My invention relates to improvements in mining machine chains and more particularly to the bit carrying link of said chains, and to cutting bits for mining machine chains. In order to obtain the proper positioning of the bit in the bit carrying links for the purpose of cutting a kerf of the desired width and depth it has been necessary to provide links of different types in the chain. Furthermore, in the commercial type of chain used the adjustment and cutting point of the bit has been limited.

It is one of the objects of my invention to provide an improved form of bit carrying link, and bit therefor, which link will permit of a wide variation in the adjustment of the bit carried thereby, so that only one form of link need be provided.

It is a further object of my invention to provide a bit, which while being preferably applicable for use in connection with my particular form of link may also be applicable for use with the standard commercial form of link now in use and which may be cheaply manufactured.

It is another object of my invention to provide a bit having a plurality of cutting points each of which, by a simple adjustment of the bit holder may be presented in cutting position.

It is a further object of my invention to provide a cutter bit which has sharpened flaring cutting edges adjacent the points of the bit so that, in event the point of the bit does not remove the material to be cut, the edges will come into cutting operation.

It is a further object of my invention to provide a bit which geometrically renders itself to drop forging or stamping from sheets of material in multiple groups without waste of material and to provide a bit with a minimum weight of material per point.

For the purpose of disclosing my invention I have illustrated certain embodiments thereof in the accompanying drawings in which—

Fig. 1 is a side elevation of a cutter chain embodying my improved form of bit link and showing my improved form of bit supported therein;

Fig. 2 is a front elevation of the chain, the chain guide being shown in section, and showing the bits of the successive links in various adjusted positions;

Fig. 3 is a detailed sectional view showing the bit clamping means of the bit link illustrated in Fig. 1;

Fig. 4 is a detailed sectional view showing the bit clamping positioning means;

Fig. 5 is a sectional view of the bit link showing the clamping means;

Fig. 6 is a front elevation of the front bit clamping member of the type illustrated in Fig. 1;

Fig. 7 is a front elevation of the rear bit clamping member;

Fig. 8 is a side elevation of one embodiment of my bit;

Fig. 9 is a front elevation thereof;

Fig. 10 is a rear elevation thereof;

Figs. 11 and 12 are respectively front and sectional views of a modified form of my bit;

Fig. 13 is still another modified form of my bit;

Fig. 14 is a front elevation of a further modified form of my bit;

Fig. 15 is a plan view of a layout on a metal sheet showing how my improved form of bit may be stamped and drop forged from sheet metal;

Fig. 16 is a side elevation partially in section of the ordinary commercial form of bit link showing means for clamping my improved bit in position;

Fig. 17 is a modified form of link and clamping means;

Fig. 18 is a detailed section on the line 18—18 of Fig. 16; and

Fig. 19 is a detailed section on the line 19—19 of Fig. 17.

In the embodiment illustrated in Figs. 1 to 7, the bit carrying link 1 is provided with a bit carrying head 2, which is preferably cylindrical in shape and is laterally offset as illustrated in Fig. 5. This head is arranged intermediate of the ends of the link 1, being formed integrally therewith, and the two faces are identical so that the position of the link may be reversed. Under such circumstances, however, of course, the head will be thrown on the opposite side of the line of travel. The links 1 are connected together by connecting links 3 which are of the usual form and to provide for such connection each of the bit carrying links is provided with pivot pin openings 4 extending through and into which the connecting pins are adapted to pass. These openings are lined with hardened bushings 5.

For insuring the lubrication of the pivoted connections I provide each link with a centrally disposed well 6, preferably formed in the link at the time the same is drop forged, and having its front closed by a closure plate 7. Recesses 8 are formed in the side walls of the well 6 which communicate with the pivot openings 4 so that the lubrication contained in the well will flow to the pivot points. For preventing the bushings 5 from
rotating, each bushing is provided with a slot 8 in which takes the end of a locking bar 10 ar-
 ranged in the well 6 and extending through the re-
 cesses 8. Any suitable fitting as 11 may be pro-
 vided in a countersunk recess 12 in the top of the
 link 1 whereby the lubrication may be fed to
 the bushing 7.

The offset head 2 is centrally bored at 13 to re-
 ceive the bolt 14 by which the clamping mem-
 bers for the bit are secured in position. The rear
 clamping member 15 has its top face rear-
 wardly and upwardly inclined as at 16, being flat,
 and its edges surrounded by a lip 17. This
 face is substantially triangular in shape and by
 the projection of the flanges 17 a flat bottom tri-
 angular recess is provided. The remaining por-
 tion of the clamping member is preferably cylin-
 drical to coincide with the cylindrical head 2.
 The clamping member 10 coincides in
 shape to the rear clamping member 15 and is
 provided with a forwardly and upwardly inclined
 clamping face 19 which coincides with and lies
 parallel to the face 16 of the rear clamping mem-
 ber. The bottom edge of this clamp is 20.

The front face of the clamping member 15 to com-
 pensate for the thickness of the bit to be clamped
 between the two members. Each of the clamp-
 ing members is provided with a central opening
 to receive the bolt 14 and the opening of the front
 clamping member is internally screw threaded to
 receive the screw threads 21 of the bolt 14. The
 rear clamping member 15 is maintained against
 longitudinal displacement on the bolt 14 by means
 of a set screw 22, the end of which takes into an
 annular groove 23 in the bolt. This arrangement
 permits of the movement of the front clamping
 member by the rotation of the bolt relatively to the
 rear clamping member. Both clamping mem-
 bers are rotatable on the bolt 12, to adjust their
 clamping faces, and with them, the bit to various
 positions. And for maintaining the clamping
 members in their various adjusted positions, I
 provide a pin 24 which takes into apertures 25
 and 26 in the front and rear clamping members
 and into recesses 27 in the face of the head 2.
 It will be noted that I provide a plurality of these
 recesses 27 whereby the bit may be adjusted on
 the head 2 to obtain the most beneficial cutting
 position for that particular link, and it will be
 noted from Fig. 2 that by adjusting the suc-
 cessive bits in the chain a proper kerf may be
 obtained. It will also be noted that by merely revers-
 ing the link, thereby throwing the head 2 to the opposite
 side of the line of travel the width of the kerf may
 be adjusted as desired.

The bit which I provide, used in connection with
 the above described link has a plurality of cutting
 points and in the structure illustrated, having
 particular reference to Figs. 8, 9 and 10 is provided
 with three cutting points 28 connected by sharp
 cutting edges 29 which outline an equilateral tri-
 angle. The face or cutting side of the bit is con-
 caved and the back of the bit is convex so that
 the bit forms a triangular concavo-convex fig-
 ure, the front faces 30 and the rear faces 31 of
 which form three isosceles triangles.

The bit in position will be noted that the clamping face 19 engages in the front
 face of the bit and lies flat and against one of the
 triangles 30 while the clamping face 16 re-
 ceives and backs up the rear face of the triangle.

If desired the recesses shown in Figs. 11 and 12 wherein the front face is per-
 fectly flat and is provided with a central open-

In the structure illustrated in Fig. 13 a central
 opening 33 is provided by which a clamping pin
 on the front clamp may be projected through the
 bit if desired. In the structure illustrated in
 Fig. 14 the bit is substantially the same configura-
 tion as that illustrated in Figs. 8 and 9 except that
 the points 34 at 16, being flat, and the edges
 surrounded by a lip 17. This face is substantially triangular in shape and by
 the projection of the flanges 17 a flat bottom tri-
 angular recess is provided. The remaining por-
 tion of the clamping member is preferably cylin-
 drical to coincide with the cylindrical head 2.

In Fig. 15 I have illustrated a sheet of material
 from which the bits illustrated in Figs. 8 and 9
 may be formed by drop forging, stamping, rolling
 or otherwise. And it will be noted from the layout
 of the stampings on the sheet that the bits may
 be formed with a minimum of waste of material.

In Fig. 16 I have illustrated a form of clamping
 member which may be used on the present com-
 mercial type of bit link. This bit link as illus-
 trated is provided with a longitudinally extending
 opening 35 generally rectangular in cross-section
 of the bit now in commercial use.

The bit is secured in position by means of a set
 screw 36. My present type of clamping means
 comprises a rear clamping member having a shank 37 provided with a head 38 overhanging
 and resting upon the top of the link as at 39. This head has a forwardly and upwardly in-
 clined triangular face 40 surrounded by a rim 41.

Cooperating with the rear clamping member is a
 front clamping member having a shank 42 pro-
 vided with a lug 43 taking into a recess 44 on
 the face of the shank 37 and provided with a
 head 45 overhanging and resting upon, as at 46, the top of the link. This head has a front face
 47 slightly forwardly extending to cooperate with
 the face 48 for clamping the bit between the
 same.

The lower ends of the two shanks at their ad-
 jacent faces are inclined away from one another
 as at 48 so that, when the clamp as a whole
 is lifted slightly out of its socket 55, the two clamp-
 ing members may be separated, and to prevent
 their complete withdrawal I provide a shoulder
 49 on the lower end of the front shank which will
 be engaged by the edge of the set screw unless
 the same is withdrawn to a greater extent, and
 prevent the complete removal of the clamping
 member. In order to force the clamping mem-
 ber upwardly for the purpose of renewing or
 changing the bit I provide a spring 50 in the
 bottom of the socket 35.

In the structure illustrated in Fig. 17 I show a
 modified form of link which may be reversed.

In this form of link the socket is rounded and the
 head is screw threaded as at 51 and 51' to re-
 ceive, from either end, the holding screw 52.

The shanks of the front and rear clamping mem-
 bers 53 and 54 are rounded and the shank of the
 front clamping member 53 is provided with a con-
 cical recess 55 for reception of the conical end of
 the set screw 52, whereby when the screw is turned
 up it will not only force the two clamping mem-
 bers together but will tend to draw the member
 53 down onto the member 54.

In claim the following:

1. The combination of a mining machine
 chain link having a laterally projecting extension
 provided with a longitudinally extending open-
 ing, of a pair of bit clamps adapted to be secured
 to the bit by the structure shown in the present
 bit secured in position between said clamps, and a bolt extending through
 said opening and adapted to draw said clamps to-
The combination with a mining machine chain link having a laterally projecting extension provided with a longitudinally extending opening, of a pair of bit clamps having coinciding flat face clamping faces, a bolt extending through said opening and adapted to draw said clamps together and alternatively against either face of said projection, said clamps being rotatably mounted on said bolt, means for maintaining said clamps in any one of a number of predetermined positions and against rotation.

5. The combination with a mining machine chain link having a laterally projecting substantially cylindrical projection, the opposite ends of said projection being similar and the projection being equidistant between the ends of the link, of a pair of bit clamps adapted to be secured against either end of said projection, and a bolt extending through said projection and through said clamps for drawing the clamps together and securing the clamps against either end of the projection.

6. The combination with a mining machine chain link having a laterally projecting substantially cylindrical extension equidistant from the ends of the link, of a pair of bit clamps rotatably secured upon an end of said projection, and means for holding said clamps in any one of a series of predetermined positions.

7. The combination with a mining machine chain link having a laterally extending substantially cylindrical projection, of a pair of bit clamps adjustably mounted on the face of said projection, one of said clamps having a rearwardly and upwardly inclined flat face coinciding with the flat face of said first mentioned clamp, and a concavo-convex bit secured between said clamps having a plurality of cutting points radially disposed and connected by straight cutting edges.

8. A bit for cutter chains having a plurality of cutting points radially disposed and provided with cutting edges extending between said points and outlining an equilateral triangle.

9. A bit for cutter chains having a plurality of cutting points radially disposed and provided with cutting edges extending between said points and substantially outlining an equilateral triangle, the back face of said bit being convexed.

10. A bit for cutter chains having a plurality of radially disposed cutting points connected together by cutting edges substantially outlining an equilateral triangle, the front face of said bit being concaved.

11. A bit for cutter chains having a plurality of radially disposed cutting points connected together by cutting edges substantially outlining an equilateral triangle, the front face of said bit being concaved.

12. A bit for cutter chains having a plurality of radially disposed cutting points connected together by cutting edges substantially outlining an equilateral triangle, said bit being concavo-convex.

13. A bit for cutter chains having a plurality of radially disposed cutting points connected together by cutting edges substantially outlining an equilateral triangle, and a pair of clamps for engaging said bit, mounted on said link.

14. A bit for cutter chains having a plurality of radially disposed cutting points connected by cutting edges substantially outlining an equilateral triangle, said bit being concavo-convex, and a pair of clamps mounted on said link having coinciding clamping faces between which said bit is adapted to be clamped.

15. The combination with a mining machine chain link, of a bit secured to said link having a plurality of radially disposed cutting points connected by cutting edges substantially outlining an equilateral triangle, said bit being concavo-convex, and a pair of clamps mounted on said link having coinciding clamping faces between which said bit may be clamped.

16. The combination with a mining machine chain link, of a bit thereof having a plurality of radially disposed cutting points connected by cutting edges substantially outlining an equilateral triangle, said bit being concavo-convex, and having on its front and rear faces flat portions outlined by lines extending from the points of the bit to the center, and clamping members mounted on said chain link and having coinciding inclined triangular flat faces between which any one of said flat faces of the bit may be clamped.

17. A bit for cutter chains having a substantially flat front face, with three cutting points equidistant from each other and the center of the bit, the back face of said bit being convexed.

18. The combination with a mining machine chain link, of a laterally projecting head on said link and formed with a longitudinal opening therethrough, means for supporting a bit for angular adjustment in a plane other than the plane of chain travel, said means comprising a pair of clamps adapted to hold a bit between their adjacent faces, and a bolt extending through said opening and cooperating with said clamps to lock a bit between said clamps and to lock said clamps to said head.

19. The combination with a mining machine chain link, of a head provided with means for supporting a bit for angular adjustment in a plane other than the plane of chain travel, said means comprising a pair of bit clamps holding a bit between their adjacent faces, a bolt extending through said clamps and substantially outlining an equilateral triangle, the back face of said bit being convexed and having three faces outlined by lines extending from each point towards the center.

20. A bit for cutter chains having a plurality of radially disposed cutting points connected together by cutting edges substantially outlining an equilateral triangle, the front face of said bit being concaved.
through the rear clamp and into a longitudinal opening in the link head and engaging the front clamp, and means whereby rotation of said bolt draws the clamps together to hold the bit and draws the rear face of the rear clamp firmly against the link head.

21. The combination with a mining machine chain link, of a projecting head thereon for mounting a bit, a longitudinally extending opening in said head, a rear bit clamp, a bolt in said opening projecting forwardly from said head and extending centrally through said head and a front bit clamp and cooperative means on said bolt and on said front bit clamp whereby said bolt may be operated to draw said front clamp, toward said rear clamp to lock a bit therebetweeen, and to hold the rear face of said rear clamp firmly against the link head.

22. A bit for cutter chains having a substantially triangular contour at its front face, and an intermediate portion of one face, of less area than the front face, laterally displaced from the area immediately bounded said displaced portion.

23. A bit for cutter chains having a substantially triangular contour at its front face and with a depression formed in one face.

24. A bit for cutter chains having a substantially triangular contour at its front face and with a protuberance formed on one face.

25. A bit for mining machines comprising a plurality of bit holding links and connecting links, each of said bit holding links having a bit carrying head, means comprising a plurality of seats on the bit carrying head distributed along the chain at various angles relative to the median plane of the chain to confine the cutter bits each at a predetermined angle relative to its bit carrying head, there being at least three different angular positions for the cutter bits within a range of sixty degrees on a longitudinal axis parallel to said plane, and mechanism co-operating with said confining means for clamping the latter and said bit to secure the same to said heads at a predetermined angle dependent upon the seat on said bit carrying head.

26. A mining machine cutter chain comprising a plurality of bit holding links and connecting links, each bit holding link having an offset bit carrying head with a longitudinal bore, means for mounting the cutter bits one on each said head at either end thereof by being confined to a predetermined angle relative thereto to secure successive positions of the cutter bits for closely adjacent lines of cutting travel at various distances from the median plane of the chain, and mechanism extending through said bores from either ends thereof for clamping said bores rigidly and said bits rigidly to said bit holding links.

27. A mining machine chain-cutter comprising a plurality of bit holding links and connecting links, said bit holding links having offset bit carrying heads rigidly connected thereto to move bodily therewith, means comprising seats on said heads arranged successively at different angles to confine the bits for closely adjacent lines of cutting travel, and mechanism for clamping the bits and said confining means rigidly to said heads.

28. A mining machine cutter comprising a plurality of bit holding links, and connecting links, each bit holding link having a bit carrying head provided with angularly spaced seats, bit clamping mechanism for rigidly connecting the bit to said heads, and means connecting said bit clamping mechanism to any of said seats to lock the bits on successive bit holding links in positions for closely adjacent lines of cutting travel.

29. A mining machine cutter comprising a bit holding link having a laterally projecting extension provided with a longitudinally extending, bit clamping mechanism, a bolt extending through said opening for securing said bit clamping mechanism to said laterally projecting extension, and means securing said bit clamping mechanism in any one of a plurality of predetermined positions relative to said laterally projecting extension and against rotation relative thereto.

30. A mining machine cutter comprising a bit holding link having a laterally projecting extension with a longitudinal bit holding links and connecting links, the bit holding links having laterally projecting extensions with longitudinal bores therethrough, bit clamping mechanism adapted to be located at either end of each of said extensions, seats for said clamping mechanism, and bolts extending through said bores to secure said bit clamping mechanism to their seats at either end of each extension, whereby in assembling the chain cutter some of the similar bit holding links may have their extensions offset from one side of the median plane of the chain and others may have their extensions offset from the other side of the median plane of the chain.

31. A mining machine cutter comprising a cylindrical extension, a cutting bit, clamping mechanism rotatably associated with one end of said extension, and means for holding said clamping mechanism and said cutting bit in any one of a series of predetermined positions.

32. A mining machine cutter comprising a bit holding link having a bit carrying extension with a longitudinal bore extending therethrough, a cutting bit, a pair of clamping members for said cutting bit and rotatably associated with one end of said extension, a bolt extending through said bore and screw-threaded through one of said clamping members, and means comprising a set screw in the other clamping member in position to extend into an annular groove in said bolt to lock said last-named clamping member against withdrawal from said bolt longitudinally of the latter while permitting rotation of said last-named clamping member relatively to said extension.

33. A mining machine cutter comprising a bit carrying extension having a longitudinal bore extending therethrough, a cutting bit, two clamping members for said cutting bit and rotatably associated with said extension, a bolt extending through said bore and screw-threaded into one of said clamping members, and means comprising a set screw in the other clamping member in position to extend into an annular groove in said bolt to lock said last-named clamping member against withdrawal from said bolt longitudinally of the latter while permitting rotation of said last-named clamping member relatively to said extension.

34. In a chain cutter for mining machines, the combination with a bit holding link having spaced-apart abutment blocks each provided with a longitudinal screw-threaded bore, of a set screw adapted to be screw-threaded through said bore in either of opposite directions, bit holding mechanism comprising two clamping members adapted to be seated between said abutment blocks, one of said members having a conical recess, and a conical extension on said set screw for entering said conical recess, said bit holding mechanism
being adapted to occupy reversed positions between said blocks.

35. In a chain cutter for mining machines, the combination with a chain comprising a plurality of bit holding links some having right-handed heads and others having left-handed heads, of a plurality of longitudinally cylindrical seats on said heads successively at different angles in predetermined formation from one side of the chain to the other, a plurality of multiple pointed cutter bits one for each head and each having at least three spaced cutting points, and means for securing said multiple pointed bits to said seats to hold them rigidly connected in adjusted positions to said links in the aforesaid formation from one side of the chain to the other.

36. In a chain cutter for mining machines, the combination with a chain comprising a plurality of connected bit holding links some having right-handed heads and others having left-handed heads, of longitudinal cylindrical seats on said heads successively at different angles in predetermined formation from one side of the chain to the other, a plurality of cutter bits one for each head, clamping means for said bits and means comprising pins fitting into said cylindrical seats and connected to said clamping means to hold said cutter bits rigidly connected to said links in the aforesaid formation to secure parallel spaced apart lines of travel of the cutter bits at various distances from opposite sides of the median plane of the chain.

37. In a chain cutter for mining machines, the combination with a chain comprising a plurality of connected bit holding links some having right-handed heads and others having left-handed heads, of a plurality of longitudinal seats on each head at different angles for selection for a predetermined formation of spaced parallel lines of cutting travel, a plurality of cutter bits one for each head, and means for securing the cutter bits to selected seats to obtain such predetermined formation on both sides of the median plane of the chain for the cutting of a kerf by parallel cutting paths of travel spread over the entire width of the kerf.

38. In a chain cutter for mining machines, the combination with a chain comprising a plurality of connected bit holding links some having right-handed heads and others having left-handed heads, of a plurality of longitudinal cylindrical recesses on each head spaced at different angles for selection of a predetermined formation of spaced parallel lines of cutting travel, a plurality of cutter bits one for each head, clamping means for said bits, and means comprising pins fitting in said recesses and connected to said clamping means for securing the latter and said bits for such predetermined formation on both sides of the median plane of the chain for the cutting of a kerf by parallel cutting paths of travel spread over the entire width of the kerf.

39. A cutter chain having a plurality of identical cutter bit carrying links and identical connecting links, the latter bit carrying links having offset bit carrying heads assembled in the chain some as right-hand heads and others as left-hand heads, bit locating means associated with each of said heads for confining the cutter bit on its respective head to any one of at least three different positions through a range of sixty degrees varying relation to the cutter head, and means for clamping the cutter bit to its head while said bit locating means lock the cutter bit at its adjusted angle.

40. A cutter chain link having a longitudinally extending bore, means for supporting and positioning a cutter bit including an imperforate member insertable in said bore, and means for clamping said imperforate member and bit in position including an adjustable clamping element carried by said imperforate member and engaging said bit to hold the same in adjusted position separately from said imperforate member.

41. A cutter chain link having a longitudinally extending bore, means for supporting and holding a cutter bit in either of two positions with respect to said link including an imperforate member insertable in said bore, said imperforate member being insertable within said bore from either end of the link to obtain two predetermined positions of the bit one at one end of said bore and the other at the other end thereof, and associate means co-operating with the link body for definitely locating the bit in the aforesaid predetermined positions at the ends of said bore with respect to its link.

42. In a chain cutter for mining machines, the combination with a plurality of connected bit holding links, of right-handed heads on some of the bit holding links and left-handed heads on other bit holding links, seats on said heads successively at different angles in predetermined formation along the chain with respect to the right-handed heads and successively at different angles in predetermined formation along the chain with respect to the left-handed heads, and bit holding mechanism on said heads and adjustable on longitudinal axes spaced laterally from the medial plane extending from the path of travel of the chain.

43. A mining machine cutter comprising a cutter-carrying link having a projecting extension provided with a longitudinally extending opening, a pair of bit clamps adapted to be secured to said projection, a bit secured in position between said clamps, and a bolt extending through said opening and adapted to tighten said clamps together, at least one of said clamps being rotatably mounted on said bolt.

44. A mining machine cutter comprising a cutter-carrying link having a projecting extension provided with a longitudinally extending opening, of a pair of bit clamps having clamping surfaces for engaging and clamping a bit between, a bolt extending through said projection for tightening said clamps together and alternatively against either face of said projection, said clamps being rotatably mounted on said bolt.

45. The combination with a mining machine cutter chain link, of a bit having a plurality of radially disposed cutting points arranged in equilateral triangular relation, and clamping mechanism mounted on said link to secure said bit thereeto with any one of said cutting points in a cutting position.

46. The combination with a mining machine cutter chain link, of a head provided with means for supporting a bit for angular adjustment in a plane other than the plane of chain travel, said means comprising a pair of bit clamps adapted to hold a bit between their adjacent faces, and means comprising a bolt in said longitudinal opening and extending through said bit clamps for forcing the clamps together to hold the bit and forcing the rear face of the rear clamp firmly against the link head.

47. A mining machine cutter comprising a bit holding link having a projecting extension provided with a longitudinally extending opening, a pair of bit clamps adapted to be secured to said projection, a bit secured in position between said clamps, and a bolt extending through said opening and adapted to tighten said clamps together, at least one of said clamps being rotatably mounted on said bolt.
opening, a pair of clamping members rotatable relatively to said extension on the axis of said opening, and means comprising a bolt associated with said clamping members for operating the latter to secure a bit between the same and to rigidly secure the clamping members and the bit in predetermined position relative to said projecting extension.

49. The combination with a mining machine cutter chain link, of a head provided with means for supporting a bit for angular adjustment in a plane other than the plane of chain travel, said means comprising a pair of bit clamps adapted to hold a bit between their adjacent faces, and means comprising a bolt in said longitudinal opening and screw-threaded through the front bit clamp for drawing the clamps together to hold the bit and drawing the rear face of the rear clamp firmly against the link head.

50. A mining machine chain cutter comprising a bit holding link having a projecting extension provided with a longitudinally extending opening, a pair of clamping members rotatable relatively to said extension on the axis of said opening, and means comprising a bolt associated with said clamping members for operating the latter to secure a bit between the same and rigidly secure the clamping members and the bit in predetermined position relative to said projecting extension.

51. A mining machine chain cutter comprising a cutter-carrying link having a projecting head, means on said head to afford a flat inclined seat having a V-shaped retaining wall at its outer end portion, a three-pointed bit having a flat rear wall adapted to engage said seat and to rest against said V-shaped retaining wall, and means comprising a flat faced clamping member adapted to engage an inner flat face of said three-pointed bit to secure the same against said seat while resting against said V-shaped retaining wall.

52. In a mining machine chain cutter comprising a cutter-carrying link having a projecting head, a pair of clamping members, a multiple pointed bit, means for seating said multiple pointed bit between said clamping members, and a set screw screw-threaded through an opening in said projecting head to an opening extending transversely of the latter and against one of the clamping members inserted into such transverse opening.

53. A mining machine chain cutter comprising a cutter-carrying link having a projection extending therefrom, a cutter bit having a pair of laterally projecting extensions at its rear side rearwardly of the cutting point of the bit, means affording a seat for the rear side of said cutter bit including the rear lateral extensions thereon, and means in position on said projection for engaging the front side of said cutter bit to secure the rear side thereof including said lateral extensions to said seat and thereby secure the cutter bit rigidly to said cutter-carrying link.

54. A cutting cutter having a plurality of bit carrying links and connecting links, said bit carrying links being castings similar in shape and size, a multiple bit, clamping mechanism therefor, bit locating means between said clamping mechanism and said bit carrying links and comprising seats successively in different angular positions relative to the median cutting plane of the chain, and means comprising a bolt on which said clamping mechanism is rotatable to its seat for securing the bit to said bit carrying link successively at various distances from the median plane of the chain to secure closely adjacent cutting paths of travel, the only change in structure in successive bit carrying links being the location of said seats.

55. A chain cutter for mining machines, comprising a plurality of cutter carrying links consisting of castings of similar shape and size but provided successively with seats in different angular relation with the median plane of the chain, cutter bits one for each cutter carrying link, means comprising a pair of clamping jaws between which a bit is gripped, and means comprising a bolt for operating said clamping jaws to grip a bit between the same and for securing said clamping jaws to its seat on said bit carrying link, the clamping jaws and said operating means as well as said bit carrying link being the same in construction throughout the series of the plurality of cutter carrying links.

56. In a mining machine chain cutter, the combination with cutter carrying links and connecting links, of laterally projecting heads on said cutter carrying links, a cutter bit for each head, clamping mechanism for each bit, and means for operating said clamping mechanism to grip its bit and secure the same to its head successively at different angles along the chain dependent upon seats on said heads distributed along the chain at different angles, the structures mounted on the successive bit carrying links being similar in shape and size as to its parts, only the seats on the heads being different on successive cutter carrying links.

FRANK L. FULKE.