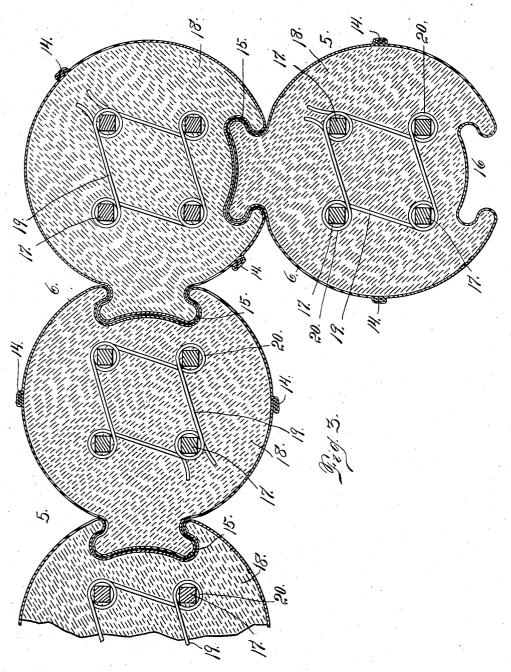

INTERLOCKING CONSTRUCTION FOR DOCKS, PIERS, JETTIES, BUILDING FOUNDATIONS, &c.

APPLICATION FILED FEB. 1, 1908.

910,421.

Patented Jan. 19, 1909.

6 SHEETS-SHEET 1.

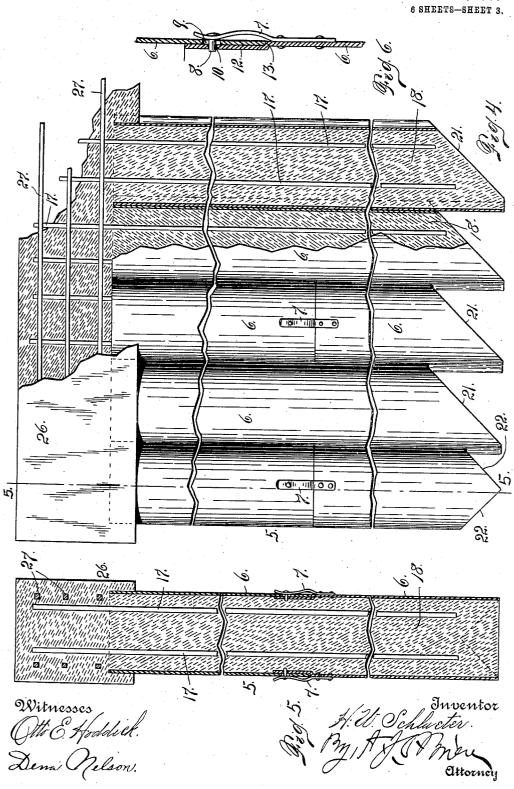


INTERLOCKING CONSTRUCTION FOR DOCKS, PIERS, JETTIES, BUILDING FOUNDATIONS, &c.

910,421.

Patented Jan. 19, 1909.

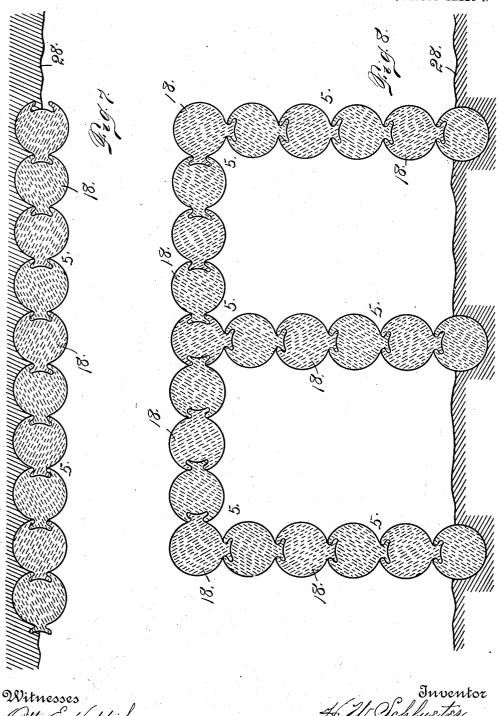
6 SHEETS-SHEET 2.


Witnesses Otto O. Hoddick Dena Velson. By A Sommen attorney

H. W. SCHLUETER.

INTERLOCKING CONSTRUCTION FOR DOCKS, PIERS, JETTIES, BUILDING FOUNDATIONS, &c.

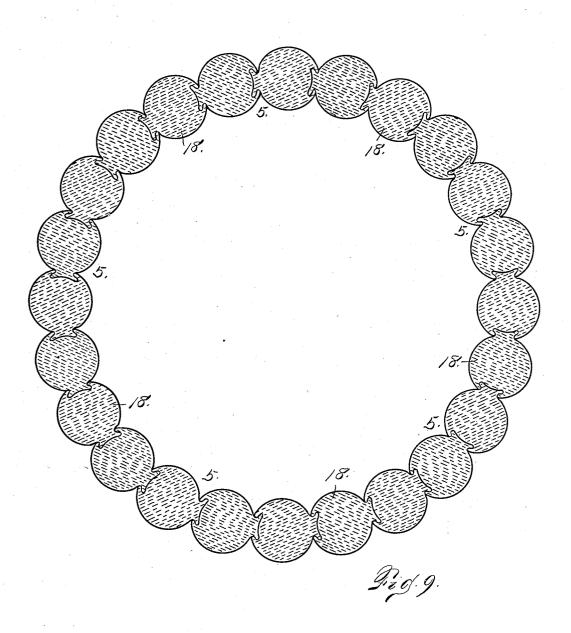
910,421.


Patented Jan. 19, 1909.

INTERLOCKING CONSTRUCTION FOR DOCKS, PIERS, JETTIES, BUILDING FOUNDATIONS, &c.

910,421.

Patented Jan. 19, 1909. 6 SHEETS-SHEET 4.

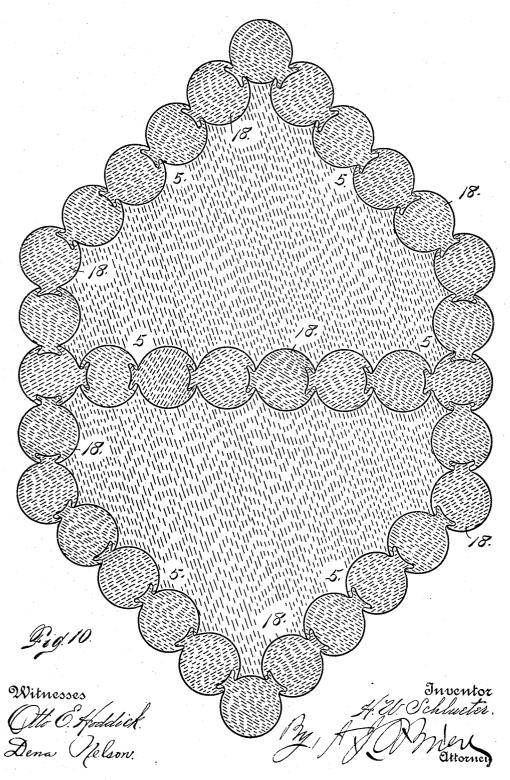


Witnesses Otto O. Hoddick Dena Velson, 3nventor H. W. Schlucter By A. Donny Attorney

INTERLOCKING CONSTRUCTION FOR DOCKS, PIERS, JETTIES, BUILDING FOUNDATIONS, &c. APPLICATION FILED FEB. 1, 1908.

910,421.

Patented Jan. 19, 1909.


4. W. Ochlucter.

H. W. SCHLUETER.

INTERLOCKING CONSTRUCTION FOR DOCKS, PIERS, JETTIES, BUILDING FOUNDATIONS, &c. APPLICATION FILED FEB. 1, 1908.

910,421.

Patented Jan. 19, 1909.

UNITED STATES PATENT OFFICE.

HENRY W. SCHLUETER, OF DENVER, COLORADO, ASSIGNOR, BY MESNE ASSIGNMENTS, TO INTERLOCKING TUBE COMPANY, A CORPORATION OF ILLINOIS.

INTERLOCKING CONSTRUCTION FOR DOCKS, PIERS, JETTIES, BUILDING-FOUNDATIONS, &c.

No. 910,421.

Specification of Letters Patent.

Patented Jan. 19, 1909.

Application filed February 1, 1908. Serial No. 413,731.

To all whom it may concern:

Be it known that I, HENRY W. SCHLUETER a citizen of the United States, residing at the city and county of Denver and State of 5 Colorado, have invented certain new and useful Improvements in Interlocking Constructions for Docks, Piers, Jetties, Building-Foundations, &c.; and I do declare the following to be a full, clear, and exact descrip-10 tion of the invention, such as will enable others skilled in the art to which it appertains to make and use the same, reference being had to the accompanying drawings, and to the letters and figures of reference 15 marked thereon, which form a part of this specification.

My invention relates to an interlocking construction for use in forming wharves, piers, docks, sea-walls, jetties, groynes, 20 coffer-dams and other similar constructions adapted for use in connection with various bodies of water as seas, lakes, rivers, etc. My improved construction may also be advantageously employed in building foundations and for use in the construction of bridges and wherever water is encountered.

The distinguishing feature of my improved construction consists of interlocking tubes or hollow piles. The adjacent sides of the 30 tubes are provided with counterpart tongues and grooves of dove-tail or similar shape, whereby the interlocking connection can only be made at the ends of the tubular sections and when so connected cannot be 35 detached by a lateral movement. These tubes may be arranged to form a wall of any shape by properly arranging the interlocking The tubes after being arranged in features. the desired form, are filled with cement or 40 concrete whereby the water is expelled. When the tubes are so filled a cement or concrete wall is formed the same being exteriorly covered by sheet metal of which the tubes are preferably composed. The completed 45 wall thus forms a water tight structure and even though the metal exterior may be worn away, the interlocking cement or concrete structure will remain permanently. I preferably locate within the tubes, metal 50 bars which after the concrete is in place, form a reinforcement giving the structure

great strength.

a great variety of ways and it may be said 55 that it completely overcomes the difficulty heretofore experienced in making absolutely water tight walls in coffer-dam and other similar constructions. The interlocking tubes may be made in sections of any length and 60 their height may therefore be as great as desired. In sinking these tubes a vacuum or suction process is employed whereby the material directly below the tube is removed allowing the latter to drop by its own weight. 65

Having briefly outlined my improved construction I will proceed to describe the same in detail reference being made to the accompanying drawing in which is illustrated an embodiment thereof.

In this drawing, Figure 1 is a side elevation illustrating my invention and showing a series of interlocking tubes connected at the top by a concrete beam which forms a sort of cap for the tubes or columns. This view 75 shows the construction in the form of a jetty or a wall projecting from the bank of a stream or other body of water outwardly thereinto. Fig. 2 is a top plan view of the same. Fig. 3 is a cross section taken 80 through a number of interlocked composite columns composed of metal tubes filled with cement or concrete and metal reinforced. Fig. 4 is a fragmentary view partly in elevation and partly in section similar to Fig. 1 85 but shown on a much larger scale. Fig. 5 is a vertical longitudinal section taken on the line 5-5 Fig. 4. Fig. 6 is a fragmentary detail view illustrating the manner of interlocking the tube sections. This is a section 90 taken through two of the connected sections but shown on a larger scale than in the other views. Fig. 7 is a top plan diagrammatic view illustrating my improved construction shown in the form of a sea-wall or break 95 water. Fig. 8 is a similar view illustrating the support or foundation for a wharf or landing. Fig. 9 is a similar view showing the composite columns arranged in the form of a circle illustrating the manner in which a 100 coffer-dam or other similar construction may be formed. Fig. 10 is a similar view showing the composite piles or columns arranged in polygonal form, a central or transverse row of columns forming a partition wall be- 105 ing located within the inclosure formed by From the foregoing it will be understood the outer construction. In this view the that my improvement may be employed in space inclosed is filled with cement or concrete illustrating the manner of forming a solid pier adapted to support a structure of any kind.

The same reference characters indicate the

5 same parts in all the views.

Let the numeral 5 designate tubes or pipes which in order that they may be of any desired length and that it may be practicable to employ them for the purpose herein ex-10 plained, are composed of sections 6 connected together by suitable fastening devices. One form of connecting these sections is illustrated in Fig. 6 in which 7 is a spring riveted to the upper portion of the lower pipe 15 section and carrying a pin 8 adapted to pass through an opening 9 formed in the upper section and also through a registering opening 10 formed in the upper part 12 of the lower section, this part being offset as shown 20 at 13 to allow the lower extremity of the upper section to pass around it, the lower edge of the upper section engaging the offset of the lower section. It will of course be understood that these sections may be connected 25 in any suitable manner. As each section is applied, it is connected with the section next below before sinking the pipe further. In this way the place of connecting the pipes is always accessible at a suitable point above 30 the water. The pipes or tubes 5 may be formed in two parts having the parts interlocked as shown at 14 (see Fig. 3) or they may be otherwise formed without a protruding joint as may be found practicable or as 35 may be desired. An important feature of these tubes is that they are provided with tongues 15 and grooves 16. The tongues and grooves of any two adjacent pipes or tubes are of counterpart shape whereby the 40 tongue of the one pipe slips into the groove of the other pipe, the end of the tongue of one pipe being inserted at the end of the groove of the other pipe after which the tongue slides in the groove until the pipes 45 are interlocked their entire length. the general construction of these tongues and grooves is of dove-tail form, any interlocking construction which will prevent the device from becoming detached by a lateral or 50 transverse movement, will perform the required function. Within each pipe one or more rods 17 may be introduced for the purpose of reinforcing the cement or concrete filling 18. As shown in Fig. 3 of the draw-55 ing, four rods 17 are introduced, the same

filling 18. As shown in Fig. 3 of the drawing, four rods 17 are introduced, the same being connected together by a wire 19 which is given one or more coils 20 around each rod, the extremities of the wire being finally fastened together whereby the rods are caused to maintain their position within the pipe during the introduction of the concrete or

cement filling.

The lower extremities of the pipes are preferably beveled as shown at 21 on the side remote from that where the last pipe in-

troduced is located whereby there is a tendency for the pipe that is being lowered or introduced to crowd toward the introduced or stationary pipe thus obviating any lateral or separating tendency since the latter would 70 cause the pipes to bind and retard freedom of introduction. For instance referring to Fig. 1, the pipe 5 farthest to the left being the pipe first introduced or lowered at the brink of the stream or other body of water, 75 is beveled on opposite sides as shown at 22 since there is no necessity that this pipe should have a tendency to move laterally in either direction during the driving or lowering operation. By beveling it on opposite 80 sides it becomes pointed which facilitates its introduction. The next pipe 5, however, is beveled as shown at 21 on the side remote from the first pipe whereby there is a tendency for the second pipe to move toward the 85 first pipe. For the same reason the third pipe and each other pipe successively introduced is beveled on the side remote from the last pipe introduced, to prevent the binding of the interlocking parts of the pipes during 90 the formation of the jetty or other form of structure for which my improved interlocking device may be employed.

In Fig. 1 of the drawing the extremity 24 of the dotted line 23 indicates the bed or 95 bottom of the stream or other body of water; while the extremity 25 of the same line designates the earth at the brink or margin of The dotted line intermediate the stream. these two points designates the contour of 100 the bank below the surface of the water thus indicating the usual conditions existing at streams and other bodies of water, whereby the depth gradually increases from the brink to the bottom or maximum depth of the 105 This line also indicates the depth to water. which the pipes or composite columns are introduced or lowered into the earth.

As shown in the drawing it is preferred to place a cement or concrete beam 26 (see 110 Figs. 1, 4 and 5) upon the top of the columns, the upper extremity of each column being embedded in the said beam a suitable distance as indicated by the dotted lines in Fig. 1 and also by full lines in Figs. 4 and 5. This 115 horizontally disposed beam forms a cap and gives the structure a finished appearance. It also adds to the strength and durability of the structure. Where this cap is employed the reinforcing rod 17 may extend upwardly 120 beyond the composite columns and project into the horizontal beam 26, the latter being molded or formed after the columns have Horizontal reinforcing been completed. rods 27 may also be employed, these rods 125 being placed in position during the introduction of the cement or concrete to the mold (not shown). It will be understood that in the formation of this horizontal beam a mold of any suitable construction must be 130 made in order to support the plastic material | until the latter has become hardened.

In Figs. 7 and 8 of the drawing, the numeral 28 designates the earth at the brink or 5 margin of the stream or other body of water. Attention is called to the fact that in Figs. 7 to 10 both inclusive, no attempt has been made to show the specific construction except in a general way. Hence these views 10 may be termed diagrammatic views in which the pipe or tube 5 is designated by a single heavy line surrounding the cement or concrete filling 18. It has not been necessary in these views to designate the pipe or tube by 15 cross hatching since this is illustrated in Figs. 3, 4 and 5. The views 7 to 10 inclusive are only intended to show or illustrate some of the constructions for which my improved composite columns may be advantageously 20 used.

From the foregoing description the use of my improvement will be readily understood. The tubes or pipes may be composed of sections of any desired length. The sections 25 may be successively introduced. Each succeeding section is connected with the uppermost end section of the pipe, after which the pipe is further lowered by the vacuum or suction process, that is to say by removing the 30 earth or other material by suction from its position immediately below the tube whereby the latter simply settles by its own weight and is held in place by the surrounding formation. In forming a jetty or wall which 35 extends outwardly into a stream or other body of water, the pipe close to the bank is introduced first, after which the other pipes are successively introduced, the tongue of one pipe entering the counterpart groove or 40 longitudinal recess of the other pipe whereby when the wall is formed the entire construc-tion is locked together. The pipes are then filled with cement or concrete whereby the water is expelled, the metal reinforcing rods 45 being first placed in position. In the case of a jetty or other wall, the cap beam 26 may then be placed in position if desired giving the same a finished appearance and increas-

ing its strength and durability. In the case of a coffer-dam or other similar construction, after the composite columns are put in place in the form shown in Fig. 9, the water may be pumped out of the inclosure if desired whereby the latter is entirely

55 free from water thus permitting the work-men to pursue their labors at the bottom of the stream or other body of water either in connection with tunneling or other work.

It will be understood that the space sur-60 rounded by the columns in Fig. 9 may also be filled with concrete if desired.

It will also be understood that when the inclosure surrounded by the composite columns is filled with concrete as shown in Fig.

cap or cover for the entire structure may be molded in place thereon, in the same manner as illustrated in Figs. 4 and 5. It will of course be understood that a cement cap or cover over the entire structure disclosed in 70 Fig. 10 may be molded thereon as herein described when speaking of Figs. 4 and 5. It has therefore not been thought necessary to illustrate the cap or slab in connection with Fig. 10.

Having thus described my invention, what

I claim is:

1. Pipes or tubes provided with interlocking tongues and grooves, the tongues being hollow and in communication with their re- 80 spective pipes and the grooves being interiorly located.

2. Pipes or tubes provided with interlocking tongues and grooves of dove-tailed form, whereby the interlocked elements are capable 85 of longitudinal movement but locked against lateral displacement when assembled, the tongues being hollow and in communication with the said pipes and the grooves being interiorly positioned.

3. A composite column composed of a pipe or tube having an exteriorly protruding hollow dove-tailed tongue in communication with the pipe, the said pipe or tube together with its hollow tongue being provided with a 95 filling the pipe or tube forming the exterior wall of the column, substantially as described.

4. A composite column composed of a pipe having an exteriorly protruding tongue and a groove of counterpart shape, the pipe being 100 filled with cement or concrete, and provided with a metal reinforcement, substantially as ${f described}$.

5. A wall composed of a series of pipes or tubes provided with interlocking tongues 105 and grooves, the tongues being hollow and in communication with their respective pipes and the grooves being interiorly located the interlocking elements being constructed to permit longitudinal movement but to pre- 110 vent lateral displacement when assembled, substantially as described.

6. A wall composed of a number of pipes or tubes having interlocking dove-tailed tongues and grooves, the tongues being hol- 115 low and in communication with their respective tubes, and the grooves being interiorly located the tubes being filled with cement or concrete, substantially as described.

7. The combination of a series of pipes or 120 tubes provided with interlocking dove-tailed tongues and grooves, the pipes being filled with cement or concrete and provided with a metal reinforcement, substantially as described.

8. The combination of a series of pipes or tubes provided with interlocking tongues and grooves of dove-tail form, the grooves being formed integral with the pipes and in com-65 10, that a concrete or cement slab forming a | munication with the latter, the pipes or tubes 130

125

being filled with cement or concrete which also enters the tongues and surrounds the grooves of the interlocking members whereby the cement or concrete columns are corre-5, spondingly interlocked, substantially as described.

9. A composite column composed of a pipe or tube provided with a dove-tailed tongue formed integral with the body of the tube 10 and communicating with the latter, the tube being provided with a filling of cement or concrete which enters the tongue as well as the body of the pipe the latter forming the exterior wall of the column, substantially as 15 described.

10. A composite column composed of a pipe or tube provided with a longitudinally disposed dove-tailed groove, the groove being formed by bending the metal of the pipe in-20 wardly to give it the groove contour, the pipe forming the exterior wall of the column which is filled with cement or concrete, sub-

stantially as described.

11. The combination of a series of tubes 25 provided with longitudinally disposed interlocking tongues and grooves, the tongues being hollow and in communication with the body of the pipe or tube, and the grooves being interiorly located, the tubes being ar-30 ranged to inclose a suitable space, the tubes as well as the inclosure surrounded by the columns being filled with cement, concrete or similar plastic material, substantially as described.

12. A pair of pipes or tubes, one of which 35 is provided with a hollow exteriorly protruding dove-tailed tongue in communication with the body of the pipe or tube, and the other being provided with an interiorly located counterpart groove, the two pipes be- 40 ing interlocked by the insertion of the tongue of one in the groove of the other, substantially as described.

13. A composite column composed of a pipe or tube provided with an exteriorly pro- 45 truding hollow-dove-tailed tongue in communication with the body of the tube, forming the exterior wall of the column and the said tube being provided with a suitable filling, substantially as described.

14. A composite column composed of a pipe or tube whose wall protrudes into the hollow of the tube, forming an interiorly located groove open at the outer surface of the pipe, the latter forming the exterior wall of 55 the column, substantially as described.

15. A composite column composed of a pipe or tube provided with an interiorly located groove, the said pipe forming the exterior wall of the column having a filling en- 60 gaging the walls of the groove, substantially

as_described.

In testimony whereof I affix my signature in presence of two witnesses.

HENRY W. SCHLUETER.

Witnesses:

DENA NELSON, A. J. O'BRIEN.