发明名称
流体轴承装置及磁盘旋转装置

摘要
一种流体轴承装置，在轴或套筒的内周具有推力轴承面，该推力轴承面具有动压发生槽，轴与套筒间间隙充满润滑剂。为了防止因流入流体轴承装置的轴承内部的空气使轴承的间隙的油被挤出等油流出而在轴承的间隙产生油膜裁断，在套筒的转子毅一侧的端面设置圆环状的凹部。安装用于覆盖该凹部的盖板构成润滑剂或空气的蓄存部。在套筒的与转子毅相反一侧设置阶梯部，并由连通孔来连接该阶梯部与上述蓄存部。流体轴承装置内部的空气在流体轴承装置动作过程中通过该连通孔达到蓄存部，从蓄存部向外排出。
1. 一种流体轴承装置，其中，

具备：

套筒，具有插入能够旋转的轴的轴承孔，

盖板，设置于上述套筒上，以使在上述轴承孔的一方端部附近形成
作为蓄存润滑剂及空气的空间的蓄存部，

大致圆板状法兰，固定在上述轴的一方端部，且一方的面与上述套
筒的上述轴承孔的另一方端部附近的端面对置，

推力板，与上述法兰的另一面对置，用以密闭包括上述套筒的上述
端面在内区域，及

连通路，连通上述蓄存部和包括上述法兰及上述套筒的上述端面的
由上述推力板密闭的区域；

在上述套筒的上述轴承孔内周面及上述轴的外周面的至少一方上，设
置至少1组人字形状的第1动压发生槽；

在法兰和推力板的各自对置面的至少一方上设置第2动压发生槽，且
在法兰和上述套筒的上述端面的各自对置面的至少一方上设置第3动压发
生槽；

包括上述第1、第2及第3动压发生槽的上述轴和套筒间的间隙及上述
法兰和推力板间的间隙充满润滑剂；

上述套筒或轴的任意一方安装在固定基座上，另一方安装在旋转体
上；

上述套筒，具有形成在上述法兰附近的上述套筒端部且直径大于上述
轴承孔内径的大的阶梯部；

上述第1动压发生槽，被形成相对于与上述轴的轴心垂直规定面不对
称的人字形状，以使上述轴与上述轴承孔间的间隙中的润滑剂从上述盖板
向朝向上述法兰的方向移动，

上述蓄存部、上述轴承孔及上述连通路形成润滑剂的循环路径。

2. 根据权利要求1所述的液体轴承装置，其中：在S1表示上述轴的
轴心与上述套筒的轴承孔的中心轴一致状态下的上述轴与套筒的间隙定义的半径间隙尺寸 \(S_2 \) 表示上述轴与盖板内周的间隙尺寸 \(S_3 \) 表示上述盖板内周端与上述套筒端面的间隙尺寸 \(S_4 \) 表示上述盖板的除内周端以外的部分与上述套筒端面的间隙尺寸时，间隙尺寸 \(S_1 \) 小于间隙尺寸 \(S_2 \) 及 \(S_3 \)，且间隙尺寸 \(S_3 \) 小于间隙尺寸 \(S_4 \)。

3. 根据权利要求1所述的液体轴承装置，其中：上述盖板在离开上述连通路的开口的位置具有至少1个连通上述润滑剂及空气的蓄存部，与外部的通气孔，上述蓄存部的与上述轴对置的部分的间隙小于其他部分的间隙。

4. 根据权利要求3所述的液体轴承装置，其中：上述通气孔在成为上述润滑剂及空气的蓄存部的空间侧的面上具有凹部。

5. 根据权利要求3所述的液体轴承装置，其中：上述通气孔使上述盖板的圆周的一部分隆起，并在成为上述润滑剂及空气的蓄存部的空间侧的面上形成凹部。

6. 根据权利要求3所述的液体轴承装置，其中：上述通气孔是设置在上述盖板内周端的缺口部。

7. 根据权利要求1所述的液体轴承装置，其中：由套筒的端部和盖板形成的蓄存部的与上述轴对置的部分设有用以排出空气的间隙大的部分。

8. 根据权利要求1所述的液体轴承装置，其中：上述连通路包括设置在套筒外周部的槽，由上述槽和设置在套筒外周的基座板形成上述连通路。

9. 一种液体轴承装置，其中：

 具备：
 - 轴，一方端部具有与轴心垂直的推力轴承面，
 - 套筒，具有插入能够旋转的上述轴的轴承孔，
 - 盖板，设置于上述套筒上，以使在上述轴承孔的一方端部附近形成作为蓄存润滑剂及空气的空间的蓄存部，
 - 推力板，密闭上述套筒的上述轴承孔的另一方端部且与上述轴的推力轴承面对置，及
连通路，连通上述蓄存部和由上述推力板密闭的上述轴承孔的另一方端部的区域；

在上述套筒的上述轴承孔内周面及上述轴的外周面的至少一方上，设置至少1组人字形状的第1动压发生槽；

在推力轴承面和推力板的各自对置面的至少一方上设置第2动压发生槽；

包括上述第1及第2动压发生槽的上述轴和套筒间的间隙及上述推力轴承面和推力板间的间隙充满润滑剂；

上述套筒或轴的任意一方安装在固定基座上，另一方安装在旋转体上；

上述第1动压发生槽，形成相对于与上述轴的轴心垂直的规定面不对称的人字形状，以使上述轴与上述轴承孔间的间隙中的润滑剂从上述盖板向朝向上述推力轴承面的方向移动，

上述蓄存部、上述轴承孔及上述连通路形成润滑剂的循环路径。

10. 根据权利要求9所述的液体轴承装置，其中：上述轴另一方端部具有直径小于上述轴外径的细径部，上述盖板的内径大于上述细径部的直径且小于上述轴的直径。

11. 根据权利要求9所述的液体轴承装置，其中：在S1表示上述轴的轴心与上述套筒的轴承孔的中心轴一致状态下的上述轴与套筒的间隙定义的半径间隙尺寸、S2表示上述轴与盖板内周的间隙尺寸；S3表示上述盖板内周端与上述套筒端面的间隙尺寸；S4表示上述盖板的除内周端以外的部分与上述套筒端面的间隙尺寸时，间隙尺寸S1小于间隙尺寸S2及S3，且间隙尺寸S3小于间隙尺寸S4。

12. 根据权利要求11所述的液体轴承装置，其中：在以S6表示上述轴的细径部的外周与上述盖板的内周间的间隙尺寸时，上述间隙尺寸S3小于上述间隙尺寸S6。

13. 根据权利要求9所述的液体轴承装置，其中：上述盖板在离开上述连通路的开口的位置具有至少1个连通上述润滑剂及空气的蓄存部，与外部的通气孔；上述蓄存部的与上述轴对置的部分的间隙小于其他部分的间隙。
14. 根据权利要求 13 所述的液体轴承装置，其中：上述通气孔在成为上述润滑剂及空气的蓄存部的内侧的面上具有凹部。

15. 根据权利要求 13 所述的液体轴承装置，其中：上述通气孔使上述盖板的圆周的一部分隆起，并在成为上述润滑剂及空气的蓄存部的空间侧的面上形成凹部。

16. 根据权利要求 13 所述的液体轴承装置，其中：上述通气孔是设置在上述盖板内周端的缺口部。

17. 根据权利要求 9 所述的液体轴承装置，其中：在由套筒的端部和盖板形成的蓄存部的与上述轴对置的部分设有用以排出空气的间隙大的部分。

18. 根据权利要求 9 所述的液体轴承装置，其中：上述连通路包括设置在套筒外周部的槽，由上述槽和设置在套筒外周的基座板形成上述连通路。

19. 一种磁盘旋转装置，其中：在从权利要求 1～18 中任意一项所述的流体轴承装置的上述轴的一方端部安装具有转子磁铁的转子毂，在上述转子毂上利用定位器安装用于记录再生的至少 1 个磁盘。
流体轴承装置及磁盘旋转装置

技术领域

本发明涉及一种需要高速且高精度旋转的旋转装置的主轴部所用的流体轴承装置及具备它的磁盘旋转装置。

背景技术

近年来，在使用磁盘等的旋转型记录装置中，其存储器容量增大同时数据的传送速度高速化。为此，这种记录装置所使用的磁盘旋转装置需要高速且高精度的旋转，因此，在旋转主轴部上使用流体轴承装置。

以下，参照图 18 及图 19 关于现有的流体轴承装置进行说明。图 18 中，轴 31 能够旋转地插入安装在基座 35 上的套筒 32 的轴承孔 32A 中。轴 31，具有与图中下端部一体构成的法兰 33。法兰 33 收纳在套筒 32 的阶梯部 32K 中，与推力板 34 对置且能够旋转地构成。轴 31 上安装有固定转子磁铁 38 的转子毂 36。转子毂 36 上安装着由衬垫 40 和钳位器 41 保持的多个磁盘 39。与转子磁铁 38 对置的马达定子 37 安装在基座 35 上。在套筒 32 的轴承孔 32A 内周面设有动压发生槽 32B、32C。在法兰 33 的与套筒 32 的阶梯部 32K 对置面设有动压发生槽 33A。在法兰 33 的与推力板 34 的对置面上设有动压发生槽 33B。包括动压发生槽 32B、32C、33A 及 33B。在轴 31 及法兰 33 和套筒 32 的间隙中填充油 42。在套筒 32 上与套筒 32 轴心几乎平行地设置 1 个或 1 个以上的通气孔 32E。通气孔 32E 的图中下端与套筒 32 下端部的法兰 33 存在的空间连通。通气孔 32E 上端向套筒 32 上端面开放。

利用图 18 及图 19 对如以上构成的现有流体轴承装置的动作进行说明。图 18 中，若对马达定子 37 通电则发生旋转磁场，转子磁铁 38、转子毂 36、轴 31 及法兰 33 开始旋转。此时，利用动压发生槽 32B、32C、33A、33B 对油发生抽取压力。从而，轴 31，浮起而与推力板 33 及轴承孔 32A
内侧面不接触，利用油 42 进行润滑且旋转。磁盘 39 上连接着没有图示的磁头，进行电气信号的记录再生。

上述现有例的流体轴承装置中存在以下说明的问题。

图 19 是包括图 18 的轴 31 及套筒 32 的主要部分剖视图。如图 19 所示，轴 31 在套筒 32 的轴承孔 32A 内利用油 42 润滑并进行旋转。流体轴承装置，在组装流体轴承装置时或流体轴承装置运送过程中，如图 43A、43B 所示有时空气块或气泡进入轴承孔 32A 内的油中（以下，叫做空气 43A、43B）。例如，用航空设备运送过程中，在周围气压变化时等有时会进入气泡。若进入 2 组动压发生槽 32B、32C 附近的空气 43A 的体积由于温度上升和气压降低而等膨胀，则动压发槽 32B 的一部分由空气覆盖而产生油膜截断。另外，部分油如油 42B 所示，有时会泄漏到流体轴承装置外部。另外，若进入法兰 33 附近的空气 43B 膨胀，则通气孔 32E 内的以剖面线表示的油 42A 由膨胀的空气 43C 推向上方，有时从上部开放部如油 42D 所示向流体轴承装置外部泄漏。若油 42 泄漏到外部则轴承内部产生油量不足。因而，担心在旋转过程中，轴 31 与套筒 32 接触，而使可靠性显著恶化。

另外，如图 19 所示，即使对现有的流体轴承装置向 G1 所示方向施加下落冲击负载（加速度）时，也还是会担心油 42 如油 42B 所示向外部泄漏。

发明内容

本发明的目的在于提供一种防止填充在流体轴承装置内的油等润滑剂向轴承外漏出、且可靠性高的流体轴承装置及具有它的磁盘旋转装置。

本发明的流体轴承装置，具备：套筒；具有插入能够旋转的轴的轴承孔，盖板，设置于上述套筒上，以使在上述轴承孔的一方端部附近形成作为蓄存润滑剂及空气的空间的蓄存部，大致由圆板状法兰，固定在上述轴的一方端部，且一方的面与上述套筒的上述轴承孔的另一方端部附近的端面对置，推力板，与上述法兰的另一面对面置，用以密封包括上述套筒的上述端面在内的区域，及连通路，连通上述蓄存部和包括上述法兰及上述套筒的上述端面的由上述推力板密封的区域；在上述套筒的上述轴承孔内侧面及上述轴的外周面的至少一方上，设置至少 1 组人字形状的第 1 动压发生槽；在法兰和推力板的各自对面面的至少一方上设置第 2 动压发生槽，且在法兰和上述套筒的上述端面的各自对面面的至少一方上设置第 3 动压发
生槽：包括上述第1、第2及第3动压发生槽的上述轴和套筒间的间隙及上述法兰和推力板间的间隙充满润滑剂；上述套筒或轴的任意一方安装在固定基座上，另一方安装在旋转体上；上述套筒，具有形成在上述法兰附近的上述套筒端部且直径大于上述轴承孔内径的大阶梯部；上述第1动压发生槽，被形成相对于与上述轴的轴心垂直规定面不对称的人字形状，以使上述轴与上述轴承孔间的间隙中的润滑剂从上述盖板向朝向上述法兰的方向移动，上述蓄存部、上述轴承孔及上述连通路形成润滑剂的循环路径。

根据本发明，由连通路连通润滑剂及空气的蓄存部和包括法兰及套筒端面的密闭区域。从而，填充在轴和套筒的轴承孔间的间隙中的润滑剂，在流体轴承装置的动作过程中，通过上述连通路进行循环。通过润滑剂的循环而使混入润滑剂中的气泡等空气也与润滑剂一起循环。在循环过程中，若润滑剂中所包含的气泡到达蓄存部，则气泡从润滑剂分离并排出到外部。蓄存部由盖板覆盖，因此，润滑剂不会向外部泄漏。这样一来，润滑剂中的空气在流体轴承装置的动作过程中被自动去除，因此，即使流体轴承装置组装时在润滑剂中混入空气也能够逐渐去除，在流体轴承装置内只存在润滑剂。润滑剂从蓄存部流入轴与套筒的间隙，不过，此时也不会向外部泄漏，因此，在轴和套筒间不会产生润滑剂不足和润滑剂的膜截断（油膜截断）等，流体轴承装置稳定动作。从而，能够实现长期可靠性高的流体轴承装置。

本发明的另一观点的流体轴承装置，具备：轴，一方端部具有与轴心垂直的推力轴承面，套筒，具有插入能够旋转的上述轴的轴承孔，盖板，设置于上述套筒上，以使上述轴承孔的一方端部附近形成作为蓄存润滑剂及空气的空间的蓄存部，推力板，密闭上述套筒的上述轴承孔的另一方端部且与上述轴的推力轴承面相对置，及连通路，连通上述蓄存部和由上述推力板密闭的上述轴承孔的另一方端部的区域；在上述套筒的上述轴承孔内周面及上述轴的外周面的至少一方上，设置至少1组人字形状的第1动压发生槽；在推力轴承面和推力板的各自对置面的至少一方上设置第2动压发生槽；包括上述第1及第2动压发生槽的上述轴和套筒间的间隙及上述推力轴承面和推力板间的间隙充满润滑剂；上述套筒或轴的任意一方安装在固定基座上，另一方安装在旋转体上；上述第1动压发生槽，形成相对于与上述轴的轴心垂直的对置面不对称的人字形状，以使上述轴与上述轴承孔间的间隙中的润滑剂从上述盖板向朝向上述推力轴承面的方向移动，上
述蓄存部、上述轴承孔及上述连通路形成润滑剂的循环路径。

根据本发明，由连通路连通润滑剂及空气的蓄存部和包括轴的推力轴承面及套筒端面的密闭区域。从而，在流体轴承装置的动作过程中，填充在轴和套筒的轴承孔间的间隙中的润滑剂，通过上述连通路在流体轴承装置内循环。通过润滑剂的循环而使混入润滑剂中的气泡等空气也与润滑剂同时循环。在循环过程中，若润滑剂中所包含的气泡到达蓄存部，则气泡从润滑剂分离并排出到外部。这样一来，润滑剂中的空气在流体轴承装置的动作过程中被自动去除，因此，即使流体轴承装置组装时在润滑剂中混入空气也能够逐渐去除，在流体轴承装置内只存在润滑剂。润滑剂从蓄存部流入轴与套筒的间隙时不会向外部泄漏，因此，在轴和套筒间不会产生润滑剂不足和润滑剂的膜截断（油膜截断）等，流体轴承装置稳定动作。从而，能够实现长期可靠性高的流体轴承装置。

本发明中，在轴的推力轴承面上设置第3动压发生槽并形成推力轴承部，因此，不需设置法兰，而使构成简单。

附图说明

图1是本发明的第1实施方式的流体轴承装置的剖视图。

图2是本发明的第1实施方式的流体轴承装置的包括轴及套筒的主要部分放大剖视图。

图3是本发明的第1实施方式的流体轴承装置的法兰3的俯视图。

图4是本发明的第1实施方式的流体轴承装置的法兰3的仰视图。

图5是表示本发明的第1实施方式的流体轴承装置的动作包括轴及套筒的主要部分放大剖视图。

图6是表示本发明的第1实施方式的流体轴承装置的其他动作的包括轴及套筒的主要部分放大剖视图。

图7是表示本发明的第1实施方式的流体轴承装置的其他动作的包括轴及套筒的主要部分放大剖视图。

图8是本发明的第2实施方式的流体轴承装置的包括轴及套筒的主要部分放大剖视图。

图9是本发明的第3实施方式的流体轴承装置的包括轴及套筒的主要部分放大剖视图。
图 10 是本发明的第 4 实施方式的流体轴承装置的包括轴及套筒的主要部分放大剖视图。

图 11 是本发明的第 5 实施方式的流体轴承装置的包括轴及套筒的主要部分放大剖视图。

图 12a 是本发明的第 5 实施方式的流体轴承装置的盖板的斜视图。
图 12b 是本发明的第 5 实施方式的流体轴承装置的盖板的剖视图。
图 13 是表示本发明的第 6 实施方式的流体轴承装置的轴和套筒的主要部分放大剖视图。

图 14a 是本发明的第 6 实施方式的流体轴承装置的盖板的斜视图。
图 14b 是本发明的第 6 实施方式的流体轴承装置的盖板的剖视图。
图 15 是表示本发明的第 6 实施方式的流体轴承装置的其他盖板的斜视图。
图 16 是本发明的第 7 实施方式的流体轴承装置的包括轴及套筒的主要部分放大剖视图。

图 17 是表示本发明的第 7 实施方式的流体轴承装置的径向轴承的间隙的剖视图。

图 18 是现有的流体轴承装置的剖视图。
图 19 是现有的流体轴承装置的包括轴及套筒的主要部分放大剖视图。

具体实施方式

以下，参照图1～图17，关于本发明的流体轴承装置及具有它的磁盘旋转装置的适宜实施例进行说明。

《第1实施例》

参照图1～图7，关于本发明的第1实施例的流体轴承装置进行说明。图1是本发明的第1实施例的流体轴承装置的剖视图，图2是放大表示轴1及套筒2的主要部分剖视图。图1中，套筒2具有轴承孔2A，该轴承孔2A中能够旋转地插入圆柱状的轴1。在轴1的外周面和套筒2的轴承孔2A内周面之间有微小间隙。在轴1的外周面及套筒2的轴承孔2A内周面的至少一方上，形成将槽在弯曲部弯折的已知的人字形状的动压发生槽1B、1C，并形成“径向轴承部”。径向轴承部，从轴1的轴心到半径方向支撑着轴1。图1的例中，动压发生槽1B、1C形成在轴承孔2A内周面。动压发生槽1B、1C均
具有鱼骨形状（人字形状）。图1中，动压发生槽1B及1C的至少一方（图1例中为1B），如图2所示，从弯曲部1K向下侧的槽1M的长度比从弯曲部1K向上侧的槽1L的长度短。

图1中，在轴1的上端安装具有转子磁铁8的转子毅12。在轴1的下端一体设置具有与轴1的轴心呈直角的面且具有大于轴1的直径的法兰3。法兰3下面的推力轴承面3F与固定在套筒2的推力板4对置。推力板4将包括法兰3的套筒2的轴承孔2A的端部区域密闭。在法兰3下面或推力板4上面的任意一方（图1中为法兰3下面），形成螺旋状或鱼骨状（人字形）的动压发生槽3B，构成“推力轴承部”。在法兰3上面的外周部或上述上面的与外周部对置的套筒2的阶梯部2D的任意一方（图1中为法兰3上面）形成动压发生槽3A。在套筒2的轴承孔2A中，在图中上下方向的中间部设有使内径部分变大的已知的大间隙部2B，不过，因为与本发明没有直接关系因而省略说明。法兰3被收纳于套筒2的阶梯部2D。在法兰3下面设置用以蓄存油的间隙或凹处3C。

在套筒2的图中上端面设有包围轴承孔2A的形成圆环状槽的上部凹处2C。环状盖板5安装在套筒2上用以覆盖上部凹处2C。盖板5其外周部用“铆接”法等固定在套筒2外周部。盖板5的内周部的安装，是使其与套筒2的轴承孔2A的上端部之间，如后面详细说明，保持较小的间隙15A。把由上部凹处2C与盖板5形成的空间（间隙）叫作“上部蓄存部”15。上部蓄存部15根据需要而蓄存油。上部蓄存部15，由盖板5与套筒2夹持的间隙尺寸在径向不为一定。即，使与轴1外周面对置的开口15A（即上部蓄存部15内周部分）足够小，而在蓄存部15的外周部分变大。

在套筒2上与轴承孔2A的轴心几乎平行地设置第1连通孔2E。第1连通孔2E上端与套筒2的上部蓄存部15连通，下端与包括套筒2的阶梯部2D的空间连通，形成连通路。套筒2固定在安装有马达定子7的基座6上。包括轴1与套筒2间的间隙及法兰3与推力板4间的间隙的轴1与套筒2的轴承孔2A间充满油等润滑剂13（以下，叫作油）。油13具有一定程度粘性，因此，如图2所示，有时在轴1与轴承孔2A间进入油泡14。第1连通孔2E及上部蓄存部15中也进入油，不过存在一些空气（气泡）14。在转子毅12上如图1所示，利用衬垫10及锁位器11安装有多个磁盘9并构成磁盘旋转装置。
用图1～图7说明如以上构成的流体轴承装置的动作。图1中，若从省略公布的电源向马达定子7通电，则发生旋转磁场，安装有转子磁铁8的转子毂12与轴1、法兰3、磁盘9、抱位器11及衬垫10同时开始旋转。若旋转开始，则动压发生槽1B、1C、3A及3B将油13汇集规定部位、发生已知的抽取压力。因而轴1浮起而不与套筒2及推力板4接触，进行高精度旋转。图2表示流体轴承装置旋转时，油13中混入空气14的状态。

图3是表示设置在与套筒2的阶梯部2D对置的法兰3油上面的已知的动压发生槽3A的例子的俯视图。图4是表示设置在法兰3下面的已知的动压发生槽3B的例子的俯视图。图3及图4所示的弯曲的放射状动压发生槽3A、3B发生将油汇集且与轴1的轴心平行的推力方向的力。

图5是放大表示本实施例的流体轴承装置的轴1和套筒2的主要部分剖视图。图5中，S1表示动压发生槽1B部的半径间隙尺寸，S2表示轴1外周与盖板5间的半径间隙尺寸。套筒2的轴承孔2A的上端部2H其直径大于轴承孔2A的直径。所谓“半径间隙尺寸”，被定义为轴1的轴心与套筒2的轴承孔2A中心轴一致时轴1外周与轴承孔2A内周间的间隙尺寸。S3表示上部蓄存部15的与轴1对置的部内周部的间隔15A的尺寸。S4表示上部蓄存部15的内部间周部的间隔尺寸。本实施例中，对半径间隙尺寸S1及S2及间隙尺寸S3及S4进行设定以使以下关系成立。

\[S1 < S2, S1 < S3 \text{及} S3 < S4 \]

通过如此设定各间隙，从而，蓄存在上部蓄存部15的油依靠其表面张力移动到小于间隙尺寸S4的间隙尺寸S3的开口15A附近。油13从间隙尺寸S3的开口15A进入更小间隙的间隙尺寸S1的轴1与轴承孔2A间，如箭头13A所示，流入到作为径向轴承部的动压发生槽1B的某部分中去。

径向轴承的动压发生槽1B、1C内靠近上部蓄存部15的动压发生槽1B，如图5所示，从动压发生槽1B的弯曲部1K向上部的槽1L的长度（对应于尺寸L），比下部的槽1M的长度（对应于尺寸M）长（L > M），成为上下不对称的人字形。从而，流入到半径间隙尺寸S2的轴1与轴承孔2A上端部2H的间隙中的油，依靠流体轴承装置起动时及旋转过程中的抽取作用而被吸引到包括动压发生槽1B及其下方的动压发生槽1C的轴1与轴承孔2A间的径向轴承内。这样一来，上部蓄存部15中的油如箭头13A所示流入到径向
轴承内部中去。其结果是，在轴1与轴承孔2A间的间隙中向箭头13C所示的方向产生油的流动。从而，在法兰3附近的油被推动而流入到连通孔2E并到达上部蓄存部15，并且，油再从盖板5与套筒2间的开口15A流入到轴1与轴承孔2A间的径向轴承部，在流体轴承装置内循环。经由油的循环，油中的气泡14也与油同时通过连通孔2E到达上部蓄存部15。到达了上部蓄存部15的气泡14从盖板5与套筒2的间隙向外部排出。

关于空气的排出，用图6进行更详细说明。图6是表示进入流体轴承装置内的油中的空气的状态的主要部分剖视图。图中，不存在于流体轴承装置内的作为气泡和空气块等的空气14A，若其量增多，或者周围的温度上升、内部压力上升，随着气压的降低而膨胀，则体积增大。这种情况下，空气14A，从第1连通孔2E的下部入口2F进入第1连通孔2E，在其中与油移动的同时如空气14D所示从下向上移动。到达第1连通孔2E上端2G的空气14D进入上部蓄存部15，从盖板5和套筒2间的小间隙如箭头C所示，排出到外部。第1连通孔2E内，与空气14D同时，油13也一起从下向上移动，不过，油13运到上部蓄存部15后，依靠其表面张力而残留在上部蓄存部15内。因而，只有空气14D排出。如此，油13不会被推出到流体轴承装置外或者泄漏，因此，不会在流体轴承装置内发生油不足、油膜截断，流体轴承装置稳定旋转。

图5所示的本实施例的具体例中，轴1的直径为1～20毫米。间隙尺寸S3为30～150微米、径向轴承的半径间隙尺寸S1为1～10微米。第1连通孔2E的直径处于0.3～1.0毫米的范围。根据发明者的实验，则可以确认，若轴1的直径、间隙尺寸S3、半径间隙尺寸S1及第1连通孔2E的直径处于上述范围，则油13保持在流体轴承装置内而不会向外部泄漏，只有空气14被排出到外部。

如与图6类似的图7的主要部分剖视图所示，发明者等向箭头G2的方向施加了下落冲击负载和振动等，进行各种试验。其结果可以确认，蓄存在上部蓄存部15的油13依靠表面张力保持在上部蓄存部15内，而不会向流体轴承装置外部流出。在该实验中，将间隙尺寸S2和S3均设定为50微米左右，从而可以确认，即使对流体轴承装置施加了加速度2500G（作用时间为1～10毫秒）时，油13也不会流出。
根据本实施例，进入到流体轴承装置的油中的气泡等空气，在流体轴承装置的动作过程中，通过第1连通孔2E向套筒2的上部蓄存部15移动，从而向流体轴承装置的向外排出。而油蓄存在上部蓄存部15，不会向外部泄漏。例如流体轴承装置制造时进入油中的空气也会流体轴承装置使用过程中被去除，因此，流体轴承装置的长期可靠性提高。还有，图1中，图示出在套筒2上设有1个第1连通孔2E，不过，也可以在套筒2上设置多个第1连通孔2E。也可以取代上述连通孔2E，而如图6虚线所示，在套筒2外周与基座板6间，设置连通上部蓄存部15与阶梯部2D的通道的连通孔2Q。这种情况下，连通孔2Q的沿套筒2外周部的部分，在套筒2外周设置上下方向的槽即可。

《第2实施例》

图8是本发明的第2实施例的流体轴承装置的轴1和套筒20的主要部分剖视图。图中，在套筒20中央部分，设置连通第1连通孔2E与大间隙部20B的第2连通孔20J。其他构成与图1所示的上述第1实施例的流体轴承装置相同。

作为形成第2连通孔20J的方法，例如图8所示，有从箭头20H所示的方向，用钻头在套筒20上开孔的方法。开孔后，用栓17封住套筒20外周的孔20K。

本实施例的流体轴承装置中，第1连通孔2E经由第2连通孔20J与径向轴承的2组动压发生槽1B、1C间的空间连通。从而，在具有动压发生槽1B的部分，如箭头13A所示，从上部蓄存部15流入油13，同时如箭头13D所示，还从第2连通孔20J流入油。向箭头13D方向流入的油，与向箭头13A方向流入的油合流，通过包括动压发生槽1B及1C的轴1与轴承孔20A间的间隙，从下部入口20F返回到第1连通孔20E。混入油中的空气，在油如箭头13G所示流入第2连通孔20J时从油中分离。分离出的空气14向箭头14F所示的方向移动，经由上部蓄存部15而向外部排出。

本实施例中，由于设置第2连通孔20J，从而，油的移动旺盛，因此，有效地进行油中空气的去除。作为其结果，流体轴承装置的可靠性更高。另外，即使在动作过程中由于某种理由而使空气混入流体轴承装置的油中，也能迅速排出空气，因此，可靠性高。
《第3实施例》

图9是表示本发明的第3实施例的流体轴承装置的轴30和套筒2的主要部分剖视图。图中，在轴30的与转子毂12连接的端部附近，设置具有比轴30的直径细的直径的细径部30A。环状盖板25内周端25A的直径，大于上述细径部30A的直径，而小于轴30的直径。即，盖板25其内周端25A覆盖轴30与套筒2间的间隙而构成。其他构成与图1所示的上述第1实施例同样。根据该构成，能够更确实地防止轴30与盖板25的间隙向外泄油源13。另外，盖板25的内周端25A的直径小于轴30的直径，因此，轴30不会从套筒2的轴承孔2A中脱出。即，盖板25具有防止轴30脱出的效果。

图9中，以动压发生槽1B附近的半径间隙尺寸为S1，轴30与套筒2上端部的半径间隙尺寸为S2。套筒2的轴承孔2A的上端部2H，其直径大于轴承孔2A的直径。由盖板25和套筒2的上部凹处2C形成的上部蓄存部15，其内周部的间隙尺寸为S3，盖板25与轴30上端的轴方向间隙尺寸为S5。轴30的细径部30A与盖板25的内周端25A间的半径间隙尺寸为S6。本实施例中，其设定是上述半径间隙尺寸S1小于各间隙尺寸S2、S3、S5、S6（S1＜S2、S1＜S3、S1＜S5、S1＜S6）。油具有依靠其表面张力流入到间隙最小的部分的性质，因此，若如上所述进行设定，则蓄存在上部蓄存部15的油流入到间隙尺寸为S1的最小的轴30与轴承孔2A的间隙中。其结果是，在径向轴承的动压发生槽1B、1C的区域内，油流入得充足，因此，不会产生油膜截断。另外，设定各间隙尺寸S2、S3、S5、S6的关系，使间隙尺寸S2小于间隙尺寸S6（S2＜S6）、间隙尺寸S3小于间隙尺寸S6（S3＜S6）、且间隙尺寸S5小于间隙尺寸S6（S5＜S6）。若如此进行设定，则不会从具有最大间隙尺寸S6的细径部30A与盖板25内周端25A间流出油。

《第4实施例》

图10是表示本发明的第4实施例的流体轴承装置的轴35和套筒2的主要部分剖视图。轴35，在图中下端面35C上形成动压发生槽35D。从而，轴35上不具备像图9所示的上述第3实施例的流体轴承装置那样的法兰3。其他部分与图9所示的装置实质上是同样的。轴35在安装有转子毂12的轴端部具有细径部35A。盖板25内周端25A内径，大于上述细径部30A的外径，且小于轴35的内径。即，盖板25其内周端25A覆盖轴35与套筒2的轴承孔2A间的间隙而构成。从而，能够确实地防止从轴35与套筒2的图中上部间隙漏油。

在轴35下端面35C和推力板4的对置面的至少一方形成的动压发生槽35D（图10中为下端面35C），与推力板4对置，在其与推力板4间构成推力轴承。在套筒2的图中下部形成阶梯部2D。套筒2的包括阶梯部2D的轴承孔2A端部由推力板4密封。阶梯部2D与推力板4间的空间在下部入口2F与第1连通孔2E连通。第1连通孔2E形成将该阶梯部2D与上部蓄存部15之间连通的连通路。

本实施例的流体轴承装置中，在轴35上没有设置法兰，在轴35下端面35C设置动压发生槽35D。因此，与上述各实施例相比较结构简单从而廉价。

本实施例的流体轴承装置也与上述各实施例同样，在轴35外周面或套筒2内周面的至少一方（图10中为套筒2内周面）上设置由人字形状浅槽构成的动压发生槽2B、2C，在轴35与套筒2的间隙充满油等润滑剂。在套筒2的上端面附近设置上部蓄存部15，上部蓄存部15经由第1连通孔2E与轴35的下端面35C附近的空间连通。从而，油13在从上部蓄存部15流入轴35和套筒2的间隙、从套筒2下部经由第1连通孔2E返回上部蓄存部15的路径中循环。混入油中的空气在该流体轴承装置的动作过程中从设置在盖板25上的排气孔25B向外部排出，因此，油中没有空气，在轴35附近的间隙不会产生油膜截断。从而，本实施例的流体轴承装置能够长期保持高可靠性。另外，采用本实施例的流体轴承装置的磁盘旋转装置具有长期的高可靠性。

本实施例的流体轴承装置中，混入流体轴承内的油中的空气容易向外
部排出，因此，也防止流体轴承装置中常常产生的油膜截断，获得长寿命且长期的高可靠性。

《第5实施例》

图11是表示本发明的第5实施例的流体轴承装置的轴35和套筒2的主要部分剖视图。图中，本实施例的流体轴承装置，除了盖板27与图10所示的上述第4实施例的盖板25不同这点外，具有与图10所示的上述第4实施例的流体轴承装置同样的构成。

图12a的斜视图及图12b的X11b—X11b剖视图表示本实施例的盖板27。盖板27如图12a及图12b所示，下面至少具有1个凹部27E。在凹部27E相反侧的上面，形成凸部27H。在凹部27E的大致中央部具备排气孔27F。盖板27安装在套筒2上以使凹部27E与蓄存部15对置。

本实施例中，在盖板27的凹部27E的部分，盖板27与上部蓄存部15间的间隙增大。上部蓄存部15内的油，由于其表面张力而很难进入凹部27E下方的间隙大的部分，因此，停留在凹部27E周边的间隙小的部分。从而，凹部27E中央部的排气孔27F不会因为油堵住，蓄存部15内的空气从排气孔27F顺畅地排出。

本实施例的流体轴承装置中，如图11所示，以S1表示动压发生槽1B部的轴承孔2A与轴35的半径间隙尺寸、S2表示轴1外周与套筒2上端部2H内周间的半径间隙尺寸、S3表示盖板27与轴1端部的间隙尺寸、S4表示蓄存部15的内部即外周部的间隙尺寸时，设定半径间隙尺寸S2及间隙尺寸S3大于半径间隙尺寸S3（S1＜S2, S1＜S3）。另外，设定间隙尺寸S4大于间隙尺寸S3（S4＞S3）。其结果是，上部蓄存部15内的油依靠其表面张力聚集在尺寸S3的小间隙的开口27A附近，接着流入具有尺寸S1的轴35与轴承孔2A间的更小间隙（径向轴承部）。

动压发生槽1B，从弯曲部1K向上方的槽1L的长度（对应于尺寸L），比下方的槽1M的长度（对应于尺寸M）长（L＞M）。因而，流入到间隙尺寸S2的套筒2上端部2H与轴35间的油，在流体轴承装置动作开始时及动作过程中依靠动压发生槽1B的抽吸作用而被拉入半径间隙尺寸S1的轴35和套筒2的轴承孔2A的间隙。通过该动作，从而，上部蓄存部15内的油确实地流入到径向轴承内。
填充在套筒2和轴35间的间隙的油等润滑剂中。以细微气泡的状态混入有空气。混入油中的空气，在其量多时，周围的温度上升而气泡的内部压力上升而膨胀的时及在低压的环境下气泡膨胀时等，体积增大。体积增大了的空气，从第1连通孔2的下部入口2F如空气14所示进入第1连通孔2E中。空气14进一步从图中下方向上移动，进入上部蓄存部15内。若进入到上部蓄存部15的空气在上部蓄存部15内环绕，到达凹部27E，则如箭头C所示从孔27F排出到外部。此时，第1连通孔2E内，油也与空气14同时移动到上方。不过，油13运到蓄存部15后与空气分离，只有油13依靠油的表面张力残留在上部蓄存部15，空气14如箭头C所示从排气孔27F排出。因而，油13不会被压出到流体轴承装置外或泄漏。从而，流体轴承装置不会产生油膜截断而能够稳定旋转。

本实施例中，轴1的直径为1～20毫米，间隙尺寸S3为30～150微米。径向轴承的半径间隙尺寸S1为1～10微米，第1连通孔2E的直径为0.3～1.0毫米的范围。可以确认的是处于上述各尺寸范围的流体轴承装置中，油13被良好地保持在流体轴承装置的各间隙，同时空气14很好地排出。

即使图11中间罩头G2的方向施加了下落冲击负载和振动等时，蓄存在蓄存部15的油13也会依靠表面张力而保持在内部而不会向外部流出。

若根据发明者等的实验，将图11中的间隙尺寸S2和S3分别设定为50微米左右，则可以确认即使轴承施加了2500G的加速度（作用时间为1～10毫秒）时也不会发生油流出，流体轴承装置能够保持轴35与套筒2的非接触状态且持续旋转。

《第6实施例》

图13是表示本发明的第6实施例的流体轴承装置的轴35和套筒2的主要部分剖视图。本实施例中，盖板28与图12所示的第5实施例的流体轴承装置的盖板27不同。其他构成与图11所示的装置同样。本实施例的盖板28，如图14a的斜视图及图14b的剖视图所示，使环状板的内周部的一部分弯曲以使从板面隆起，形成“隆起部”28D。在盖板28的隆起部28D的相反面形成凹部28E。盖板28D在套筒2的安装是使凹部28E与套筒2的端面直径大的上端部2H对置。在凹部28E与套筒2端面的对置部，间隙只增大凹部28E的凹陷量。从而，由于油的表面张力在凹部28E附近不会汇集油。因而，
通过第1连通孔2E到达了上部蓄存部15的空气环绕着环状的上部蓄存部15到达凹口28E，则从那里顺畅地向外部排出。油依靠表面张力移动到间隙小的部分，不会在间隙宽的凹口28E附近聚集，因此，不会从凹口28E向外部漏油。

根据本实施例，则能够通过使盖板28内周部凹陷这样简单的加工而形成凹口28E。

图15是本实施例的流体轴承装置的盖板28的其他例盖板40的斜视图。除盖板40外的其他构成与图13同样。图15中，环状盖板40内周部具有缺口部40E。套筒2的内周部的上端部2H的一部分通过缺口部40E与外部相连，因此，空气经由缺口部40E顺畅排出。缺口部40E能够在通过冲裁加工等制作盖板40时同时形成等施以简单的加工而制成。加工容易因而成本也降低。

《第7实施例》

图16是表示本发明的第7实施例的液体轴承装置的轴35和套筒2的主要部分剖视图。图17是图16的XV11—XV11剖视图。本实施例中，盖板41的构成与上述第6实施例不同，其他构成与第6实施例同样。

本实施例的盖板41具有一体形成的圆板状部41A和圆筒状部41B。优选是在圆筒状部41B上压入套筒2上部。也可以将套筒2插入圆筒状部41B中并粘接。

上述各实施例的流体轴承装置中，轴35由刚性高的铁系材料构成。另外，套筒2由切削加工性非常好、容易获得高加工精度的易切黄铜等铜系材料构成。盖板41由至少比套筒2材料线膨胀系数小的材料制作。作为一例优选是用与轴35同样的刚性高的铁系材料制作盖板41。

不过，若分别用上述材料制作本实施例的流体轴承装置的轴35及套筒2，则由于各材料的线膨胀系数不同，因而若流体轴承装置成为高温，则套筒2膨胀。其结果如图17所示，轴35与套筒2间的半径间隙尺寸S1增大。因而有时流体轴承的发生压力降低，同时油膜的刚性降低。

为此，本实施例中，由铁系材料的铁素体系或马氏体系不锈钢（线膨胀系数为1.03×10⁻⁵/℃）构成轴1。另外，由铜合金（线膨胀系数为2.05×10⁻⁵/℃）构成套筒2。另外，由马氏体系不锈钢（线膨胀系数为
1.03 \times 10^{-5/\circ C}）构成盖板5。若如此选择各材料，则流体轴承装置的温度上升时，盖板41的圆筒状部41B的膨胀量少，内径扩宽不大。与此相对，套筒2由比盖板41的材料线膨胀系数大的材料制作，因此，温度上升时套筒2外径膨胀量大于盖板41的圆筒状部41B的内径的膨胀量。不过，由于套筒2的外周有膨胀量少的盖板41的圆筒状部41B，因而抑制套筒2外周的热膨胀。即，能够对套筒2从外周施加压力而抑制套筒2的内外径的扩大。

根据本实施例，高温时套筒2的内外径的热膨胀量也少，与轴1的膨胀量有很大差距。因而，能够使径向轴承的半径间隙的尺寸S1随着温度变化不大。其结果是，抑制流体轴承装置随着温度不同的性能变化。另外，由于将盖板41的圆筒状部41B固定在套筒2外周，因而盖板41被牢固地安装在套筒2上，不用担心轴1从套筒2脱出。

根据本实施例，混入液体轴承装置的油中的空气容易排出，能够防止现有轴承中常常发生的油膜截断，同时，能够最小时地抑制流体轴承装置温度变化时的轴35与套筒2间的半径间隙的变化。从而，即使在有温度变化的使用环境中，也能够实现高精度且长寿命的流体轴承装置，采用该液体轴承装置而能够获得高精度且长寿命的磁盘旋转装置。

产业上的可利用性

本发明能够利用于防止润滑剂漏出、保持长寿命且高可靠性的流体轴承装置及具有该流体轴承装置的磁盘旋转装置。