify files and file attributes (such as creation time, access permissions, size and
block location). The file system uses files to store metadata describing the layout of its
file system; these metadata files include, among others, an inode file. A file handle,

i.e., an identifier that includes an inode number, is used to retrieve an inode from disk.

Broadly stated, all inodes of the write-anywhere file system are organized into
the inode file. A file system (FS) info block specifies the layout of information in the
file system and includes an inode of a file that includes all other inodes of the file sys-
tem. Each logical volume (file system) has an FS info block that is preferably stored at
a fixed location within, e.g., a RAID group. The inode of the root FS info block may
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directly reference (point to) blocks of the inode file or may reference indirect blocks of
the inode file that, in turn, reference direct blocks of the inode file. Within each direct
block of the inode file are embedded inodes, each of which may reference indirect

blocks that, in turn, reference data blocks of a file.

Operationally, a request from the client 410 is forwarded as a packet 450 over
the computer network 440 and onto the storage system 420 where it is received at the
network adapter 426. A network driver (of layer 510 or layer 530) processes the packet
and, if appropriate, passes it on to a network protocol and file access layer for addi-
tional processing prior to forwarding to the write-anywhere file system 580. Here, the
file system generates operations to load (retrieve) the requested data from disk 430 if it
is not resident “in core”, i.e., in the buffer cache 470. If the information is not in the
cache, the file system 580 indexes into the inode file using the inode number to access
an appropriate entry and retrieve a logical vbn. The file system then passes a message
structure including the logical vbn to the RAID system 540; the logical vbn is mapped
to a disk identifier and disk block number (disk,dbn) and sent to an appropriate driver
(e.g., SCSI) of the disk driver system 550. The disk driver accesses the dbn from the
specified disk 430 and loads the requested data block(s) in buffer cache 470 for proc-
essing by the storage system. Upon completion of the request, the storage system (and

operating system) returns a reply to the client 410 over the network 440.

It should be noted that the software “path” through the storage operating system

* layers described above needed to perform data storage access for the client request re-

ceived at the storage system may alternatively be implemented in hardware. That is, in
an alternate embodiment of the invention, a storage access request data path may be
implemented as logic circuitry embodied within a field programmable gate array
(FPGA) or an application specific integrated circuit (ASIC). This type of hardware im-
plementation increases the performance of the storage service provided by storage sys-
tem 420 in response to a request issued by client 410. Moreover, in another alternate
embodiment of the invention, the processing elements of adapters 426, 428 may be
configured to offload some or all of the packet processing and storage access opera-
tions, respectively, from processor 422, to thereby increase the performance of the stor-

age service provided by the system. It is expressly contemplated that the various proc-
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esses, architectures and procedures described herein can be implemented in hardware,

firmware or software.

As used herein, the term “storage operating system" generally refers to the com-
puter-executable code operable to perform a storage function in a storage system, e.g.,
that manages data access and may, in the case of a file server, implement file system
semantics. In this sense, the ONTAP software is an example of such a storage operat-
ing system implemented as a microkernel and including the WAFL layer to implement
the WAFL file system semantics and manage data access. The storage operating sys-
tem can also be implemented as an application program operating over a general-
purpose operating system, such as UNIX® or Windows NT®, or as a general-purpose
operating system with configurable functionality, which is configured for storage appli-

cations as described herein.

In addition, it will be understood to those skilled in the art that the inventive
technique described herein may apply to any type of special-purpose (e.g., file server,
filer or multi-protocol storage appliance) or general-purpose computer, including a
standalone computer or portion thereof, embodied as or including a storage system 420.
An example of a multi-protocol storage appliance that may be advantageously used
with the present invention is described in U.S. Patent Application Serial No.

10/215,917 titled, Multi-Protocol Storage Appliance that provides Integrated Support
for File and Block Access Protocols, filed on August 8, 2002. Moreover, the teachings
of this invention can be adapted to a variety of storage system architectures including,
but not limited to, a network-attached storage environment, a storage area network and
disk assembly directly-attached to a client or host computer. The term “storage sys-
tem” should therefore be taken broadly to include such arrangements in addition to any
subsystems configured to perform a storage function and associated with other equip-

ment or systems.

In the illustrative embodiment, a file is represented in the write-anywhere file
system as an inode data structure adapted for storage on the disks 430. Fig. 6 is a sche-
matic block diagram of an inode 600, which preferably includes a metadata section 610
and a data section 650. The information stored in the metadata section 610 of each

inode 600 describes the file and, as such, includes the type (e.g., regular, directory, vir-
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tual disk) 612 of file, the size 614 of the file, time stamps (e.g., access and/or modifica-
tion) 616 for the file and ownership, i.e., user identifier (UID 618) and group ID (GID
620), of the file. The contents of the data section 650 of each inode, however, may be
interpreted differently depending upon the type of file (inode) defined within the type
field 612. For example, the data section 650 of a directory inode contains metadata
controlled by the file system, whereas the data section of a regular inode contains file
system data. In this latter case, the data section 650 includes a representation of the

data associated with the file.

Specifically, the data section 650 of a regular on-disk inode may include file
system data or pointers, the latter referencing 4kB data blocks on disk used to store the
file system data. Each pointer is preferably a logical vbn to facilitate efficiency among
the file system and the RAID system 540 when accessing the data on disks. Given the
restricted size (e.g., 128 bytes) of the inode, file system data having a size that is less
than or equal to 64 bytes is represented, in its entirety, within the data section of that
inode. However, if the file system data is greater than 64 bytes but less than or equal to
64kB, then the data section of the inode (e.g., a first level inode) comprises up to 16

pointers, each of which references a 4kB block of data on the disk.

Moreover, if the size of the data is greater than 64kB but less than or equal to 64
megabytes (MB), then each pointer in the data section 650 of the inode (e.g., a second
level inode) references an indirect block (e.g., a first level block) that contains 1024
pointers, each of which references a 4kB data block on disk. For file system data hav-
ing a size greater than 64MB, each pointer in the data section 650 of the inode (e.g., a
third level inode) references a double-indirect block (e.g., a second level block) that
contains 1024 pointers, each referencing an indirect (e.g., a first level) block. The indi-
rect block, in turn, that contains 1024 pointers, each of which references a 4kB data
block on disk. When accessing a file, each block of the file may be loaded from disk
430 into the buffer cache 470.

When an on-disk inode (or block) is loaded from disk 430 into buffer cache
470, its corresponding in core structure embeds the on-disk structure. For example, the
dotted line surrounding the inode 600 indicates the in core representation of the on-disk

inode structure. The in core structure is a block of memory that stores the on-disk
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structure plus additional information needed to manage data in the memory (but not on
disk). The additional information may include, e.g., a “dirty” bit 660. After data in the
inode (or block) is updated/modified as instructed by, e.g., a write operation, the modi-
fied data is marked “dirty” using the dirty bit 660 so that the inode (block) can be sub-
sequently “flushed” (stored) to disk. The in core and on-disk format structures of the
WAFL file system, including the inodes and inode file, are disclosed and described in
the previously incorporated U.S. Patent No. 5,819,292 titled Method for Maintaining
Consistent States of a File System and for Creating User-Accessible Read-Only Copies
of a File System by David Hitz et al., issued on October 6, 1998.

Fig. 7 is a schematic block diagram of a buffer tree of a file that may be advan-
tageously used with the present invention. The buffer tree is an internal representation
of blocks for a file (e.g., file 700) loaded into the buffer cache 470 and maintained by
the write-anywhere ﬁle system 580. A root (top-level) inode 702, such as an embedded
inode, references indirect (e.g., level 1) blocks 704. The indirect blocks (and inode)
contain pointers 705 that ultimately reference data blocks 706 used to store the actual
data of file. That is, the data of file 700 are contained in data blocks and the locations
of these blocks are stored in the indirect blocks of the file. Each level 1 indirect block
704 may contain pointers to as many as 1024 data blocks. According to the “write
anywhere” nature of the file system, these blocks may be located anywhere on the disks
430.

The present invention is directed to a cloning technique that enables efficient
and substantially instantaneous creation of a clone that is a writable copy of a “parent”
virtual volume (vvol) in an aggregate of a storage system. The aggregate is a physical
volume comprising one or more groups of disks, such as RAID groups, underlying one
or more vvols of the storage system. The aggregate has its own physical volume block
number (pvbn) space and maintains metadata, such as block allocation bitmap struc-
tures, within that pvbn space. The parent vvol may be a typical, vvol that, like any
vvol, has its own virtual volume block number (vvbn) space and maintains metadata,

such as block allocation bitmap structures, within that vvbn space.

In the illustrative embodiment, pvbns are used as block pointers within buffer

trees of files (such as file 700) stored in a vvol. This illustrative "hybrid" vvol em-
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bodiment involves the insertion of only the pvbn in the parent indirect block (e.g.,
inode or indirect block). Use of pvbns avoids latency associated with translations from
vvbns-to-pvbns, e.g., when servicing file system (such as NFS, CIFS) requests. On a
read path of a logical volume, a “logical” volume (vol) info block has one or more
pointers that reference one or more fsinfo blocks, each of which, in turn, “points to” an
inode file and its corresponding inode buffer tree. The read path on a vvol is generally
the same, following pvbns (instead of vvbns) to find appropriate locations of blocks; in
this context, the read path (and corresponding read performance) of a vvol is substan-
tially similar to that of a physical volume. Translation from pvbn-to-disk,dbn occurs at

the file system/RAID system boundary of the storage operating system 500.

In an alternate "dual vbn hybrid" vvol embodiment, both the pvbn and vvbn are
inserted in the parent indirect (e.g., level 1) blocks in the buffer tree of a file, such as
file 700. Here, the use of pvbns as block pointers in the indirect blocks provides effi-
ciencies in the read paths, while the use of vvbn block pointers provide efficient access
to required metadata. That is, when freeing a block of a file, the parent indirect block
in the file contains readily available vvbn block pointers, which avoids the latency as-
sociated with accessing an owner map (described herein) to perform pvbn-to-vvbn
translations; yet, on the read path, the pvbn is available. A disadvantage of this dual

vbn variant is the increased size of indirection data (metadata) stored in each file.

Fig. 8 is a schematic block diagram of an embodiment of an aggregate 800 that
may be advantageously used with the present invention. Luns (blocks) 802, directories
804, qtrees 806 and files 808 may be contained within vvols 810 that, in turn, are con-
tained within the aggregate 800. The aggregate 800 is illustratively layered on top of
the RAID system, which is represented by at least one RAID plex 850 (depending upon
whether the storage configuration is mirrored), wherein each plex 850 comprises at
least one RAID group 860. Each RAID group further comprises a plurality of disks
830, e.g., one or more data (D) disks and at least one (P) parity disk.

Whereas the aggregate 800 is analogous to a physical volume of a conventional
storage system, a vvol is analogous to a file within that physical volume. That is, the
aggregate 800 may include one or more files, wherein each file contains a vvol 810 and

wherein the sum of the storage space consumed by the vvols is physically smaller than
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(or equal to) the size of the overall physical volume. The aggregate utilizes a “physi-
cal” pvbn space that defines a storage space of blocks provided by the disks of the
physical volume, while each embedded vvol (within a file) utilizes a “logical” vvbn
space to organize those blocks, e.g., as files. Each vvbn space is an independent set of
numbers that corresponds to locations within the file, which locations are then trans-
lated to dbns on disks. Since the vvol 810 is also a logical volume, it has its own block

allocation structures (e.g., active, space and summary maps) in its vvbn space.

Fig. 9 is a schematic block diagram of an on-disk representation of an aggregate
900. The storage operating system 500, e.g., the RAID system 540, assembles a physi-
cal volume of pvbns to create the aggregate 900, with pvbns 1 and 2 comprising a
“physical” volinfo block 902 for the aggregate. Broadly stated, a volinfo block stores
volume-level information, as well as provides support for large numbers of snapshots.
To that end, the volinfo block 902 contains block pointers to fsinfo blocks 904, each of
which may represent a snapshot of the aggregate. Each fsinfo block 904 includes a
block pointer to an inode file 906 that contains inodes of a plurality of files, including
an owner map 1100, an active map 912, a summary map 914 and a space map 916, as
well as other special metadata files. The inode file 906 further includes a root directory
920 and a “hidden” metadata root directory 930, the latter of which includes a name-
space having files related to a vvol in whichiusers cannot "see" the files. The hidden
metadata root directory also includes a WAFL/fsid/ directory structure, as described
herein, which contains a filesystem file 940 and storage label file 990. Note that root
directory 920 in the aggregate is empty; all files related to the aggregate are organized
within the hidden metadata root directory 930.

The filesystem file 940 includes block pointers that reference various file sys-
tems embodied as vvols 950. The aggregate 900 maintains these vvols 950 at special
reserved inode numbers. Each vvol 950 also has special reserved inode numbers within
its vvol space that are used for, among other things, the block allocation bitmap struc-
tures. As noted, the block allocation bitmap structures, e.g., active map 962, summary

map 964 and space map 966, are located in each vvol.

Specifically, each vvol 950 has the same inode file structure/content as the ag-
gregate, with the exception that there is no owner map and no WAFL/fsid/filesystem
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file, storage label file directory structure in a hidden metadata root directory 980. To
that end, each vvol 950 has a volinfo block 952 that points to one or more fsinfo blocks
954, each of which may represent a snapshot of the vvol. Each fsinfo block, in turp,
points to an inode file 960 that, as noted, has the same inode structure/content as the
aggregate with the exceptions noted above. Each vvol 950 has its own inode file 960
and distinct inode space with corresponding inode numbers, as well as its own root
(fsid) directory 970 and subdirectories of files that can be exported separately from

other vvols.

The storage label file 990 contained within the hidden metadata root directory
930 of the aggregate is a small file that functions as an analog to a conventional raid
label. A raid label includes "physical" information about the storage system, such as
the volume name; that information is loaded into the storage label file 990. Illustra-
tively, the storage label file 990 includes the name 992 of the associated vvol 950, the
online/offline status 994 of the vvol, and other identity and state information 996 of the

associated vvol (whether it is in the process of being created or destroyed).

A container file is a file in the aggregate that contains all blocks used by a vvol.
The container file is an internal (to the aggregate) feature that supports a vvol; illustra-
tively, there is one container file per vvol. The container file is a hidden file (not acces-
sible to a user) in the aggregate that holds every block in use by the vvol. As noted, the
aggregate includes an illustrative hidden metadata root directory that contains subdirec-

tories of vvols:
WAFL/fsid/filesystem file, storage label file

Specifically, a “physical” file system (WAFL) directory includes a subdirectory
for each vvol in the aggregate, with the name of subdirectory being a file system identi-
fier (fsid) of the vvol. Each fsid subdirectory (vvol) has at least two files, the filesys-
tem file 940 and the storage label file 990. The filesystem file is a large sparse file that
contains all blocks owned by a vvol and, as such, is referred to as the container file for
the vvol. Fig. 10 is a schematic block diagram of a container file 1000 (buffer tree)
that is assigned a new type and has an inode 1002 that is assigned an inode number
equal to a virtual volume id (vvid) of the vvol, e.g., container file 1000 has an inode

number 113. The container file is essentially one large, sparse virtual disk and, since it
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contains all blocks owned by its vvol, a block with vvbn X in the vvol can be found at
fbn X in the container file. For example, vvbn 2000 in a vvol can be found at fbn 2000
in its container file 1000. Since each vvol has its own distinct vvbn space, another con-
tainer file may have fbn 2000 that is different from fbn 2000 in the illustrative container
file 1000.

Assume that a level 0 block 1006 of the container file 1000 has an fbn 2000 and
an indirect (level 1) block 1004 of the level 0 block 1006 has a block pointer referenc-
ing the level 0 block, wherein the block pointer has a pvbn 20. Thus, location fbn 2000
of the container file 1000 is pvbn 20 (on disk). Notably, the block numbers are main-
tained at the first indirect level (level 1) of the container file 1000; e.g., to locate block
2000 in the container file, the file system layer accesses the 2000™ entry at level 1 of
the container file and that indirect block provides the pvbn 20 for fon 2000.

In other words, level 1 indirect blocks of the container file contain the pvbns for
blocks in the file and, thus, “map” vvbns-to-pvbns of the aggregate. Accordingly, the
level 1 indirect blocks of the container file 1000 are configured as a “container map”
1050 for the vvol; there is preferably one container map 1050 per vvol. The container
map provides block pointers from fbn locations within the container file to pvbn loca-
tions on disk. Furthermore, there is a one-to-one correspondence between fbn locations
in the container file and vvbn locations in a vvol; this allows applications that need to

access the vvol to find blocks on disk via the vvbn space.

While the container map 1050 provides a “forward” mapping of vvbn-to-pvbn,
an owner map provides a “backward” mapping between pvbn-to-vvbn (and vvid). In
particular, mapping metadata of the owner map provides a backward mapping between
each pvbn in the aggregate to (1) a vvid that "owns" the pvbn and (ii) the vvbn of the
vvol in which the pvbn is located. Fig. 11 is a schematic block diagram of an owner
map 1100 that may be advantageously used with the present invention. The owner map
1100 may be embodied as a data structure having a plurality of entries 1110; there is
preferably one entry 1110 for each block in the aggregate.

In the illustrative embodiment, each entry 1110 has a 4-byte vvid and a 4-byte
vvbn, and is indexed by a pvbn. That is, for a given block in the aggregate, the owner

entry 1110 indicates which vvol owns the block and which pvbn it maps to in the vvbn
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space, e.g., owner entry 1110 indexed at pvbn 20 has contents vvid 113 and vvbn 2000.
Thus when indexing into the owner map 1100 at pvbn 20, the file system 580 accesses
a vvol having an inode 113 (which is container file 1000) and then accesses block loca-
tion 2000 within that file. Each entry 1110 of the owner map 1100 is only valid for
blocks that are in use and a vvol only owns those blocks used in the contained file sys-

tem.

Fig. 12 is a schematic block diagram illustrating an embodiment of an aggregate
1200 that contains at least one vvol, hereinafter parent vvol 1205. The parent vvol
1205 comprises a parent container file 1210 (similar to container file 1000) that is rep-
resented as a parent buffer tree having a plurality of blocks in the aggregate, including
inode 1212, level 1 indirect blocks 1214, which are organized as parent container map
1215 (similar to container map 1050), and level 0 data blocks 1216, which comprise all
of the blocks used by the parent vvol 1205, including a volinfo block 1218. Each block
includes one or more pointers that reference (point to) physical blocks located on disk
1220. In the illustrative hybrid vvol embodiment, the pointers within the vvol are ag-

gregate block numbers, such as pvbns.

As noted, a vvol (such as parent vvol 1205) generally has the same inode file
structure/content as the aggregate, including its own inode file and distinct inode space
with corresponding inode numbers, as well as its own root (fsid) directory and subdi-
rectories of files (inodes). To that end, the parent vvol 1205 has a volinfo block 1218
that points to one or more fsinfo blocks that, in turn, points to an inode of an inode file
that has the same inode structure/content as the aggregate with the exceptions previ-
ously noted. The inode for the inode file contains information describing the inode file
associated with a file system, such as file system 580, executing on the parent vvol
1205. The inode for the inode file may contain a pointer that references (points to) an
inode file indirect block containing a set of pointers that reference inodes within its root
directory. Each inode contains pointers to indirect blocks, such as level 1 indirect

blocks and each indirect block includes pointers to level 0 data blocks.

A snapshot can be created in the parent vvol 1205 in accordance with a conven-
tional snapshot mechanism. When the file system 580 generates a parent vvol snapshot

(hereinafter “base snapshot” 1235) of its active file system, an image of the active file
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system at a point in time (i.e., a consistently point, CP) is "frozen". Note that the base
snapshot 1235 is contained within and uses blocks in the parent container file 1210. As
a result, there is no container file for the base snapshot 1235 as the snapshot reuses
shared blocks in the vvbn space (and pvbn space) with the parent’s active file system.
However, for purposes of depiction and ease of description, a “snapshot container file
1240” is shown and described with respect to Fig. 12. Yet is should be noted that
blocks in the parent container file 1210 are “held down” by the base snapshot 1235 and
the clone (described herein) shares the same pvbns. Moreover, the clone uses blocks in
the vvbn space for which it has no pointers in its container; this is what keeps the clone

from freeing the parent’s blocks.

As illustratively shown, the base snapshot 1235 comprises a snapshot container
file 1240 (similar to parent container file 1210) that is represented as a snapshot buffer
tree having a plurality of blocks in the aggregate, including inode 1242, level 1 indirect
blocks 1244, which are organized as snapshot container map 1245 (similar to parent
container map 1215), and level 0 data blocks 1246, which comprise all of the blocks
used by the base snapshot 1235, including a snapshot volinfo block 1248. The snapshot
volinfo block 1248 is a duplicate copy of the volinfo block 1218 of the parent vvol
1205. Accordingly, the base snapshot 1235 shares data structures, such as fsinfo
blocks, as well as inodes, indirect blocks and data blocks of an inode buffer tree, with
the active file system on parent vvol 1205. An instance of the parent vvol “file” in the
active file system thus cannot be deleted if the instance of the same file in the snapshot

is to be preserved.

In particular, the snapshot mechanism ensures that all blocks of the inode buffer
tree remain fixed and all pointers within that buffer tree reference (point to) those fixed
blocks. To that end, the physical blocks (pvbns) in the aggregate that are used by the
base snapshot 1235 remain fixed and cannot be changed as long as the snapshot per-
sists. In general, when a snapshot is created, all blocks that existed at the CP are pre-
vented from being deleted and/or overwritten and any new changes to the blocks in the
buffer tree are written elsewhere (to other free blocks). In the case of the base snapshot
1235, those changes are written to blocks in a vvbn space and in a pvbn space of the

aggregate. Although the snapshotted blocks remain intact, any additional changes to
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the active file system are written in free blocks of the vvbn and pvbn spaces. Cloning

takes advantage of this property.

With respect to the snapshot pinning mechanism, each snapshot has an associ-
ated in-memory “pin counter” variable. Each volume has an in-memory data structure
that includes an array containing information about the current snapshots for that vol-
ume (one array element per snapshot). Part of each array is the pin counter having a
value that is dynamically adjusted and initialized at system boot. Pinning increases the
counter by 1 and unpinning decreases the counter by 1. When the value of the pin
counter is non-zero, the associated snapshot is regarded as “pinned” (locked) and can-

not be deleted.

According to the cloning technique, the base snapshot 1235 is provided either
by creating a snapshot within the parent vvol or by choosing an existing snapshot from
the parent vvol. In addition, a new vvol (e.g., filesystem file) is created, along with a
new fsid subdirectory in the aggregate and a new storage label file. The new vvol is
embodied as a clone 1350 and comprises an appropriately sized clone container file
1340 represented as a clone buffer tree having a plurality of blocks in the aggregate,
including inode 1372, level 1 indirect blocks 1374, which are organized as a clone con-
tainer map 1345 and level 0 data blocks 1376, which comprise all of the blocks used by
the clone. Initially the clone container file 1340 has no (zero) data, i.e., it is entirely
sparse, and the container map 1345 is empty because the only blocks used by the clone
are those inherited from the parent vvol 1205. Moreover, a volinfo block for the clone
is created that is a slightly modified version of the volinfo block 1248 from the base
snapshot 1235. The modified volinfo block 1352 is written to (store at a level 0 data
block of) the container file 1340 of the new vvol clone, i.e., the clone is inserted at the

volinfo block location of the new vvol.

It should be noted that the clone container file 1340 only holds all blocks allo-
cated to the clone 1350. The point of a clone is that is uses blocks “owned” by the par-
ent vvol 1205. The clone container file 1340 has “holes” at the locations of any blocks
inherited from the parent vvol. As an example, assume that an indirect block pointer in
a file in the parent vvol 1205 contains pvbn 100 and vvbn 200. Thus, block 200 in the

parent container file 1210 is pvbn 100. In clone 1350, the indirect block pointers are
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also pvbn 100 and vvbn 200, but entry 200 in the clone container file 1340 is zero
(“0™), indicating a hole and that the clone inherited its vvbn 200 from the parent vvol.
Since entry 200 is 0, the clone “knows” that it could not free the block 100, as de-
scribed further herein.

Fig. 13 is a schematic block diagram of an on-disk representation of a clone
1350 according to the present invention. The hidden metadata root directory 930 (Fig.
9) in the aggregate 900 is modified to include a new fsid “clone” subdirectory having at
least two new files, filesystem file 1340 and storage label file 1390: WAFL/fsid
“clone”/filesystem file, storage label file. As noted, the storage label file is a small file
that functions as an analog to a conventional raid label and, to that end, the new storage
label file 1390 includes the name 1392 of the clone 1350, the online/offline status 1394

of the clone, and other identity and state information 1396 of the associated clone 1350.

Similarly, the new filesystem file 1340 is a large sparse file that contains all
blocks owned by a vvol (clone) and, as such, is also referred to as the container file for
the clone. The new filesystem file 1340 includes a block pointer that references a file
system embodied as clone 1350. As a vvol, the clone 1350 has a vvol space with spe-
cial reserved inode numbers that are used for, among other things, the block allocation
bitmap structures. As further described herein, the block allocation bitmap structures,
e.g., active map 1362, summary map 1364 and space map 1366, are inherited from the
base snapshot 1235 (and thus the parent vvol 1205).

Specifically, the clone 1350 includes a volinfo block 1352 that points to an
fsinfo block that, in turn, points to an inode of inode file that has the same inode struc-
ture/content as the aggregate with the exceptions previously noted. The inode for the
inode file contains information describing the inode file 1360 associated with the file
system, such as file system 580, executing on the clone 1350. The inode for the inode
file may contain a pointer that references (points to) an inode file indirect block con-
taining a set of pointers that reference inodes within root directory 1370 of the clone
1350. Each inode contains pointers to indirect blocks, such as level 1 indirect blocks

and each indirect block includes pointers to level 0 data blocks.

Referring also to Fig. 12, the snapshot volinfo block 1248 from the base snap-
shot 1235 is inserted as a level 0 data block (volinfo block 1352) within the container
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file 1340 on the clone. The volinfo block 1352 is a slightly modified version of the
snapshot volinfo block 1248; for example, the volinfo block 1352 is modified to delete
all snapshots (fsinfo blocks) other than fsinfo block 1354 for the base snapshot 1235.
The inherited summary map 1364 is also modified to reflect that all non-cloned snap-
shots have been removed (deleted) from the clone. The modified volinfo block 1352 is
thus substantially similar to snapshot volinfo block 1248 and, to that end, essentially
incorporates the base snapshot into the clone; accordingly the base snapshot (and its
associated safeguards) protects the snapshotted blocks from being overwritten. All new
changes are written to block locations in the vvbn and pvbn spaces of the base snapshot

(parent vvol 1205) that are not used and, thus, cannot interfere with the clone.

Since the modified volinfo block 1352 forms the root of a modified volinfo
buffer tree that is similar to a parent volinfo block buffer tree of the parent vvol 1205,
all blocks of the parent volinfo block buffer tree can be accessed when traversing the
modified volinfo block buffer tree. In other words, the snapshot volinfo block 1248
stored in a level 0 block of the snapshot container file 1240 (actually the parent con-
tainer file 1210) contains pointers that reference other blocks of its buffer tree stored in
other level 0 blocks 1246 (1216) of the container file 1240 (1210). The pointers within
the volinfo block 1248 to the other level 0 blocks 1246 are physical pointers (pvbns)
that reference physical block locations on disk 1220. Those parent (snapshot) volinfo
buffer tree blocks can be accessed through the modified volinfo block 1352 of the clone
1350 in the same manner as traversing the snapshot container file tree 1240 because the
blocks within the modified volinfo block buffer tree are the physical blocks represented
by the level 0 data blocks 1246 in the snapshot container file 1240. (As noted, these
blocks are actually in the parent container file 1210.) Ultimately, the snapshot volinfo
block 1248 and the modified volinfo block 1352 reference the same physical block lo-
cations on disk 1220.

The clone 1350 may then be instantiated by, e.g., loading a file system associ-
ated with the new vvol onto the clone and bringing the clone “online”, with the only
blocks owned by the clone comprising its modified volinfo block. The file system,
such as file system 580, executes on the clone as it would on a typical vvol, such as the

parent vvol. In fact, the file system within the clone resembles the file system within
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the base snapshot, since they comprise substantially the same blocks on disk. The re-
sulting clone 1350 is thus a “full-fledged” vvol, i.e., it can service storage (read and
write) requests and has its own logical properties, such as snapshot operation function-
ality, that enables the clone to be snapshotted, snap restored, snapmirrored and other-
wise manipulated as any other vvol. A restriction is that the base snapshot 1235 cannot
be deleted in the parent vvol 1205 while the clone exists. As a result, the cloning tech-
nique enables the clone and parent vvol to share on-disk blocks of data in a zero-copy
fashion, similar to a conventional snapshot, while also allowing for modifications

(unlike the conventional snapshot).

Notably, a fundamental property of the cloning technique is that the base snap-
shot 1235 is common among the clone 1350 and its parent vvol 1205 and, thus, cannot
be deleted or freed in the parent vvol while the clone exists. That is, all blocks shared
between the clone and its parent vvol are blocks within that base snapshot and, thus,
neither may attempt to free or delete those blocks. This restriction also precludes any
operation that implicitly makes the snapshot disappear. However, the restriction may
be relaxed to allow the clone to "free" the snapshot; in the hybrid vvol embodiment,
freeing of the snapshot requires checking of the owner map 1100 by block free opera-
tions on the clone to determine whether the clone or parent owns the block in the ag-
gregate. The clone may only return a block to the aggregate if it owned the block, not
if it was inherited from the parent. However in the dual vbn embodiment, reference is
made directly to the clone container file 1340 to determine the owner of the block, as

noted above.

Special care is thus taken to prevent the base snapshot 1235 from being freed or
deleted. According to the novel technique, when the clone is created, a parent vvid
1395 and base snapshot identifier (ID) 1398 are inserted into the storage label file 1390
associated with the clone 1350. The parent vvid 1395 is illustratively the inode number
of the parent container file 1210, while the base snapshot ID 1398 is manifested as a
bitmap of snapshot identifiers (an array of bits), one for each possible snapshot. The
bitmap is provided because it is possible and sometimes advantageous to inherit multi-
ple snapshots from a parent vvol. In this case, the mechanism described herein is gen-

erally the same, while leaving pointers to both parent base snapshots (when slightly
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modifying the volinfo block). In addition, multiple clones 1350 may be spawned from
the same base snapshot 1235; in this case, information is recorded by setting the same
snapshot bit in bit fields in both clone’s storage label files 1390. In general, the file
system 580 preserves a snapshot by recording in the storage label file 990 (Fig. 9) of
each vvol 950 whether that file is a clone and, if it is a clone, which vvol is its parent

and which snapshot(s) it has inherited.

When mounting the aggregate 900, a table (not shown) is constructed having
entries for all clones in the aggregate. When coming online and before mounting any
vvols, the aggregate examines all storage label files 990 of all vvols 950 to determine
relationships among the vvols, e.g., whether the vvols are parents or clones. A respon-
sibility of the aggregate is to enforce these relationships and prevent the parent vvols
from destroying any base snapshot that forms the basis of a clone. As the vvols 950
come online, the table can be used to "pin" (mark as undeletable) base snapshots of
vvols that need to be preserved for clones (in accordance with the snapshot pinning
mechanism), while also preventing any sort of destructive operation that may delete

those snapshots.

Since the modified volinfo block 1352 references physical block locations in the
aggregate that cannot be deleted (because they are held down by the base snapshot
1235 in the parent vvol 1205), when the clone 1350 comes online, it functions in a
manner similar to that of a snap restore arrangement. That is, the modified volinfo
block 1352 of the clone references a snapshot at a particular point in time (the base
snapshot 1235) and the clone festores the state of the active file system as represented
by that snapshot. The difference between a clone and a conventional snapshot is that
write allocation can be performed on the clone that essentially allows changes to the

base snapshot.

When changes are made to the clone (i.e., blocks of the base snapshot 1235),
those changes are written out (stored) according to an extended write allocation tech-
nique employed by the file system. The extended write allocation technique is de-
scribed in U.S. Patent Application Serial No. (112056-0154) titled, Extension of Write
Anywhere File Layout Write Allocation, filed herewith. Broadly stated, a write alloca-

tor 582 selects a pvbn in the aggregate for a newly allocated block and selects a vvbn in
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the clone for that new block using appropriate block allocation bitmaps for both the
pvbn and vvbn spaces. As noted, the container file 1340 on the clone 1350 initially has
no data other than the modified volinfo block 1352. As write operations occur into the
clone, the file system 580 fills in the level 0 blocks 1376 of the container file 1340 with

the changes associated with those write operations.

As further noted, the block allocation bitmaps used by the file system to select
the vvbn are inherited from the base snapshot. By inheriting the base snapshot’s bit-
maps, the file system executing on the clone also inherits the snapshot’s vvbn space;
any changes made to the clone are thus directed to "empty" or unused blocks in that
inherited vvbn space. This avoids any collisions with the blocks in the base snapshot
1235. However, the inherited vvbn space diverges from the vvbn space of the base
snapshot at the time the clone is created. Therefore, as changes are made to the clone,
the container file 1340 on the clone starts filling in its level 0 blocks in accordance with
the extended write allocation technique. Although the base snapshot and clone now
have separate vvbn spaces, some of the vvbns that are used in both spaces reference the

same physical blocks in the aggregate.

For example when using the owner map 1100 to translate a pvbn to a vvbn dur-
ing operation on the clone 1350, the file system may discover that the vvid in an entry
1110 is not the clone’s vvid. That is, the owner map 1100 may have entries indicating
that certain pvbns are owned by the base snapshot (or, more specifically, the parent
vvol 1205) at certain vvbns of the parent's vvbn space. In most cases this will be ig-
nored. If a pvbn entry 1110 of the owner map 1100 does not indicate the block belongs
to the clone, the block has been inherited from the aggregate and the appropriate vvbn
is the pvbn. As noted, in the dual vbn embodiment, the question of whether the clone
owns a block involves determining whether there is a hole in the clone container file for
that block.

As long as the base snapshot 1235 exists on the parent vvol 1205, the parent
container file 1210 holds onto those blocks and associated mappings. Because the
clone 1350 has a copy of the base snapshot 1235, many of its level 0 blocks reference
the same physical blocks as the parent vvol. Since these physical blocks are essentially

shared between the clone and parent vvol, neither of these vvols will attempt to free
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those blocks as long as the snapshot persists. Note that the owner map 1100 may indi-
cate that these shared blocks are owned by the parent vvol 1205; nevertheless, the clone

uses those shared blocks for the same purpose as the parent vvol.

If an attempt is made to delete the base snapshot 1235, the clone may attempt to
free one of the shared blocks and this attempt will fail. Freeing of the shared block fails
because when the file system 580 executing on the clone accesses the owner map 1100
to obtain the vvbn associated with the pvbn of the block it is attempting to free (or de-
termines it has a hole in its container file), it examines the vvid of the vvol that owns
the block. If the parent vvol 1205 owns the block, the clone cannot free it. Since the
base snapshot 1235 exists in the parent vvol, the parent vvol also cannot free that
shared block.

Fig. 14 is a flowchart illustrating a sequence of steps for creating a clone of par-
ent vvol in accordance with the novel cloning technique. The sequence starts at Step
1400 and proceeds to Step 1402 where a base snapshot is provided in the parent vvol.
In Step 1404, a new vvol, embodied as a clone and comprising an appropriately sized
container file, is created and, in Step 1406, a new fsid subdirectory in the aggregate and
a new storage label file for the clone are created. In Step 1408, a modified volinfo
block is created and, in Step 1410, the modified volinfo block is written to the container
file of the clone. In Step 1412, the clone is instantiated by, e.g., loading a file system
onto the clone and bringing the clone “online”. The clone may then function as a full-
fledged vvol as a result of, in Step 1414, the file system servicing storage (e.g., write)
operations directed to the storage system and, in particular, the clone. The sequence

then ends at Step 1416.

Advantageously, creation of a clone 1350 from a base snapshot is efficient and
occurs substantially faster than a conventional copying solution. The clone provides a
writable copy of the base snapshot that promptly redirects traversal of the clone’s
buffer tree into the base snapshot’s buffer tree with no overhead through the vvbn space
of the clone. The resulting clone is a full-fledged vvol that can be exported, mounted,
shared, as well as enabled to store new information. In essence, the clone is a “writable
snapshot” that is dependent upon the base snapshot and its parent vvol to protect some

of its blocks.
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While there have been shown and described illustrative embodiments of a clon-
ing technique that enable efficient and substantially instantaneous creation of a clone
that is a copy of a parent vvol in an aggregate of a storage system, it is to be understood
that various other adaptations and modifications may be made within the spirit and
scope of the invention. For example, the inventive cloning technique can be used to
create clones of clones. Moreover, the technique can be used to create a clone of an
aggregate. In fact, cloning can be accomplished in a fashion that creates a nesting ar-
rangement of clones. An example of a nested cloning arrangement involves a produc-
tion database wherein a clone is created to enable an update to the database and, subse-
quently, a clone is made of that clone in order to perform further optimizations. Such
nesting of clones can be easily accomplished as long as it is ensured that the base snap-
shot 1235 is not deleted. When searching for a block in a clone 1350 using the con-
tainer map 1345, it may be necessary to traverse multiple buffer trees back to the base
snapshot 1235 (or parent vvol 1205) if the arrangement is such that a clone is made of a
clone (which is made of a clone, etc) in order to find the actual physical block. Again,

the aggregate ensures that the snapshot that forms the basis for the clones is not deleted.

The foregoing description has been directed to specific embodiments of this in-
vention. It will be apparent, however, that other variations and modifications may be
made to the described embodiments, with the attainment of some or all of their advan-
tages. For instance, it is expressly contemplated that the teachings of this invention can
be implemented as software, including a computer-readable medium having program
instructions executing on a computer, hardware, firmware, or a combination thereof.
Accordingly this description is to be taken only by way of example and not to other-
wise limit the scope of the invention. Therefore, it is the object of the appended claims
to cover all such variations and modifications as come within the true spirit and scope

of the invention.

What is claimed is:
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CLAIMS

1 1. A method for efficiently creating a copy of a parent virtual volume (vvol) in an ag-

2 gregate of a storage system, the method comprising the steps of:

3 providing a base snapshot of the parent vvol;
4 creating a new vvol embodied as a clone, the clone comprising a container file;
5 modifying a volume information (volinfo) block for the clone, the modified

6  volinfo block comprising a modified version of a volinfo block from the base snapshot;
7 writing the modified volinfo block to the container file; and

8 instantiating the clone to service storage requests directed to the storage system.

1 2. The method of Claim 1 wherein the step of providing comprises one of the steps of:
2 generating a snapshot within the parent vvol; and

3 choosing an existing snapshot from the parent vvol.

1 3. The method of Claim 1 wherein the step of creating comprises the step of creating a
2 new file system identifier (fsid) subdirectory in the aggregate and a new storage label
3 file.

1 4. The method of Claim 1 wherein the step of instantiating comprises the steps of:

2 loading a file system associated with the new vvol onto the clone; and
3 bringing the clone online, with the clone owning only the modified volinfo
4  block.

1 5. The method of Claim 1 wherein the modified volinfo block forms a root of a modi-
2 fied volinfo block buffer tree that is similar to a parent volinfo block buffer tree of the
3 parent vvol and wherein the step of writing comprises the step of accessing all blocks
4  of the parent volinfo block buffer tree when traversing the modified volinfo block

5  buffer tree.
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6. A system adapted to efficiently creating a copy of a parent virtual volume (vvol) in
an aggregate of a storage system, the system comprising:

disks coupled to the storage system and configured to store information served
by the storage system;

a file system executing on the parent vvol of the storage system, the file system
logically organizing the information as a structure of files and blocks on the disks;

a base snapshot sharing a parent container file represented as a parent buffer
tree having a plurality of blocks in the aggregate, the plurality of blocks including level
0 data blocks that comprise all blocks used by the parent vvol, wherein one of the level
0 blocks is a snapshot volinfo block, the base snapshot sharing data structures with the
file system executing on the parent vvol; and

a clone comprising a clone container file represented as a clone buffer tree hav-
ing a plurality of blocks in the aggregate, the plurality of blocks including level 0 data
blocks comprising all blocks used by the clone, wherein the clone container file initially
contains only a modified volinfo block stored in one of the level 0 blocks, the modified
volinfo block being a modified version of the snapshot volinfo block, wherein the
modified volinfo block forms a root of a modified volinfo block buffer tree that is simi-
lar to a parent volinfo block buffer tree of the parent vvol such that all blocks of the
parent volinfo block buffer tree are accessible when traversing the modified volinfo
block buffer tree.

7. The system of Claim 6 wherein the shared data structures include file system infor-

mation (fsinfo) blocks, inodes, indirect blocks and data blocks.

8. The system of Claim 7 wherein the file system further executes on the clone to ser-

vice storage requests directed to the storage system.

9. The system of Claim 6 further comprising a parent container file of the parent vvol,
the parent container file represented as the parent buffer tree having a plurality of
blocks in the aggregate, including level 0 data blocks comprising all blocks used by the

parent vvol, wherein one of the level 0 blocks is a volinfo block.
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10. The system of Claim 9 wherein the snapshot volinfo block is a duplicate copy of the

volinfo block.

11. The system of Claim 9 further comprising a memory of the storage system organ-

ized as a buffer cache configured to store data structures.

12. The system of Claim 11 wherein the buffer trees are representations of blocks for

files that are loaded into the buffer cache and maintained by the file system.

13. The system of Claim 12 wherein each block includes one or more pointers that ref-

erence (point to) physical blocks located on the disks.
14. The system of Claim 13 wherein the pointers are physical volume block numbers.

15. Apparatus for efficiently creating a copy of a parent virtual volume (vvol) in an
aggregate of a storage system, the apparatus comprising:

means for providing a base snapshot of the parent vvol;

means for creating a new vvol embodied as a clone, the clone comprising a con-
tainer file;

means for modifying a volume information (volinfo) block for the clone, the
modified volinfo block comprising a modified version of a volinfo block from the base
snapshot;

means for writing the modified volinfo block to the container file; and

- means for instantiating the clone to service storage requests directed to the stor-

age system.

16. The apparatus of Claim 15 wherein the means for providing comprises one of:
means for generating a snapshot within the parent vvol; and

means for choosing an existing snapshot from the parent vvol.
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1 17. The apparatus of Claim 16 wherein the means for instantiating comprises:

2 means for loading a file system associated with the new vvol onto the clone; and
3 means for bringing the clone online, with the clone owning only the modified

4  volinfo block.

1 18. A computer readable medium containing executable program instructions for effi-
2 ciently creating a copy of a parent virtual volume (vvol) in an aggregate of a storage

3 system, the executable instructions comprising one or more program instructions for:

4 providing a base snapshot of the parent vvol;
5 creating a new vvol embodied as a clone, the clone comprising a container file;
6 modifying a volume information (volinfo) block for the clone, the modified

7 volinfo block comprising a modified version of a volinfo block from the base snapshot;
8 writing the modified volinfo block to the container file; and

9 instantiating the clone to service storage requests directed to the storage system.

1 19. The computer readable medium of Claim 18 wherein the program instruction for
2 providing comprises one or more program instructions for one of:
3 generating a snapshot within the parent vvol; and

4 choosing an existing snapshot from the parent vvol.

1 20. The computer readable medium of Claim 18 wherein the program instruction for
2 instantiating comprises one or more program instructions for:

3 loading a file system associated with the new vvol onto the clone; and

4 bringing the clone online, with the clone owning only the modified volinfo

5 block.
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