PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOG6F 17/50 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/12111

11 March 1999 (11.03.99)

(21) International Application Number: PCT/US98/16436

(22) International Filing Date: 7 August 1998 (07.08.98)

(30) Priority Data:

08/919,531 28 August 1997 (28.08.97) us

(71) Applicant: XILINX, INC. [US/US]; 2100 Logic Drive, San
Jose, CA 95124 (US).

(72) Inventor; GUCCIONE, Steven, A.; 3813 McNeil Drive,
Austin, TX 78727 (US).

(74) Agents: YOUNG, Edel, M. et al.; Xilinx, Inc., 2100 Logic
Drive, San Jose, CA 95124 (US).

(81) Designated States: JP, European patent (AT, BE, CH, CY, DE,
DK, ES, F], FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: A METHOD OF DESIGNING FPGAS FOR DYNAMICALLY RECONFIGURABLE COMPUTING

202
/_

/-204 /— 106

Executable

«—» FPGA

Code

MDRC
Libraries
/- 201
User Java JAVA
Code Compiler -
203 J
(57) Abstract

A method of designing FPGAs for reconfigurable computing comprises a software environment for reconfigurable coprocessor
applications. This environment comprises a standard high level language compiler (i.e. Java) and a set of libraries. The FPGA is configured
directly from a host processor, configuration, reconfiguration and host run-time operation being supported in a single piece of code. Design
compile times on the order of seconds and built-in support for parameterized cells are significant features of the inventive method.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
Nz
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
T
UA
UG
uUs
Uz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

o W N o0 W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

WO 99/12111 PCT/US98/16436

A METHOD OF DESIGNING FPGAS FOR
DYNAMICALLY RECONFIGURABLE COMPUTING

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates generally to the field of
field programmable gate arrays (FPGAs) and more particularly
to a method of configuring an FPGA using a host processor

and a high level language compiler.

Description of the Background Art

In recent years, there has been an increasing interest
in reconfigurable logic based processing. These systems use
dynamically reconfigurable logic, such as FPGAs that can be
reconfigured while in use, to implement algorithms directly
in hardware, thus increasing performance.

By one count, at least 50 different hardware platforms
(e.g., computers) have been built to investigate this novel
approach to computation. Unfortunately, software has lagged
behind hardware in this area. Most systems today employ
traditional circuit design techniques, then interface these
circuits to a host computer using standard programming
languages.

Work done in high-level language support for
reconfigurable logic based computing currently falls into
two major approaches. The first approach is to use a
traditional programming language in place of a hardware
description language. This approach still requires software
support on the host processor. The second major approach is
compilation of standard programming languages to
reconfigurable logic coprocessors. These approaches
typically attempt to detect computationally intensive
portions of code and map them to the coprocessor. These
compilation tools, however, are usually tied to traditional
placement and routing back-ends and have relatively slow

compilation times. They also provide little or no run-time

W 0 NN oy Ul W N

WoWw oW oW WWwWweWwN NN N NN DN NNRE R RBR R R R e
A3 e DN RO W ® aoa U W N R O W o N U W N o

WO 99/12111 PCT/US98/16436

support for dynamic reconfiguration.

In general, today’s tools are based on static circuit
design tools originally developed for use in circuit board
and integrated circuit design. The full potential of

dynamic logic is not supported by such static design tools.

SUMMARY OF THE INVENTION

The method of design for reconfigurable computing
(MDRC) of the invention represents a novel approach to
hardware/software co-design for reconfigurable logic based
coprocessors. A system and method are provided for
configuring an FPGA directly from a host processor. It is
not necessary to store the configuration data in a file,
although it can be so stored if desired. Therefore, this
method is particularly suited for use with FPGAs such as
reconfigurable coprocessors, which are often reconfigured
"on the fly", i.e., without repowering the FPGA and
sometimes while reconfiguring only a portion of the FPGA. A
description of the desired functionality for the FPGA is
entered using the MDRC libraries and a standard high level
language such as Java™ (Java is a trademark of Sun
Microsystems, Inc.). Configuration, reconfiguration and
host interface software for reconfigurable coprocessors is
supported in a single piece of code.

Since MDRC does not make use of the traditional
placement and routing approach to circuit synthesis,
compilation times are significantly shorter than with prior
art methods, being on the order of seconds. This high-speed
compilation provides a development environment which closely
resembles those used for modern software development.

The MDRC provides a simple alternative to traditional
Computer Aided Design (CAD) tool based design. In the
preferred embodiment, Java libraries are used to program an
FPGA device. This method has the following benefits:

Very fast compilation times. Because standard
programming language compilers are used by this approach,

compilation is as fast as the host native compiler. With

O K N U R W N R

W oW W W WwWwWwWWw NN NN D NN NN R PR 2R
\IG\U'Ilbwl\)l—‘O\D(D\lmlﬂsbbJl\Ji—‘OkO(D\]O\U'!stJNl—*O

WO 99/12111 PCT/US98/16436

current Java compilers such as Microsoft's J++ 1.1 compiler
compiling over 10,000 lines of code per second, compiling
circuits built using MDRC will take on the order of a second
to complete. This is in contrast to the hours of turnaround
time 1n existing CAD tools.

Run time parameterization of circuits. Perhaps the

most interesting feature of MDRC is its ability to do run-
time parameterization of circuits. For instance, a constant
adder, using a constant value known only at run-time, can be
configured by MDRC during execution. The size of a given
component may also be specified dynamically. A 5-bit adder
or a 9-bit counter, for instance, can be configured at run-
time. This feature has uses in areas such as adaptive
filtering.

Obiject Oriented Hardware Design. Because Java is an

object oriented language (i.e., a structured language in
which elements are described in terms of objects and the
connections between these objects), hardware designed in
this language can make use of object-oriented support.
Libraries constructed with MDRC may be packaged as objects
and manipulated and reused like any standard software
component.

Support for dyvnamic reconfigquration. The ability to
dynamically configure a circuit automatically brings with it
the ability to do dynamic reconfiguration. Uses for this
capability are beginning to appear. For example, a portion
of a dynamically reconfigurable FPGA could be configured as
a multiplier that multiplies an input value by a constant,
the constant being a scaling factor in a signal processing
application. Using dynamic reconfiguration, this scaling
factor could be changed without interrupting the function of
other portions of the configured FPGA.

Standard software development environment. Using a
standard programming language (in this case, Java) permits
standard software environments to be used by circuit
developers. In other words, widely available, off-the-shelf

compilers such as Microsoft's J++ 1.1 compiler could be used

O o N3 oy U W NP

W W W W W W W W NN D NN NN NN R PR R
R Y s T N Tt S X R U O o SR U ST < NN IEo RS » IS SR VR C T R o B G A N L o e =

WO 99/12111 PCT/US98/16436

to develop circuits to be implemented in an FPGA. This
capability has two immediate advantages. First, the user
can continue to use whichever tool he or she is already
familiar with. Secondly, and perhaps most importantly, FPGA
design becomes a software development effort open to
programmers. This capability could greatly expand the
existing base of FPGA users.

Simplified host interfacing. MDRC requires a host
processor to be available for executing the Java code and
supplying configuration data to the FPGA. This
processor/FPGA combination is a powerful coprocessing
environment currently being investigated by researchers.

One barrier to use of these systems is the need to interface
the FPGA hardware design with the host software design.

MDRC merges the software and hardware design activities into
a single activity, eliminating these interfacing issues.

Flexibility. Because MDRC comprises a library used by

a standard programming language, it may be extended, even by
users. This capability provides a level of flexibility
unavailable in a static design tool. Users are free to
provide new libraries and library elements, or even
accessories such as custom graphical user interfaces.
Standard device interface. One way to think of MDRC is
not so much as a tool in itself, but as a standard interface
to the FPGA device. This interface may be used for FPGA
configuration, or it may be used to build other tools. MDRC
may even be used as the basis for traditional CAD software
such as placement and routing tools. Another way to think
of MDRC is as the "assembly language" of the FPGA.
Guaranteed "safe" circuits. MDRC provides an
abstraction (a software construct that provides a
representation, often simplified, of the hardware) which
makes it impossible to produce circuits with contention
problems. This makes it impossible when using MDRC to
accidentally damage or destroy the device due to a bad
configuration. Such protection is highly desirable in a

dynamic programming environment like MDRC, where a

[N BN <2 T 2 B~ VE R o B o

wwwwwwwww[\)t\)l\)t\)[\)l\)I\)N[\)HHHHI—‘HI—‘HHF—‘
\]O\LﬂQWNHO\DCD\]mw#wNHomw\lO\Lﬂbwl\)l—‘O

WO 99/12111 PCT/US98/16436

programming error could otherwise result in permanently
damaged hardware. (An incorrectly configured FPGA may
inadvertently short power and ground together, destroying
the device.) A side effect of this feature is that the MDRC
may be used as an implementation vehicle for the emerging

field of genetic algorithms.

BRIEF DESCRIPTTION QOF THE DRAWINGS

The aforementioned objects and advantages of the
present invention, as well as additional objects and
advantages thereof, will be more fully understood
hereinafter as a result of a detailed description of a
preferred embodiment when taken in conjunction with the
following drawings.

Figure 1 is a block diagram illustrating the prior art
design flow for design of a circuit implemented in an FPGA
using a reconfigurable logic coprocessor.

Figure 2 is a block diagram illustrating the design
flow in the present invention.

Figure 3 is a diagram of a level 1 logic cell
abstraction of the present invention.

Figure 3A is a diagram of an XC6200 logic cell
represented by the abstraction of Figure 3.

Figure 4 is a diagram of a multi-bit counter according
to one embodiment of the invention.

Figure 5 is an element definition code listing for the
basic elements of the embodiment of Figure 4.

Figure 6A is a diagram of a toggle flip-flop cell of
the embodiment of Figure 4.

Figure 6B is a diagram of a carry logic cell of the
embodiment of Figure 4.

Figure 7 is a configuration code listing for the

counter of Figure 4.

Figure 8A is a run time code for the counter of Figure

Figure 8B is an execution trace for the counter of

Figure 4.

w O NN o U W DR

wb)waJWWNNNNNNNNNNHHI—‘I—‘HHl—‘HI—‘l—‘
C\U‘lbb)l\)HO\D@\]O\W%MNHO\D@\]O\W:&MNHO

WO 99/12111 PCT/US98/16436

DETAILED DESCRIPTION OF THE DRAWINGS

Design of a circuit implemented in an FPGA using a
reconfigurable logic coprocessor currently requires a
combination of two distinct design paths, as shown in prior
art Figure 1. The first and perhaps most significant
portion of the effort involves circuit design using
traditional CAD tools. The design path for these CAD tools
typically comprises entering a design 101 using a schematic
editor or hardware description language (HDL), using a
netlister 102 to generate a netlist 103 for the design,
importing this netlist into an FPGA placement and routing
tool 104, which finally generates a bitstream file 105 of
configuration data which is used to configure FPGA 106.

Once the configuration data has been produced, the next
task is to provide software to interface the host processor
to the FPGA. The user enters user code 107 describing the
user interface instructions, which is then compiled using
compiler 108 to produce executable code 109. The
instructions in executable code 109 are then used by the
processor to communicate with the configured FPGA 106. It
is also known to use executable code 109 to control the
configuration of FPGA 106 with bitstream file 105. This
series of tasks is usually completely decoupled from the
task of designing the circuit and hence can be difficult and
error-prone.

In addition to the problems of interfacing the hardware
and software in this environment, there is also the problem
of design cycle time. Any change to the circuit design
requires a complete pass through the hardware design tool
chain (101-106 in Figure 1). This process is time
consuming, with the place and route portion of the chain
typically taking several hours to complete.

Finally, this approach provides no support for
reconfiguration. The traditional hardware design tools
provide support almost exclusively for static design. It is

difficult to imagine constructs to support run-time

W o N oy ok W NP

W W W W W W W NN N NN NN NP PP R
P R T S T S T T S Vo ST SRS Bs A ¥ ;B S U R N R i o B e AT R N S =

WO 99/12111 PCT/US98/16436

reconfiguration in environments based on schematic or HDL
design entry.

In contrast, the MDRC environment comprises a library
of elements which permit logic and routing to be specified
and configured in a reconfigurable logic device. By making
calls to these library elements, circuits may be configured
and reconfigured. Additionally, host code may be written to
interact with the reconfigurable hardware. This permits all
design data to reside in a single system, often in a single
Java source code file.

In addition to greatly simplifying the design flow, as
shown in Figure 2, the MDRC approach also tightly couples
the hardware and software design processes. Design
parameters for both the reconfigurable hardware and the host
software are shared. This coupling provides better support
for the task of interfacing the logic circuits to the
software.

As shown in Figure 2, entering and compiling an FPGA
circuit using the MDRC method requires many fewer steps than
in the prior art method of Figure 1. User code 201, in this
embodiment Java code, is entered. This code includes not
just instructions describing the user interface and the
configuration process, but also a high-level description of
the desired FPGA circuit. This circuit description
comprises calls to library elements (function calls) in MDRC
libraries 202. 1In one embodiment, these cells can be
parameterized. Java compiler 203 combines the circuit
descriptions from MDRC libraries 202 with the instructions
from user code 201 to generate executable code 204.
Executable code 204 includes not only user interface
instructions, as in executable code 109 of Figure 1, but
also configuration instructions. When using MDRC, the
bitstream need not be stored as a file; if desired the
configuration data can be directly downloaded to FPGA 106 by
executable code 204. This technique is particularly useful

in reconfigurable computing, i.e., when using a

W W oy U W NP

W oW W W W W W NN NN NN NN N R PR R R R R R R e
P <Y T X S -G V-GN SN RPN S, R NGR PO R C S A S € T T TR < N B S VR ST S

WO 99/12111 PCT/US98/16436

reconfigurable FPGA as a coprocessor to perform a series of

different computations for a microprocessor.

The MDRC Abstraction

MDRC takes a layered approach to representing the
reconfigurable logic. At the lowest (most detailed) layer,
called Level 0, MDRC supports all accessible hardware
resources in the reconfigurable logic. Extensive use of
constants and other symbolic data makes Level 0 usable, in
spite of the necessarily low level of abstraction.

The current platform for the MDRC environment is the
XC6200DS Development System manufactured by Xilinx, Inc. the
assignee of the present invention. The XC6200DS Development
System comprises a PCI board containing a Xilinx XC6216
FPGA. In the XC6200 family of FPGAs, Level 0 support
comprises abstractions for the reconfigurable logic cells
and all routing switches, including the clock routing. The
code for Level 0 is essentially the bit-level information in
the XC6200 Data Sheet coded into Java. (The "XC6200 Data
Sheet" as referenced herein comprises pages 4-251 to 4-286
of the Xilinx 1996 Data Book entitled "The Programmable
Logic Data Book", published September 1996, available from
Xilinx, Inc., 2100 Logic Drive, San Jose, California 95124.
(Xilinx, Inc., owner of the copyright, has no objection to
copying these and other pages referenced herein but
otherwise reserves all copyright rights whatsoever.)

While Level 0 provides complete support for configuring
all aspects of the device, it is very low level and may be
too tedious and require too much specialized knowledge of
the architecture for most users. Although this layer is
always available to the programmer, it is expected that
Level 0 support will function primarily as the basis for the
higher layers of abstraction. In this sense, Level 0 is the
"assembly language" of the MDRC system.

Above the Level 0 abstraction is the Level 1

abstraction. This level of abstraction permits simpler

W 00 3 o U ok W NP

wwwwwwwt\)l\)[\)l\)l\)t\)t\)wl\)t\)i—‘I—‘l—‘l—'Hl—‘Hl—‘Hl—‘
mw;bWNHO\Dm\lc\mlbwl\)l—‘O\D(D\]O\Ultbl»)[\)}-—‘o

WO 99/12111 PCT/US98/16436

access to logic definition, clock and clear routing, and the
host interface.

The most significant portion of the Level 1 abstraction
is the logic cell definition. Using the logic cell
definition, one logic cell in the XC6200 device can be
configured as a standard logic operator. In one embodiment,
AND, NAND, OR, NOR, XOR, XNOR, BUFFER and INVERTER
combinational logic elements are supported. These elements
may take an optional registered output. Additionally, a D
flip-flop and a register logic cell are defined. In one
embodiment, a latch cell is defined instead of or in
addition to the flip-flop element. All of these logic
operators are defined exclusively using MDRC level 0
operations, and hence are easily extended.

Figure 3 is a diagram of the Level 1 logic cell
abstraction. Outputs Nout, Eout, Sout, Wout correspond to
the outputs of the same names in the XC6200 logic cell, as
pictured on page 4-256 of the XC6200 data sheet. The XC6200
logic cell is also shown in Figure 3A herein. Input Sin of
Figure 3 corresponds to input S of the logic cell of Figure
3A, input Win corresponds to input W, Nin to N, and Ein to
E. The Level 1 abstraction shown in Figure 3 is a
simplified representation of the XC6200 logic block. In
this embodiment, for example, inputs S4, W4, N4, and E4 are
not supported in the Level 1 abstraction, although they are
supported in the Level 0 abstraction. The Logic block and
flip-flop shown in Figure 3 signify the circuits available
in one XC6200 logic cell. 1Inputs A, B, and SEL in Figure 3
(corresponding to inputs X1, X2, and X3 of Figure 3A) are
the inputs to the Logic block; they can be mapped to any of
logic cell inputs Sin, Win, Nin, and Ein. The circuits
available in one logic cell differ in other FPGA devices.

In addition to the logic cell abstraction, the clock
routing is abstracted. Various global and local clock
signals (such as Clk and Clr in Figure 3) may be defined and

associated with a given logic cell.

W 0w N oy o W N

wwwwwwuwwwmmwwmmwwl—\|—\|—‘|—\|—-\v—‘!—-\l—*!—'l—‘
\rc\m;bwwl—‘omoo\lmm.bwwt—xomoo\lmwpwt\)i——*o

WO 99/12111 PCT/US98/16436

A third portion of the MDRC Level 1 abstraction is the
register interface. 1In the XC6200 device, columns of cells
may be read or written via the bus interface, the columns of
cells thus forming read/write registers. The Register
interface allows registers to be constructed and accessed
symbolically.

An Example

Figure 4 shows a simple counter designed for an XC6200
device, based on toggle flip-flops 402 and carry logic 401
using the Level 1 abstraction. In less than 30 lines of
code, the circuit is described and configured, and clocking
and reading of the counter value is performed. In addition,
the structure of this circuit permits it to be easily
packaged as a parameterized object, with the number of bits
in the counter being set via a user-defined parameter. Such
an object-based approach would permit counters of any size
to be specified and placed at any location in the XC6200
device. Once implemented, the counter of Figure 4 could
also be placed in a library of parameterized macrocells.

The implementation process is fairly simple. First,
the logic elements required by the circuit are defined.
These circuit element definitions are abstractions and are
not associated with any particular hardware implementation.

Once these logic elements are defined, they may be
written to the hardware, configuring the circuit. Once the
circuit is configured, run time interfacing of the circuit,
usually in the form of reading and writing registers and
clocking the circuit, is performed. If the application
demands it, the process may be repeated, with the hardware
being reconfigured as necessary.

The counter example contains nine basic elements. Five
basic elements provide all necessary support circuitry to
read, write, clock and clear the hardware. The remaining
basic elements are used to define the counter circuit
itself. These elements are best seen by looking at Figure 5

in conjunction with Figure 4. Figure 5 gives the MDRC code

10

O O N oY W NP

W W W W W W W W NNN NN N NN NN R PR R R P
o Ul W NP O W o N oYl W NN PO W oy WD PO

WO 99/12111 PCT/US98/16436

for describing the basic elements. The pci6200 object
passed to each of the two register definitions is the
hardware interface to the XC6200DS PCI board.

The support circuitry includes two registers which
simply interface the circuit to the host software. These
two registers are used to read the value of the counter
("Register counterReg" in Figure 5) and to toggle a single
flip-flop 404, producing the local clock ("Register
clockReg" in Figure 5). To support the flip-flops in the
XC6200 device, clock and clear (reset) inputs must also be
defined. The global clock ("ClockMux globalClock" in Figure
5) is the system clock for the device and must be used as
the clock input to any writable register. In this circuit,
the flip-flop which provides the software-controlled local
clock must use the global clock. The local clock ("ClockMux
localClock" in Figure 5) is the output of the software
controlled clock, and must be routed to the toggle flip-
flops which make up the counter. Finally, all flip-flops in
the XC6200 device need a clear input ("ClearMux clear" in
Figure 5). In this embodiment, the clear input to all flip-
flops is simply set to logic zero (GND).

The first logic element in the counter circuit is the
clock ("Logic clock" in Figure 5). This element is just a
single bit register 404 (Figure 4) which is writable by the
software. Toggling register 404 via software control
produces clock Local_clock for the counter circuit. The
next counter circuit element is a toggle flip-flop such as
flip-flop 402, ("Logic tff" in Figure 5). This flip-flop is
defined as having an input coming from the west. (Accordihg
to the standard XC6200 data sheet nomenclature, the names
Logic.EAST and Ein denote an east-bound signal, i.e., a
signal coming from the west.) The toggle flip-flop element
provides the state storage for the counter. Next, the carry
logic element 401 for the counter ("Logic carry" in Figure
5) is simply an AND-gate with inputs from the previous stage
carry logic and the output of the current stage toggle flip-
flop. The carry element generates the "toggle" signal for

11

w W N oY U W N

W OoW W W W oW W W NN DN NN NN R PR e
G o0 U W NN R, O W o Nl W N RO YW N Yy U W N O

WO 99/12111 PCT/US98/16436

the next stage of the counter. Figures 6A and 6B are
graphical representations of the flip-flop and carry logic
cells, respectively, in an XC6200 device. Finally, a
logical "one" or VCC cell ("Logic one" in Figure 5, block
403 in Figure 4) is implemented for the carry input to the
first stage of the counter.

Once this collection of abstract elements is defined,
they may be instantiated anywhere in the XC6200 cell array.
This instantiation is accomplished by making a call to the
write() function associated with each object. This function
takes a column and row parameter which define the cell in
the XC6200 device to be configured. Additionally, the
hardware interface object is passed as a parameter. In this
case, all configuration is done to pci6200, a single
XC6200DS PCI board.

An example of this instantiation is shown in Figure 7,
which instantiates the elements for the counter of Figure 4.
The code in Figure 7 performs all necessary configuration.
In the for() loop, the carry cells (401 in Figure 4) are in
one column with the toggle flip-flops tff (402 in Figure 4)
in the next column. A local clock and a clear are attached
to each toggle flip-flop tff. The relative location of
these cells is shown in Figure 4.

Below the for() loop, a constant "1" is set as the
input to the carry chain (403 in Figure 4). Next, the
software-controlled clock (Local_clock in Figure 4) is
configured. This is the clock object, with its localClock
routing attached to the toggle flip-flops tff of the
counter. Finally, the global clock is used to clock the
software-controlled local clock. 1In some embodiments, the
clock and clear basic elements are not required; in this
embodiment their presence is necessary to support the XC6200
architecture.

Once the circuit is configured, it is a simple matter
to read and write the Register objects via the get() and
set () functions, respectively. In Figure 8A, the clock is
toggled by alternately writing "0" and "1" to the clock

12

W W NN oY U W N

W oW W W W WwWweW NN NN D NDNNNR R P R R R R R
J o Ul B WP O W o N s W N R O VL oo N U W NP O

WO 99/12111 PCT/US98/16436

register (404 in Figure 4). The counter register (not
shown) is used to read the value of the counter (outputs
COUNT[0], COUNTI[1], COUNT [2], etc.). Figure 8B shows an
actual trace of the execution of this code running on the
XC6200DS development system.

Conclusions

While this example is a simple one for demonstration
purposes, .it makes use of all the features of MDRC. These
features include register reads and writes, as well as
features such as software-driven local clocking. Other more
complex circuits have also been developed using MDRC. More
complex circuits are built using the same basic features;
the primary difference is in the size of the code.

MDRC provides a simple, fast, integrated tool for
reconfigurable logic based processing. MDRC is currently a
manual tool, since it is desirable for the programmer to
exercise tight control over the placement and routing of
circuits for reconfigurable computing. However, MDRC
provides very fast compilation times in exchange for the
manual design style. The compile times necessary to produce
these circuits and run-time support code is on the order of
seconds, many orders of magnitude faster than the design
cycle time of traditional CAD tools. This unusual speed
permits development in an environment that is similar to a
modern integrated software development environment.
Additionally, the object-oriented nature of Java permits
libraries of parameterized cells to be built. This feature
could significantly increase the productivity of MDRC users.

MDRC may be used as a basis for a traditional graphical
CAD tool. This approach would be useful for producing
static circuits.

The above text describes the MDRC in the context of
FPGAs used for dynamically reconfigurable computing, such as
the Xilinx XC6200 family of FPGAs. However, the invention
can also be applied to other FPGAs and other software

programmable ICs not used for dynamically reconfigurable

13

O W N oY U kW N

WO 99/12111 PCT/US98/16436

computing.

Those having skill in the relevant arts of the
invention will now perceive various modifications and
additions which may be made as a result of the disclosure
herein. Accordingly, all such modifications and additions
are deemed to be within the scope of the invention, which is
to be limited only by the appended claims and their

equivalents.

14

w o N oy U W NP

W W W W W W Www N NN NN NN NN R R R P
N T NS s T SR VY TR O T WE S S Vo ST - SRS REYe NG) IR -SEN VU NS T S o RN R AN 2 e~ R VS B S T e o

WO 99/12111 PCT/US98/16436

CLATMS

What is claimed 1is:

1. A method of configuring a field programmable gate array
(FPGA), the FPGA being connected to a host processor for
configuration thereby; the method comprising the steps of:

a) programming the host processor with instructions in
a high level programming language;

b) instantiating elements from a library of elements
compatible with the high level programming language;

¢) providing a compiler to the host processor for
generating executable code in response to the programmed
instructions and the instantiated library elements; and

d) configuring the FPGA from the host processor in

response to the executable code.

2. The method recited in Claim 1 wherein the FPGA is used

for dynamically reconfigurable computing.

3. The method recited in Claim 1 or Claim 2 wherein the

high level language is Java.

4. The method recited in Claim 1 or Claim 2 wherein the

library comprises combinational logic elements.

5. The method recited in Claim 1 or Claim 2 wherein the

library comprises flip-flop elements.

6. The method recited in Claim 1 or Claim 2 wherein the
library comprises latch elements.

7. The method recited in Claim 1 or Claim 2 further
comprising the step of:
e) using the library elements to generate a

parameterized cell.

15

W o N oY Uk W N

wwwwwwwwl\)l\)t\)[\)t\)l\)[\)l\)t\)l\)l—‘I—-‘l——‘l—‘Hl—‘l—‘l—’l—-‘I—‘
\lc\mpwwl—'omoo\lmm.bwwv—towoo\lmmpwwl—lo

WO 99/12111 PCT/US98/16436

8. The method recited in Claim 7 wherein the cell is a

counter parameterized by the number of bits in the counter.

9. A method of configuring a field programmable gate array
(FPGA) for dynamically reconfigurable computing; the method
comprising the steps of:

a) programming the host processor with instructions in
a high level language;

b) providing a compiler running on the host processor
for generating executable code in response to the
instructions; and

c) connecting the host processor to the FPGA for
dynamic reconfiguration programming of the FPGA by the host

processor via the executable code.

10. The method recited in Claim 9 wherein the high level
language is Java.

11. The method recited in Claim 9 further comprising the
step of:
d) instantiating elements from a library of elements

compatible with the compiler.

12. The method recited in Claim 11 wherein the library

comprises combinational logic elements.

13. The method recited in Claim 11 wherein the library

comprises flip-flop elements.

14. The method recited in Claim 11 wherein the library

comprises latch elements.

16

WO 99/12111

101
/’

Schematics/
HDL

107
/-

User Code

201

-~

User Java
Code

PCT/US98/16436

1/7
10 /103 104
Netl Place and
etlist Route
' "
Bitstream
109
108 /‘ l 106
»| Executable | > FPGA j
Code
FIG. 1 (Prior Art)
/202
MDRC
Libraries
KZM /106
JAVA »| Executable | > FPGA
Compiler Code

FIG. 2

WO 99/12111 PCT/US98/16436

2/7
Sin Nout
Wout - —— Win
— >
A —
B —»{ Logic D Q—»
Sel —9»
>
Ein —p» Clk Clr — Eout
Sout Nin

FIG. 3

WO 99/12111 PCT/US98/16436

3/7

S4 Nout

1\lzs|EWN4 S4 E4 W4
L 11
I A=
E N—] ——l <3 NEWF
S —
E.._ [1
w— | xi v L 135
N4 — Function —
S4— Unit = —W
E4— | N4
W4 — sS4
Wout N —E4
w4
- S F
W N
F }S:“, & Eout
SEWF X2 X3 F —
| vy i

a v 11

Sout MAGIC N N4

FIG. 3A
(Prior Art)

WO 99/12111

4/7

PCT/US98/16436

L . .
l > I GND l——» Count[2]
A
401 102
N < b
Q
>
> GI\IID » Count[1]
A
<
Q
—
> GI\‘ID - Count[0]
)r\ Local_Clock
403 404

\ VCC

GND

/

Global_Clock

FIG. 4

WO 99/12111 PCT/US98/16436

5/7

Pci6200 pci6200 = new Pci6200N(null); // Hardware interface

pci6200.connect();

Register counterReg = new Register(COLUMN, counterMap, pci6200);
Register clockReg = new Register(COLUMN, clockMap, pci6200);
ClockMux localClock = new ClockMux(ClockMux.CLOCK_IN);

ClockMux globalClock = new ClockMux(ClockMux.GLOBAL_CLOCK);
ClearMux clear = new ClearMux(ClearMux.ZERO);

Logic tff = new Logic(Logic.T_FLIP_FLOP, Logic.EAST);
Logic clock = new Logic(Logic. REGISTER);

Logic one = new Logic(Logic.ONE);

Logic carry = new Logic(Logic. AND, Logic.NORTH, logic. WEST);

carry.setEastOutput(Logic. NORTH); // Set carry output

FIG. 5

WO 99/12111 PCT/US98/16436

6/7
Sin Nout
S B
Wout - <4——Win
Q
|—>
Ein — | » Eout
Clkk CIr
Sout Nin
FIG. 6A
Sin Nout
401 ¢
Wout @— - Win
Ein _> »Eout
Sout Nin

FIG. 6B

WO 99/12111

PCT/US98/16436
717

/ * Configure cells */
for (i=ROW_START; i<kROW_END:; i++) { // The counter
carry.write((COLUMN-1), i, pci6200);
tff.write(COLUMN, i, pci6200);
localClock.write(COLUMN, i, pci6200);
clear.write(COLUMN, i, pci6200);
} /* end for */
one.write((COLUMN-1), (ROW_START-1), pci6200); // Carry in
clock.write(COLUMN, (ROW_START-1), pci6200); // Clock
localClock.set(ClockMux. NORTH_OUT);
localClock.write(COLUMN, ROW_START, pci6200);
globalClock.write(COLUMN, (ROW_START-1), pci6200);

FIG. 7

for (i=0; i<5; 1++) {
clockReg.set(0); // Toggle clock
clockReg.set(1);
System.out.println("Count: " + counterReg.get());
} / *end for() */

FIG. 8A

C: \javaJERC> java Counter
Count: 0

Count: 1

Count: 2

Count: 3

Count: 4

C: \javaJERC>

FIG. 8B

INTERNATIONAL SEARCH REPORT

Inte onal Application No

PCT/US 98/16436

CLASSIFICATION OF SUBJECT MATTER

A.
IPC 6 GO6F17/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbois)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 94 10627 A (GIGA OPERATIONS CORP 1-14
; TAYLOR BRAD (US); DOWLING ROBERT (US))
11 May 1994
see page 8, line 5 — line 11
see page 35, line 6 - page 43, line 2
see page 45, line 1 - line 8; figures
17-30
A US 5 499 192 A (KNAPP STEVEN K ET AL) 1-14
12 March 1996
see column 3, line 53 - column 4, line 37
A EP 0 645 723 A (AT & T CORP) 29 March 1995 1-14
see page 3, line 29 - line 39
see page 4, line 9 - line 13
- / ——
Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" eartier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

invention

"“T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be consjdered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

Fax: (+31-70) 340-3016 Guingale, A

"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
8 December 1998 28/12/1998
Name and mailing address of the ISA Authorized officer

Fom PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inte onal Application No

PCT/US 98/16436

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category > | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

P,X LECHNER E ET AL: "The Java Environment
for Reconfigurable Computing"
FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS.
7TH INTERNATIONAL WORKSHOP, FPL ’97.
PROCEEDINGS, FIELD-PROGRAMMABLE LOGIC AND
APPLICATIONS. 7TH INTERNATIONAL WORKSHOP,
FPL ’97. PROCEEDINGS, LONDON, UK, 1-3
SEPT. 1997, pages 284-293, XP002086682
ISBN 3-540-63465-7, 1997, Berlin, Germany,
Springer-Verlag, Germany

see the whole document

1-14

Fom PCT/ISA/210 {continuation of second sheet) (July 1992)

page 2 of 2

INTEBNATIONAL SEARCH REPORT

information on patent family members

Int

“ional Application No

PCT/US 98/16436

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 9410627 A 11-05-1994 us 5535342 A 09-07-1996
AU 5458194 A 24-05-1994
CA 2148813 A 11-05-1994
EP 0746812 A 11-12-1996
JP 8504285 T 07-05-1996
AU 5593594 A 24-05-1994
CA 2148814 A 11-05-1994
EP 0667010 A 16-08-1995
JP 8504514 T 14-05-1996
Wo 9410624 A 11-05-1994
us 5497498 A 05-03-1996
us 5603043 A 11-02-1997

US 5499192 A 12-03-1996 NONE

EP 0645723 A 29-03-1995 CA 2126265 A 28-03-1995
JP 7152806 A 16-06-1995
us 5594657 A 14-01-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

