(19) United States # (12) Patent Application Publication (10) Pub. No.: US 2004/0220199 A1 Nov. 4, 2004 (43) Pub. Date: Asrar et al. #### (54) SEED TREATMENT WITH COMBINATIONS OF INSECTICIDES (75) Inventors: Jawed Asrar, Chesterfield, MO (US); Frank C. Kohn, St. Louis, MO (US) > Correspondence Address: Charles E. Dunlap P.O. Box 11070 Columbia, SC 29211-1070 (US) Assignee: Monsanto Technology, L.L.C., St. Louis, MO (21) Appl. No.: 10/691,801 (22) Filed: Oct. 22, 2003 ## Related U.S. Application Data - Division of application No. 09/968,175, filed on Oct. (62)1, 2001, now Pat. No. 6,660,690. - (60) Provisional application No. 60/238,485, filed on Oct. 6, 2000. #### **Publication Classification** #### (57)**ABSTRACT** A method of preventing damage to the seed and/or shoots and foliage of a plant by a pest includes treating the seed from which the plant grows with a composition that includes a combination of at least one pyrethrin or synthetic pyrethroid and at least one other insecticide selected from the group consisting of an oxadiazine derivative, a chloronicotinyl, a nitroguanidine, a pyrrol, a pyrazone, a diacylhydrazine, a triazole, a biological/fermentation product, a phenyl pyrazole, an organophosphate and a carbamate. It is preferred that when the other insecticide is an oxadiazine derivative, the pyrethroid is selected from the group consisting of taufluvalinate, flumethrin, trans-cyfluthrin, kadethrin, bioresmethrin, tetramethrin, phenothrin, empenthrin, cyphenothrin, prallethrin, imiprothrin, allethrin and bioallethrin. The treatment is applied to the unsown seed. In another embodiment, the seed is a transgenic seed having at least one heterologous gene encoding for the expression of a protein having pesticidal activity against a first pest and the composition has activity against at least one second pest. Treated seeds are also provided. ## SEED TREATMENT WITH COMBINATIONS OF INSECTICIDES ## CROSS REFERENCE TO RELATED PATENTS AND PATENT APPLICATIONS [0001] This application is a non-provisional of U.S. Provisional Patent Application Serial No. 60/238,485, filed Oct. 6, 2000, and claims priority thereto. #### BACKGROUND OF THE INVENTION [0002] (1) Field of the Invention [0003] This invention relates generally to the control of plant pests and more particularly to the provision of protection against insect damage to seeds and plant parts by the treatment of plant seeds with combinations of pesticides. [0004] (2) Description of the Related Art [0005] The control of insects and related arthropods is of extreme importance to the agricultural industry. Every year, these pests destroy an estimated 15% of agricultural crops in the United States and even more than that in developing countries. Some of this damage occurs in the soil when plant pathogens, insects and other such soil borne pests attack the seed after planting. Much of the rest of the damage is caused by rootworms; plant pathogens that feed upon or otherwise damage the plant roots; and by cutworms, European corn borers, and other pests that feed upon or damage the above ground parts of the plant. General descriptions of the type and mechanisms of attack of pests on agricultural crops are provided by, for example, Metcalf, in Destructive and Useful Insects, (1962); and Agrios, in Plant Pathology, 3rd Ed., Academic Press (1988). [0006] The period during germination of the seed, sprouting and initial growth of the plant is particularly critical because the roots and shoots of the growing plant are small and even a small amount of damage can kill the entire plant. Moreover, some natural plant defenses are not fully developed at this stage and the plant is vulnerable to attack. Not surprisingly, the control of pests that attack the seed and the above ground plant parts during this early stage of plant growth is a well developed area of agriculture. [0007] Currently, the control of pests that attack post emergent crops primarily involves the application of synthetic organic pesticides to the soil, or to the growing plants by foliar spraying. Because of concern about the impact of chemical pesticides on public health and the environment, there has been much effort to reduce the amount of chemical pesticides that are used. A significant portion of this effort has been expended in developing transgenic crops engineered to express insect toxicants from microorganisms. For example, U.S. Pat. No. 5,877,012 to Estruch et al. discloses the cloning and expression of proteins from such organisms as Bacillus, Pseudomonas, Clavibacter and Rhizobium into plants to obtain transgenic plants with resistance to such pests as black cutworms, armyworms, several borers and other insect pests. Publication WO/EP97/07089 by Privalle et al. teaches the transformation of monocotyledons, such as corn, with a recombinant DNA sequence encoding peroxidase for the protection of the plant from feeding by corn borers, earworms and cutworms. Jansens et al., in Crop Sci., 37(5):1616-1624 (1997), reported the production of transgenic corn containing a gene encoding a crystalline protein from *Bacillus thuringiensis* that controlled both generations of the European corn borer. U.S. Pat. Nos. 5,625,136 and 5,859,336 to Koziel et al. reported that the transformation of corn with a gene from *B. thuringiensis* that encoded for delta-endotoxins provided the transgenic corn with improved resistance to European corn borer. [0008] A comprehensive report of field trials of transgenic corn that expresses an insecticidal protein from *B. thuring-tensis* has been provided by Armstrong et al., in *Crop Science*, 35(2):550-557 (1995). [0009] At the present state of plant cellular engineering, however, transgenic crops are typically resistant only to specific pests for that crop, e.g., transgenic corn expressing a *Bt* toxin against the corn rootworm. It is frequently necessary to apply synthetic pesticides to such transgenic plants to control damage by other pests. [0010] Insecticides such as synthetic pyrethroids, organophosphates and carbamates; fungicides such as azoles and anilopyrimidines; and acaricides such as pyrazoles; and the like, are very effective against certain above ground plant pests when applied at the proper time and with proper procedures. Appropriate pesticides may be applied at the time of planting as surface bands, "T"-bands, or in-furrow, but these applications require the additional operation of applying the pesticide at the same time as the seeds are being sown. This complicates the planting operation and the additional equipment required for pesticide application is costly to purchase and requires maintenance and attention during use. Moreover, care must be taken to incorporate the pesticides properly into the topmost soil layer for optimal activity. (See, for example, the application requirements and precautions for use of tefluthrin that are described in the brochure titled Force 3G Insecticide, published by Zeneca Ag Products, Wilmington, Del. (1998)). [0011] The activity of pesticides that have been applied as in-furrow applications at the time of sowing is usually directed to the protection of the seed or the roots of the plant. Some protection against above ground pests such as corn borers has been reported, however, for such treatments with insecticides known to be systemic. Keaster and Fairchild, J. Econ. Entomol., 61(2):367-369 (1968). Since such pesticide chemicals are complex molecules that are expensive to produce, purchase and use, it is desirable that their activity is not diluted or lost by migration away from the desired site of action by moisture seepage or by vaporization. [0012] After the plant has emerged from the soil, foliar spraying of pesticides is most often used to control those pests that attach the shoots and foliage of the plant. However, a foliar spray must be applied at a certain time that coincides with the presence and activity of the pest in order to have the most beneficial effect. Application at this time may be difficult or impossible if, for example, weather conditions limit access to the field. Moreover, the plants must be monitored closely to observe early signs of pest activity in order to apply the pesticide at a time when the pests are most vulnerable. [0013] Synthetic pyrethroids have been found to give excellent control of pests of the order of *Lepidoptera*, such as cutworms, when applied as foliar spray or as surface-incorporated granules at the time of planting. However, since this class of insecticides has very high toxicity to fish, for example, great care must be taken to limit the runoff of the insecticide from either granules or spray into surface waters. Moreover, any foliar spraying must be done at times when there is little wind, and then only with proper equipment that is carefully monitored during use. [0014] It has also been found in some cases with particular pesticides and application techniques that when two or more of such pesticides are used in particular combination greater efficacy results than when any one of such pesticides is used alone. Such benefits of combining pesticides has been reported for combinations of phosmet with diflubenzuron (U.S. Pat. No. 4,382,927); O-ethyl-O-[4-(methylthio)-phenyl]-S-propyl phosphodithioate and N'-(4-chloro-o-tolyl)-N, N-dimethylformamidine (U.S. Pat. No. 4,053,595); bacillus thuringiensis and chlordimeform (U.S. Pat. No. 3,937,813); decamethrine and dichlorvos with propoxur, if desired, (U.S. Pat. No. 4,863,909); fenvalerate and phosmet (U.S. Pat. No. 4,263,287); and phosalone and malathion (U.S. Pat. No. 4.064,237). However, each of these combinations was applied directly to the growing plant as described above in the form of sprays or dusts, or applied to the soil around the plant in the form of, for example, granules. [0015] WO9740692 discloses combinations of any one of several oxadiazine derivatives with one of a long list of other insecticides. Although the
application mentions that the combinations can be applied to plant propagation material for its protection, as well as to plant shoots and leaves, no examples are provided to demonstrate that any one of the combinations listed is actually efficacious. More pesticide combinations are described in U.S. Pat. Nos. 4,415,561, 5,385,926, 5,972,941 and 5,952,358. However, in the existing art, little or no guidance has been found as methods for predicting which combinations of pesticides will result in such unexpectedly superior efficacy and which combinations will not. [0016] The control of pests by applying insecticides directly to plant seed is well known. For example, U.S. Pat. No. 5,696,144 discloses that the European corn borer caused less feeding damage to corn plants grown from seed treated with a 1-arylpyrazole compound at a rate of 500 g per quintal of seed than control plants grown from untreated seed. In addition, U.S. Pat. No. 5,876,739 to Turnblad et al. (and its parent, U.S. Pat. No. 5,849,320) disclose a method for controlling soil-borne insects which involves treating seeds with a coating containing one or more polymeric binders and an insecticide. This reference provides a list of insecticides that it identifies as candidates for use in this coating and also names a number of potential target insects. However, while the 5,876,739 patent states that treating corn seed with a coating containing a particular insecticide protects corn roots from damage by the corn rootworm, it does not indicate or otherwise suggest that treatment of corn seed with any particular combinations of insecticides provides the seed or the plant with synergistic protection, or with any other unexpected advantage. [0017] Thus, although the art of protecting the shoots and foliage—as well as the seed and roots—of a plant from damage by pests has been advancing rapidly, several problems still remain. For example, it would be useful to provide a method for the control of pest damage to shoots and foliage of plants without the requirement of applying a pesticide at the time of sowing the seed, either as a surface incorporated band, or in-furrow, for example, or requiring a later field application of a pesticide during plant growth. It would also be useful if the method for pest control reduced the amount of pesticide that was required to provide a certain level of protection to the plant. Furthermore, it would be useful if such a method could be coupled with the biopesticidal activity of transgenic plants, or with the insecticidal activity of other active materials to provide a broader scope of protection than is provided by the transgenic elements, or the insecticidal actives alone. #### SUMMARY OF THE INVENTION [0018] Briefly, therefore, the present invention is directed to a novel method for preventing damage by a pest to a seed and/or shoots and foliage of a plant grown from the seed, the method comprising treating the unsown seed with a composition comprising at least one pyrethrin or synthetic pyrethroid and at least one other insecticide selected from the group consisting of an oxadiazine derivative, a chloronicotinyl, a nitroguanidine, a pyrrol, a pyrazone, a diacylhydrazine, a triazole, a biological/fermentation product, a phenyl pyrazole, an organophosphate and a carbamate. It is preferred that when the other insecticide is an oxadizine derivative, the pyrethroid is selected from the group consisting of taufluvalinate, flumethrin, trans-cyfluthrin, kadethrin, bioresmethrin, tetramethrin, phenothrin, empenthrin, cyphenothrin, prallethrin, imiprothrin, allethrin and bioallethrin. Seeds that have been treated by this method are also provided. [0019] The invention is also directed to a novel composition for the treatment of unsown seed comprising at least one pyrethrin or synthetic pyrethroid and at least one other insecticide selected from the group consisting of an oxadiazine derivative, a chloronicotinyl, a nitroguanidine, a pyrrol, a pyrazone, a diacylhydrazine, a triazole, a biological/fermentation product, a phenyl pyrazole, an organophosphate and a carbamate. It is preferred that when the other insecticide is an oxadizine derivative, the pyrethroid is selected from the group consisting of taufluvalinate, flumethrin, trans-cyfluthrin, kadethrin, bioresmethrin, tetramethrin, phenothrin, empenthrin, cyphenothrin, prallethrin, imiprothrin, allethrin and bioallethrin. [0020] The invention is also directed to a novel method for preventing damage by a pest to a seed and/or shoots and foliage of a plant grown from the seed, the method comprising treating the unsown seed with a composition comprising a nitroguanidine and at least one other insecticide selected from the group consisting of a chloronicotinyl, a pyrrol, a pyrazone, a diacylhydrazine, a triazole, a biological/fermentation product, a phenyl pyrazole, an organophosphate and a carbamate. Seeds that have been treated by this method are also provided. [0021] The invention is also directed to a novel composition for treatment of unsown seed, the composition comprising a nitroguanidine and at least one other insecticide selected from the group consisting of a chloronicotinyl, a pyrrol, a pyrazone, a diacylhydrazine, a triazole, a biological/fermentation product, a phenyl pyrazole, an organophosphate and a carbamate. [0022] The invention is also directed to a novel seed that is protected against multiple pests comprising a seed having at least one heterologous gene encoding for the expression of a protein that is active against a first pest and, in addition, having adhered thereto a composition comprising at least one pyrethrin or synthetic pyrethroid and at least one other insecticide selected from the group consisting of an oxadiazine derivative, a chloronicotinyl, a nitroguanidine, a pyrrol, a pyrazone, a diacylhydrazine, a triazole, a biological/ fermentation product, a phenyl pyrazole, organophosphate and a carbamate, where the composition is present in an amount effective to provide protection to the shoots and foliage of the plant against damage by at least one second pest. [0023] The invention is also directed to a novel method for treating an unsown seed to prevent damage by a pest to the seed and/or shoots and foliage of a plant grown from the seed, the method comprising contacting the unsown seed with a composition comprising at least one pyrethrin or synthetic pyrethroid and at least one other insecticide selected from the group consisting of an oxadiazine derivative, a chloronicotinyl, a nitroguanidine, a pyrrol, a pyrazone, a diacylhydrazine, a triazole, a biological/fermentation product, a phenyl pyrazole, an organophosphate and a carbamate, provided that when the other insecticide is an oxadizine derivative, the pyrethroid is selected from the group consisting of taufluvalinate, flumethrin, trans-cyfluthrin, kadethrin, bioresmethrin, tetramethrin, phenothrin, empenthrin, cyphenothrin, prallethrin, imiprothrin, allethrin and bioallethrin. [0024] Among the advantages found to be achieved by the present invention, therefore, may be noted the provision of a method for the control of pest damage to seeds and/or shoots and foliage of plants without the requirement of applying a pesticide at the time of sowing the seed, either as a surface incorporated band, or in-furrow, for example, or requiring a later field application of a pesticide during plant growth; the provision of a method for pest control that reduces the amount of pesticide that is required for the provision of a certain level of protection to the plant; and the provision of method that can be coupled with the biopesticidal activity of transgenic plants to selectively broaden the scope of protection that is provided for the shoots and foliage of the transgenic. #### DETAILED DESCRIPTION OF THE PREFFERED EMBODIMENTS [0025] In accordance with the present invention, it has been discovered that treatment of unsown plant seeds with a composition that includes a specific combination of insecticides not only protects the seeds themselves, but—surprisingly—also provides post-emergent control of pests that feed on or otherwise damage the shoots and/or foliage of the plant. The combination of insecticides that has been found to achieve such results is a combination of a pyrethrin or synthetic pyrethroid as one component, and with another component comprising one or more of certain other insecticides selected from the group consisting of an oxadiazine derivative, a chloronicotinyl, such as imidacloprid, acetamiprid, and nitenpyram; a nitroguanidine; a pyrrol, such as chlorfenapyr; a pyrazole, such as tebufenpyrad; a diacylhydrazine, such as tebufenozide, methoxyfenozide, and halofenozide; a triazole, such as triazamate; a biological/ fermentation product, such as avermectin and spinosad; a phenyl pyrazole, such as fipronil; an organophosphate, such as acephate, fenamiphos, diazinon, chlorpyrifos, chlorpyrifon-methyl and malathion; and a carbamate, such as carbaryl, aldicarb, carbofuran, thiodicarb and oxamyl. It is preferred, however, that if the other insecticide is an oxadiazine derivative, the pyrethroid should be selected from the group consisting of taufluvalinate, flumethrin, transcyfluthrin, kadethrin, bioresmethrin, tetramethrin, phenothrin, empenthrin, cyphenothrin, prallethrin, imiprothrin, allethrin and bioallethrin. [0026] In preferred embodiments, the combination of the insecticides provides unexpectedly superior protection in that the combination of the insecticides provides a level of protection to the seed and/or the plant that is superior to the level of protection that—based on the current state of the art—would be predicted from the protection provided by the individual components applied separately. This synergistic activity reduces the total amount of pesticide that is required to provide a certain level of protection. In addition to being more economical to use, the ability to use a reduced
amount of pesticide for a given level of protection is advantageous in that seed treatments with reduced amounts of insecticides are less phytotoxic to the seed than when the insecticides are used separately. [0027] Another advantage of the novel treatment is that it can be used with transgenic seeds of the type having a heterologous gene encoding for the expression of a pesticidal protein in the transgenic plant that grows from the seed. Treating such a seed with a pesticide provides the ability to protect against one pest with the transgenic trait and to provide surprisingly enhanced protection against the same pest, and/or to protect against other pests with the subject combination of insecticides. [0028] As used herein, the terms "pesticidal effect" and "pesticidal activity" mean any direct or indirect action on the target pest that results in reduced feeding damage on the seeds, roots, shoots and foliage of plants grown from treated seeds as compared to plants grown from untreated seeds. The terms "active against a (first or second) pest", also have the same meaning. Such direct or indirect actions include inducing death of the pest, repelling the pest from the plant seeds, roots, shoots and/or foliage, inhibiting feeding of the pest on, or the laying of its eggs on, the plant seeds, roots, shoots and/or foliage, and inhibiting or preventing reproduction of the pest. The term "insecticidal activity" has the same meaning as pesticidal activity, except it is limited to those instances where the pest is an insect. When the term "pesticide" is used herein, it is not meant to include pesticides that are produced by the particular seed or the plant that grows from the particular seed that is treated with the pesticide. [0029] As used herein, the "shoots and foliage" of a plant are to be understood to be the shoots, stems, branches, leaves and other appendages of the stems and branches of the plant after the seed has sprouted, but not including the roots of the plant. It is preferable that the shoots and foliage of a plant be understood to be those non-root parts of the plant that have grown from the seed and are located a distance of at least one inch away from the seed from which they emerged (outside the region of the seed), and more preferably, to be the non-root parts of the plant that are at or above the surface of the soil. As used herein, the "region of the seed" is to be understood to be that region within about one inch of the seed. [0030] Pesticides suitable for use in the invention include pyrethrins and synthetic pyrethroids; oxadizine derivatives; chloronicotinyls; nitroguanidine derivatives; triazoles; organophosphates; pyrrols; pyrazoles; phenyl pyrazoles; diacylhydrazines; biological/fermentation products; and carbamates. Further information about pesticides of the types listed above can be found in *The Pesticide Manual*, 11th Ed., C. D. S. Tomlin, Ed., British Crop Protection Council, Farnham, Surry, UK (1997). [0031] Pyrethroids that are useful in the present composition include pyrethrins and synthetic pyrethroids. The pyrethrins that are preferred for use in the present method include, without limitation, 2-allyl-4-hydroxy-3-methyl-2-cyclopenten-1-one ester of 2,2-dimethyl-3-(2methyl propenyl)-cyclopropane carboxylic acid, and/or (2-methyl-1-propenyl)-2-methoxy-4-oxo-3-(2 propenyl)-2-cyclopenten-1-yl ester and mixtures of cis and trans isomers thereof (Chemical Abstracts Service Registry Number ("CAS RN") 8003-34-7). [0032] Synthetic pyrethroids that are preferred for use in the present invention include (s)-cyano(3-phenoxyphenyl-)methyl 4-chloro alpha (1-methylethyl)benzeneacetate (fenvalerate; CAS RN 51630-58-1); (S)-cyano (3-phenoxyphenyl)methyl (S)-4-chloro-alpha-(1methylethyl)benzeneacetate (esfenvalerate; CAS RN 66230-04-4); (3-phenoxyphenyl)methyl(+)cis-trans-3-(2,2dichoroethenyl)-2,2-dimethylcyclopropanecarboxylate (permethrin; CAS RN 52645-53-1); (±) alpha-cyano-(3-phenoxyphenyl)methyl(+)-cis,trans-3-(2,2-dichloroethenyl)-2,2dimethyl-cyclopropane carboxylate (cypermethrin; CAS RN 52315-07-8); (beta-cypermethrin; CAS RN 65731-84-2); (theta cypermethrin; CAS RN 71697-59-1); S-cyano (3-phenoxyphenyl)methyl (±) cis/trans 3-(2,2-dichloroethenyl) 2,2 dimethylcyclopropane carboxylate (zeta-cypermethrin; CAS RN 52315-07-8); (s)-alpha-cyano-3-phenoxybenzyl (IR,3R)-3-(2,2-dibromovinyl)-2,2-dimethyl cyclopropanecarboxylate (deltamethrin; CAS RN 52918-63-5); alpha-cyano-3-phenoxybenzyl 2,2,3,3,-tetramethyl cyclopropoanecarboxylate (fenpropathrin; CAS RN 64257-84-7); (RS)-alpha-cyano-3-phenoxybenzyl(R)-2-[2-chloro-4-(trifluoromethyl)anilino]-3-methylbutanoate (tau-fluvalinate; CAS RN 102851-06-9); (2,3,5,6-tetrafluoro-4methylphenyl)-methyl-(1 alpha, 3 alpha)-(Z)-(±)-3-(2chloro-3,3,3-trifluoro-1-propenyl)-2,2dimethylcyclopropanecarboxylate (tefluthrin; CAS RN 79538-32-2); (±)-cyano (3-phenoxyphenyl)methyl (±)-4-(difluoromethoxy)-alpha-(1-methyl ethyl)benzeneacetate (flucythrinate; CAS RN 70124-77-5); cyano(4-fluoro-3phenoxyphenyl)methyl 3-[2-chloro-2-(4-chlorophenyl)ethenyl]-2,2-dimethylcyclopropanecarboxylate (flumethrin; CAS RN 69770-45-2); cyano(4-fluoro-3-phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)-2,2-dimethyl-cyclopropanedarboxylate (cyfluthrin; CAS RN 68359-37-5); (beta cyfluthrin; CAS RN 68359-37-5); (transfluthrin; CAS RN 118712-89-3); (S)-alpha-cyano-3-phenoxybenzyl(Z)-(IRcis)-2,2-dimethyl-3-[2-(2,2,2-trifluoro-trifluoromethylethoxycarbonyl)vinyl]cyclopropane carboxylate (acrinathrin; CAS RN 101007-06-1); (IR cis) S and (IS cis) R enantiomer isomer pair of alpha-cyano-3-phenoxybenzyl-3- (2,2dichlorovinyl)-2,2-dimethylcyclopropane carboxylate (alpha-cypermethrin; CAS RN 67375-30-8); [IR, 3S)3(1'RS)(1',2',2',2'-tetrabromoethyl)]-2,2-dimethyl cyclo- propanecarboxylic acid (s)-alpha-cyano-3-phenoxybenzyl ester (tralomethrin; CAS RN 66841-25-6); cyano-(3-phe- noxyphenyl)methyl 2,2-dichloro-1-(4-ethoxyphenyl)cyclopropane carboxylate (cycloprothrin; CAS RN 63935-38-6); $[1\alpha,3\alpha(Z)]$ -(±)-cyano-(3-phenoxyphenyl)methyl chloro-3,3,3-trifluoro-1-propenyl)-2,2-cimethylcyclopropanecarboxylate (cyhalothrin; CAS RN 68085-85-8); [1 alpha (s), 3 alpha(z)]-cyano(3-phenoxyphenyl)methyl-3-(2chloro-3,3,3-trifluoro-1-propenyl)-2,2-dimethylcyclopropane carboxylate (lambda cyhalothrin; CAS RN 91465-08-6); (2-methyl [1,1'-biphenyl]-3-yl)methyl 3-(2-chloro-3,3,3trifluoro-1-propenyl)-2,2-dimethylcyclopropanecarboxylate (bifenthrin; CAS RN 82657-04-3); 5-1-benzyl-3-furylmethyl-d-cis(1R,3S,E)2,2-dimethyl-3-(2-oxo,-2,2,4,5 tetrahydro thiophenylidenemethyl)cyclopropane carboxylate (kadethrin, RU15525; CAS RN 58769-20-3); [5-(phenyl methyl)-3-furanyl]-3-furanyl 2,2-dimethyl-3-(2-methyl-1-propenyl-)cyclopropane carboxylate (resmethrin; CAS RN 10453-86-8); (1R-trans)-[5-(phenylmethyl)-3-furanyl]methyl 2,2dimethyl-3-(2-methyl-1-propenyl)cyclopropanecarboxylate (bioresmethrin; CAS RN 28434-01-7); 3,4,5,6-tetra hydrophthalim idomethyl-(IRS)-cis-trans-chrysanthemate (tetramethrin; CAS RN 7696-12-0); 3-phenoxybenzyl-d,I-cis, 2,2-dimethyl-3-(2-methylpropenyl)cyclopropane trans carboxylate (phenothrin; CAS RN 26002-80-2); [0033] In one embodiment of the present invention, particularly preferred synthetic pyrethroids are tefluthrin, lambda cyhalothrin, bifenthrin, permethrin and cyfluthrin. Even more preferred synthetic pyrethroids are tefluthrin and lambda cyhalothrin. (empenthrin; CAS RN 54406-48-3); (cyphenothrin; CAS RN 39515-40-7); (prallethrin; CAS RN 23031-36-9); (imi- prothrin; CAS RN 72963-72-5); (RS)-3-allyl-2-methyl-4- oxcyclopent-2-enyl-(1A,3R; 1R,3S)-2,2-dimethyl-3-(2-me- thylprop-1-enyl)cyclopropane carboxylate (allethrin; CAS RN 584-79-2); (bioallethrin; CAS RN 584-79-2); and (ZXI8901; CAS RN 160791-64-0). It is believed that mix- tures of one or more of the aforementioned synthetic pyre- throids can also be used in the present invention. [0034] In another embodiment of the invention—where an oxadiazine derivative is used as one of the combination of insecticides—the preferred synthetic pyrethroid is selected from the group consisting of taufluvalinate, flumethrin, trans-cyfluthrin, kadethrin, bioresmethrin, tetramethrin, phenothrin, empenthrin, cyphenothrin, prallethrin, imiprothrin, allethrin and bioallethrin. [0035] The pyrethrins and synthetic pyrethroids that are useful in the present compositions can be of any grade or purity that pass in the trade as pyrethrins and synthetic pyrethroids. Other materials that accompany the pyrethrins and synthetic pyrethroids in commercial preparations as impurities can be tolerated in the subject compositions, as long as such other materials do not destabilize the composition or significantly reduce or destroy the activity of any of the insecticide components against the target pest. One of ordinary skill in the art of the production of insecticides can readily identify those impurities that can be tolerated and those that cannot. [0036] Insecticides that are oxadiazine derivatives are useful as one of the components of the subject composition. Oxadizine derivatives that are preferred for use in the present invention include 5-(2-chloropyrid-5-ylmethyl)-3-methyl-4-nitroiminoperhydro-1,3,5-oxadiazine; 3-methyl- 4-nitroimino-5-(1-oxido-3-pyridinomethyl)perhydro-1,3,5-oxadiazine; 5-(2-chloro-1-oxido-5-pyridiniomethyl)-3-methyl-4-nitroiminoperhydro-1,3,5-oxidiazine; and 3-methyl-5-(2-methylpyrid-5-ylmethyl)-4-nitroiminoperhydro-1,3,5-oxadiazine. [0037] Chloronicotinyl insecticides are also useful as one of the components of the subject composition. Chloronicotinyls that are preferred for use in the subject composition include acetamiprid ((E)-N-[(6-chloro-3-pyridinyl)methyl]-N'-cyano-N-methyleneimidamide; CAS RN 135410-20-7); imidacloprid (1-[(6-chloro-3-pyridinyl)methol]-N-nitro-2-imidazolidinimime; CAS RN 138261-41-3); and nitenpyram (N-[(6-chloro-3-pyridinyl)methyl]-N-ethyl-N'-methyl-2-nitro-1,1-ethenediamine; CAS RN 120738-89-8). [0038] Nitroguanidine
insecticides are useful as one of the components of the present combination. Nitroguanidines that are preferred for use in the present invention include MTI 446 (nidinotefuran). [0039] Pyrrols, pyrazoles and phenyl pyrazoles that are useful in the present composition include those that are described in U.S. Pat. No. 5,952,358. Preferred pyrazoles include chlorfenapyr (4-bromo-2-(4-chlorophenyl)-1-ethoxymethyl-5-trifluoromethylpyrrole-3-carbonitrile; CAS RN 122453-73-0); fenpyroximate ((E)-1,1-dimethylethyl-4 [[[[(1,3-dimethyl-5-phenoxy-1H-pyrazole-4-yl)methylene] amino]oxy]methyl]benzoate; CAS RN 111812-58-9); and tebufenpyrad (4-chloro-N[[4-1,1-dimethylethyl)phenyl]methyl]-3-ethyl-1-methyl-1H-pyrazole-5-carboxamide; CAS RN 119168-77-3). A preferred phenyl pyrazole is fipronil (5-amino-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(1R, S)-(trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile; CAS RN 120068-37-3). [0040] Diacylhydrazines that are useful in the present invention include halofenozide (4-chlorobenzoate-2-benzoyl-2-(1,1-dimethylethyl)-hydrazide; CAS RN 112226-61-6); methoxyfenozide (RH-2485; N-tert-butyl-N'-(3-methoxy-0-toluoyl)-3,5-xylohydrazide; CAS RN 161050-58-4); and tebufenozide (3,5-dimethylbenzoic acid 1-(1,1-dimethylethyl)-2,(4-ethylbenzoyl)hydrazide; CAS RN 112410-23-8). [0041] Triazoles, such as amitrole (CAS RN 61-82-5) and triazamate are useful in the composition of the present invention. A preferred triazole is triazamate (ethyl[[1-[(dimethylamino)carbonyl]-3-(1,1-dimethylethyl)-1H-1,2,4-triazol-5-yl]thio]acetate; CAS RN 112143-82-5). [0042] Biological/fermentation products, such as avermectin (abamectin; CAS RN 71751-41-2) and spinosad (XDE-105, CAS RN 131929-60-7) are useful in the present composition. [0043] Organophosphate insecticides are also useful as one of the components of the composition of the present invention. Preferred organophophate insecticides include acephate (CAS RN 30560-19-1); chlorpyrifos (CAS RN 2921-88-2); chlorpyrifos-methyl (CAS RN 5598-13-0); diazinon (CAS RN 333-41-5); fenamiphos (CAS RN 22224-92-6); and malathion (CAS RN 121-75-5). [0044] In addition, carbamate insecticides are useful in the subject composition. Preferred carbamate insecticides are aldicarb (CAS RN 116-06-3); carbaryl (CAS RN 63-25-2); carbofuran (CAS RN 1563-66-2); oxamyl (CAS RN 23135-22-0) and thiodicarb (CAS RN 59669-26-0). [0045] When an insecticide is described herein, it is to be understood that the description is intended to include salt forms of the insecticide as well as any isomeric and/or tautomeric form of the insecticide that exhibits the same insecticidal activity as the form of the insecticide that is described. [0046] One embodiment of this invention comprises treating a seed with a composition comprising at least one pyrethrin or synthetic pyrethroid and at least one other insecticide selected from the group consisting of a chloronicotinyl, a nitroguanidine, a pyrrol, a pyrazole, a diacylhydrazine, a triazole, a biological/fermentation product, a phenyl pyrazole, an organophosphate and a carbamate. The treatment is applied to the seed prior to sowing the seed so that the sowing operation is simplified. In this manner, seeds can be treated, for example, at a central location and then dispersed for planting. This permits the person who plants the seeds to avoid the handling and use of insecticides some of which can be toxic—and to merely handle and plant the treated seeds in a manner that is conventional for regular untreated seeds. It is preferred, in some combinations that at least one of the pyrethroid and the other insecticide is a systemic insecticide. [0047] In this embodiment, a seed can be treated with any one of the combinations of insecticides that are shown in Table 1. TABLE 1 Combinations of pyrethroids and other non-pyrethroid insecticides that provide synergistic insecticidal activity^a. | COMPOSITION NO. | PYRETHROID | OTHER INSECTICIDE | |-----------------|--------------------|---------------------| | 1 | lambda-cyhalothrin | acetamiprid | | 2 | lambda-cyhalothrin | imidacloprid | | 3 | lambda-cyhalothrin | nitenpyram | | 4 | lambda-cyhalothrin | nidinotefuran | | 5 | lambda-cyhalothrin | chlorfenapyr | | 6 | lambda-cyhalothrin | fenpyroximate | | 7 | lambda-cyhalothrin | tebufenpyrad | | 8 | lambda-cyhalothrin | fipronil | | 9 | lambda-cyhalothrin | tebufenozide | | 10 | lambda-cyhalothrin | methoxyfenozide | | 11 | lambda-cyhalothrin | halofenozide | | 12 | lambda-cyhalothrin | triazamate | | 13 | lambda-cyhalothrin | avermectin | | 14 | lambda-cyhalothrin | spinosad | | 15 | lambda-cyhalothrin | acephate | | 16 | lambda-cyhalothrin | fenamiphos | | 17 | lambda-cyhalothrin | diazinon | | 18 | lambda-cyhalothrin | chlorpyrifos | | 19 | lambda-cyhalothrin | chlorpyrifos-methyl | | 20 | lambda-cyhalothrin | malathion | | 21 | lambda-cyhalothrin | carbaryl | | 22 | lambda-cyhalothrin | aldicarb | | 23 | lambda-cyhalothrin | carbofuran | | 24 | lambda-cyhalothrin | thiodicarb | | 25 | lambda-cyhalothrin | oxamyl | | 26 | tefluthrin | acetamiprid | | 27 | tefluthrin | imidacloprid | | 28 | tefluthrin | nitenpyram | | 29 | tefluthrin | nidinotefuran | | 30 | tefluthrin | chlorfenapyr | | 31 | tefluthrin | fenpyroximate | | 32 | tefluthrin | tebufenpyrad | | 33 | tefluthrin | fipronil | TABLE 1-continued ## TABLE 1-continued | OMPOSITION
NO. | PYRETHROID | OTHER INSECTICIDE | COMPOSITIO
NO. | N
PYRETHROID | OTHER INSECTICII | |-------------------|----------------------------|-----------------------------|-------------------|--------------------------|----------------------| | 34 | tefluthrin | tebufenozide | 104 | fenvalerate | nidinotefuran | | 35 | tefluthrin | methoxyfenozide | 105 | fenvalerate | chlorfenapyr | | 36 | tefluthrin | halofenozide | 106 | fenvalerate | fenpyroximate | | 37 | tefluthrin | triazamate | 107 | fenvalerate | tebufenpyrad | | 38 | tefluthrin | avermectin | 108 | fenvalerate | fipronil | | 39 | tefluthrin | spinosad | 109 | fenvalerate | tebufenozide | | 40 | tefluthrin | acephate | 110 | fenvalerate | methoxyfenozide | | 41 | tefluthrin | fenamiphos | 111 | fenvalerate | halofenozide | | 42 | tefluthrin | diazinon | 112 | fenvalerate | triazamate | | 43 | tefluthrin | chlorpyrifos | 113 | fenvalerate | avermectin | | 44 | tefluthrin | chlorpyrifos-methyl | 114 | fenvalerate | spinosad | | 45 | tefluthrin | malathion | 115 | fenvalerate | acephate | | 46 | tefluthrin | carbaryl | 116 | fenvalerate | fenamiphos | | 47 | tefluthrin | aldicarb | 117 | fenvalerate | diazinon | | 48 | tefluthrin | carbofuran | 118 | fenvalerate | chlorpyrifos | | 49 | tefluthrin | thiodicarb | 119 | fenvalerate | chlorpyrifos-methyl | | 50 | tefluthrin | oxamyl | 120 | fenvalerate | malathion | | 51 | cyfluthrin | acetamiprid | 121 | fenvalerate | carbaryl | | 52 | cyfluthrin | imidacloprid | 122 | fenvalerate | aldicarb | | 53 | cyfluthrin | nitenpyram | 123 | fenvalerate | carbofuran | | 54 | cyfluthrin | nidinotefuran | 124 | fenvalerate | thiodicarb | | 55 | cyfluthrin | chlorfenapyr | 125 | fenvalerate | oxamyl | | 56 | cyfluthrin | fenpyroximate | 126 | esfenvalerate | acetamiprid | | 57 | cyfluthrin | tebufenpyrad | 127 | esfenvalerate | imidacloprid | | 58 | cyfluthrin | fipronil | 128 | esfenvalerate | nitenpyram | | 59 | cyfluthrin | tebufenozide | 129 | esfenvalerate | nidinotefuran | | 60 | cyfluthrin | methoxyfenozide | 130 | esfenvalerate | chlorfenapyr | | 61 | cyfluthrin | halofenozide | 131 | esfenvalerate | fenpyroximate | | 62 | cyfluthrin | triazamate | 132 | esfenvalerate | tebufenpyrad | | 63 | cyfluthrin | avermectin | 133 | esfenvalerate | fipronil | | 64 | cyfluthrin | spinosad | 134 | esfenvalerate | tebufenozide | | 65 | cyfluthrin | acephate | 135 | esfenvalerate | methoxyfenozide | | 66 | cyfluthrin | fenamiphos | 136 | esfenvalerate | halofenozide | | 67 | cyfluthrin | diazinon | 137 | esfenvalerate | triazamate | | 68 | cyfluthrin | chlorpyrifos | 138 | esfenvalerate | avermectin | | 69 | cyfluthrin | chlorpyrifos-methyl | 139 | esfenvalerate | spinosad | | 70 | cyfluthrin | malathion | 140 | esfenvalerate | acephate | | 71 | cyfluthrin | carbaryl | 141 | esfenvalerate | fenamiphos | | 72 | cyfluthrin | aldicarb | 142 | esfenvalerate | diazinon | | 73 | cyfluthrin | carbofuran | 143 | esfenvalerate | chlorpyrifos | | 74 | cyfluthrin | thiodicarb | 144 | esfenvalerate | chlorpyrifos-methyl | | 75 | cyfluthrin | oxamyl | 145 | esfenvalerate | malathion | | 76 | bifenthrin | acetamiprid | 146 | esfenvalerate | carbaryl | | 77 | bifenthrin | imidacloprid | 147 | esfenvalerate | aldicarb | | 78 | bifenthrin | nitenpyram | 148 | esfenvalerate | carbofuran | | 79 | bifenthrin | nidinotefuran | 149 | esfenvalerate | thiodicarb | | 80 | bifenthrin | chlorfenapyr | 150 | esfenvalerate | oxamyl | | 81 | bifenthrin | fenpyroximate | 151 | permethrin | acetamiprid | | 82 | bifenthrin | tebufenpyrad | 152 | permethrin | imidacloprid | | 83 | bifenthrin | fipronil | 153 | permethrin | nitenpyram | | 84 | bifenthrin | tebufenozide | 154 | permethrin | nidinotefuran | | 85 | bifenthrin | methoxyfenozide | 155 | permethrin | chlorfenapyr | | 86 | bifenthrin | halofenozide | 156 | permethrin | fenpyroximate | | 87 | bifenthrin | triazamate | 157 | permethrin | tebufenpyrad | | 88 | bifenthrin | avermectin | 158 | permethrin | fipronil | | 89 | bifenthrin | spinosad | 159 | permethrin | tebufenozide | | 90 | bifenthrin | acephate | 160 | permethrin | methoxyfenozide | | 91 | bifenthrin | fenamiphos | 161 | permethrin | halofenozide | | 92 | bifenthrin | diazinon | 162 | permethrin | triazamate | | 93 | bifenthrin | chlorpyrifos | 163 | permethrin | avermectin | | 94 | bifenthrin | chlorpyrifos-methyl | 164 | permethrin | spinosad | | 95 | bifenthrin | malathion | 165 | permethrin | acephate | | 96 | bifenthrin | carbaryl | 166 | permethrin | fenamiphos | | 90 | bifenthrin | aldicarb | 167 | permethrin | diazinon | | 98 | bifenthrin |
aidicarb
carbofuran | 168 | permethrin
permethrin | chlorpyrifos | | 98
99 | bifenthrin | thiodicarb | 169 | | | | | | | | permethrin | chlorpyrifos-methyl | | | bifenthrin | oxamyl | 170 | permethrin | malathion | | 100 | | , T. e. 14 | 4.774 | .1 ' | 1 1 | | 100
101
102 | fenvalerate
fenvalerate | acetamiprid
imidacloprid | 171
172 | permethrin
permethrin | carbaryl
aldicarb | TABLE 1-continued theta-cypermethrin theta-cypermethrin theta-cypermethrin theta-cypermethrin theta-cypermethrin theta-cypermethrin theta-cypermethrin theta-cypermethrin 236 237 238 239 240 241 halofenozide triazamate avermectin fenamiphos chlorpyrifos spinosad acephate diazinon ### TABLE 1-continued | insecticides | s that provide synergist | ic insecticidal activity ^a . | insecticides | s that provide synergist | ic insecticidal activity ^a . | |--------------------|--------------------------|---|-----------------|--------------------------|---| | COMPOSITION
NO. | PYRETHROID | OTHER INSECTICIDE | COMPOSITION NO. | PYRETHROID | OTHER INSECTICIDI | | 174 | permethrin | thiodicarb | 244 | theta-cypermethrin | chlorpyrifos-methyl | | 175 | permethrin | oxamyl | 245 | theta-cypermethrin | malathion | | 176 | cypermethrin | acetamiprid | 246 | theta-cypermethrin | carbaryl | | 177 | cypermethrin | imidacloprid | 247 | theta-cypermethrin | aldicarb | | 178 | cypermethrin | nitenpyram | 248 | theta-cypermethrin | carbofuran | | 179 | cypermethrin | nidinotefuran | 249 | theta-cypermethrin | thiodicarb | | 180 | cypermethrin | chlorfenapyr | 250 | theta-cypermethrin | oxamyl | | 181 | cypermethrin | fenpyroximate | 251 | zeta-cypermethrin | acetamiprid | | 182 | cypermethrin | tebufenpyrad | 252 | zeta-cypermethrin | imidacloprid | | 183 | cypermethrin | fipronil | 253 | zeta-cypermethrin | nitenpyram | | 184 | cypermethrin | tebufenozide | 254 | zeta-cypermethrin | nidinotefuran | | 185 | cypermethrin | methoxyfenozide | 255 | zeta-cypermethrin | chlorfenapyr | | 186 | cypermethrin | halofenozide | 256 | zeta-cypermethrin | fenpyroximate | | 187 | cypermethrin | triazamate | 257 | zeta-cypermethrin | tebufenpyrad | | 188 | cypermethrin | avermectin | 258 | zeta-cypermethrin | fipronil | | 189 | cypermethrin | spinosad | 259 | zeta-cypermethrin | tebufenozide | | 190 | cypermethrin | acephate | 260 | zeta-cypermethrin | methoxyfenozide | | 191 | cypermethrin | fenamiphos | 261 | zeta-cypermethrin | halofenozide | | 192 | cypermethrin | diazinon | 262 | zeta-cypermethrin | triazamate | | 193 | cypermethrin | chlorpyrifos | 263 | zeta-cypermethrin | avermectin | | 194 | cypermethrin | chlorpyrifos-methyl | 264 | zeta-cypermethrin | spinosad | | 195 | cypermethrin | malathion | 265 | zeta-cypermethrin | acephate | | 196 | cypermethrin | carbaryl | 266 | zeta-cypermethrin | fenamiphos | | 197 | cypermethrin | aldicarb | 267 | zeta-cypermethrin | diazinon | | 198 | cypermethrin | carbofuran | 268 | zeta-cypermethrin | chlorpyrifos | | 199 | cypermethrin | thiodicarb | 269 | | * * | | 200 | | | 270 | zeta-cypermethrin | chlorpyrifos-methyl
malathion | | 201 | cypermethrin | oxamyl | 270 | zeta-cypermethrin | carbaryl | | | beta-cypermethrin | acetamiprid | 272 | zeta-cypermethrin | | | 202 | beta-cypermethrin | imidacloprid | | zeta-cypermethrin | aldicarb | | 203 | beta-cypermethrin | nitenpyram | 273 | zeta-cypermethrin | carbofuran | | 204 | beta-cypermethrin | nidinotefuran | 274 | zeta-cypermethrin | thiodicarb | | 205 | beta-cypermethrin | chlorfenapyr | 275 | zeta-cypermethrin | oxamyl | | 206 | beta-cypermethrin | fenpyroximate | 276 | deltamethrin | acetamiprid | | 207 | beta-cypermethrin | tebufenpyrad | 277 | deltamethrin | imidacloprid | | 208 | beta-cypermethrin | fipronil | 278 | deltamethrin | nitenpyram | | 209 | beta-cypermethrin | tebufenozide | 279 | deltamethrin | nidinotefuran | | 210 | beta-cypermethrin | methoxyfenozide | 280 | deltamethrin | chlorfenapyr | | 211 | beta-cypermethrin | halofenozide | 281 | deltamethrin | fenpyroximate | | 212 | beta-cypermethrin | triazamate | 282 | deltamethrin | tebufenpyrad | | 213 | beta-cypermethrin | avermectin | 283 | deltamethrin | fipronil | | 214 | beta-cypermethrin | spinosad | 284 | deltamethrin | tebufenozide | | 215 | beta-cypermethrin | acephate | 285 | deltamethrin | methoxyfenozide | | 216 | beta-cypermethrin | fenamiphos | 286 | deltamethrin | halofenozide | | 217 | beta-cypermethrin | diazinon | 287 | deltamethrin | triazamate | | 218 | beta-cypermethrin | chlorpyrifos | 288 | deltamethrin | avermectin | | 219 | beta-cypermethrin | chlorpyrifos-methyl | 289 | deltamethrin | spinosad | | 220 | beta-cypermethrin | malathion | 290 | deltamethrin | acephate | | 221 | beta-cypermethrin | carbaryl | 291 | deltamethrin | fenamiphos | | 222 | beta-cypermethrin | aldicarb | 292 | deltamethrin | diazinon | | 223 | beta-cypermethrin | carbofuran | 293 | deltamethrin | chlorpyrifos | | 224 | beta-cypermethrin | thiodicarb | 294 | deltamethrin | chlorpyrifos-methyl | | 225 | beta-cypermethrin | oxamyl | 295 | deltamethrin | malathion | | 226 | theta-cypermethrin | acetamiprid | 296 | deltamethrin | carbaryl | | 227 | theta-cypermethrin | imidacloprid | 297 | deltamethrin | aldicarb | | 228 | theta-cypermethrin | nitenpyram | 298 | deltamethrin | carbofuran | | 229 | theta-cypermethrin | nidinotefuran | 299 | deltamethrin | thiodicarb | | 230 | theta-cypermethrin | chlorfenapyr | 300 | deltamethrin | oxamyl | | 231 | theta-cypermethrin | fenpyroximate | 301 | fenpropathrin | acetamiprid | | 232 | theta-cypermethrin | tebufenpyrad | 302 | fenpropathrin | imidacloprid | | 232 | theta-cypermethrin | fipronil | 303 | fenpropathrin | nitenpyram | | 234 | theta-cypermethrin | tebufenozide | 303 | fenpropathrin | nidinotefuran | | 235 | theta-cypermethrin | methoxyfenozide | 305 | fenpropathrin | chlorfenapyr | | 236 | theta-cypermethrin | halofenozide | 306 | fennropathrin | fennyroximate | | | | | | | | 306 307 308 309 310 311 312 fenpropathrin fenpropathrin fenpropathrin fenpropathrin fenpropathrin fenpropathrin fenpropathrin fenpropathrin fenpyroximate tebufenpyrad tebufenozide halofenozide triazamate avermectin methoxyfenozide fipronil TABLE 1-continued ## TABLE 1-continued | Combinations of pyrethroids and other non-pyrethroid | Combinations of pyrethroids and other non-pyrethroid | |--|--| | insecticides that provide synergistic insecticidal activity ^a . | insecticides that provide synergistic insecticidal activity ^a . | | | | | 314 (sepopapathris spenate) 315 (sepopapathris secpatate) 316 (sepopapathris secpatate) 317 (sepopapathris secpatate) 318 (sepopapathris secpatate) 318 (sepopapathris secpathris secpathris sepopathris sepopathr | COMPOSITION
NO. | N
PYRETHROID | OTHER INSECTICIDE | COMPOSITION
NO. | I
PYRETHROID | OTHER INSECTICIDE | |--|--------------------|-----------------|-------------------|--------------------|------------------|-------------------| | 316 (empoputhrin diazione) 318 (empoputhrin diazione) 318 (empoputhrin chloryprifes methy) 320 (empoputhrin chloryprifes methy) 321 (empoputhrin chloryprifes methy) 322 (empoputhrin chloryprifes methy) 323 (empoputhrin chloryprifes methy) 324 (empoputhrin chloryprifes methy) 325 (empoputhrin chloryprifes methy) 326 (empoputhrin chloryprifes methy) 327 (empoputhrin chloryprifes methy) 328 (empoputhrin chloryprifes methy) 329 (empoputhrin chloryprifes methy) 320 (empoputhrin chloryprifes methy) 320 (empoputhrin chloryprifes methy) 321 (empoputhrin chloryprifes methy) 322 (empoputhrin chloryprifes methy) 323 (empoputhrin chloryprifes methy) 324 (empoputhrin chloryprifes methy) 325 (empoputhrin chloryprifes methy) 326 (empoputhrin chloryprifes methy)
327 (empoputhrin chloryprifes methy) 328 (empoputhrin chloryprifes methy) 329 (empoputhrin chloryprifes methy) 320 (empoputhrin chloryprifes methy) 321 (empoputhrin chloryprifes methy) 322 (empoputhrin chloryprifes methy) 323 (empoputhrin chloryprifes methy) 324 (empoputhrin chloryprifes methy) 325 (empoputhrin chloryprifes methy) 326 (empoputhrin chloryprifes methy) 327 (empoputhrin chloryprifes methy) 328 (empoputhrin chloryprifes methy) 329 (empoputhrin chloryprifes methy) 320 (empoputhrin chloryprifes methy) 321 (empoputhrin chloryprifes methy) 322 (empoputhrin chloryprifes methy) 323 (empoputhrin chloryprifes methy) 324 (empoputhrin chloryprifes methy) 325 (empoputhrin chloryprifes methy) 326 (empoputhrin chloryprifes methy) 327 (empoputhrin chloryprifes methy) 328 (empoputhrin chloryprifes methy) 329 (empoputhrin chloryprifes methy) 320 (empoputhrin chloryprifes methy) 321 (empoputhrin chloryprifes methy) 322 (empoputhrin chloryprifes methy) 323 (empoputhrin chloryprifes methy) 324 (empoputhrin chloryprifes methy) 325 (empoputhrin chloryprifes methy) 326 (empoputhrin chloryprifes methy) 327 (empoputhrin chloryprifes methy) 328 (empoputhrin chloryprifes methy) 329 (empoputhrin chloryprifes methy) 320 (empoputhrin chloryprifes methy) 320 (empoputhrin chloryprifes m | 314 | fenpropathrin | spinosad | 384 | flumethrin | tebufenozide | | 317 fenpoputhrin diszarone 318 fumethrin avermencin 319 fenpoputhrin chlopyritis-methyl 389 flumethrin avermencin 319 fenpoputhrin chlopyritis-methyl 389 flumethrin avermencin 320 flumethrin aceptate 321 fenpoputhrin chlopyritis-methyl 389 flumethrin aceptate 322 fenpoputhrin chlopyritis-methyl 390 flumethrin aceptate 323 fenpoputhrin chloradiana 324 fenpoputhrin chloradiana 325 flumethrin chloradiana 326 flumethrin chloradiana 327 flumethrin chloradiana 328 flumethrin chloradiana 329 flumethrin chloradiana 320 flumethrin chloradiana 320 flumethrin chloradiana 320 flumethrin chloradiana 321 flumethrin chloradiana 322 flumethrin chloradiana 323 flumethrin chloradiana 323 flumethrin chloradiana 324 fenpoputhrin chloradiana 325 saufhvarilinate chloradiana 326 saufhvarilinate chloradiana 327 flumethrin chloradiana 328 saufhvarilinate flumethrin chloradiana 330 flumethrin chloradiana 331 taufhvarilinate flumethrin chloradiana 332 saufhvarilinate flumerilinate chloradiana 333 saufhvarilinate flumerilinate flumerilinate chloradiana 334 taufhvarilinate flumerilinate flumerilinate chloradiana 335 taufhvarilinate flumerilinate chloradiana 336 taufhvarilinate flumerilinate chloradiana 337 taufhvarilinate flumerilinate chloradiana 338 taufhvarilinate chloradiana 339 taufhvarilinate chloradiana 340 taufhvarilinate chloradiana 341 taufhvarilinate chloradiana 342 taufhvarilinate chloradiana 343 taufhvarilinate chloradiana 344 taufhvarilinate chloradiana 345 taufhvarilinate chloradiana 346 taufhvarilinate chloradiana 347 taufhvarilinate chloradiana 348 taufhvarilinate chloradiana 349 taufhvarilinate chloradiana 340 taufhvarilinate chloradiana 341 taufhvarilinate chloradiana 342 taufhvarilinate chloradiana 343 taufhvarilinate chloradiana 344 taufhvarilinate chloradiana 345 taufhvarilinate chloradiana 346 taufhvarilinate chloradiana 347 taufhvarilinate chloradiana 348 taufhvarilinate chloradiana 349 taufhvarilinate chloradiana 340 taufhvarilinate chloradiana 341 taufhvarilinate chloradiana 342 taufhvarilinate chloradiana 343 tau | 315 | fenpropathrin | acephate | 385 | flumethrin | methoxyfenozide | | 318 feapopashrin chloryy ifos-nethyl 889 flumethrin proposal from the composition and although 300 freapopathrin chlory 301 flumethrin facephate from although 301 flumethrin facephate from a secondary 4 302 flumethrin facephate from a secondary 4 303 flumethrin facephate from a secondary 4 303 flumethrin facephate from a secondary 4 305 flumethrin facephate from a secondary 4 307 seconda | | | | | | | | 319 feeppopshrin molastion 390 flumethrin spinosad carbony 321 feeppopshrin molastion 390 flumethrin decephote feeppopshrin alcicarb 392 flumethrin decephote feeppopshrin alcicarb 492 flumethrin decephote 323 feeppopshrin alcicarb 492 flumethrin decephore 323 feeppopshrin alcicarb 492 flumethrin decephore 323 feeppopshrin blooderin 393 flumethrin decephore 323 flumethrin decephore 324 flumethrin decephore 325 flumethrin decephore 325 flumethrin alcicarb 397 flumethrin decephore 325 flumethrin alcicarb 330 flumethrin alcicarb 330 flumethrin alcicarb 330 flumethrin alcicarb 331 flumethrin alcicarb 333 334 flumethrin alcicarb 335 flumethrin alcicarb 335 flumethrin alcicarb 335 flumethrin alcicarb 336 flumethrin alcicarb 337 flumethrin alcicarb 338 flumethrin alcicarb 338 flumethrin alcicarb 338 flumethrin alcicarb 339 flumethrin alcicarb 330 alcicar | | | | | | | | 230 (espropulatrin carbavy) 991 (lumethrin facephate description) 232 (espropulatrin carbavy) 991 (lumethrin facephate) 232 (espropulatrin carbavay) 991 (lumethrin facephate) 232 (espropulatrin carbavay) 993 (lumethrin facephate) facepha | | | | | | | | S22 | | | | | | | | 232 feappopalarin adelearh 392 flumethrin diaziona diaziona diaziona diaziona 324 feappopalarin carboturan 393 flumethrin chopyyrifos-nethyl 324 feappopalarin coamyl 395 flumethrin malatory 325 flumethrin malatory 326 flumethrin malatory 327 flumethrin malatory 328 flumethrin carbary 328 flumethrin carbary 329 320 flumethrin carbary 320 flumethrin carbary 320 flumethrin carbary 320 flumethrin carbary 321 taufluvalinate chofrenpyr 400 flumethrin carbary 323 taufluvalinate chofrenpyr 401 flumethrin carbary 323 taufluvalinate chofrenpyr 402 beta-cytlubrin carbary 323 taufluvalinate chofrenpyr 401 flumethrin carbary 323 taufluvalinate chofrenpyr 402 beta-cytlubrin chofrenpyr 403 beta-cytlubrin chofrenpyr 403 beta-cytlubrin chofrenpyr 404 beta-cytlubrin chofrenpyr 405 | | | | | | | | saga fengropahrin en carbofuran saga financhrin en cholopyrifos enthyl saga fengropahrin thiodicarb sampl saga fengropahrin thiodicarb sampl saga fengropahrin carabyl fengropahrina fengropahr | | | | | | | | 324 fempropathrin oxamyl 305 flumethrin elhofosarb 325 fempropathrin oxamyl 305 flumethrin elhofosarb 326 taufluvalinate imida-folopid 306 flumethrin extensyl 327 taufluvalinate imida-folopid 307 flumethrin extensyl 328 taufluvalinate imida-folopid 307 flumethrin extensyl 328 taufluvalinate imida-folopid 309 flumethrin extensyl 330 taufluvalinate elhofosamy 400 blanchin extensyl 330 taufluvalinate flumethrin season 300 flumethrin extensyl 330 taufluvalinate flumethrin extensyl 331 taufluvalinate flumethrin flumethrin season 300 flumethrin extensyl 331 taufluvalinate flumethrin flumethrin season 333 taufluvalinate flumethrin flumethrin season 333 taufluvalinate flumethrin deliberoxide 404 beta-cyfluthrin disconsylvamin disconsylvamin and season 335 taufluvalinate halofosoxide 405 beta-cyfluthrin elhofosoxide 406 beta-cyfluthrin elhofosoxide 406 beta-cyfluthrin elhofosoxide 407 beta-cyfluthrin elhofosoxide 408 beta-cyfluthrin elhofosoxide 409 beta-cyfluthrin elhofosoxide 409 beta-cyfluthrin elhofosoxide 333 taufluvalinate acpabre 410 beta-cyfluthrin tebufenoxide 341 taufluvalinate acpabre 410 beta-cyfluthrin tebufenoxide 342 taufluvalinate acpabre 410 beta-cyfluthrin tebufenoxide 343 taufluvalinate acpabre 410 beta-cyfluthrin tebufenoxide 344 taufluvalinate disconsor 441 beta-cyfluthrin tebufenoxide 406 beta-cyfluthrin tebufenoxide 407 beta-cyfluthrin tebufenoxide 408 beta-cyfluthrin tebufenoxide 409 beta-cyfluthrin tebufenoxide 409 beta-cyfluthrin tebufenoxide 400 4 | | | | | | | | 225 feapoppathria oxamy' 396 flumethria enthroy/laste sectamiprid 396 flumethria enthroy/laste sectamiprid 397 flumethria enthroy/laste insidactoprid 397 flumethria aldienth addienth aldienth | | | | | | | | 326 taufluvalinate imidacloprid 397 flumethrin aldicarb taufluvalinate imidacloprid 397 flumethrin aldicarb taufluvalinate inicopyram 398 flumethrin carbofuman didicarb taufluvalinate inicopyram 398 flumethrin carbofuman didicarb taufluvalinate chlorfenapyr 400 flumethrin carbofuman 393 taufluvalinate feny proximate 401 beta-cyfluthrin imidacloprid imidacloprid attaufluvalinate tebufenpyrad 402 beta-cyfluthrin imidacloprid imidacl | | | | | | | | 328 taufluvalinate nidaroeturan 399 flumethrin carboturan thiodicarb taufluvalinate nidaroeturan 399 flumethrin carboturan thiodicarb taufluvalinate chlorfenapyr 400 flumethrin caranyl 330 taufluvalinate chlorfenapyr 401 bete-cyfluthrin inidacloprid 332 taufluvalinate fliproril 402 bete-cyfluthrin inidacloprid 1332 taufluvalinate fliproril 403 bete-cyfluthrin inidacloprid 1334 taufluvalinate mehoxyfenozide 404 bete-cyfluthrin inidacloprid 1334 taufluvalinate mehoxyfenozide 405 bete-cyfluthrin inidacloprid 1335 taufluvalinate mehoxyfenozide 406 bete-cyfluthrin inidacloprid 1336 taufluvalinate triuzamate 407 bete-cyfluthrin fenpyroximate tebufenozide 406 bete-cyfluthrin fenpyroximate 407 bete-cyfluthrin fenpyroximate 407 bete-cyfluthrin fenpyroximate 408 bete-cyfluthrin fenpyroximate 408 bete-cyfluthrin fenpyroximate 409 bete-cyfluthrin fenorial 408 bete-cyfluthrin methoxyfenozide 409 bete-cyfluthrin methoxyfenozide 409 bete-cyfluthrin methoxyfenozide 400 methoxyfen | 326 | | acetamiprid | 396 | flumethrin | carbaryl | | 329 taufhrwalinate chlorfenary 400 flumethrin thiodicarb 331 taufhrwalinate chlorfenary 400 flumethrin catamiprid 331 taufhrwalinate tehufenyrad 402 beta-cyfluthrin imidacloprid imidaclop | 327 | taufluvalinate | imidacloprid | 397 | flumethrin | aldicarb | | 330 taufluvalinate eproximate 401 beta-cytluthrin imidacloprid inside for proximate tebufengyard 402 beta-cytluthrin imidacloprid inside for a final state of the first and an | | taufluvalinate | | | flumethrin | carbofuran | | 331 taufluvalinate tebufenyrad 402 beta-cytluthrin inidacloprid 333 taufluvalinate tebufenyrad 402 beta-cytluthrin inidacloprid 333 taufluvalinate tebufenozide 404 beta-cytluthrin inidiacloprid 335 taufluvalinate tebufenozide 405 beta-cytluthrin inidiaclofrum 406
beta-cytluthrin inidiaclofrum 407 beta-cytluthrin tebufenyrad 406 beta-cytluthrin tebufenyrad 407 beta-cytluthrin tebufenyrad 408 beta-cytluthrin tebufenyrad 408 beta-cytluthrin tebufenyrad 408 beta-cytluthrin tebufenyrad 409 tebufenozide 400 acceptate 400 beta-cytluthrin acceptate 400 beta-cytluthrin dioziono di | | | | | | | | 332 taufluvalinate tehufenyrid 402 beta-cylluhrin imidacloprid 334 taufluvalinate tehufenozide 404 beta-cylluhrin initenyrim 335 taufluvalinate tehufenozide 405 beta-cylluhrin initenyrim 336 taufluvalinate talofenozide 406 beta-cylluhrin chlorfenapyr 436 taufluvalinate talofenozide 406 beta-cylluhrin chlorfenapyr 437 taufluvalinate talofenozide 406 beta-cylluhrin fenyroximate tehufenyrid 407 beta-cylluhrin fenyroximate tehufenyrid 408 beta-cylluhrin fenyroximate tehufenyrid 408 beta-cylluhrin fenyroximate tehufenyrid 409 beta-cylluhrin fenyroximate tehufenyrid 409 beta-cylluhrin fenyroximate tehufenyrid 400 beta-cylluhrin fenyroximate tehufenyrid 400 beta-cylluhrin fenyroxide 400 beta-cylluhrin methoxyfenozide aludoridania alu | | | | | | | | 333 taufluvalinate the fipronii 403 beta-cyfluthrin nichprymm 1 didnoteftran di | | | | | | | | 334 taufluvalinate beloronzide 404 beta-cylluthrin dionocirumy 336 taufluvalinate halofonozide 406 beta-cylluthrin chlorfenapy 1 aufluvalinate trizzamate 407 beta-cylluthrin telufanpy 1 aufluvalinate trizzamate 407 beta-cylluthrin telufanpy 1 aufluvalinate avermectin 408 beta-cylluthrin telufanpy 1 aufluvalinate avermectin 408 beta-cylluthrin telufanpy 1 aufluvalinate accephate 410 beta-cylluthrin methoxyfenozide 1 aufluvalinate encephate 410 beta-cylluthrin methoxyfenozide 1 aufluvalinate encephate 411 beta-cylluthrin methoxyfenozide 1 aufluvalinate encephate 412 beta-cylluthrin methoxyfenozide 1 aufluvalinate encephate 413 beta-cylluthrin avermectin 1 aufluvalinate encephate 414 beta-cylluthrin avermectin 1 aufluvalinate encephate 415 beta-cylluthrin avermectin 1 aufluvalinate encephate 416 beta-cylluthrin avermectin 1 aufluvalinate encephate 417 beta-cylluthrin accephate 418 | | | | | | | | 335 taufuvalinate alchonozide 405 beta-cyfluthrin chlorfenpyr 336 taufuvalinate alchonozide 406 beta-cyfluthrin fenpyrosimate 407 beta-cyfluthrin fenpyrosimate 407 beta-cyfluthrin fenyrosimate 407 beta-cyfluthrin fenyrosimate 408 beta-cyfluthrin fenyrosimate 409 beta-cyfluthrin fenyrosimate 409 beta-cyfluthrin balofenozide 410 beta-cyfluthrin achoryfenozide 411 beta-cyfluthrin balofenozide 411 beta-cyfluthrin balofenozide 412 beta-cyfluthrin acymrectin 413 beta-cyfluthrin acymrectin 413 beta-cyfluthrin acymrectin 414 taufuvalinate chloryyrifos 413 beta-cyfluthrin acymrectin 415 beta-cyfluthrin acymrectin 415 beta-cyfluthrin acymrectin 415 beta-cyfluthrin acymrectin 416 beta-cyfluthrin acymrectin 417 beta-cyfluthrin acymrectin 417 beta-cyfluthrin acymrectin 417 beta-cyfluthrin dizzinon 418 beta-cyfluthrin acymrectin 418 beta-cyfluthrin acymrectin 419 | | | | | | | | 336 taufluvalinate halofenozide 406 beta-cyfluthrin fengyroxímate 1337 taufluvalinate avermectin 408 beta-cyfluthrin tebufenoyad fiponal 338 taufluvalinate avermectin 408 beta-cyfluthrin tebufenozide 1410 beta-cyfluthrin tebufenozide 1411 taufluvalinate acephate 410 beta-cyfluthrin tebufenozide 1411 taufluvalinate acephate 410 beta-cyfluthrin methoxyfenozide 1412 beta-cyfluthrin halofenozide 1413 taufluvalinate diazinon 412 beta-cyfluthrin avermectin 1414 taufluvalinate chlorpyrifos-methyl 414 beta-cyfluthrin avermectin 1415 aufluvalinate chlorpyrifos-methyl 414 beta-cyfluthrin avermectin 1415 aufluvalinate carbaryl 416 beta-cyfluthrin acephate 1417 aufluvalinate carbaryl 416 beta-cyfluthrin acephate 1417 beta-cyfluthrin diazinon 1415 beta-cyfluthrin diazinon 1415 beta-cyfluthrin diazinon 1416 1417 beta-cyfluthrin diazinon 1418 adicarb 1419 beta-cyfluthrin diazinon 1418 beta-cyfluthrin adicarb 1419 beta-cyfluthrin acedamirin 1418 be | | | | | | | | 337 taufuvalinate triazanate 407 beta-cyfluthrin fipponil tebufenpynd 338 taufuvalinate spinosad 409 beta-cyfluthrin fipponil tebufenozide taufuvalinate spinosad 409 beta-cyfluthrin methoxyfenozide taufuvalinate acphate 410 beta-cyfluthrin methoxyfenozide 411 beta-cyfluthrin methoxyfenozide 412 taufuvalinate diazinon 412 beta-cyfluthrin triazanate 413 taufuvalinate chlopyyifos 413 beta-cyfluthrin triazanate 413 taufuvalinate chlopyyifos 413 beta-cyfluthrin spinosad 545 taufuvalinate chlopyyifos-methyl 414 beta-cyfluthrin spinosad 545 taufuvalinate carbaryl 416 beta-cyfluthrin scephate 546 taufuvalinate carbaryl 416 beta-cyfluthrin diazinon 547 taufuvalinate carbaryl 416 beta-cyfluthrin diazinon 548 taufuvalinate carbaryl 419 beta-cyfluthrin diazinon 548 taufuvalinate carbaryl 419 beta-cyfluthrin diazinon 549 taufuvalinate 540 taufuvalinate 540 deta-cyfluthrin deta-cyflu | | | | | | | | 338 taufluvalinate avermectin 408 beta-cyfluthrin fipronil ' 340 taufluvalinate acphate 410 beta-cyfluthrin tebufenozide methoxyfenozide diszinon 412 taufluvalinate fenamiphos 411 beta-cyfluthrin halofenozide diszinon 412 beta-cyfluthrin triazanate diszinon 412 beta-cyfluthrin triazanate taufluvalinate chlorpyrifos 413 beta-cyfluthrin synnosad attaufluvalinate chlorpyrifos 413 beta-cyfluthrin synnosad attaufluvalinate malathion 415 beta-cyfluthrin accephate acephate taufluvalinate addicarb 417 beta-cyfluthrin fenamiphos 415 beta-cyfluthrin fenamiphos 416 taufluvalinate addicarb 417 beta-cyfluthrin fenamiphos 417 beta-cyfluthrin fenamiphos 418 taufluvalinate addicarb 419 beta-cyfluthrin chlorpyrifos attaufluvalinate acephate 418 beta-cyfluthrin chlorpyrifos 419 beta-cyfluthrin chlorpyrifos 420 beta-cyfluthrin malathion 419 410 beta-cyfluthrin addicarb 410 beta-cyfluthrin 4 | | | | | | | | 339 taufluvalinate spinosad 409 beta-cyltuthrin tebufenozide 341 taufluvalinate fenamiphos 411 beta-cyltuthrin halofenozide 342 taufluvalinate diazinon 412 beta-cyltuthrin thiofenozide 343 taufluvalinate chlorpyrifos 413 beta-cyltuthrin avermectin 343 taufluvalinate chlorpyrifos-methyl 414 beta-cyltuthrin spinosad acceptate aufluvalinate aufluvalinate chlorpyrifos-methyl 415 beta-cyltuthrin acceptate aufluvalinate aufluvalinate aufluvalinate arbeityl 416 beta-cyltuthrin fenamiphos 417 taufluvalinate aufluvalinate arbeityl 416 beta-cyltuthrin fenamiphos 417 taufluvalinate arbeityl 417 beta-cyltuthrin fenamiphos 418 taufluvalinate arbeityn 419 beta-cyltuthrin fenamiphos 419 beta-cyltuthrin chlorpyrifos-methyl 419 beta-cyltuthrin acceptate aufluvalinate arbeityn 419 beta-cyltuthrin malathion 419 beta-cyltuthrin malathion 419 beta-cyltuthrin acceptate 410 beta-cyltuthrin malathion 419 beta-cyltuthrin malathion 419 beta-cyltuthrin malathion 419 beta-cyltuthrin malathion 419 beta-cyltuthrin acceptate 410 beta-cyltuthrin acceptate 410 beta-cyltuthrin be | | | | | | | | 340 taufluvalinate sephate 410 beta-cyfluthrin methoxyfenozide fenamiphos 411 beta-cyfluthrin Indocenozide taufluvalinate diazinon 412 beta-cyfluthrin triazamate 413 taufluvalinate chlorpyrifos 413 beta-cyfluthrin avermeetin spinosad 414 taufluvalinate chlorpyrifos-methyl 414 beta-cyfluthrin avermeetin 345 taufluvalinate malathion 415 beta-cyfluthrin accephate acribaryl 416 beta-cyfluthrin accephate 417 tauffuvalinate aldicarb 417 beta-cyfluthrin diazinon 418 tauffuvalinate aldicarb 417 beta-cyfluthrin diazinon 418 tauffuvalinate carbofuran 418 beta-cyfluthrin diazinon 418 beta-cyfluthrin diazinon 419 beta-cyfluthrin diazinon 419 beta-cyfluthrin diazinon 419 beta-cyfluthrin accephate acribaryl 410 accephate 410 beta-cyfluthrin accephate 410 beta-cyfluthrin acribaryl 410 beta-cyfluthrin acribaryl 410 beta-cyfluthrin acribaryl 411 beta-cyfluthrin accephate 410 | | | | | | | | 1341 taufluvalinate fenamiphos diazinon 412 beta-cyfluthrin knlofenozide diazinon 412 beta-cyfluthrin avermectin salva taufluvalinate chlorpyrifos-methyl 413 beta-cyfluthrin spinosad taufluvalinate chlorpyrifos-methyl 414 beta-cyfluthrin spinosad taufluvalinate aldicarb 415 beta-cyfluthrin spinosad taufluvalinate carbaryl 416 beta-cyfluthrin fenamiphos diazinon 415 beta-cyfluthrin fenamiphos diazinon 417 beta-cyfluthrin fenamiphos diazinon 418 aufluvalinate carbofuran 418 beta-cyfluthrin diazinon 418 dauffuvalinate carbofuran 418 beta-cyfluthrin chlorpyrifos-methyl 419 beta-cyfluthrin chlorpyrifos-methyl 419 beta-cyfluthrin mialathion 415 beta-cyfluthrin mialathion 415 beta-cyfluthrin aldicarb 419 beta-cyfluthrin mialathion 415 beta-cyfluthrin mialathion 416 beta-cyfluthrin aldicarb 417 beta-cyfluthrin aldicarb 417 beta-cyfluthrin 416 | | | | | | | | 342 taufluvalinate dhorpyrifos 413 beta-cyfluthrin triazamate chlorpyrifos 413 beta-cyfluthrin spinosad avermectin 344 taufluvalinate chlorpyrifos-methyl 414 beta-cyfluthrin spinosad 345 taufluvalinate malathion 415 beta-cyfluthrin scephate 614 taufluvalinate aldicarb 416 beta-cyfluthrin diazinon 416 taufluvalinate aldicarb 417 beta-cyfluthrin diazinon 614 taufluvalinate aldicarb 419 beta-cyfluthrin diazinon 614 taufluvalinate thiodicarb 419 beta-cyfluthrin diazinon 614 taufluvalinate 614 to 200 beta-cyfluthrin 614 to 614 cyfluthrin cyfluthrin 614 to 614 cyfluthrin 614 cyfluthrin 615 taufluvalinate 614 cyfluthrin 615 taufluvalinate taufluval | | | | | | | | 343 taufluvalinate chlorpyrifos-methyl 414 beta-cyfluthrin spinosad spinosad spinosad ataufluvalinate malathion 415 beta-cyfluthrin acephate carbaryl 416 beta-cyfluthrin acephate 417 taufluvalinate aldicarb 417 beta-cyfluthrin dazinon 418 beta-cyfluthrin dazinon 418 taufluvalinate carbaryl 419 beta-cyfluthrin chlorpyrifos 419 beta-cyfluthrin chlorpyrifos 419 beta-cyfluthrin chlorpyrifos 419 beta-cyfluthrin chlorpyrifos 419 beta-cyfluthrin aldicarb 419 beta-cyfluthrin chlorpyrifos 419 beta-cyfluthrin acetamiprid 421 beta-cyfluthrin aldicarb 419 beta-cyfluthrin aldicarb 419 beta-cyfluthrin acetamiprid 421 beta-cyfluthrin aldicarb 419 beta-cyfluthrin aldicarb 419 beta-cyfluthrin acetamiprid 421 beta-cyfluthrin aldicarb 419 beta-cyfluthrin acetamiprid 422
beta-cyfluthrin aldicarb 419 beta-cyfluthrin aldicarb 419 beta-cyfluthrin aldicarb 419 beta-cyfluthrin acetamiprid 422 beta-cyfluthrin aldicarb 419 beta-cyfluthrin aldicarb 419 beta-cyfluthrin aldicarb 419 beta-cyfluthrin aldicarb 419 beta-cyfluthrin aldicarb 420 beta-cyfluthrin aldicarb 410 acetamiprid | | | | | | | | 345 taufluvalinate malathion 415 beta-cyfluthrin acephate carbaryl 416 beta-cyfluthrin fenamiphos 437 taufluvalinate aldicarb 417 beta-cyfluthrin diazinon 438 taufluvalinate carboruran 418 beta-cyfluthrin chlorpyrifos 439 taufluvalinate carboruran 418 beta-cyfluthrin chlorpyrifos 419 beta-cyfluthrin chlorpyrifos 419 beta-cyfluthrin malathion 610 taufluvalinate oxamyl 420 beta-cyfluthrin carbaryl 350 taufluvalinate oxamyl 420 beta-cyfluthrin carbaryl 351 flucythrinate imidacloprid 421 beta-cyfluthrin carbaryl 352 flucythrinate imidacloprid 422 beta-cyfluthrin aldicarb 353 flucythrinate inidacloprid 422 beta-cyfluthrin aldicarb 354 flucythrinate inidinotefuran 424 beta-cyfluthrin thiodicarb 355 flucythrinate chlorfenapyr 425 beta-cyfluthrin oxamyl 425 beta-cyfluthrin acetamiprid 366 flucythrinate chlorfenapyr 425 beta-cyfluthrin inidacloprid 358 flucythrinate tebufenyrad 427 trans-cyfluthrin inidacloprid 358 flucythrinate tebufenyrad 427 trans-cyfluthrin inidacloprid 359 flucythrinate tebufenozide 429 trans-cyfluthrin inidacloprid 360 flucythrinate methoxyfenozide 429 trans-cyfluthrin inidacloprid 361 flucythrinate triazamate 432 trans-cyfluthrin inidinotefuran 362 flucythrinate triazamate 432 trans-cyfluthrin fenyroximate 436 flucythrinate spinosad 431 trans-cyfluthrin fenyroximate 436 flucythrinate spinosad 434 trans-cyfluthrin tebufenozide 365 flucythrinate spinosad 434 trans-cyfluthrin informatic acephate 435 trans-cyfluthrin methoxyfenozide 366 flucythrinate diazinon 437 trans-cyfluthrin informatic acephate 436 trans-cyfluthrin informatic acephate 437 trans-cyfluthrin informatic acephate 438 trans-cyfluthrin informatic acephate 436 trans-cyfluthrin informatic acephate 437 trans-cyfluthrin informatic acephate 438 trans-cyfluthrin informatic acephate 439 trans-cyfluthrin informatic acephate 440 trans-cyfluthrin informatic acephate 441 trans-cyfluthrin informatic acephate 442 trans-cyfluthrin acetamiprid 444 trans-cyfluthrin carboryrios-methyl 375 flucythrinate aldicarb 442 trans-cyfluthrin carboryrios-methyl 3 | 343 | taufluvalinate | chlorpyrifos | 413 | | avermectin | | 347 taufluvalinate carbaryl 416 beta-cyfluthrin fenamiphos 347 taufluvalinate aldicarb 417 beta-cyfluthrin dizzinon 348 taufluvalinate carbofuran 418 beta-cyfluthrin chlorpyrifos 349 taufluvalinate thiodicarb 419 beta-cyfluthrin chlorpyrifos-methyl 350 taufluvalinate acetamiprid 420 beta-cyfluthrin aldicarb 351 flucythrinate acetamiprid 421 beta-cyfluthrin aldicarb 352 flucythrinate anienpyram 423 beta-cyfluthrin aldicarb 353 flucythrinate nienpyram 423 beta-cyfluthrin aldicarb 354 flucythrinate nienpyram 423 beta-cyfluthrin carbofuran 355 flucythrinate chlorfenapyr 425 beta-cyfluthrin carbofuran 355 flucythrinate chlorfenapyr 425 beta-cyfluthrin carbofuran 356 flucythrinate fenpyroximate 426 trans-cyfluthrin inidacloprid 357 flucythrinate fipronil 428 trans-cyfluthrin inidacloprid 358 flucythrinate fipronil 428 trans-cyfluthrin inidacloprid 361 flucythrinate methoxyfenozide 430 trans-cyfluthrin nienpyram 361 flucythrinate methoxyfenozide 430 trans-cyfluthrin chlofenapyr 363 flucythrinate acetamiprid 361 flucythrinate acetamiprid 362 flucythrinate acetamiprid 363 flucythrinate acephate 432 trans-cyfluthrin chlorfenapyr 363 flucythrinate acephate 432 trans-cyfluthrin tebufenozide 363 flucythrinate acephate 433 trans-cyfluthrin tebufenozide 364 flucythrinate spinosad 434 trans-cyfluthrin tebufenozide 365 flucythrinate acephate 435 trans-cyfluthrin tebufenozide 366 flucythrinate acephate 437 trans-cyfluthrin tebufenozide 366 flucythrinate acephate 437 trans-cyfluthrin tebufenozide 367 flucythrinate acephate 437 trans-cyfluthrin tebufenozide 368 flucythrinate acephate 437 trans-cyfluthrin tebufenozide 369 flucythrinate acephate 437 trans-cyfluthrin tebufenozide 370 flucythrinate acephate 437 trans-cyfluthrin tebufenozide 438 trans-cyfluthrin tebufenozide 439 trans-cyfluthrin tebufenozide 440 trans-cyfluthrin tebufenozide 441 trans-cyfluthrin acephate 371 flucythrinate aldicarb 442 trans-cyfluthrin acephate 371 flucythrinate aldicarb 442 trans-cyfluthrin chlorpyrifos-methyl 445 trans-cyfluthrin carbofuran 446 trans- | 344 | taufluvalinate | | 414 | beta-cyfluthrin | spinosad | | 347 taufluvalinate aldicarb 348 taufluvalinate carbofuran 349 taufluvalinate thiodicarb 349 taufluvalinate thiodicarb 340 taufluvalinate thiodicarb 351 flucythrinate imidacloprid 352 flucythrinate imidacloprid 353 flucythrinate inidacloprid 354 flucythrinate inidacloprid 355 flucythrinate inidacloprid 356 flucythrinate inidacloprid 357 flucythrinate inidacloprid 358 flucythrinate inidacloprid 359 flucythrinate inidacloprid 350 flucythrinate inidinotefuran 351 flucythrinate inidinotefuran 352 flucythrinate inidinotefuran 353 flucythrinate chlorfenapyr 355 flucythrinate chlorfenapyr 356 flucythrinate fenpyroximate 426 beta-cyfluthrin acarbofuran 357 flucythrinate tebufenpyrad 358 flucythrinate tebufenpyrad 359 flucythrinate tebufenpyrad 360 flucythrinate tebufenpyrad 370 flucythrinate tebufenpyrad 380 flucythrinate tebufenpyrad 381 flucythrinate tebufenpyrad 382 flucythrinate tebufenpyrad 383 flucythrinate tebufenpyrad 384 flucythrinate tebufenpyrad 385 flucythrinate tebufenpyrad 386 flucythrinate tebufenpyrad 387 flucythrinate tebufenpyrad 388 flucythrinate trizazmate 389 flucythrinate trizazmate 380 flucythrinate trizazmate 380 flucythrinate trizazmate 381 flucythrinate spinosad 383 flucythrinate spinosad 384 flucythrinate spinosad 385 flucythrinate diazinon 386 flucythrinate diazinon 386 flucythrinate diazinon 387 flucythrinate chlorpyrifos-methyl 388 flucythrinate chlorpyrifos-methyl 389 flucythrinate chlorpyrifos-methyl 370 flucythrinate chlorpyrifos-methyl 371 flucythrinate chlorpyrifos-methyl 372 flucythrinate carbofuran 373 flucythrinate carbofuran 374 flucythrinate carbofuran 375 flucythrinate carbofuran 376 flucythrinate carbofuran 377 flucythrinate carbofuran 378 flucythrinate carbofuran 379 flucythrinate carbofuran 370 flucythrinate carbofuran 371 flucythrinate carbofuran 372 flucythrinate carbofuran 373 flucythrinate carbofuran 374 flucythrinate carbofuran 375 flucythrinate carbofuran 376 flucythrinate carbofuran 377 flucythrinate carbofuran 378 flucythrinate carbofuran 379 flucythrinate carbofuran 3 | 345 | taufluvalinate | malathion | 415 | beta-cyfluthrin | acephate | | 348 taufluvalinate carbofuran 418 beta-cyfluthrin chlorpyrifos 349 taufluvalinate thiodicarb 419 beta-cyfluthrin chlorpyrifos-methyl 350 taufluvalinate oxamyl 420 beta-cyfluthrin malathion 351 flucythrinate acetamiprid 421 beta-cyfluthrin aldicarb 352 flucythrinate acetamiprid 421 beta-cyfluthrin aldicarb 422 beta-cyfluthrin aldicarb 423 beta-cyfluthrin carbofuran 424 beta-cyfluthrin carbofuran 425 flucythrinate nitenpyram 425 beta-cyfluthrin carbofuran 426 flucythrinate chlorfenapyr 425 beta-cyfluthrin oxamyl 426 flucythrinate fenyroximate 426 trans-cyfluthrin indiacloprid 427 flucythrinate fenyroximate 426 trans-cyfluthrin indiacloprid 428 flucythrinate fipronil 428 trans-cyfluthrin indiacloprid 429 flucythrinate flucythrinate flucythrinate 429 trans-cyfluthrin indiacloprid 4359 flucythrinate methoxyfenozide 429 trans-cyfluthrin indiacloprid 4360 flucythrinate methoxyfenozide 430 trans-cyfluthrin indinotefuran 4360 flucythrinate halofenozide 431 trans-cyfluthrin chlorfenapyr 4361 flucythrinate halofenozide 431 trans-cyfluthrin tebufenopyrad 4361 flucythrinate avermectin 433 trans-cyfluthrin tebufenozide 436 flucythrinate acephate 436 trans-cyfluthrin tebufenozide 436 flucythrinate acephate 437 trans-cyfluthrin methoxyfenozide 4366 flucythrinate acephate 436 trans-cyfluthrin tebufenozide 4366 flucythrinate acephate 436 trans-cyfluthrin methoxyfenozide 4366 flucythrinate acephate 436 trans-cyfluthrin methoxyfenozide 4366 flucythrinate 6461 flucythrinat | | | | | | | | 349taufluvalinatethiodicarb419beta-cyfluthrinchlorpyrifos-methyl350taufluvalinateoxamyl420beta-cyfluthrinmalathion351flucythrinateimidacloprid421beta-cyfluthrincarbaryl352flucythrinatenitenpyram422beta-cyfluthrinaldicarb353flucythrinatenitenpyram423beta-cyfluthrinthiodicarb354flucythrinatechlorfenapyr425beta-cyfluthrinthiodicarb355flucythrinatechlorfenapyr425beta-cyfluthrinoxamyl356flucythrinatefenpyroximate427trans-cyfluthrinmidacloprid357flucythrinatetebufenozide427trans-cyfluthrinmideoterian359flucythrinatetebufenozide429trans-cyfluthrinchlorfenapyr361flucythrinatemethoxyfenozide430trans-cyfluthrinchlorfenapyr362flucythrinatemethoxyfenozide431trans-cyfluthrinthorfenapyr363flucythrinatetriazamate432trans-cyfluthrintebufenozide364flucythrinateavermectin433trans-cyfluthrinfipronil365flucythrinateavermectin433trans-cyfluthrinmethoxyfenozide366flucythrinateaphate435trans-cyfluthrinmethoxyfenozide367flucythrinatediazinon437trans-cyfluthrinmethoxyfenozide <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | 350 taufluvalinate oxamyl 420 beta-cyfluthrin malathion 351 flucythrinate acetamiprid 421 beta-cyfluthrin carbaryl 352 flucythrinate imidacloprid 422 beta-cyfluthrin aldicarb 353 flucythrinate nitenpyram 423 beta-cyfluthrin carbofuran 354 flucythrinate nitenpyram 423 beta-cyfluthrin carbofuran 355 flucythrinate chlorfenapyr 425 beta-cyfluthrin oxamyl 356 flucythrinate fenpyroximate 426 trans-cyfluthrin acetamiprid 357 flucythrinate fipronil 428 trans-cyfluthrin inidacloprid 358 flucythrinate fipronil 428 trans-cyfluthrin inidinotefuran 359 flucythrinate methoxyfenozide 429 trans-cyfluthrin inidinotefuran 360 flucythrinate methoxyfenozide 430 trans-cyfluthrin chlorfenapyr 361 flucythrinate halofenozide 431 trans-cyfluthrin fenpyroximate 362 flucythrinate triazamate 432
trans-cyfluthrin fenpyroximate 363 flucythrinate avermectin 433 trans-cyfluthrin fipronil 364 flucythrinate avermectin 433 trans-cyfluthrin fipronil 365 flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide 365 flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide 366 flucythrinate clolorpyrifos 436 trans-cyfluthrin methoxyfenozide 367 flucythrinate clolorpyrifos 438 trans-cyfluthrin methoxyfenozide 368 flucythrinate clolorpyrifos 438 trans-cyfluthrin halofenozide 369 flucythrinate clolorpyrifos 438 trans-cyfluthrin acephate 370 flucythrinate chlorpyrifos 438 trans-cyfluthrin acephate 371 flucythrinate clolorpyrifos 441 trans-cyfluthrin acephate 372 flucythrinate carbofuran 441 trans-cyfluthrin fenamiphos 373 flucythrinate carbofuran 442 trans-cyfluthrin chlorpyrifos-methyl 374 flucythrinate carbofuran 443 trans-cyfluthrin carbofuran 375 flucythrinate carbofuran 445 trans-cyfluthrin carbofuran 376 flucythrinate carbofuran 445 trans-cyfluthrin carbofuran 377 flumethrin acetamiprid 446 trans-cyfluthrin carbofuran 378 flucythrinate oxamyl 445 trans-cyfluthrin carbofuran 379 flumethrin nicapyram 448 trans-cyfluthrin carbofuran 379 flumethrin nicapyram 448 trans-cyfluthrin carbofuran 379 flumethrin nicapyram 449 trans-cyfluthrin carbofuran | | | | | | | | 351 flucythrinate acetamiprid 421 beta-cyfluthrin carbaryl 352 flucythrinate inidacloprid 422 beta-cyfluthrin aldicarb 353 flucythrinate nitenpyram 423 beta-cyfluthrin carbofuran 424 beta-cyfluthrin thiodicarb 355 flucythrinate nidinotefuran 424 beta-cyfluthrin 456 carbofuran 355 flucythrinate chlorfenapyr 425 beta-cyfluthrin 456 carbofuran 355 flucythrinate fenpyroximate 426 trans-cyfluthrin acetamiprid 356 flucythrinate tebufenpyrad 427 trans-cyfluthrin inidacloprid 357 flucythrinate tebufenozide 429 trans-cyfluthrin nitenpyram 359 flucythrinate tebufenozide 429 trans-cyfluthrin nitenpyram 360 flucythrinate methoxyfenozide 431 trans-cyfluthrin chlorfenapyr 361 flucythrinate triazamate 432 trans-cyfluthrin fenpyroximate 362 flucythrinate triazamate 432 trans-cyfluthrin fenpyroximate 363 flucythrinate triazamate 432 trans-cyfluthrin tebufenpyrad 363 flucythrinate spinosad 434 trans-cyfluthrin tebufenpyrad 366 flucythrinate acephate 435 trans-cyfluthrin tebufenozide 366 flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide 366 flucythrinate diazinon 437 trans-cyfluthrin methoxyfenozide 368 flucythrinate diazinon 437 trans-cyfluthrin spinosad 368 flucythrinate chlorpyrifos-methyl 439 trans-cyfluthrin spinosad 370 flucythrinate malathion 440 trans-cyfluthrin spinosad 371 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 371 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 373 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 374 flucythrinate carbofuran 443 trans-cyfluthrin diazinon 375 flucythrinate aldicarb 444 trans-cyfluthrin malathion 376 flumethrin inidacloprid 447 trans-cyfluthrin acephate 379 flucythrinate 410 carbofuran 443 trans-cyfluthrin acephate 379 flucythrinate 379 flumethrin inidacloprid 447 trans-cyfluthrin acetamiphos 379 flumethrin inidacloprid 447 trans-cyfluthrin acetamiphos 379 flumethrin inidacloprid 447 trans-cyfluthrin acetamiphos 379 flumethrin inidacloprid 447 trans-cyfluthrin acetamiphid 380 flumethrin nitinotefuran 449 trans-cyfluthrin acetamiphid 380 flumethrin nitinot | | | | | | | | Seta | | | | | | | | 353 flucythrinate nitenpyram 423 beta-cyfluthrin carbofuran 354 flucythrinate nidinotefuran 424 beta-cyfluthrin thiodicarb 425 flucythrinate chlorfenapyr 425 beta-cyfluthrin 356 flucythrinate fenpyroximate 426 trans-cyfluthrin imidacloprid 357 flucythrinate fipronil 428 trans-cyfluthrin inidacloprid 358 flucythrinate fipronil 428 trans-cyfluthrin inidacloprid 358 flucythrinate tebufenozide 429 trans-cyfluthrin inidacloprid 360 flucythrinate methoxyfenozide 430 trans-cyfluthrin chlorfenapyr 361 flucythrinate halofenozide 430 trans-cyfluthrin fenpyroximate 430 trans-cyfluthrin thought 436 flucythrinate triazamate 431 trans-cyfluthrin fipronil 436 flucythrinate avermectin 433 trans-cyfluthrin fipronil 436 flucythrinate avermectin 433 trans-cyfluthrin fipronil 436 flucythrinate acephate 435 trans-cyfluthrin tebufenozide 365 flucythrinate fenamiphos 436 trans-cyfluthrin methoxyfenozide 366 flucythrinate diazinon 437 trans-cyfluthrin methoxyfenozide 368 flucythrinate chlorpyrifos 438 trans-cyfluthrin triazamate 439 trans-cyfluthrin acephate 430 trans-cyfluthrin acephate 431 trans-cyfluthrin fipronil 436 flucythrinate diazinon 437 trans-cyfluthrin acephate 437 trans-cyfluthrin balofenozide 438 trans-cyfluthrin fipronil 439 trans-cyfluthrin fipronil 430 flucythrinate chlorpyrifos 438 trans-cyfluthrin acephate 437 flucythrinate chlorpyrifos-methyl 439 trans-cyfluthrin acephate 437 flucythrinate aldicarb 440 trans-cyfluthrin fenamiphos carbofuran 441 trans-cyfluthrin carbofuran 442 trans-cyfluthrin carbofuran 444 trans-cyfluthrin carbofuran 445 trans-cyfluthrin carbofuran 446 trans-cyfluthrin carbofuran 447 trans-cyfluthrin thiodicarb 448 flumethrin fenam | | | | | | | | 354 flucythrinate nidinotefuran 424 beta-cyfluthrin thiodicarb 355 flucythrinate chlorfenapyr 425 beta-cyfluthrin acetamiprid 356 flucythrinate tebufenpyrad 426 trans-cyfluthrin imidacloprid 357 flucythrinate tebufenpyrad 427 trans-cyfluthrin imidacloprid 358 flucythrinate fippronil 428 trans-cyfluthrin indinotefuran 359 flucythrinate methoxyfenozide 429 trans-cyfluthrin nidinotefuran 360 flucythrinate methoxyfenozide 430 trans-cyfluthrin chlorfenapyr 361 flucythrinate trizazmate 432 trans-cyfluthrin fenpyroximate 432 trans-cyfluthrin fenpyroximate 432 trans-cyfluthrin tebufenpyrad 363 flucythrinate avermectin 433 trans-cyfluthrin tebufenpyrad 364 flucythrinate acephate 435 trans-cyfluthrin tebufenpyrad 365 flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide 366 flucythrinate diazinon 437 trans-cyfluthrin trizazmate 368 flucythrinate fenamiphos 436 flucythrinate diazinon 437 trans-cyfluthrin trizazmate 368 flucythrinate chlorpyrifos 438 trans-cyfluthrin trizazmate 370 flucythrinate chlorpyrifos 438 trans-cyfluthrin avermectin 370 flucythrinate chlorpyrifos 438 trans-cyfluthrin avermectin 371 flucythrinate chlorpyrifos-methyl 439 trans-cyfluthrin acephate 371 flucythrinate chlorpyrifos-methyl 439 trans-cyfluthrin diazinon 372 flucythrinate chlorpyrifos 440 trans-cyfluthrin diazinon 373 flucythrinate carbofuran 441 trans-cyfluthrin diazinon 374 flucythrinate carbofuran 442 trans-cyfluthrin chlorpyrifos 374 flucythrinate carbofuran 443 trans-cyfluthrin chlorpyrifos-methyl 375 flucythrinate carbofuran 444 trans-cyfluthrin chlorpyrifos-methyl 376 flumethrin imidacloprid 447 trans-cyfluthrin aldicarb 378 flumethrin imidacloprid 447 trans-cyfluthrin carbofuran 379 flumethrin inidenoprid 447 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin inidacloprid 380 flumethrin chlorfenapyr 450 trans-cyfluthrin inidacloprid 381 flumethrin fenpyroximate 451 acrinathrin imidacloprid imidacloprid 382 flumethrin chlorfenapyr 450 acrinath | | | | | | | | 355 flucythrinate chlorfenapyr 425 beta-cyfluthrin oxamyl 356 flucythrinate fenpyroximate 426 trans-cyfluthrin acetamiprid 357 flucythrinate tebufenpyrad 427 trans-cyfluthrin midacloprid 358 flucythrinate fipronil 428 trans-cyfluthrin mitenpyram 359 flucythrinate methoxyfenozide 430 trans-cyfluthrin nidinotefuran 360 flucythrinate methoxyfenozide 431 trans-cyfluthrin fenpyroximate 432 trans-cyfluthrin fenpyroximate 432 trans-cyfluthrin fenpyroximate 436 flucythrinate triazamate 432 trans-cyfluthrin fenpyroximate 436 flucythrinate acetamiprid 433 trans-cyfluthrin tebufenpyrad 436 flucythrinate acetamiprid 433 trans-cyfluthrin tebufenozide 436 flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide 436 flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide 436 flucythrinate diazinon 437 trans-cyfluthrin triazamate 437 trans-cyfluthrin triazamate 438 trans-cyfluthrin triazamate 436 flucythrinate diazinon 437 trans-cyfluthrin triazamate 437 trans-cyfluthrin triazamate 438 trans-cyfluthrin triazamate 436 flucythrinate chlorpyrifos 438 trans-cyfluthrin acetamical 437 trans-cyfluthrin acetamical 438 trans-cyfluthrin acetamical 437 flucythrinate chlorpyrifos-methyl 439 trans-cyfluthrin acetamical 440 trans-cyfluthrin acetamical 441 trans-cyfluthrin fenamiphos 442 trans-cyfluthrin fenamiphos 444 trans-cyfluthrin fenamiphos 445 trans-cyfluthrin tholographical 446 trans-cyfluthrin chlorpyrifos-methyl 445 trans-cyfluthrin chlorpyrifos-methyl 446 trans-cyfluthrin chlorpyrifos-methyl 446 trans-cyfluthrin chlorpyrifos-methyl 447 trans-cyfluthrin chlorpyrifos-methyl 448 trans-cyfluthrin chlorpyrifos-methyl 449 trans-cyfluthrin chlorpyrifos-methyl 440 trans-cyfluthrin chlorpyrifos-methyl 446 trans-cyfluthrin chlo | | | | | | | | 356 flucythrinate fenpyroximate 426 trans-cyfluthrin acetamiprid 357 flucythrinate fipronil 428 trans-cyfluthrin imidacloprid imidacloprid 358 flucythrinate fipronil 428 trans-cyfluthrin nitenpyram 359 flucythrinate tebufenozide 429 trans-cyfluthrin nidinotefuran 360 flucythrinate methoxyfenozide 430 trans-cyfluthrin chlorfenapyr 361 flucythrinate halofenozide 431 trans-cyfluthrin fenpyroximate 432 trans-cyfluthrin fipronil 433 trans-cyfluthrin fipronil 434 flucythrinate avermectin 433 trans-cyfluthrin fipronil 4364 flucythrinate spinosad 434 trans-cyfluthrin fipronil 4365 flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide 436 flucythrinate acephate 437 trans-cyfluthrin methoxyfenozide 436 flucythrinate diazinon 437 trans-cyfluthrin halofenozide 438 flucythrinate diazinon 437 trans-cyfluthrin halofenozide 438 flucythrinate diazinon 437 trans-cyfluthrin avermectin 368 flucythrinate chlorpyrifos 438 trans-cyfluthrin spinosad 370 flucythrinate chlorpyrifos-methyl 439 trans-cyfluthrin spinosad 370 flucythrinate malathion 440 trans-cyfluthrin acephate 4371 flucythrinate aldicarb 442 trans-cyfluthrin
fenamiphos 4372 flucythrinate carbaryl 441 trans-cyfluthrin diazinon 443 trans-cyfluthrin chlorpyrifos 444 trans-cyfluthrin chlorpyrifos 445 trans-cyfluthrin diazinon 447 flucythrinate aldicarb 442 trans-cyfluthrin chlorpyrifos 444 trans-cyfluthrin chlorpyrifos 445 trans-cyfluthrin acephate 447 trans-cyfluthrin acephate 448 trans-cyfluthrin acephate 449 trans-cyfluthrin aldicarb 444 trans-cyfluthrin chlorpyrifos 446 trans-cyfluthrin acetamiprid 446 trans-cyfluthrin aldicarb 447 trans-cyfluthrin aldicarb 448 trans-cyfluthrin aldicarb 448 trans-cyfluthrin acetamiprid 447 trans-cyfluthrin aldicarb 448 trans-cyfluthrin acetamiprid 447 trans-cyfluthrin acetamiprid 448 trans-cyfluthrin acetamiprid 447 trans-cyfluthrin aldicarb 448 trans-cyfluthrin acetamiprid 448 trans-cyfluthrin acetamiprid 449 trans-cyfluthrin acetamiprid 449 trans-cyfluthrin 448 trans-cyfluthrin 448 trans-cyfluthrin 448 trans-cyfluthrin 448 trans-c | | | | | | | | 357 flucythrinate tebufenyrad 427 trans-cyfluthrin imidacloprid 358 flucythrinate fipronil 428 trans-cyfluthrin nitenpyram 359 flucythrinate tebufenozide 429 trans-cyfluthrin nidinotefuran 360 flucythrinate methoxyfenozide 430 trans-cyfluthrin chlorfenapyr 361 flucythrinate triazamate 432 trans-cyfluthrin fenpyroximate 362 flucythrinate triazamate 432 trans-cyfluthrin tebufenpyrad 363 flucythrinate avermectin 433 trans-cyfluthrin tebufenozide 365 flucythrinate acephate 435 trans-cyfluthrin tebufenozide 365 flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide 366 flucythrinate fenamiphos 436 trans-cyfluthrin methoxyfenozide 367 flucythrinate diazinon 437 trans-cyfluthrin triazamate 368 flucythrinate chlorpyrifos 438 trans-cyfluthrin triazamate 369 flucythrinate chlorpyrifos 438 trans-cyfluthrin avermectin 370 flucythrinate malathion 440 trans-cyfluthrin acephate 371 flucythrinate aldicarb 442 trans-cyfluthrin fenamiphos 372 flucythrinate aldicarb 441 trans-cyfluthrin fenamiphos 373 flucythrinate aldicarb 442 trans-cyfluthrin chlorpyrifos 374 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 375 flucythrinate oxamyl 445 trans-cyfluthrin chlorpyrifos-methyl 376 flumethrin acetamiprid 446 trans-cyfluthrin chlorpyrifos-methyl 377 flucythrinate 378 flucythrinate 379 flumethrin intenpyram 448 trans-cyfluthrin aldicarb 447 trans-cyfluthrin chlorpyrifos-methyl 378 flumethrin intenpyram 448 trans-cyfluthrin aldicarb 447 trans-cyfluthrin carbofuran 448 trans-cyfluthrin carbofuran 449 trans-cyfluthrin carbofuran 440 trans-cyfluthrin carbofuran 441 trans-cyfluthrin carbofuran 442 trans-cyfluthrin carbofuran 444 trans-cyfluthrin carbofuran 445 trans-cyfluthrin carbofuran 446 trans-cyfluthrin carbofuran 447 trans-cyfluthrin carbofuran 448 trans-cyfluthrin aldicarb 447 trans-cyfluthrin aldicarb 448 trans-cyfluthrin aldicarb 448 trans-cyfluthrin aldicarb 449 trans-cyfluthrin 449 trans-cyfluthrin 440 trans-cyfluthrin 440 trans-cyfluthrin 440 trans-cyfluthrin 440 trans-cyfluthrin 440 trans-cyfluthrin 440 trans-cyfluthri | | | | | | | | flucythrinate fipronil 428 trans-cyfluthrin nitenpyram 359 flucythrinate tebufenozide 429 trans-cyfluthrin nidinotefuran 360 flucythrinate methoxyfenozide 429 trans-cyfluthrin chlorfenapyr 361 flucythrinate halofenozide 431 trans-cyfluthrin fenpyroximate 432 flucythrinate triazamate 432 trans-cyfluthrin tebufenpyrad 363 flucythrinate avermectin 433 trans-cyfluthrin fipronil 364 flucythrinate spinosad 434 trans-cyfluthrin tebufenozide 365 flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide 366 flucythrinate diazinon 437 trans-cyfluthrin halofenozide 367 flucythrinate diazinon 437 trans-cyfluthrin triazamate 368 flucythrinate chlorpyrifos 438 trans-cyfluthrin avermectin 369 flucythrinate chlorpyrifos 438 trans-cyfluthrin avermectin 371 flucythrinate diazinon 440 trans-cyfluthrin acephate 371 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 372 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 373 flucythrinate carbofuran 443 trans-cyfluthrin diazinon 374 flucythrinate carbofuran 444 trans-cyfluthrin diazinon 375 flucythrinate carbofuran 445 trans-cyfluthrin chlorpyrifos-methyl 375 flucythrinate carbofuran 445 trans-cyfluthrin malathion 446 trans-cyfluthrin chlorpyrifos-methyl 375 flucythrinate carbofuran 447 trans-cyfluthrin chlorpyrifos-methyl 378 flumethrin imidacloprid 447 trans-cyfluthrin carbofuran 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin carbofuran 440 trans-cyfluthrin carbofuran 441 trans-cyfluthrin carbofuran 442 trans-cyfluthrin carbofuran 443 trans-cyfluthrin carbofuran 444 trans-cyfluthrin carbofuran 445 trans-cyfluthrin carbofuran 446 trans-cyfluthrin carbofuran 447 trans-cyfluthrin carbofuran 448 trans-cyfluthrin carbofuran 448 trans-cyfluthrin carbofuran 448 trans-cyfluthrin carbofuran 449 trans-cyfluthrin imidacloprid 447 trans-cyfluthrin imidacloprid 447 trans-cyfluthrin imidacloprid 448 trans-cyfluthrin imidacloprid 449 trans-cyfluthrin imidacloprid 440 trans-cyfluthrin imidacloprid 440 trans-cyfluthrin 4450 trans-c | | | | | | | | S59 flucythrinate tebufenozide 429 trans-cyfluthrin nidinotefuran | | | | | | | | flucythrinate triazamate triazamate 432 trans-cyfluthrin tebufenpyrad flucythrinate avermectin 433 trans-cyfluthrin fipronil fipronil 364 flucythrinate spinosad 434 trans-cyfluthrin tebufenpyrad flucythrinate spinosad 434 trans-cyfluthrin tebufenozide flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide flucythrinate diazinon 437 trans-cyfluthrin triazamate diazinon 437 trans-cyfluthrin triazamate 686 flucythrinate diazinon 437 trans-cyfluthrin triazamate 686 flucythrinate chlorpyrifos 438 trans-cyfluthrin avermectin 7369 flucythrinate chlorpyrifos—methyl 439 trans-cyfluthrin spinosad 730 flucythrinate malathion 440 trans-cyfluthrin spinosad 731 flucythrinate aldicarb 441 trans-cyfluthrin fenamiphos 732 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 733 flucythrinate aldicarb 443 trans-cyfluthrin chlorpyrifos 734 flucythrinate carbofuran 443 trans-cyfluthrin chlorpyrifos 736 flucythrinate thiodicarb 444 trans-cyfluthrin chlorpyrifos—methyl 737 flucythrinate 738 flucythrinate 738 flumethrin acetamiprid 446 trans-cyfluthrin carbofuran 739 flumethrin nitingacloprid 447 trans-cyfluthrin aldicarb 738 flumethrin nitingarian 448 trans-cyfluthrin carbofuran 449 trans-cyfluthrin carbofuran 739 flumethrin nitingarian 449 trans-cyfluthrin thiodicarb 739 flumethrin nitingarian 449 trans-cyfluthrin carbofuran 449 trans-cyfluthrin carbofuran 739 flumethrin nitingarian 449 trans-cyfluthrin acetamiprid 740 trans-cyfluthrin carbofuran 740 trans-cyfluthrin 140 | 359 | | | 429 | | | | 362flucythrinatetriazamate432trans-cyfluthrintebufenpyrad363flucythrinateavermectin433trans-cyfluthrinfipronil364flucythrinatespinosad434trans-cyfluthrintebufenozide365flucythrinateacephate435trans-cyfluthrinmethoxyfenozide366flucythrinatediazinon437trans-cyfluthrintriazamate367flucythrinatechlorpyrifos438trans-cyfluthrinavermectin369flucythrinatechlorpyrifos-methyl439trans-cyfluthrinspinosad370flucythrinatemalathion440trans-cyfluthrinacephate371flucythrinatecarbaryl441trans-cyfluthrinfenamiphos372flucythrinatealdicarb442trans-cyfluthrindiazinon373flucythrinatecarbofuran443trans-cyfluthrinchlorpyrifos374flucythrinatecarbofuran444trans-cyfluthrinchlorpyrifos-methyl375flucythrinateoxamyl445trans-cyfluthrinmalathion376flumethrinacetamiprid446trans-cyfluthrincarbofuran378flumethrinnitenpyram448trans-cyfluthrincarbofuran379flumethrinnidiacloprid447trans-cyfluthrincarbofuran380flumethrinchlorfenapyr450trans-cyfluthrinthiodicarb381flumethrin </td <td>360</td> <td>flucythrinate</td> <td>methoxyfenozide</td> <td>430</td> <td></td> <td>chlorfenapyr</td> | 360 | flucythrinate | methoxyfenozide | 430 | | chlorfenapyr | | flucythrinate spinosad 434 trans-cyfluthrin tebufenozide spinosad 434 trans-cyfluthrin tebufenozide flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide flucythrinate flucythrinate diazinon 437 trans-cyfluthrin triazamate flucythrinate chlorpyrifos 438 trans-cyfluthrin triazamate flucythrinate chlorpyrifos 438 trans-cyfluthrin spinosad 370 flucythrinate chlorpyrifos-methyl 439 trans-cyfluthrin spinosad 370 flucythrinate malathion 440 trans-cyfluthrin acephate carbaryl 441 trans-cyfluthrin fenamiphos 372 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 373 flucythrinate carbofuran 443 trans-cyfluthrin chlorpyrifos 444 trans-cyfluthrin chlorpyrifos 445 trans-cyfluthrin chlorpyrifos-methyl 375 flucythrinate thiodicarb 444 trans-cyfluthrin chlorpyrifos-methyl 376 flumethrin acetamiprid 446 trans-cyfluthrin carbaryl 377 flumethrin imidacloprid 447 trans-cyfluthrin carbaryl 378 flumethrin inidicotefuran 448 trans-cyfluthrin carbaryl 379 flumethrin nitenpyram 448 trans-cyfluthrin carbaryl 380 flumethrin nidinotefuran 449 trans-cyfluthrin thiodicarb 380 flumethrin chlorpoyroximate 451 acrinathrin acetamiprid imidacloprid imidacloprid 452 acrinathrin imidacloprid imidacloprid | 361 | flucythrinate | halofenozide | 431 | trans-cyfluthrin | | | 364 flucythrinate spinosad 434 trans-cyfluthrin tebufenozide 365 flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide 366 flucythrinate fenamiphos 436 trans-cyfluthrin halofenozide 367 flucythrinate diazinon 437 trans-cyfluthrin triazamate 368 flucythrinate chlorpyrifos 438 trans-cyfluthrin avermectin 369 flucythrinate chlorpyrifos-methyl 439 trans-cyfluthrin acephate 370 flucythrinate malathion 440 trans-cyfluthrin acephate 371 flucythrinate carbaryl 441 trans-cyfluthrin diazinon 372 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 373 flucythrinate carbofuran 443 trans-cyfluthrin chlorpyrifos 374 flucythrinate thiodicarb 444 trans-cyfluthrin chlorpyrifos-methyl 375 flucythrinate oxamyl 445 trans-cyfluthrin malathion 376 flumethrin acetamiprid 446 trans-cyfluthrin carbaryl 377 flumethrin imidacloprid 447 trans-cyfluthrin carbaryl 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449
trans-cyfluthrin thiodicarb 380 flumethrin chlorfenapyr 450 trans-cyfluthrin oxamyl 381 flumethrin fenpyroximate 451 acrinathrin acetamiprid 382 flumethrin tebufenpyrad 452 acrinathrin imidacloprid | | | | | | | | 365 flucythrinate acephate 435 trans-cyfluthrin methoxyfenozide 366 flucythrinate fenamiphos 436 trans-cyfluthrin halofenozide 367 flucythrinate diazinon 437 trans-cyfluthrin triazamate 368 flucythrinate chlorpyrifos 438 trans-cyfluthrin spinosad 369 flucythrinate chlorpyrifos-methyl 439 trans-cyfluthrin spinosad 370 flucythrinate malathion 440 trans-cyfluthrin acephate 371 flucythrinate carbaryl 441 trans-cyfluthrin fenamiphos 372 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 373 flucythrinate carbofuran 443 trans-cyfluthrin chlorpyrifos 374 flucythrinate thiodicarb 444 trans-cyfluthrin chlorpyrifos-methyl 375 flucythrinate oxamyl 445 trans-cyfluthrin malathion 376 flumethrin acetamiprid 446 trans-cyfluthrin carbaryl 377 flumethrin imidacloprid 447 trans-cyfluthrin carbaryl 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin carbofuran 380 flumethrin chlorfenapyr 450 trans-cyfluthrin thiodicarb 381 flumethrin fenpyroximate 451 acrinathrin acetamiprid imidacloprid | | | | | | | | 366flucythrinatefenamiphos436trans-cyfluthrinhalofenozide367flucythrinatediazinon437trans-cyfluthrintriazamate368flucythrinatechlorpyrifos438trans-cyfluthrinavermectin369flucythrinatechlorpyrifos-methyl439trans-cyfluthrinspinosad370flucythrinatemalathion440trans-cyfluthrinacephate371flucythrinatecarbaryl441trans-cyfluthrinfenamiphos372flucythrinatealdicarb442trans-cyfluthrindiazinon373flucythrinatecarbofuran443trans-cyfluthrinchlorpyrifos-methyl374flucythrinatethiodicarb444trans-cyfluthrinchlorpyrifos-methyl375flucythrinateoxamyl445trans-cyfluthrinmalathion376flumethrinacetamiprid446trans-cyfluthrincarbaryl377flumethrinimidacloprid447trans-cyfluthrincarbofuran378flumethrinnitenpyram448trans-cyfluthrincarbofuran380flumethrinnidiotefuran449trans-cyfluthrinthiodicarb381flumethrinflorenapyr450trans-cyfluthrinacetamiprid382flumethrintebufenpyrad452acrinathrinimidacloprid | | | | | | | | 367 flucythrinate diazinon 437 trans-cyfluthrin triazamate 368 flucythrinate chlorpyrifos 438 trans-cyfluthrin avermectin 369 flucythrinate chlorpyrifos-methyl 439 trans-cyfluthrin spinosad 370 flucythrinate malathion 440 trans-cyfluthrin acephate 371 flucythrinate carbaryl 441 trans-cyfluthrin fenamiphos 372 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 373 flucythrinate carbofuran 443 trans-cyfluthrin chlorpyrifos 374 flucythrinate thiodicarb 444 trans-cyfluthrin chlorpyrifos-methyl 375 flucythrinate oxamyl 445 trans-cyfluthrin malathion 376 flumethrin acetamiprid 446 trans-cyfluthrin carbaryl 377 flumethrin imidacloprid 447 trans-cyfluthrin carbaryl 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin thiodicarb 380 flumethrin chlorfenapyr 450 trans-cyfluthrin oxamyl 381 flumethrin fenpyroximate 451 acrinathrin imidacloprid imidacloprid | | | | | | | | 368flucythrinatechlorpyrifos438trans-cyfluthrinavermectin369flucythrinatechlorpyrifos-methyl439trans-cyfluthrinspinosad370flucythrinatemalathion440trans-cyfluthrinacephate371flucythrinatecarbaryl441trans-cyfluthrinfenamiphos372flucythrinatealdicarb442trans-cyfluthrindiazinon373flucythrinatecarbofuran443trans-cyfluthrinchlorpyrifos374flucythrinatethiodicarb444trans-cyfluthrinchlorpyrifos-methyl375flucythrinateoxamyl445trans-cyfluthrinmalathion376flumethrinacetamiprid446trans-cyfluthrincarbaryl377flumethrinimidacloprid447trans-cyfluthrinaldicarb378flumethrinnitenpyram448trans-cyfluthrincarbofuran379flumethrinnidinotefuran449trans-cyfluthrinthiodicarb380flumethrinchlorfenapyr450trans-cyfluthrinoxamyl381flumethrinfenpyroximate451acrinathrinacetamiprid382flumethrintebufenpyrad452acrinathrinimidacloprid | | | | | | | | 369 flucythrinate chlorpyrifos-methyl 439 trans-cyfluthrin spinosad 370 flucythrinate malathion 440 trans-cyfluthrin accephate 371 flucythrinate carbaryl 441 trans-cyfluthrin fenamiphos 372 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 373 flucythrinate carbofuran 443 trans-cyfluthrin chlorpyrifos 374 flucythrinate thiodicarb 444 trans-cyfluthrin chlorpyrifos-methyl 375 flucythrinate oxamyl 445 trans-cyfluthrin malathion 376 flumethrin acctamiprid 446 trans-cyfluthrin carbaryl 377 flumethrin imidacloprid 447 trans-cyfluthrin aldicarb 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin thiodicarb 380 flumethrin chlorfenapyr 450 trans-cyfluthrin oxamyl 381 flumethrin fenpyroximate 451 acrinathrin acctamiprid imidacloprid | | | | | | | | 370 flucythrinate malathion 440 trans-cyfluthrin acephate 371 flucythrinate carbaryl 441 trans-cyfluthrin fenamiphos 372 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 373 flucythrinate carbofuran 443 trans-cyfluthrin chlorpyrifos 374 flucythrinate thiodicarb 444 trans-cyfluthrin chlorpyrifos-methyl 375 flucythrinate oxamyl 445 trans-cyfluthrin malathion 376 flumethrin acetamiprid 446 trans-cyfluthrin carbaryl 377 flumethrin imidacloprid 447 trans-cyfluthrin aldicarb 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin thiodicarb 380 flumethrin chlorfenapyr 450 trans-cyfluthrin thiodicarb 381 flumethrin fenpyroximate 451 acrinathrin acetamiprid imidacloprid 452 acrinathrin imidacloprid | | | | | | | | 371 flucythrinate carbaryl 441 trans-cyfluthrin fenamiphos 372 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 373 flucythrinate carbofuran 443 trans-cyfluthrin chlorpyrifos 374 flucythrinate thiodicarb 444 trans-cyfluthrin chlorpyrifos-methyl 375 flucythrinate oxamyl 445 trans-cyfluthrin malathion 376 flumethrin acetamiprid 446 trans-cyfluthrin carbaryl 377 flumethrin imidacloprid 447 trans-cyfluthrin aldicarb 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin carbofuran 380 flumethrin chlorfenapyr 450 trans-cyfluthrin oxamyl 381 flumethrin fenpyroximate 451 acrinathrin acetamiprid 382 flumethrin tebufenpyrad 452 acrinathrin imidacloprid | | | | | | 1 | | 372 flucythrinate aldicarb 442 trans-cyfluthrin diazinon 373 flucythrinate carbofuran 443 trans-cyfluthrin chlorpyrifos 374 flucythrinate thiodicarb 444 trans-cyfluthrin chlorpyrifos-methyl 375 flucythrinate oxamyl 445 trans-cyfluthrin malathion 376 flumethrin acetamiprid 446 trans-cyfluthrin carbaryl 377 flumethrin imidacloprid 447 trans-cyfluthrin aldicarb 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin thiodicarb 380 flumethrin chlorfenapyr 450 trans-cyfluthrin oxamyl 381 flumethrin fenpyroximate 451 acrinathrin acetamiprid 382 flumethrin tebufenpyrad 452 acrinathrin imidacloprid | | | | | | | | 373 flucythrinate carbofuran 443 trans-cyfluthrin chlorpyrifos 374 flucythrinate thiodicarb 444 trans-cyfluthrin chlorpyrifos-methyl 375 flucythrinate oxamyl 445 trans-cyfluthrin malathion 376 flumethrin acetamiprid 446 trans-cyfluthrin carbaryl 377 flumethrin imidacloprid 447 trans-cyfluthrin aldicarb 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin thiodicarb 380 flumethrin chlorfenapyr 450 trans-cyfluthrin oxamyl 381 flumethrin fenpyroximate 451 acrinathrin acetamiprid 382 flumethrin tebufenpyrad 452 acrinathrin imidacloprid | | | | | | | | 374 flucythrinate thiodicarb 444 trans-cyfluthrin chlorpyrifos-methyl malathion 375 flucythrinate oxamyl 445 trans-cyfluthrin malathion 376 flumethrin acetamiprid 446 trans-cyfluthrin carbaryl 377 flumethrin imidacloprid 447 trans-cyfluthrin aldicarb 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin thiodicarb 380 flumethrin chlorfenapyr 450 trans-cyfluthrin oxamyl 381 flumethrin fenpyroximate 451 acrinathrin acetamiprid 382 flumethrin tebufenpyrad 452 acrinathrin imidacloprid | | • | | | | | | 375 flucythrinate oxamyl 445 trans-cyfluthrin malathion 376 flumethrin acetamiprid 446 trans-cyfluthrin carbaryl 377 flumethrin imidacloprid 447 trans-cyfluthrin aldicarb 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin thiodicarb 380 flumethrin chlorfenapyr 450 trans-cyfluthrin oxamyl 381 flumethrin fenpyroximate 451 acrinathrin acetamiprid 382 flumethrin tebufenpyrad 452 acrinathrin imidacloprid | | | | | | | | 376 flumethrin acetamiprid 446 trans-cyfluthrin carbaryl 377 flumethrin imidacloprid 447 trans-cyfluthrin aldicarb 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin thiodicarb 380 flumethrin chlorfenapyr 450 trans-cyfluthrin oxamyl 381 flumethrin fenpyroximate 451 acrinathrin acetamiprid 382 flumethrin tebufenpyrad 452 acrinathrin imidacloprid | | | | | | | | 377 flumethrin imidacloprid 447 trans-cyfluthrin aldicarb 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin thiodicarb 380 flumethrin chlorfenapyr 450 trans-cyfluthrin oxamyl 381 flumethrin fenpyroximate 451 acrinathrin acetamiprid 382 flumethrin tebufenpyrad 452 acrinathrin imidacloprid | | | | | | | | 378 flumethrin nitenpyram 448 trans-cyfluthrin carbofuran 379 flumethrin nidinotefuran 449 trans-cyfluthrin thiodicarb 380 flumethrin chlorfenapyr 450 trans-cyfluthrin oxamyl 381 flumethrin fenpyroximate 451 acrinathrin acetamiprid 382 flumethrin tebufenpyrad 452 acrinathrin imidacloprid | | | imidacloprid | 447 | | | | 380 flumethrin chlorfenapyr 450 trans-cyfluthrin oxamyl
381 flumethrin fenpyroximate 451 acrinathrin acetamiprid
382 flumethrin tebufenpyrad 452 acrinathrin imidacloprid | | | nitenpyram | | trans-cyfluthrin | | | 381 flumethrin fenpyroximate 451 acrinathrin acetamiprid
382 flumethrin tebufenpyrad 452 acrinathrin imidaeloprid | | | | | | | | 382
flumethrin teburénpyrad 452 acrinathrin imidacloprid | | | | | | | | | | | | | | | | 383 numethrin npronii 453 acrinathrin nitenpyram | | | | | | | | | 383 | flumethrin | npronil | 453 | acrinathrin | nıtenpyram | TABLE 1-continued ## TABLE 1-continued | OMBOSTETON | | | COMBOSTETO | N | | |-------------------|------------------------------|-----------------------------|-------------------|---------------|---------------------| | OMPOSITION
NO. | PYRETHROID | OTHER INSECTICIDE | COMPOSITIO
NO. | PYRETHROID | OTHER INSECTICID | | 454 | acrinathrin | nidinotefuran | 524 | tralomethrin | thiodicarb | | 455 | acrinathrin | chlorfenapyr | 525 | tralomethrin | oxamyl | | 456 | acrinathrin | fenpyroximate | 526 | cycloprothrin | acetamiprid | | 457 | acrinathrin | tebufenpyrad | 527 | cycloprothrin | imidacloprid | | 458 | acrinathrin | fipronil | 528 | cycloprothrin | nitenpyram | | 459 | acrinathrin | tebufenozide | 529 | cycloprothrin | nidinotefuran | | 460 | acrinathrin | methoxyfenozide | 530 | cycloprothrin | chlorfenapyr | | 461 | acrinathrin | halofenozide | 531 | cycloprothrin | fenpyroximate | | 462 | acrinathrin | triazamate | 532 | cycloprothrin | tebufenpyrad | | 463 | acrinathrin | avermectin | 533 | cycloprothrin | fipronil | | 464 | acrinathrin | spinosad | 534 | cycloprothrin | tebufenozide | | 465 | acrinathrin | acephate | 535 | cycloprothrin | methoxyfenozide | | 466 | acrinathrin | fenamiphos | 536 | cycloprothrin | halofenozide | | 467 | acrinathrin | diazinon | 537 | cycloprothrin | triazamate | | 468 | acrinathrin | chlorpyrifos | 538 | cycloprothrin | avermectin | | 469 | acrinathrin | chlorpyrifos-methyl | 539 | cycloprothrin | spinosad | | 470 | acrinathrin | malathion | 540 | cycloprothrin | acephate | | 471 | acrinathrin | carbaryl | 541 | cycloprothrin | fenamiphos | | 472 | acrinathrin | aldicarb | 542 | cycloprothrin | diazinon | | 473 | acrinathrin | carbofuran | 543 | cycloprothrin | chlorpyrifos | | 474 | acrinathrin | thiodicarb | 544 | cycloprothrin | chlorpyrifos-methyl | | 475 | acrinathrin | oxamyl | 545 | cycloprothrin | malathion | | 476 | alphacypermethrin | acetamiprid | 546 | eycloprothrin | carbaryl | | 477 | alphacypermethrin | imidacloprid | 547 | cycloprothrin | aldicarb | | 478 | alphacypermethrin | nitenpyram | 548 | cycloprothrin | carbofuran | | 479 | alphacypermethrin | nidinotefuran | 549 | eycloprothrin | thiodicarb | | 480 | alphacypermethrin | chlorfenapyr | 550 | cycloprothrin | oxamyl | | 481 | alphacypermethrin | fenpyroximate | 551 | kadethrin | acetamiprid | | 482 | alphacypermethrin | tebufenpyrad | 552 | kadethrin | imidacloprid | | 483 | alphacypermethrin | fipronil | 553 | kadethrin | nitenpyram | | 484 | alphacypermethrin | tebufenozide | 554 | kadethrin | nidinotefuran | | 485 | alphacypermethrin | methoxyfenozide | 555 | kadethrin | chlorfenapyr | | 486 | alphacypermethrin | halofenozide | 556 | kadethrin | fenpyroximate | | 487 | alphacypermethrin | triazamate | 557 | kadethrin | tebufenpyrad | | 488 | alphacypermethrin | avermectin | 558 | kadethrin | fipronil | | 489 | alphacypermethrin | spinosad | 559 | kadethrin | tebufenozide | | 490 | alphacypermethrin | acephate | 560 | kadethrin | methoxyfenozide | | 491 | alphacypermethrin | fenamiphos | 561 | kadethrin | halofenozide | | 492 | alphacypermethrin | diazinon | 562 | kadethrin | triazamate | | 493 | alphacypermethrin | chlorpyrifos | 563 | kadethrin | avermectin | | 494 | alphacypermethrin | chlorpyrifos-methyl | 564 | kadethrin | spinosad | | 495 | alphacypermethrin | malathion | 565 | kadethrin | acephate | | 496 | alphacypermethrin | carbaryl | 566 | kadethrin | fenamiphos | | 497 | alphacypermethrin | aldicarb | 567 | kadethrin | diazinon | | 498 | alphacypermethrin | carbofuran | 568 | kadethrin | chlorpyrifos | | 498
499 | alphacypermethrin | thiodicarb | 569 | kadethrin | chlorpyrifos-methyl | | 500 | alphacypermethrin | oxamyl | 570 | kadethrin | malathion | | 501 | tralomethrin | acetamiprid | 571 | kadethrin | carbaryl | | 502 | tralomethrin | imidacloprid | 572 | kadethrin | aldicarb | | 503 | | | | kadethrin | 1 C | | 503
504 | tralomethrin
tralomethrin | nitenpyram
nidinotefuran | 573
574 | kadethrin | thiodicarb | | 505 | tralomethrin | chlorfenapyr | 575 | kadethrin | oxamyl | | | tralomethrin | | | | | | 506
507 | | fenpyroximate | 576
577 | resmethrin | acetamiprid | | 507
508 | tralomethrin | tebufenpyrad | 577
578 | resmethrin | imidacloprid | | | tralomethrin | fipronil | | resmethrin | nitenpyram | | 509 | tralomethrin | tebufenozide | 579
580 | resmethrin | nidinotefuran | | 510 | tralomethrin | methoxyfenozide | 580 | resmethrin | chlorfenapyr | | 511 | tralomethrin | halofenozide | 581 | resmethrin | fenpyroximate | | 512 | tralomethrin | triazamate | 582 | resmethrin | tebufenpyrad | | 513 | tralomethrin | avermectin | 583 | resmethrin | fipronil | | 514 | tralomethrin | spinosad | 584 | resmethrin | tebufenozide | | 515 | tralomethrin | acephate | 585 | resmethrin | methoxyfenozide | | 516 | tralomethrin | fenamiphos | 586 | resmethrin | halofenozide | | 517 | tralomethrin | diazinon | 587 | resmethrin | triazamate | | 518 | tralomethrin | chlorpyrifos | 588 | resmethrin | avermectin | | 519 | tralomethrin | chlorpyrifos-methyl | 589 | resmethrin | spinosad | | 520 | tralomethrin | malathion | 590 | resmethrin | acephate | | 521 | tralomethrin | carbaryl | 591 | resmethrin | fenamiphos | | 522 | tralomethrin | aldicarb | 592 | resmethrin | diazinon | | 322 | | | | | | TABLE 1-continued TABLE 1-continued | COMPOSITION | | | COMPOSITIO | N | | |-------------|---------------|---------------------|------------|--------------|---------------------| | NO. | PYRETHROID | OTHER INSECTICIDE | NO. | PYRETHROID | OTHER INSECTICID | | 594 | resmethrin | chlorpyrifos-methyl | 664 | phenothrin | spinosad | | 595 | resmethrin | malathion | 665 | phenothrin | acephate | | 596 | resmethrin | carbaryl | 666 | phenothrin | fenamiphos | | 597 | resmethrin | aldicarb | 667 | phenothrin | diazinon | | 598 | resmethrin | carbofuran | 668 | phenothrin | chlorpyrifos | | 599 | resmethrin | thiodicarb | 669 | phenothrin | chlorpyrifos-methyl | | 600 | resmethrin | oxamyl | 670 | phenothrin | malathion | | 601 | bioresmethrin | acetamiprid | 671 | phenothrin | carbaryl | | 602 | bioresmethrin | imidacloprid | 672 | phenothrin | aldicarb | | 603 | bioresmethrin | nitenpyram | 673 | phenothrin | carbofuran | | 604 | bioresmethrin | nidinotefuran | 674 | phenothrin | thiodicarb | | 605 | bioresmethrin | chlorfenapyr | 675 | phenothrin | oxamyl | | 606 | bioresmethrin | fenpyroximate | 676 | empenthrin | acetamiprid | | 607 | bioresmethrin | tebufenpyrad | 677 | empenthrin | imidacloprid | | 608 | bioresmethrin | fipronil | 678 | empenthrin | nitenpyram | | 609 | bioresmethrin | tebufenozide | 679 | empenthrin | nidinotefuran | | 610 | bioresmethrin | methoxyfenozide | 680 | empenthrin | chlorfenapyr | | 611 | bioresmethrin | halofenozide | 681 | empenthrin | fenpyroximate | | 612 | bioresmethrin | triazamate | 682 | empenthrin | tebufenpyrad | | 613 | bioresmethrin | avermectin | 683 | empenthrin | fipronil | | 614 | bioresmethrin | spinosad | 684 | empenthrin | tebufenozide | | 615 | bioresmethrin | acephate | 685 | empenthrin | methoxyfenozide | | 616 | bioresmethrin | fenamiphos | 686 | empenthrin | halofenozide | | 617 | bioresmethrin | diazinon | 687 | empenthrin | triazamate | | 618 | bioresmethrin | chlorpyrifos | 688 | empenthrin | avermectin | | 619 | bioresmethrin | chlorpyrifos-methyl | 689 | empenthrin | spinosad | | 620 | bioresmethrin | malathion | 690 | empenthrin | acephate | | 621 | bioresmethrin | carbaryl | 691 | empenthrin | fenamiphos | | 622 | bioresmethrin | aldicarb | 692 | empenthrin | diazinon | | 623 | bioresmethrin | carbofuran | 693 | empenthrin | chlorpyrifos | | 624 | bioresmethrin | thiodicarb | 694 | empenthrin | chlorpyrifos-methyl | | 625 | bioresmethrin | oxamyl | 695 | empenthrin | malathion | | 626 | tetramethrin | acetamiprid | 696 | empenthrin | carbaryl | | 627 | tetramethrin | imidacloprid | 697 | empenthrin | aldicarb | | 628 | tetramethrin | nitenpyram | 698 | empenthrin | carbofuran | | 629 | tetramethrin | nidinotefuran | 699 | empenthrin | thiodicarb | | 630 | tetramethrin | chlorfenapyr | 700 | empenthrin | oxamyl | | 631 | tetramethrin | fenpyroximate | 701 | cyphenothrin | acetamiprid | | 632 | tetramethrin | tebufenpyrad | 702 | cyphenothrin | imidacloprid | | 633 | tetramethrin | fipronil | 703 | cyphenothrin | nitenpyram | | 634 | tetramethrin | tebufenozide | 704 | cyphenothrin | nidinotefuran | | 635 | tetramethrin | methoxyfenozide | 705 | cyphenothrin | chlorfenapyr | | 636 | tetramethrin | halofenozide | 706 | cyphenothrin | fenpyroximate | | 637 | tetramethrin | triazamate | 707 | cyphenothrin | tebufenpyrad | | 638 | tetramethrin | avermectin | 708 | cyphenothrin | fipronil | | 639 | tetramethrin | spinosad | 709 | cyphenothrin | tebufenozide | | 640 | tetramethrin | acephate | 710 | cyphenothrin | methoxyfenozide | | 641 | tetramethrin | fenamiphos | 711 | cyphenothrin | halofenozide | | 642 | tetramethrin | diazinon | 712 | cyphenothrin | triazamate | | 643 | tetramethrin | chlorpyrifos | 713 | cyphenothrin | avermectin | | 644 | tetramethrin | chlorpyrifos-methyl | 714 | cyphenothrin | spinosad | | 645 | tetramethrin | malathion | 715 | cyphenothrin | acephate | | 646 | tetramethrin | carbaryl | 716 | cyphenothrin | fenamiphos | | 647 | tetramethrin | aldicarb | 717 | cyphenothrin | diazinon | | 648 | tetramethrin | carbofuran | 718 | cyphenothrin | chlorpyrifos | | 649 | tetramethrin | thiodicarb | 719 | cyphenothrin | chlorpyrifos-methyl | | 650 | tetramethrin | oxamyl | 720 | cyphenothrin | malathion | | 651 | phenothrin | acetamiprid | 721 | cyphenothrin | carbaryl | | 652 | phenothrin | imidacloprid | 722 | cyphenothrin | aldicarb | | 653 | phenothrin | nitenpyram | 723 | cyphenothrin |
carbofuran | | 654 | phenothrin | nidinotefuran | 724 | cyphenothrin | thiodicarb | | 655 | phenothrin | chlorfenapyr | 725 | cyphenothrin | oxamyl | | 656 | phenothrin | fenpyroximate | 726 | prallethrin | acetamiprid | | 657 | phenothrin | tebufenpyrad | 727 | prallethrin | imidacloprid | | 658 | phenothrin | fipronil | 728 | prallethrin | nitenpyram | | 659 | phenothrin | tebufenozide | 729 | prallethrin | nidinotefuran | | 660 | phenothrin | methoxyfenozide | 730 | prallethrin | chlorfenapyr | | 661 | phenothrin | halofenozide | 731 | prallethrin | fenpyroximate | | 662 | phenothrin | triazamate | 732 | prallethrin | tebufenpyrad | | 663 | phenothrin | avermectin | 733 | prallethrin | fipronil | TABLE 1-continued Combinations of pyrethroids and other non-pyrethroid insecticides that provide synergistic insecticidal activity^a. | COMPOSITION | DATE CALLAND CALC | OFFICE PROPERTY OF THE | |-------------|----------------------------|-------------------------------------| | NO. | PYRETHROID | OTHER INSECTICIDE | | 734 | prallethrin | tebufenozide | | 735
736 | prallethrin | methoxyfenozide
halofenozide | | 737 | prallethrin
prallethrin | triazamate | | 738 | prallethrin | avermectin | | 739 | prallethrin | spinosad | | 740 | prallethrin | acephate | | 741 | prallethrin | fenamiphos | | 742
743 | prallethrin
prallethrin | diazinon
chlorpyrifos | | 743
744 | prallethrin | chlorpyrifos-methyl | | 745 | prallethrin | malathion | | 746 | prallethrin | carbaryl | | 747 | prallethrin | aldicarb | | 748
749 | prallethrin | carbofuran
thiodicarb | | 750 | prallethrin
prallethrin | oxamyl | | 751 | imiprothrin | acetamiprid | | 752 | imiprothrin | imidacloprid | | 753 | imiprothrin | nitenpyram | | 754
755 | imiprothrin | nidinotefuran | | 755
756 | imiprothrin
imiprothrin | chlorfenapyr
fenpyroximate | | 757 | imiprothrin | tebufenpyrad | | 758 | imiprothrin | fipronil | | 759 | imiprothrin | tebufenozide | | 760 | imiprothrin | methoxyfenozide | | 761
762 | imiprothrin
imiprothrin | halofenozide
triazamate | | 763 | imiprothrin | avermectin | | 764 | imiprothrin | spinosad | | 765 | imiprothrin | acephate | | 766 | imiprothrin | fenamiphos | | 767
768 | imiprothrin
imiprothrin | diazinon | | 769 | imiprothrin | chlorpyrifos
chlorpyrifos-methyl | | 770 | imiprothrin | malathion | | 771 | imiprothrin | carbaryl | | 772 | imiprothrin | aldicarb | | 773
774 | imiprothrin
imiprothrin | carbofuran
thiodicarb | | 775 | imiprothrin | oxamyl | | 776 | allethrin | acetamiprid | | 777 | allethrin | imidacloprid | | 778 | allethrin | nitenpyram | | 779
780 | allethrin
allethrin | nidinotefuran
chlorfenapyr | | 781 | allethrin | fenpyroximate | | 782 | allethrin | tebufenpyrad | | 783 | allethrin | fipronil | | 784 | allethrin | tebufenozide | | 785
786 | allethrin
allethrin | methoxyfenozide
halofenozide | | 787 | allethrin | triazamate | | 788 | allethrin | avermectin | | 789 | allethrin | spinosad | | 790 | allethrin | acephate | | 791
792 | allethrin
allethrin | fenamiphos
diazinon | | 792
793 | allethrin | chlorpyrifos | | 794 | allethrin | chlorpyrifos-methyl | | 795 | allethrin | malathion | | 796 | allethrin | carbaryl | | 797
798 | allethrin
allethrin | aldicarb
carbofuran | | 798
799 | allethrin | carboturan
thiodicarb | | 800 | allethrin | oxamyl | | 801 | bioallethrin | acetamiprid | | 802 | bioallethrin | imidacloprid | | 803 | bioallethrin | nitenpyram | TABLE 1-continued Combinations of pyrethroids and other non-pyrethroid insecticides that provide synergistic insecticidal activity^a. | COMPOSITION NO. | PYRETHROID | OTHER INSECTICIDE | |-----------------|--------------|---------------------| | 804 | bioallethrin | nidinotefuran | | 805 | bioallethrin | chlorfenapyr | | 806 | bioallethrin | fenpyroximate | | 807 | bioallethrin | tebufenpyrad | | 808 | bioallethrin | fipronil | | 809 | bioallethrin | tebufenozide | | 810 | bloallethrin | methoxyfenozide | | 811 | bioallethrin | halofenozide | | 812 | bioallethrin | triazamate | | 813 | bioallethrin | avermectin | | 814 | bioallethrin | spinosad | | 815 | bioallethrin | acephate | | 816 | bioallethrin | fenamiphos | | 817 | bioallethrin | diazinon | | 818 | bioallethrin | chlorpyrifos | | 819 | bioallethrin | chlorpyrifos-methyl | | 820 | bioallethrin | malathion | | 821 | bioallethrin | carbaryl | | 822 | bioallethrin | aldicarb | | 823 | bioallethrin | carbofuran | | 824 | bioallethrin | thiodicarb | | 825 | bioallethrin | oxamyl | Note: [0048] When the other insecticide is an oxadiazine derivative, it has been found that it is preferred that the at least one pyrethroid be selected from the group consisting of taufluvalinate, flumethrin, trans-cyfluthrin, kadethrin, bioresmethrin, tetramethrin, phenothrin, empenthrin, cyphenothrin, prallethrin, imiprothrin, allethrin and bioallethrin. [0049] In another embodiment, the subject method comprises treating a seed prior to sowing with a composition comprising a nitroguanidine and at least one other insecticide selected from the group consisting of a chloronicotinyl, a pyrrol, a pyrazone, a diacylhydrazine, a triazole, a biological/fermentation product, a phenyl pyrazole, an organophosphate and a carbamate. [0050] It has also been found that a transgenic seed can be protected against multiple pests when the seed has at least one heterologous gene encoding for the expression of a protein that is active against a first pest and, in addition, having adhered thereto a composition comprising at least one pyrethrin or synthetic pyrethroid and at least one other insecticide selected from the group consisting of an oxadiazine derivative, a chloronicotinyl, a nitroguanidine, a pyrrol, a pyrazone, a diacylhydrazine, a triazole, a biological/ product, fermentation a phenyl pyrazole, organophosphate and a carbamate. It is preferred that the composition containing the synergistic combination of insecticides is present in an amount effective to provide protection to the shoots and foliage of the plant against damage by at least one second pest. [0051] When the transgenic seed has at least one heterologous gene encoding for the expression of a protein that is active against a first pest, the seed can be treated with a combination of insecticides, which combination has activity against at least one second pest. The present method can be ^aThe composition comprises the two insecticides that appear on the same line as the number of the composition. used when the first pest and the second pest are the same, for the purpose, for example, to obtain effective control of a particularly resistant or highly damaging pest. But in a separate embodiment, the transgenic trait protects the seed and/or plant from a first pest and the composition of the combination of insecticides is selected to control a second pest that is different from the first pest. This method is particularly advantageous when an expressed transgenic gene provides a gene product that can protect a transgenic plant from one pest, but has no activity against a second, different pest. In this case, a combination of insecticides of the present invention can be selected that has activity against the second pest, thus providing the seed and plant with protection from both pests. By way of explanation, when a "first" pest and a "second" pest are referred to herein, it should be understood that each of the terms can include only one pest, or can include two or more pests. [0052] It is contemplated that the present method can be used to protect the seeds, roots and/or the above-ground parts of field, forage, plantation, glasshouse, orchard or vineyard crops, ornamentals, plantation or forest trees. The seeds that are useful in the present invention can be the seeds of any species of plant. However, they are preferably the seeds of plant species that are agronomically important. In particular, the seeds can be of corn, peanut, canola/rapeseed, soybean, curcubits, crucifers, cotton, beets, rice, sorghum, sugar beet, wheat, barley, rye, sunflower, tomato, sugarcane, tobacco, oats, as well as other vegetable and leaf crops. It is preferred that the seed be corn, soybeans, or cotton seed; and more preferred that the seeds be corn seeds. [0053] In one embodiment of the invention, as mentioned above, the seed is a transgenic seed from which a transgenic plant can grow. The transgenic seed of the present invention is engineered to express a desirable characteristic and, in particular, to have at least one heterologous gene encoding for the expression of a protein that is pesticidally active and, in particular, has insecticidal activity. The heterologous gene in the transgenic seeds of the present invention can be derived from a microorganism such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus, Gliocladium and mycorrhizal fungi. In particular, it is believed that the present method would be especially beneficial when the heterologous gene is one that is derived from a Bacillus sp. microorganism and the protein is active against corn rootworm. It is also believed that the present method would be especially beneficial when the heterologous gene is one that is derived from a Bacillus sp. microorganism and the protein is active against European corn borer. A preferred Bacillus sp. microorganism is Bacillus thuringiensis. It is particularly preferred when the heterologous gene encodes a modified Cry3Bb delta-endotoxin derived from Bacillus thuringiensis, as disclosed, for example, in U.S. Pat. No. 6,063,597. [0054] The target pest for the present invention is an adult or larvae of any insect or other pest that feeds on the seed, roots and/or shoots and foliage of the plant that is to be protected by the subject method. Such pests include but are not limited to: [0055] from the order Lepidoptera, for example, Acleris spp., Adoxophyes spp., Aegeria spp.,
Agrotis spp., Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp, Argyrotaenia spp., Autographa spp., Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Clysia ambiguella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Crocidolomia binotalis, Cryptophlebia leucotreta, Cydia spp., Diatraea spp., Diparopsis castanea, Earias spp., Ephestia spp., Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Grapholita spp., Hedya nubiferana, Heliothis spp., Hellula undalis, Hyphantria cunea, Keiferia lycopersicella, Leucoptera scitella, Lithocollethis spp., Lobesia botrana, Lymantria spp., Lyonetia spp., Malacosoma spp., Mamestra brassicae, Manduca sexta, Operophtera spp., Ostrinia Nubilalis, Pammene spp., Pandemis spp., Panolis flammea, Pectinophora gossypiella, Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostella, Prays spp., Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodoptera spp., Synanthedon spp., Thaumetopoea spp., Tortrix spp., Trichoplusia ni and Yponomeuta spp.; [0056] from the order Coleoptera, for example, Agriotes spp., Anthonomus spp., Atomaria linearis, Chaetocnema tibialis, Cosmopolites spp., Curculio spp., Dermestes spp., Diabrotica spp., Epilachna spp., Eremnus spp., Leptinotarsa decemlineata, Lissorhoptrus spp., Melolontha spp., Orycaephilus spp., Otiorhynchus spp., Phlyctinus spp., Popillia spp., Psylliodes spp., Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Tenebrio spp., Tribolium spp. and Trogoderma spp.; [0057] from the order Orthoptera, for example, *Blatta* spp., *Blattella* spp., *Gryllotalpa* spp., *Leucophaea maderae*, *Locusta* spp., *Periplaneta* ssp., and *Schistocerca* spp.; [0058] from the order Isoptera, for example, *Reticulitemes* ssp; [0059] from the order Psocoptera, for example, *Liposcelis* spp.; [0060] from the order Anoplura, for example, *Haematopinus* spp., *Linognathus* spp., *Pediculus* spp., *Pemphigus* spp. and *Phylloxera* spp.; [0061] from the order Mallophaga, for example, *Damalinea* spp. and *Trichodectes* spp.; [0062] from the order Thysanoptera, for example, Franklinella spp., Hercinothrips spp., Taeniothrips spp., Thrips palmi, Thrips tabaci and Scirtothrips aurantii; [0063] from the order Heteroptera, for example, Cimex spp., Distantiella theobroma, Dysdercus spp., Euchistus spp., Eurygaster spp., Leptocorisa spp., Nezara spp., Piesma spp., Rhodnius spp., Sahlbergella singularis, Scotinophara spp. and Triatoma spp.; [0064] from the order Homoptera, for example, Aleurothrixus floccosus, Aleyrodes brassicae, Aonidiella spp., Aphididae, Aphis spp., Aspidiotus spp., Bemisia tabaci, Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Coccus hesperidum, Empoasca spp., Eriosoma larigerum, Erythroneura spp., Gascardia spp., Laodelphax spp., Lacanium corni, Lepidosaphes spp., Macrosiphus spp., Myzus spp., Nehotettix spp., Nilaparvata spp., Paratoria spp., Pemphigus spp., Planococcus spp., Pseudaulacaspis spp., Pseudococcus spp., Psylla ssp., Pulvinaria aethiopica, Quadraspidiotus spp., Rhopalosiphum spp., Saissetia spp., Scaphoideus spp., Schizaphis spp., Sitobion spp., Trialeurodes vaporariorum, Trioza erytreae and Unaspis citri; [0065] from the order Hymenoptera, for example, Acromyrmex, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplocampa spp., Lasius sppp., Monomorium pharaonis, Neodiprion spp, Solenopsis spp. and Vespa ssp.; [0066] from the order Diptera, for example, Aedes spp., Antherigona soccata, Bibio hortulanus, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Drosophila melanogaster, Fannia spp., Gastrophilus spp., Glossina spp., Hypoderma spp., Hyppobosca spp., Liriomysa spp., Lucilia spp., Melanagromyza spp., Musca ssp., Oestrus spp., Orseolia spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Rhagoletis pomonella, Sciara spp., Stomoxys spp., Tabanus spp., Tannia spp. and Tipula spp., [0067] from the order Siphonaptera, for example, Cerato-phyllus spp. und Xenopsylla cheopis and [0068] from the order Thysanura, for example, *Lepisma saccharina*. [0069] In each embodiment of the invention, it is preferred that a combination of two or more insecticides is applied to a seed in an effective amount; that is, an amount sufficient to provide protection to the seed and/or shoots and foliage of the plant that grows from the seed. As used herein, "protection" is achieved if the percent of feeding damage to the seed and/or the shoots and foliage at 10 days after infestation (DAI) with the pest is reduced for treated seeds or plants grown from treated seeds as compared to untreated seeds or plants grown from untreated seeds. In a preferred embodiment, an unexpected advantage of the compositions of the present invention is that the component insecticides of the composition operate synergistically. As used here, when it is said that a combination demonstrates "synergy", what is meant is that the degree of protection that is provided to a seed and/or the shoots and foliage of a plant that grows from a seed, by treatment of the seed by the present method (using a combination of insecticides), is superior to the degree of protection that would be expected on the basis of the protection provided by each of the components of the composition applied separately. [0070] Methods for the calculation of whether a particular insecticide combination provides synergy are described in detail in the Examples. Briefly stated, however, whether a combination of insecticides provided synergy in protection against cutworm damage can be calculated as described by Colby, Robert. S., in *Weeds*, 15(1):20-22 (1967). The threshold value (stated as % of control) for synergy of a combination was calculated as =(% of control for treatment A)*(% of control for treatment B)/100(n-1); where n=number of active ingredients in the combination. A measured % of control value that is less than the calculated threshold value indicates synergy of the combination. [0071] When the "degree of protection" is mentioned herein, it is meant to include the amount of damage caused by the target insect to seeds that have been treated with a given amount of insecticide (and the plants that sprout therefrom) relative to the amount of damage caused to untreated seeds and plants. But "degree of protection" can also refer to the number of different types of target pests that are affected by the treatment and the length of the period of protection. In other words, a synergistic degree of protection can include unexpectedly effective protection at reduced levels of active ingredient, as well as protection against an unexpectedly wide variety of pests, or protection for an unexpectedly long (or otherwise particularly effective) period of time. [0072] The amount of the insecticidal composition of the present invention that will provide protection to plant shoots and foliage will vary depending on the particular pesticide combination, the concentration of active ingredients in the composition, the nature of the formulation in which it is applied, the seed type, and the target pest(s). As used herein, an amount of the composition effective to provide protection to the seed and/or shoots and foliage of the plant against damage by the pest is the lowest amount of such pesticide that will provide such protection. Assuming that the composition is comprised of 100% active ingredients, then, in general, the amount of the subject composition used will range from about 0.005% to 25% of the weight of the seed, and more preferably, from about 0.01% to about 10%. A yet more preferred range is 0.01% to 1% of the active ingredients relative to the weight of the seed, and an even more preferred range is 0.05% to 0.5%. [0073] The subject compositions are each composed of at least two insecticidal compounds, such as the combinations described in Table 1, and in the surrounding text. When two components are used, the relative amounts of the two insecticides can range from 1:1000 to 1000:1, by weight. It is preferred, however, that the weight ratio of the two insecticides range from 1:100 to 100:1, more preferred is a ratio of 1:10 to 10:1, and yet more preferred is a ratio of 1:3 to 3:1. [0074] In the method of the present invention, the combination of pesticides is applied to a seed. Although it is believed that the present method can be applied to a seed in any physiological state, it is preferred that the seed be in a sufficiently durable state that it incurs no damage during the treatment process. Typically, the seed would be a seed that had been harvested from the field; removed from the plant; and separated from any cob, stalk, outer husk, and surrounding pulp or other non-seed plant material. The seed would preferably also be biologically stable to the extent that the treatment would cause no biological damage to the seed. In one embodiment, for example, the treatment can be applied to seed corn that has been harvested, cleaned and dried to a moisture content below about 15% by weight. In an alternative embodiment, the seed can be one that has been dried and then primed with water and/or another material and then re-dried before or during the treatment with the pesticide. Within the limitations just described, it is believed that the treatment can be applied to the seed at any time between harvest of the seed and sowing of the seed. As used herein, the term "unsown seed" is meant to include seed at any period between the harvest of the seed and the sowing of the seed in the ground for the purpose of germination and growth of the plant. [0075] When it is said that unsown seed is "treated" with the composition, such treatment is not meant to include those practices in which the pesticide is applied to the soil, rather than to the seed. For example, such treatments as the application of the pesticide in bands,
"T"-bands, or infurrow, at the same time as the seed is sowed are not considered to be included in the present invention. [0076] The composition comprising a combination of pesticides can be applied "neat", that is, without any diluting or additional components present. However, the composition is typically applied to the seeds in the form of a pesticide formulation. This formulation may contain one or more other desirable components including but not limited to liquid diluents, binders to serve as a matrix for the pesticide, fillers for protecting the seeds during stress conditions, and plasticizers to improve flexibility, adhesion and/or spreadability of the coating. In addition, for oily pesticide formulations containing little or no filler, it may be desirable to add to the formulation drying agents such as calcium carbonate, kaolin or bentonite clay, perlite, diatomaceous earth or any other adsorbent material. Use of such components in seed treatments is known in the art. See, e.g., U.S. Pat. No. 5,876,739. The skilled artisan can readily select desirable components to use in the pesticide formulation depending on the seed type to be treated and the particular pesticide that is selected. In addition, readily available commercial formulations of known pesticides may be used, as demonstrated in the examples below. [0077] The seeds may also be treated with one or more of the following ingredients: other pesticides, including compounds which act only below the ground; fungicides, such as captan, thiram, metaixyl, fludioxonil, oxadixyl, and isomers of each of those materials, and the like; herbicides, including compounds selected from carbamates, thiocarbamates, acetamides, triazines, dinitroanilines, glycerol ethers, pyridazinones, uracils, phenoxys, ureas, and benzoic acids; herbicidal safeners such as benzoxazine, benzhydryl derivatives, N,N-diallyl dichloroacetamide, various dihaloacyl, oxazolidinyl and thiazolidinyl compounds, ethanone, naphthalic anhydride compounds, and oxime derivatives; fertilizers; and biocontrol agents such as naturally-occurring or recombinant bacteria and fungi from the genera Rhizobium, Bacillus, Pseudomonas, Serratia, Trichoderma, Glomus, Gliocladium and mycorrhizal fungi. These ingredients may be added as a separate layer on the seed or alternatively may be added as part of the pesticide composition. [0078] Preferably, the amount of the novel composition or other ingredients used in the seed treatment should not inhibit generation of the seed, or cause phytotoxic damage to the seed. [0079] The composition of the present invention can be in the form of a suspension; emulsion; slurry of particles in an aqueous medium (e.g., water); wettable powder; wettable granules (dry flowable); and dry granules. If formulated as a suspension or slurry, the concentration of the active ingredient in the formulation is preferably about 0.5% to about 99% by weight (w/w), preferably 5-40%. As mentioned above, other conventional inactive or inert ingredients can be incorporated into the formulation. Such inert ingredients include but are not limited to: conventional sticking agents, dispersing agents such as methylcellulose (Methocel A15LV or Methocel A15C, for example, serve as combined dispersant/sticking agents for use in seed treatments), polyvinyl alcohol (e.g., Elvanol 51-05), lecithin (e.g., Yelkinol P), polymeric dispersants (e.g., polyvinylpyrrolidone/vinyl acetate PVPNA S-630), thickeners (e.g., clay thickeners such as Van Gel B to improve viscosity and reduce settling of particle suspensions), emulsion stabilizers, surfactants, antifreeze compounds (e.g., urea), dyes, colorants, and the like. Further inert ingredients useful in the present invention can be found in McCutcheon's, vol. 1, "Emulsifiers and Detergents," MC Publishing Company, Glen Rock, N.J., U.S.A., 1996. Additional inert ingredients useful in the present invention can be found in McCutcheon's, vol. 2, "Functional Materials," MC Publishing Company, Glen Rock, N.J., U.S.A., 1996. [0080] The pesticides, compositions of pesticide combinations, and formulations of the present invention can be applied to seeds by any standard seed treatment methodology, including but not limited to mixing in a container (e.g., a bottle or bag), mechanical application, tumbling, spraying, and immersion. Any conventional active or inert material can be used for contacting seeds with pesticides according to the present invention, such as conventional film-coating materials including but not limited to water-based film coating materials such as Sepiret (Seppic, Inc., Fairfield, N.J.) and Opacoat (Berwind Pharm. Services, Westpoint, Pa.). [0081] The subject combination of pesticides can be applied to a seed as a component of a seed coating. Seed coating methods and compositions that are known in the art are useful when they are modified by the addition of one of the embodiments of the combination of pesticides of the present invention. Such coating methods and apparatus for their application are disclosed in, for example, U.S. Pat. Nos. 5,918,413, 5,891,246, 5,554,445, 5,389,399, 5,107, 787, 5,080,925, 4,759,945 and 4,465,017. Seed coating compositions are disclosed, for example, in U.S. Pat. Nos. 5,939,356, 5,882,713, 5,876,739, 5,849,320, 5,834,447, 5,791,084, 5,661,103, 5,622,003, 5,580,544, 5,328,942, 5,300,127, 4,735,015, 4,634,587, 4,383,391, 4,372,080, 4,339,456, 4,272,417 and 4,245,432, among others. [0082] Useful seed coatings contain one or more binders and at least one of the subject combinations of pesticides. [0083] Binders that are useful in the present invention preferably comprise an adhesive polymer that may be natural or synthetic and is without phytotoxic effect on the seed to be coated. The binder may be selected from polyvinyl acetates; polyvinyl acetate copolymers; polyvinyl alcohols; polyvinyl alcohol copolymers; celluloses, including ethylcellu loses, methylcelluloses, hydroxymethylcellu loses, hydroxypropylcelluloses and carboxymethylcellulose; polyvinylpyrolidones; polysaccharides, including starch, modified starch, dextrins, maltodextrins, alginate and chitosans; fats; oils; proteins, including gelatin and zeins; gum arabics; shellacs; vinylidene chloride and vinylidene chloride copolymers; calcium lignosulfonates; acrylic copolymers; polyvinylacrylates; polyethylene oxide; acrylamide polymers and copolymers; polyhydroxyethyl acrylate, methylacrylamide monomers; and polychloroprene. [0084] It is preferred that the binder be selected so that it can serve as a matrix for the subject combination of pesticides. While the binders disclosed above may all be useful as a matrix, the specific binder will depend upon the properties of the combination of pesticides. The term "matrix", as used herein, means a continuous solid phase of one or more binder compounds throughout which is distributed as a discontinuous phase one or more of the subject combinations of pesticides. Optionally, a filler and/or other components can also be present in the matrix. The term matrix is to be understood to include what may be viewed as a matrix system, a reservoir system or a microencapsulated system. In general, a matrix system consists of a combination of pesticides of the present invention and filler uniformly dispersed within a polymer, while a reservoir system consists of a separate phase comprising the subject combination of pesticides, that is physically dispersed within a surrounding, rate-limiting, polymeric phase. Microencapsulation includes the coating of small particles or droplets of liquid, but also to dispersions in a solid matrix. [0085] The amount of binder in the coating can vary, but will be in the range of about 0.01 to about 25% of the weight of the seed, more preferably from about 0.05 to about 15%, and even more preferably from about 0.1% to about 10%. [0086] As mentioned above, the matrix can optionally include a filler. The filler can be an absorbent or an inert filler, such as are known in the art, and may include woodflours, clays, activated carbon, sugars, diatomaceous earth, cereal flours, fine-grain inorganic solids, calcium carbonate, and the like. Clays and inorganic solids which may be used include calcium bentonite, kaolin, china clay, talc, perlite, mica, vermiculite, silicas, quartz powder, montmorillonite and mixtures thereof. Sugars which may be useful include dextrin and maltodextrin. Cereal flours include wheat flour, oat flour and barley flour. [0087] The filler is selected so that it will provide a proper microclimate for the seed, for example the filler is used to increase the loading rate of the active ingredients and to adjust the control-release of the active ingredients. The filler can aid in the production or process of coating the seed. The amount of filler can vary, but generally the weight of the filler components will be in the range of about 0.05 to about 75% of the seed weight, more preferably about 0.1 to about 50%, and even more preferably about 0.5% to 15%. [0088] The pesticides that are useful in the coating are those combinations of pesticides that are described herein. The amount of pesticide that is included in the coating will vary depending upon the type of seed and the type of active ingredients, but the coating will contain an amount of the combination of pesticides that is pesticidally effective. When insects are the target pest, that amount will be an amount of the combination of insecticides that is insecticidally effective. As used herein, an insecticidally effective amount means that amount of insecticide that will kill insect pests in the larvae or pupal state of growth, or will consistently reduce or retard the amount of damage produced by insect pests. In general, the amount of pesticide in the coating will range from about 0.005 to about 50% of the weight of the seed. A more preferred range for the pesticide is from about 0.01 to about 40%; more preferred is from about 0.05 to
about 20%. [0089] The exact amount of the combination of pesticides that is included in the coating is easily determined by one of skill in the art and will vary depending upon the size of the seed to be coated. The pesticides of the coating must not inhibit germination of the seed and should be efficacious in protecting the seed and/or the plant during that time in the target insect's life cycle in which it causes injury to the seed or plant. In general, the coating will be efficacious for approximately 0 to 120 days after sowing. [0090] The coating is particularly effective in accommodating high pesticidal loads, as can be required to treat typically refractory pests, such as corn root worm, while at the same time preventing unacceptable phytotoxicity due to the increased pesticidal load. [0091] Optionally, a plasticizer can be used in the coating formulation. Plasticizers are typically used to make the film that is formed by the coating layer more flexible, to improve adhesion and spreadability, and to improve the speed of processing. Improved film flexibility is important to minimize chipping, breakage or flaking during storage, handling or sowing processes. Many plasticizers may be used, however, useful plasticizers include polyethylene glycol, glycerol, butylbenzylphthalate, glycol benzoates and related compounds. The range of plasticizer in the coating layer will be in the range of from bout 0.1 to about 20% by weight. [0092] When the combination of pesticides used in the coating is an oily type formulation and little or no filler is present, it may be useful to hasten the drying process by drying the formulation. This optional step may be accomplished by means will known in the art and can include the addition of calcium carbonate, kaolin or bentonite clay, perlite, diatomaceous earth, or any absorbent material that is added preferably concurrently with the pesticidal coating layer to absorb the oil or excess moisture. The amount of calcium carbonate or related compounds necessary to effectively provide a dry coating will be in the range of about 0.5 to about 10% of the weight of the seed. [0093] The coatings formed with the combination of pesticides are capable of effecting a slow rate of release of the pesticide by diffusion or movement through the matrix to the surrounding medium. [0094] The coating can be applied to almost any crop seed that is described herein, including cereals, vegetables, ornamentals and fruits. [0095] In addition to the coating layer, the seed may be treated with one or more of the following ingredients: other pesticides including fungicides and herbicides; herbicidal safeners; fertilizers and/or biocontrol agents. These ingredients may be added as a separate layer or alternatively may be added in the pesticidal coating layer. [0096] The pesticide formulation may be applied to the seeds using conventional coating techniques and machines, such as fluidized bed techniques, the roller mill method, rotostatic seed treaters, and drum coaters. Other methods, such as spouted beds may also be useful. The seeds may be presized before coating. After coating, the seeds are typically dried and then transferred to a sizing machine for sizing. Such procedures are known in the art. [0097] The pesticide-treated seeds may also be enveloped with a film overcoating to protect the pesticide coating. Such overcoatings are known in the art and may be applied using conventional fluidized bed and drum film coating techniques. [0098] In another embodiment of the present invention, a pesticide can be introduced onto or into a seed by use of solid matrix priming. For example, a quantity of the pesticide can be mixed with a solid matrix material and then the seed can be placed into contact with the solid matrix material for a period to allow the pesticide to be introduced to the seed. The seed can then optionally be separated from the solid matrix material and stored or used, or the mixture of solid matrix material plus seed can be stored or planted directly. Solid matrix materials which are useful in the present invention include polyacrylamide, starch, clay, silica, alumina, soil, sand, polyurea, polyacrylate, or any other material capable of absorbing or adsorbing the pesticide for a time and releasing that pesticide into or onto the seed. It is useful to make sure that the pesticide and the solid matrix material are compatible with each other. For example, the solid matrix material should be chosen so that it can release the pesticide at a reasonable rate, for example over a period of minutes, hours, or days. [0099] The present invention further embodies imbibition as another method of treating seed with the pesticide. For example, plant seed can be combined for a period of time with a solution comprising from about 1% by weight to about 75% by weight of the pesticide in a solvent such as water. Preferably the concentration of the solution is from about 5% by weight to about 50% by weight, more preferably from about 10% by weight to about 25% by weight. During the period that the seed is combined with the solution, the seed takes up (imbibes) a portion of the pesticide. Optionally, the mixture of plant seed and solution can be agitated, for example by shaking, rolling, tumbling, or other means. After imbibition, the seed can be separated from the solution and optionally dried, for example by patting or air drying. [0100] In yet another embodiment, a powdered pesticide can be mixed directly with seed. Optionally, a sticking agent can be used to adhere the powder to the seed surface. For example, a quantity of seed can be mixed with a sticking agent and optionally agitated to encourage uniform coating of the seed with the sticking agent. The seed coated with the sticking agent can then be mixed with the powdered pesticide. The mixture can be agitated, for example by tumbling, to encourage contact of the sticking agent with the powdered pesticide, thereby causing the powdered pesticide to stick to the seed. [0101] The present invention also provides a seed that has been treated by the method described above. [0102] The treated seeds of the present invention can be used for the propagation of plants in the same manner as conventional treated seed. The treated seeds can be stored, handled, sowed and tilled in the same manner as any other pesticide treated seed. Appropriate safety measures should be taken to limit contact of the treated seed with humans, food or feed materials, water and birds and wild or domestic animals. [0103] Preferred embodiments of the invention are described in the following examples. Other embodiments within the scope of the claims herein will be apparent to one skilled in the art from consideration of the specification or practice of the invention as disclosed herein. It is intended that the specification, together with the examples, be considered exemplary only, with the scope and spirit of the invention being indicated by the claims which follow the examples. ### REFERENCE EXAMPLE 1 [0104] This example compares the efficacy of seed treatment with lambda-cyhalothrin (CAS# 91465-08-6) to soil granular treatments with tefluthrin (CAS # 79538-32-2) against feeding damage by black cutworm larvae on shoots and foliage. [0105] A lambda-cyhalothrin seed treatment formulation was prepared by diluting the WARRIOR® T insecticide (Zeneca Ag Products, Wilmington, Del.), which contains 11.4% lambda-cyhalothrin as the active ingredient, into water as a carrier. This formulation was applied for one minute at room temperature to twenty-five grams of Pioneer corn seed (Cultivar PN3394) in a rotostatic seed treater at a rate of 125 g, 250 g or 500 g active ingredient (AI) to 100 kg seed. The treated seeds were allowed to sit uncapped for four to twenty-four hours before planting. [0106] Treated and untreated seeds (Pioneer hybrid PN3394) were planted in a soil mix consisting of Dupo silt loam, 30% Perlite, 20% coarse sand (WB-10 grade) in six groups of tubs (20 in. L×15 in. W×8 in. D). Twelve seeds were planted per tub and three tubs were planted for each treatment regimen. Soil applications of FORCE® 3GR, which contains 3% tefluthrin granule as the active ingredient, were used for two sets of tubs containing untreated seeds. The FORCE 3GR was applied either in-furrow or incorporated into a 5 inch band on the soil surface at the time of planting. The tubs were overhead irrigated until the plants were infested with black cutworm larvae. [0107] The rate of application for the FORCE 3GR was reported in units of grams of the active ingredient per hectare (g/ha), while the rate of application of the WARRIOR T to the seeds was reported in units of grams of the active ingredient per 100 kilograms of the seeds (g/100 kg). Although the conversion of one of these units to the other will vary somewhat according to the type of seed that is being used, the size and weight of the seed, and the density of planting that is used-among other things-an approximate conversion for corn seed can be carried out as follows. Assuming a seed application rate of lambda cyhalothrin of, for example, 125 g/100 kg of seed and a planting density of 15 lbs seed/ac, about 14.7 acres can be planted with 100 kg of the seed. This is an effective application rate of about 8.5 g of lambda cyhalthrin per acre. At 2.47 ac/ha, the seed treatment level of 125 g/100 kg is approximately equivalent to a surface banding treatment at about 21 g/ha. [0108] At twelve days after planting (DAP) but before infestation, the overall health of each plant was rated by looking at emergence, height and appearance. This vigor rating gives an indication of any phytotoxicity from the seed or soil treatment. A rating of 1 indicates extremely low vigor while 10 is the highest vigor rating. [0109] The corn plants were infested at 12 DAP, which corresponds to late growth stage V1 by placing two black cutworm larvae at 3/4 instar on the soil surface near the
base of the plant. Plants were rated 3, 7 and 10 days after infestation (DAI) for the number of cut plants, as well as damage from leaf feeding. The percent stand reduction due to plant cutting was calculated by dividing the number of cut plants into the number of plants present at infestation. The foliar feeding injury was evaluated using a rating scale of 1=no damage and 10=complete defoliation. The mean results for the three tubs for each treatment regimen are presented in Table 2 below. TABLE 2 | | Efficacy of lambda-cyhalothrin seed-treatment against black cutworm feeding damage on corn. | | | | | | | |---|---|------------------------------|--------------------------|------------------------------|--------------------------|-------------------------------|---------------------------| | Treatment
Regimen | Vigor
at
12 DAP | % Stand
Reduct'n
3 DAI | Plant
Defol.
3 DAI | % Stand
Reduct'n
7 DAI | Plant
Defol.
7 DAI | % Stand
Reduct'n
10 DAI | Plant
Defol.
10 DAI | | None
λ-
cyhalothrin
seed | 8.0
9.0 | 72.8
13.9 | 9.0
4.3 | 94.4
16.7 | 9.3
5.0 | 100.0
19.4 | 10.0
3.3 | | 125 g/100 kg
λ-
cyhalothrin
seed
250 g/100 kg | 8.3 | 3.0 | 3.7 | 3.0 | 2.7 | 3.0 | 1.7 | | λ-
cyhalothrin
seed
500 g/100 kg | 8.3 | 0.0 | 2.0 | 0.0 | 2.3 | 0.0 | 1.0 | | Tefluthrin
in-furrow
30 g/ha | 9.0 | 33.9 | 5.0 | 48.0 | 6.0 | 48.0 | 5.3 | | Tefluthrin
banded
30 g/ha | 8.7 | 0.0 | 1.7 | 0.0 | 1.7 | 0.0 | 0.3 | [0110] These results demonstrate that seed treatment with lambda-cyhalothrin prior to planting provides significant protection of corn plants against shoot/foliar feeding damage by black cutworm. For example, at 7 DAI with the lowest rate tested (125 g/kg seed), a significant reduction was observed for both plant cutting (16.7% for seed treatment vs. 94% for untreated control) and foliar feeding injury (5.0 for seed treatment vs. 9.3 rating for untreated control) In addition, tubs planted with seed treated with lambda-cyhalothrin at rates of 250 and 500 g/100 kg seed, showed essentially no stand reduction from plant cutting (3% and 0% for 250 and 500 g, respectively) and only low levels of foliar injury (2.7 and 2.3 rating for 250 and 500 g, respectively). This level of protection was equal to the tefluthrin soil band treatment and superior to tefluthrin in-furrow treatment. When the tubs were evaluated at 10 DAI, no increase in plant cutting and only slightly higher ratings for foliar feeding injury were observed with lambda-cyhalothrin seed treatments as compared to evaluations at 7 DAI. In contrast, the untreated control tubs exhibited 100% plant cutting and complete defoliation by 10 DAI. #### EXAMPLE 2 [0111] This example illustrates the efficacy of corn seed treatment with a combination of tefluthrin and acephate against plant damage by black cutworm. [0112] Seed treatment formulations were prepared from tefluthrin (available from Wilbur Ellis Co. under the trade name of RAZE® 2.5 FS) and acephate (N-[methoxy(methylthio)phosphinoyl]acetamide; CAS Registry No. 30560- 19-1); available from Tomen Agro Inc., San Francisco, Calif., or Valent USA Corp., Walnut Creek, Calif., under the trade name of ORTHENE®. [0113] In addition, separate seed treatment formulations were prepared from each of the two insecticides alone and a sample of untreated seed was also prepared. Corn seed was prepared and treated as described in Example 1, except that the treatment levels of the active ingredients on the seeds was as shown in Table 3. Treated and untreated seeds were planted in tubs and cultivated as described in Example 1. The tubs were overhead irrigated until the plants were infested with black cutworm larvae. [0114] The corn plants were infested as 12 DAP, as described in Example 1. Plants were rated at 10 DAI for the number of cut plants. The percent stand reduction due to plant cutting was calculated by dividing the number of cut plants into the number of plants present at infestation. The mean results for each of the seed treatment regimens is presented in Table 3. [0115] Whether a combination of insecticides provided synergy in protection against cutworm damage was calculated as described by Colby, Robert. S., in *Weeds*, 15(1):20-22 (1967). The threshold value (stated as % of control) for synergy of a combination was calculated as =(% of control for treatment A)*(% of control for treatment B)/100(n-1); where n=number of active ingredients in combination. A measured % of control value that is less than the threshold value indicates synergy of the combination. Threshold values for synergy were calculated for each of the combinations of Table 3, and the threshold values for synergy of combinations of the active ingredients at various levels are shown in Table 4. TABLE 3 Protection of corn plants against black cutworm damage by seed treatments with tefluthrin, acephate and combinations of the two. | TREATMENT | Tefluthrin
(gm/100 kg seed) | Acephate
(gm/100 kg seed) | STAND
REDUCTION
(% at 10 days) | Percent of
Control | Synergy | |-----------|--------------------------------|------------------------------|--------------------------------------|-----------------------|---------| | RAZE | 100 | | 75 | 75 | | | RAZE | 200 | | 100 | 100 | | | RAZE | 300 | | 83 | 83 | | | ORTHENE | | 100 | 6.3 | 6.3 | | | ORTHENE | | 200 | 18.4 | 18.4 | | | RAZE/ORTH | 100 | 100 | 9.4 | 9.4 | NO | | RAZE/ORTH | 100 | 200 | 9.4 | 9.4 | YES | | RAZE/ORTH | 200 | 100 | 33 | 33 | NO | | RAZE/ORTH | 200 | 200 | 9.4 | 9.4 | YES | | RAZE/ORTH | 300 | 100 | 13.5 | 13.5 | NO | | RAZE/ORTH | 300 | 200 | 7.1 | 7.1 | YES | | UNTREATED | 0 | 0 | 100 | | | | CONTROL | | | | | | [0116] TABLE 4 | Matrix of threshold values for synergy of combination (% of control) | | | | | | |--|------------|------------|------------|--|--| | | RAZE @ 100 | RAZE @ 200 | RAZE @ 300 | | | | ORTHENE @ | 4.7 | 6.3 | 5.2 | | | | ORTHENE @ 200 | 13.8 | 18.4 | 15.3 | | | [0117] The results of this test showed that the pyrethroid/organophosphorous-insecticide combinations of tefluthrin and acephate were synergistic against damage of the plant by black cutworm for all levels of tefluthrin when levels of acephate were 200 gm/100 kg of seed (or about 0.3% by weight of the seed). [0118] In view of the above, it will be seen that the several advantages of the invention are achieved and other advantageous results attained. [0119] As various changes could be made in the above methods and compositions without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. [0120] The discussion of references herein is intended merely to summarize the assertions made by their authors and no admission is made that any reference constitutes prior art. Applicants reserve the right to challenge the accuracy and pertinency of the cited references. #### 1-41. (Cancelled). 42. A method for protecting a seed and/or shoots and foliage of a plant grown from the seed from damage by a pest, the method comprising treating the unsown seed with a composition comprising a nitroguanidine and at least one other insecticide selected from the group consisting of a chloronicotinyl, a pyrrol, a pyrazole, a diacylhydrazine, a triazole, a biological/fermentation product, a phenyl pyrazole, an organophosphate and a carbamate. - 43. A seed that has been treated by the method as set forth in claim 42. - 44. The seed as set forth in claim 43, wherein the seed is selected from the group consisting of corn, soybean, cotton, rice, sorghum, sugar beet, wheat, barley, rye, sunflower, tomato, sugarcane, tobacco, rape and oats. - **45**. The seed as set forth in claim 44, wherein the seed is corn seed. - **46**. The seed as set forth in claim 43, wherein the seed is a transgenic seed. - 47. A composition for seed treatment prior to sowing comprising a nitroguanidine and at least one other insecticide selected from the group consisting of a chloronicotinyl, a pyrrol, a pyrazole, a diacylhydrazine, a triazole, a biological/fermentation product, a phenyl pyrazole, an organophosphate and a carbamate. - 48-55. (Cancelled). - 56. (Previously presented, now cancelled) - 57. The method as set forth in claim 42, wherein the nitroguanidine is dinotefuran. - **58**. The method as set forth in claim 42, wherein the other insecticide is a chloronicotinyl. - **59**. The method as set forth in claim 58, wherein the chloronicotinyl comprises at least one compound that is selected from the group consisting of imidacloprid, acetamiprid, nitenpyram, and mixtures thereof. - **60**. The method as set forth in claim 42, wherein the other insecticide is a pyrrol. - **61**. The method as set forth in claim 60, wherein the pyrrol comprises chlorfenapyr. - **62.** The method as set forth in claim 42, wherein the other insecticide comprises a pyrazole. - **63**. The method as set forth in claim 62, wherein the pyrazole comprises tebufenpyrad. - **64**. The method as set forth in claim 42, wherein the other insecticide comprises a diacylhydrazine. - **65**. The method as set forth in claim 64, wherein the diacylhydrazine comprises at least one compound that is selected from the group consisting of tebufenozide, methoxyfenozide and halofenozide. - **66.** The method as set forth in claim 42, wherein the other insecticide comprises a triazole. - **67**. The method as set forth in claim 66, wherein the triazole comprises triazamate. - **68**. The method as set forth in claim 42, wherein the other insecticide comprises a biological/fermentation product that comprises avermectin or spinosad. -
69. The method as set forth in claim 42, wherein the other insecticide comprises a phenyl pyrazone. - **70**. The method as set forth in claim 69, wherein the phenyl pyrazone comprises fiprinol. - 71. The method as set forth in claim 42, wherein the other insecticide comprises an organophosphate. - 72. The method as set forth in claim 71, wherein the organophosphate is selected from the group consisting of acephate, fenamiphos, diazinon, chlorpyrifos, chlorpyrifonmethyl and malathion. - 73. The method as set forth in claim 42, wherein the other insecticide comprises a carbamate. - 74. The method as set forth in claim 73, wherein the carbamate is selected from carbaryl, aldicarb, carbofuran, thiodicarb and oxamyl. - **75**. The composition as set forth in claim 47, wherein the nitroguanidine is dinotefuran. - **76**. The composition as set forth in claim 47, wherein the other insecticide is a chloronicotinyl. - 77. The composition as set forth in claim 76, wherein the chloronicotinyl comprises at least one compound that is selected from the group consisting of imidacloprid, acetamiprid, nitenpyram, and mixtures thereof. - **78**. The composition as set forth in claim 47, wherein the other insecticide is a pyrrol. - **79**. The composition as set forth in claim 78, wherein the pyrrol comprises chlorfenapyr. - **80**. The composition as set forth in claim 47, wherein the other insecticide comprises a pyrazole. - **81**. The composition as set forth in claim 80, wherein the pyrazole comprises tebufenpyrad. - **82**. The composition as set forth in claim 47, wherein the other insecticide comprises a diacylhydrazine. - 83. The composition as set forth in claim 82, wherein the diacylhydrazine comprises at least one compound that is selected from the group consisting of tebufenozide, methoxyfenozide and halofenozide. - **84**. The composition as set forth in claim 47, wherein the other insecticide comprises a triazole. - **85**. The composition as set forth in claim 84, wherein the triazole comprises triazamate. - **86**. The composition as set forth in claim 47, wherein the other insecticide comprises a biological/fermentation product that comprises avermectin or spinosad. - 87. The composition as set forth in claim 47, wherein the other insecticide comprises a phenyl pyrazole. - **88.** The composition as set forth in claim 87, wherein the phenyl pyrazole comprises fiprinol. - 89. The composition as set forth in claim 47, wherein the other insecticide comprises an organophosphate. - **90**. The composition as set forth in claim 89, wherein the organophosphate is selected from the group consisting of acephate, fenamiphos, diazinon, chlorpyrifos, chlorpyrifonmethyl and malathion. - **91**. The composition as set forth in claim 47, wherein the other insecticide comprises a carbamate. - **92**. The composition as set forth in claim 91, wherein the carbamate is selected from carbaryl, aldicarb, carbofuran, thiodicarb and oxamyl. * * * * *