
(19) United States
US 2002001.6864A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0016864 A1
BRETT (43) Pub. Date: Feb. 7, 2002

(54) SYSTEM AND METHOD FOR GENERATING
AN OBJECT STRUCTURE AT RUN TIME IN
AN OBJECTORIENTED PROGRAMMING
LANGUAGE

(76) Inventor: BEVIN R. BRETT, BROOKLINE, NH
(US)

Correspondence Address:
Michael R Reinemann
Cesari and McKenna
88 Black Falcon Avenue
Boston, MA 02210 (US)

(*) Notice: This is a publication of a continued pros
ecution application (CPA) filed under 37
CFR 1.53(d).

(21) Appl. No.: 08/929,920

(22) Filed: Sep.15, 1997

Publication Classification

(51) Int. Cl." ... G06F 9/44

DETERMINE BASE
AND DERVED
CLASS OFFSETS

510

ALLOCATE
OBJECT
SPACE

FILLIN
PONTERS AND

TABLES

RECURSIVELY
CALL

CONSTRUCTORS
FOREACH CLASS

WERE
FUNCTIONS
AND TABLES
AREADY
MADE

520

530

540

FLN

(52) U.S. Cl. .. 709/315

(57) ABSTRACT

Alanguage translator is provided which determines memory
Structure at compile time for a plurality of object classes
including at least one virtual base class and at least one class
derived therefrom. At compile time, Space for pointers
(b-pointers) is set aside in each class object that will have a
base table (b-table) associated therewith. The b-pointers
point, at run time, to an associated b-table containing
memory offsets between the base classes of the derived
class. At run time, constructors construct the class objects,
Starting from the most derived class object and proceeding
through to the base class object. However, instead of gen
erating the virtual tables and associated pointers, as well as
the adjusting functions, at compile time, the language trans
lator generates the code for these operation to be executed at
run time. Then at run time, a virtual function table is
generated for the base class. Since the necessary offsets are
known at run time, all of the adjusting functions, the Virtual
function tables, and the virtual pointerS may be generated.
Thus, the System completes the construction of an object.

GENERATE
ADJUSTING

FUNCTIONS AND
W.TABLE

560

570 PONTERS
AND
DATA

Patent Application Publication Feb. 7, 2002 Sheet 1 of 5 US 2002/0016864A1

Patent Application Publication Feb. 7, 2002. Sheet 2 of 5 US 2002/0016864 A1

FIG. 1D

Patent Application Publication Feb. 7, 2002 Sheet 3 of 5 US 2002/0016864 A1

S
m u
s ? a 4.

777
CN
Vr
CY)

CC
CN

CD
L

Q
- -

g g
H -

S 9
on S.

CN

:S i

/ g i
..

S

Patent Application Publication Feb. 7, 2002 Sheet 4 of 5 US 2002/0016864A1

FG. 2B

Patent Application Publication Feb. 7, 2002 Sheet 5 of 5

START

DETERMINE BASE 510
AND DERVED
CLASS OFFSETS

US 2002/0016864A1

ALLOCATE 52O
OBJECT
SPACE

FILL IN
POINTERS AND / 530

TABLES

RECURSIVELY
CALL 540

CONSTRUCTORS
FOREACH CLASS

WERE GENERATE
FUNCTIONS ADJUSTING 560
AND TABLES FUNCTIONS AND
ALREADY V-TABLE
MADEP

FILL IN
POINTERS 570 FIG. 3
AND
DATA

US 2002/0016864 A1

SYSTEMAND METHOD FOR GENERATING AN
OBJECT STRUCTURE AT RUN TIME IN AN
OBJECTORIENTED PROGRAMMING

LANGUAGE

FIELD OF THE INVENTION

0001. The present invention is directed to object oriented
computer programming languages and, in particular, to a
compiler which implements virtual inheritance in object
oriented programs.

BACKGROUND OF THE INVENTION

0002) Object oriented computer programming (OOP)
techniques for facilitating the development of complex
computer programs are well-known and widely used. AS
understood by those skilled in the art, these techniques
involve the definition, creation, use and destruction of
“objects.” These objects are software entities including both
data elements and functions which manipulate the data
elements. The data and related functions are treated by the
Software as an entity that can be created, used and deleted as
if it were a Single item. Together, the data and functions
enable objects to model any real world entity in terms of its
characteristics, which can be represented by the data ele
ments, and its behavior, which can be represented by its data
manipulation functions. In this way, objects can model
concrete things, as well as abstract concepts, Such as num
bers or geometrical designs.
0003. In an OOP programming language, objects are
defined by creating “classes,” which are not objects them
Selves, but act as templates that instruct the compiler how to
construct actual objects which are "instances of the classes.
For example, a class may specify the number and type of
data variables and the steps involved in the functions which
manipulate the data. A corresponding object is actually
created by a Special function called a “constructor'. The
constructor uses the corresponding class definition and addi
tional information, Such as arguments Specified during
object creation, to create an object. Similarly, objects are
destroyed by a special function called a “destructor” when
the objects are no longer of use.
0004. The principle benefits of OOP techniques arise out
of three basic characteristics: encapsulation; polymorphism;
and inheritance. Data encapsulation refers to the binding of
data and related functions. More Specifically, an object can
be designed to “hide” (or “encapsulate”), all or a portion of
its internal data Structure and corresponding internal func
tions. For instance, during program design, a program devel
oper can define objects in which all or Some of the data
variables and all or Some of the related functions are
considered “private” or for use by only the object itself.
Other data or functions can be declared “public' or available
for use externally of the object. External access to private
functions or data can be controlled by defining public
functions for an object which can be invoked externally of
the object. The public functions form a controlled and
consistent interface between the private data and the outside
World. Any attempt to write program code which directly
accesses the private functions or data causes the compiler to
generate an error message during compilation and Stop the
compilation process.
0005 Polymorphism is a characteristic which allows
multiple functions that have the same overall purpose, but

Feb. 7, 2002

that work with different data, to produce consistent results.
Inheritance allows program developers to easily reuse pre
existing functions and to reduce the need for creating
redundant functions from Scratch. The principles of inher
itance allow a Software developer to declare classes (and the
objects which are later created from them) as related.
Specifically, classes may be designated as derived classes of
other base classes. A derived class inherits and has access to
functions of its base classes just as if these functions
appeared in the derived class. Alternatively, a derived class
can override or modify an inherited function merely by
defining a new function with the same name. Overriding or
modifying does not alter the function in the base class, but
merely modifies the use of the function in the derived class.
The creation of a new derived class which has some of the
functionality (with Selective modification) of another class
allows Software developerS to easily customize existing code
to meet their particular needs.

0006. One widely used and well known OOP language is
C++. The C++ language is classified as a hybrid OOP
language, as opposed to a pure or Orthodox OOP language.
Because the C++ language was designed as an improvement
to and as an extension of C, it is full of the traditional
features of ANSI C. C++ Source code is usually compiled
before being executed. Therefore, the C++ programming
process entails a development cycle of editing, compiling,
linking, and running. Although the iteration through the
cycle is a Slow process, the produced code is very fast and
efficient. The C++ language provides an excellent balance
between power of expression, run time Speed, and memory
requirements. C++ compilers are commercially available
from several vendors.

0007 Inheritance may provide the most power to the
class concept in OOP. Inheritance allows classes to be
continually built and extended with essentially no limit. C++
is different from Some OOP languages because it allows
multiple inheritance.

0008 To illustrate the concept of virtual inheritance,
reference will be made to the class inheritance trees in
FIGS. 1A and 1B. In FIG. 1A, class D directly descends
from both base classes B and C and indirectly descends from
class A. In this example, class D might appear to a compiler
to have two distinct A classes appearing as base classes.
Having multiple copies of the same base class in an inher
itance tree in the compiled program is confusing and wastes
Storage space. To Solve this problem, a base class may be
declared to be virtual So that the compiler is directed to share
a single copy of a given base class object in the derived class
objects. A class inheritance tree using class A as a virtual
base class is illustrated in FIG. 1B. Virtual inheritance, i.e.
inheritance from a virtual base class, is a primary Strength
for improving Space and run time efficiency of the C++
object model. FIG. 1C shows the resulting complete class D
10 corresponding to the inheritance tree of FIG. 1A, in
which the base class A is not virtual. FIG. 1D shows the
resulting complete class D 15 corresponding to the inherit
ance tree of FIG. 1B, in which the base class A is virtual. As
shown in FIG. 1D, virtual base classes are only shared
within a complete object, in this case the complete object D
15. Also shown in FIG. 1D is the virtual function table 16
for object D 15, indicating a virtual function 17, for
example, contained within the virtual base class A.

US 2002/0016864 A1

0009. To use virtual inheritance in a C++ program, the
programmer must Specify one or more of a class's functions
to be virtual. Typically, the complete set of virtual functions
available is fixed at compile time and a programmer there
fore cannot add or replace any function of the complete Set
at run time. Accordingly, fast dispatch of Virtual function
invocations is realized at the cost of run time flexibility.
Virtual function calls are generally resolved by indexing into
a table (conventionally known as a virtual function table)
constructed by the compiler, which holds the addresses of
the Virtual functions associated with the base class. A
fundamental problem of Virtual inheritance is to dispatch
within the constraints of the C++ object model conventions,
the virtual functions at run time with the correct object
pointer for the object that is being processed.

0.010 More specifically, this problem relates to properly
obtaining a pointer which points to a derived class when
given a pointer to a virtual base class. In the C++ language
such a pointer is referred to as a “this' pointer. The “this'
pointer must point to a location in the base class object that
contains the function. As a result, adjusting functions are
used to obtain a new “this pointer pointing to the derived
class from a “this pointer pointing to a virtual base class.
However, it is difficult to correctly obtain the new “this'
pointer because the Virtual function may be shared by many
interrelated classes having different class Structures derived
from the virtual base class.

0.011) A simple illustration for these terms is provided in
FIG. 2A. Class A is the virtual base class for derived classes
B, C, D, and E. Thereby, class D is a derived class of class
B Such that class A is a virtual base class to class B and class
B is a virtual base class to class D. Also, class E is a derived
class of class B, and also of class C. Because class A has
been declared a virtual base class by the programmer, Virtual
function table pointers 210 are formed in class A which point
to a virtual function table 220 associated therewith. The
Virtual function table 220 contains addresses corresponding
to the functions 230 and 240 associated with class A. When
the memory structure for the data structure of the virtual
base class A is determined at compile time, memory Space
is Set aside in class A for the Virtual function table pointers
210, which will be initialized to point to the virtual function
table 220, which in turn addresses the functions 230 and 240.
The virtual function table 220 is used at run time to invoke
the functions 230 and 240 associated with class A. As a
result of virtual inheritance, the functions 230 and 240 may
be shared by many different classes (in the present example
these virtual function tables are shared by classes B, C, D,
and E). However, in general, the virtual function table 220
and adjusting functions 250 and 260 may be different for
each object of classes A, B, C, D or E.

0012. At run time, when an object of class A has one of
its functions called, and when that function is overridden
within a derived class in the object, then a “this' pointer
which is passed to that overriding function must be obtained
from information available via the “this pointer of the base
class. For example, in FIG. 2A, if the function 230 is
overridden in class B, then a call Starting in class A must find
a “this” pointer for class B (i.e., a “this' pointer 270) from
information available via the “this pointer 200.

0013. In FIG. 2A, the adjusting functions 250 and 260
are shown which provide the adjustment of the “this' pointer

Feb. 7, 2002

200. These adjusting functions 250 and 260 are small
“assembly stubs” that obtain the correct “this pointer 270
for the call to the function 230 or 240 by offsetting from the
available “this pointer 200, based on the actual layout of the
complete object in memory. The adjusting functions 250 and
260 allow for the entries in the virtual function table 220 to
remain Simple pointers. The address contained within each
entry of the virtual function table 220 directly addresses a
function 230 or 240 when no adjustment is necessary; but
the address addresses an associated adjusting function 250
or 260 when an adjustment of the “this pointer 200 is
neceSSary.

0014. Such an implementation of adjusting functions
Solves the aforementioned offset problem if the adjusting
functions are constructed at compile time but creates a
compatibility problem. In FIG. 2A for example, there are
two different offsets between base class objects B and A that
are dependent upon the configuration of the complete class
D or E in memory. Different offsets may be necessary for the
Same class, as shown for class B in this example. Therefore,
the correct adjusting functions for intermediate classes
(classes having at least one virtual base class and being
derived by at least one other class, Such as class B in the
present example) cannot be uniquely determined for cases
where entry into a function is effected at the intermediate
class.

0.015 FIG. 2B shows example memory layouts for
instantiations of the complete objects E and D as shown in
FIG. 2A. A first memory layout E1, 400 for object E2 is
shown having an offset 400 between class A and class B. A
Second memory layout E for object E is shown having an
offset 410 between class A and B, and a third memory layout
E3404 is shown having an offset 412 between class A and
class B. A memory layout 406 for object D is shown having
an offset 414 between class A and class B. Thus FIG. 2B
shows Several possible offsets between class A and class B.
0016. In one presently used solution to this problem, the
adjusting functions for all of the possible class instantiations
are built at compile time. AS the classes are analyzed at
compile time, all of the possible class offsets are determined
then Stored in a table. This table is accessed at run time to
obtain the offset information during construction of objects.
However, an extra parameter (the extra parameter being a
table which points to another table having the locations of
the adjusting functions) must be included in the object
model used by this Solution. As a result, this Solution is
incompatible with existing object models because this extra
parameter will not be recognized by the compilers which
follow the design conventions as Suggested in the C++
annotated reference manual. Also because the adjusting
functions are Stored in object files on the System's disk they
must be brought off the disk and into memory, which is a
relatively slow operation. Accordingly, this Solution has the
additional drawback of slowing down the speed of the
compiled program at run time.
0017. In another presently used solution, the adjusting
functions are built at compile time by assuming that the class
to be constructed is not a base class. Because it is not known
how intermediate classes will be constructed at run time, an
additional offset is provided for objects created from inter
mediate classes. Unfortunately, this offset does not work for
all circumstances (e.g. cases having multiple interrelated
base classes).

US 2002/0016864 A1

0.018. This problem of correctly calling virtual functions
is recognized throughout the industry as an important prob
lem to Solve in facilitating the use of Virtual inheritance in
OOP languages as is readily Seen by the large number of
proposed attempts, which to date fail to completely Solve
this problem. In fact, a Solution which provides the proper
conversion for all class configurations including cases hav
ing multiple virtual base classes and Virtual functions has yet
to be implemented within the conventional object models.
Therefore, a solution to this problem is desired that will
always obtain a correct “this pointer and is compatible with
the existing object models.

SUMMARY OF THE INVENTION

0019. It is therefore an object of the present invention to
generate the correct “this pointer to a derived object class
when a virtual function is invoked on a base class object.

0020. It is also another object of the present invention to
generate a “this pointer in a manner which is compatible
with the existing object model used by a compiler.

0021. In accordance with the invention, the virtual func
tion tables and adjusting functions are generated for Some
base classes at run time, when the offsets from the base
classes to their derived classes are known. In particular, an
object data Structure is provided by a language translator,
Such as a compiler, which determines the memory Structure
at compile time for a plurality of object classes including at
least one base class and at least one class derived therefrom.
At compile time, Space for pointers (b-pointers) is set aside
in each base class object that will have a base table (b-table)
asSociated there with. The b-pointers point at run time to
their associated b-table, which must contain memory offsets
between the base class objects within the derived class
object. At runtime, constructors construct the class objects,
Starting from the most derived class objects and proceeding
through to the inner base class object.

0022. However, instead of generating the virtual function
tables and associated pointers, as well as the adjusting
functions, at compile time, the compiler generates the code
that will do the generation at run time. Then at run time, a
Virtual function table is generated for the base class. Since
the correct offsets are known from the contents of the tables
at this time, all of the adjusting functions, the Virtual
function b-tables, and the Virtual pointers may be generated
correctly. Thus, the System completes the construction of an
object.

0023 The adjusting functions, virtual function table, and
Virtual pointers for the most derived class may, of course, be
generated at compile time as before. However, if they are
generated at run time, the compiler is able to operate at a
faster Speed than in the conventional techniques which build
these functions, tables, and pointers at compile time. In other
words, the time necessary to generate these functions, tables
and pointers at run time is less than the time necessary to
retrieve them from the System's disk if generated at compile
time.

0024. In addition, the generating process for the virtual
function tables and the adjusting functions may share iden
tical virtual function tables and adjusting functions to further
reduce runtime overhead.

Feb. 7, 2002

BRIEF DESCRIPTION OF THE DRAWINGS

0025 The invention description below refers to the
accompanying drawings, of which:

0026 FIGS. 1A and 1B illustrate virtual class inherit
ance treeS,

0027 FIG. 1C and FIG. 1D show the resulting complete
classes corresponding to FIG. 1A and FIG. 1B respectively;
0028 FIG. 2A is a block diagram of an object structure
using OOP techniques;

0029 FIG. 2B shows example memory layouts for the
complete objects E and D as shown in FIG. 2A; and

0030 FIG. 3 is a flow chart of a method for generating
an object according to an embodiment of the present inven
tion.

DETAILED DESCRIPTION OF THE
INVENTION

0031. A description of how b-tables are used will be
provided with reference to FIG. 2A. Each of the derived
classes B, C, D, and E include base table pointers (or
b-pointers) 310,320,330, and 340 which point to their own
b-tables 312,322,332, and 342 respectively. Class A will not
have any b-pointerS or a b-table because it is not derived
from any other class. When the classes are compiled, each
of the b-tables 312,322, 332, and 342 is generated contain
ing a base class offset from the corresponding derived class
objects to each of its base class objects, and the b-pointers
310,320, 330, and 340 are set aside in each of the derived
classes to point to each of the b-tables 312, 322, 332, and
342. In this example, class B is a base class for both classes
D and E. However, the objects of this class within objects of
classes D and E will have different offsets from the virtual
base class A. At the end of compile time, the b-table 332 for
class D will include the class offsets for its base classes B
and A and the b-table 312 for class B will include the class
offsets for class A, its only base class. Similarly, the b-table
342 for class E will include the class offsets for its base
classes B, C, and A, and the b-table 322 for class C will
include the offset for class A.

0032. The present invention utilizes the fact that this base
class offset information is available at run time when an
object is being constructed. Specifically, this base class
offset information is obtainable to generate the adjusting
functions without passing any new or extra parameterS So
that this Solution is compatible with existing object models.

0033. With reference to FIG. 2A, the correct base class
offset from derived class B to base class A will vary because
the base class offset may be affected by class C being put
between classes A and B in a class E object but not in a class
D object. For discussion purposes, it is assumed that the
object is class B within the complete object of class D and
has a base class offset entered in the b-table 312. At run time,
when the constructor for the virtual base class A is called by
the constructor for its derived class B during recursive
construction, the base class offset between A and B is made
available to base class object A by means of the adjusting
functions 250 and 260. The virtual function pointers 210, the
virtual function table 220 and the adjusting functions 250
and 260 may be generated at run time, because the correct

US 2002/0016864 A1

base class offset is known to the constructor for class B
because the base class offset is in the b-table 312 for base
class B object.
0034). When the function 230 is called for the object in the
present example, the “this' pointer value pointer used will
be the “this pointer 200 pointed to the base class A object.
The virtual function pointers 210 will point to the virtual
function table 220 (which has just been generated during run
time). This table will in turn contain a pointer to the
adjusting function 250 (which has also been generated at run
time). The adjusting function 250 will first take the “this”
pointer pointing at location 200 and use it to obtain the “this”
pointer pointing at the derived class B (corresponding to the
location as shown by 270) and then call the adjusting
function 230, resulting in the correct function being called
with the correct “this pointer.
0.035 An embodiment of the present invention will be
described with reference to the flow chart of FIG. 3. In the
first step 510, the compiler determines the offsets of data and
pointers within classes, and the placement of base classes
within complete classes. Also during Step 510, the compiler
generates the instructions and data for the computer to
execute during the later Steps. Included in these data and
instructions are any virtual function tables, b-tables, and
adjusting functions that the compiler determines are both
possible and desirable to include.
0036) Next at step 520, the space for an object is allocated
during run time. At step 530, the b-pointers and the b-tables
are filled with their base class offsets. At this point, the
object is entirely laid out with the b-pointers and b-tables
providing a foundation So that data may be accessed.
0037. After the b-pointers of the object have been filled

in, the constructors of each of the virtual base class objects
are called at step 540.
0038. The program then determines at step 550 whether
the adjusting functions and the Virtual function table for each
of the Virtual base classes are already available, having been
made at step 510 or at an earlier invocation of step 560. If
the adjusting functions and the Virtual function table were
not previously generated for a virtual base class, the con
Structor generates the adjusting functions and the Virtual
function table at Step 560 by generating the appropriate
instructions using information for the b-table and other
Sources. Then, the Virtual function table pointer of the class
object is pointed at the appropriate virtual function table at
step 570.
0039. In addition, according to another aspect of the
present invention, resource sharing techniques can be used
when generating the Virtual function tables and the adjusting
functions, So as to reduce the amount of memory Space
utilized. When generating a virtual function table or an
adjusting function at run time, the program determines
whether an adjusting function with the identical offset and
function has already been generated or whether a virtual
function table having the same addresses has already been
generated. If an identical one has been generated before, it
can be shared So that memory optimization is realized. If an
identical one has not already been generated, then the new
function or table is simply generated.
0040 According to another aspect of the present inven
tion, the adjusting functions and virtual function tables for

Feb. 7, 2002

Some objects can be generated at compile time when the
correct offsets are known. For example, classes D and E are
the most derived classes in FIG. 2A and the adjusting
functions for these can be generated at compile time. Then
when a class object is constructed at run-time the remaining
Virtual function tables and adjusting functions can be gen
erated. However, it may take more time to retrieve these
functions and tables from Storage at run time than to actually
generate these functions and tables at run time. Sharing
optimizations can again be realized for the compile-time
generated adjusting functions and virtual function tables by
using the same techniques as described above.
0041. The foregoing description has been directed to
Specific embodiments of the invention. It will be apparent,
however, that other variations and modifications may be
made to the described embodiments, with the attainment of
Some or all of their advantages. Therefore, it is the object of
the appended claims to cover all Such variations and modi
fications as come within the true Spirit and Scope of the
invention.

What is claimed is:
1. A method for generating an object data Structure,

comprising the Steps of:

determining a base class offset between a virtual base
class and a derived class, Said derived class derived
from Said virtual base class,

generating a base table for Said derived class, Said base
table including said base class offset; and

at run time, responsive to the contents of Said base table,
generating an adjusting function for Said virtual base
class, Said adjusting function operable to generate a
pointer to the derived class object when executed.

2. A method according to claim 1, wherein Said generating
Said adjusting function includes inverting Said base class
offset in said base table.

3. A method according to claim 1, further comprising
generating a virtual table for Said base class at run time.

4. A method according to claim 1, further comprising the
Steps of

generating virtual tables and adjusting functions for the
most derived class at compile time; and

generating the Virtual tables and adjusting functions for
the remaining classes at run time.

5. A language translator, comprising:

a base class offset determiner, operable to determine a
base class offset between a virtual base class and a
derived class, Said derived class derived from Said
Virtual base class,

a base table generator, operable to generate a base table
for Said derived class, Said base table including Said
base class offset; and

an adjusting function generator, operable at run time,
responsive to the contents of Said base table, to generate
an adjusting function for Said virtual base class, Said
adjusting function operable to generate a pointer to the
derived class object when executed.

6. A language translator according to claim 5, wherein
Said adjusting function generator is further operable to

US 2002/0016864 A1

generate Said adjusting function at least in part by inverting
Said base class offset in Said base table.

7. A language translator according to claim 5, further
comprising a virtual table generator operable to generate a
Virtual table for Said base class at run time.

8. A language translator according to claim 5, further
comprising:

a virtual table generator operable to generate Virtual tables
and adjusting functions for the most derived class at
compile time, and

Said virtual table generator further operable to generate
the Virtual tables and adjusting functions for the
remaining classes at run time.

9. A computer program product including a computer
readable medium having executable instructions represent
ing a computer program recorded thereon, Said executable
instructions comprising:

program code for determining a base class offset between
a virtual base class and a derived class, Said derived
class derived from Said virtual base class,

program code for generating a base table for Said derived
class, Said base table including Said base class offset;
and

Feb. 7, 2002

program code for generating an adjusting function for Said
Virtual base class, at run time, responsive to the con
tents of Said base table, Said adjusting function operable
to generate a pointer to the derived class object when
executed.

10. A computer program product according to claim 9,
wherein Said program code for generating Said adjusting
function further comprises program code for inverting Said
base class offset in Said base table.

11. A computer program product according to claim 9,
wherein Said executable instructions further comprise pro
gram code for generating a virtual table for Said base class
at run time.

12. A computer program product according to claim 9,
Said executable instructions further comprising:

program code for generating virtual tables and adjusting
functions for the most derived class at compile time;
and

program code for generating the virtual tables and adjust
ing functions for the remaining classes at run time.

