METHOD FOR AUTOSTEREOSCOPICALLY VIEWING IMAGES AND AUTOSTEREOGRAPHIC ARRANGEMENT

VERFAHREN ZUR AUTOSTEREOSKOPISCHEN BETRACHTUNG VON BILDERN UND AUTOSTEREOGRAPHISCHE ANORDNUNG

The invention relates to a method and an arrangement for reproducing autostereoscopic images comprising several arrays which provides defined propagation directions for the light which emerges from one of said arrays or passes through one array from a light source and is oriented to an array of transparent elements. Said invention also relates to a method and an arrangement wherein, propagation directions are provided with the positions of the elements on the first array, with the positions of the elements on the second array, and with the distance of both arrays from each other, said directions intersecting an image plane which is arranged in front of or behind both of the arrays or on several image planes which are arranged in front of and/or behind both arrays, and images are produced on said image planes, said images being received autostereoscopically by an observer who is located outside said image planes, the vision thereof being turned towards both arrays which are arranged behind each other.

Die Erfindung bezieht sich auf ein Verfahren und eine Anordnung zur autostereoskopischen Bildwiedergabe mit mehreren Arrays, durch welche definierte Ausbreitungsrichtungen für das Licht vorgegeben werden, das von einem dieser Arrays ausgeht oder, von einer Lichtquelle kommend, durch ein Array hindurchtritt und auf ein Array aus lichtdurchlässigen Elementen gerichtet ist. Erfindungsgemäß
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

Veröffentlicht:
— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweistabstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.
Titel
Verfahren zur autostereoskopischen Betrachtung von Bildern und autostereoskopische Anordnung

Gebiet der Erfindung

Stand der Technik
Verfahren zur autostereoskopischen Betrachtung von Bildern sind im strengen Sinne und im Sinne der nachfolgend beschriebenen Erfindung nur solche, die hilfsmittelfrei funktionieren, sowohl hilfsmittelfrei beim Betrachter (beispielsweise ohne bildtrennende Brille), als auch hilfsmittelfrei beim 3D-System (beispielsweise ohne Augen-Tracking, ohne Positionierhilfen für den Betrachter). Hierbei sollen bildtrennende Mittel, die direkt am 3D-System (beispielsweise Linsenraster, Barrieren) angeordnet sind, nicht als Hilfsmittel im Sinne der Autostereoskopie gelten.

Insofern gehören zu dem hier relevanten Stand der Technik alle bekannten autostereoskopischen Anordnungen und 3D/2D-Bildwiedergabeeinrichtungen mit Filterarray nach dem Barriereverfahren, darunter insbesondere die in WO 01/56302 beschriebenen Verfahren und Anordnungen.
Es ist bekannt, autostereoskopische Zwei- oder Mehr-Ansichten-Systeme so zu dimensio-
nieren, daß für ausgewählte Betrachterpositionen innerhalb einer vorgegebenen Betrachter-
ene orthoskopische 3D-Eindrücke theoretisch ohne Übersprechen mit maximaler Kanal-
Ansichten- und Bildtrennung wahrnehmbar sind. Nur in diesen Betrachterpositionen in dieser
einen optimalen Betrachterebene sieht ein Betrachter mit seinem linken Auge nur die Pixel
oder Subpixel einer linken Ansicht und mit seinem rechten Auge nur die Pixel oder Subpixel
einer rechten Ansicht. Außerhalb dieser ausgewählten Positionen und vorgegebenen Ebene
sieht der Betrachter monokular gleichzeitig Pixel bzw. Subpixel von mehr als nur einer An-
sicht oder sogar von allen Ansichten. Dies ist die Ursache für die geringe 3D-Bildqualität
bzw. geringe 3D-Tiefe bei diesen Systemen. So lassen sich bei den bekannten autostereo-
skopischen 3D-Bildwiedergabeanordnungen ohne Augen-Tracking oder ohne Positionierhil-
fe für den Betrachter vergleichsweise nur geringe 3D-Tiefen (so genanntes "out-screening")
realisieren. Diese 3D-Tiefen sind sehr viel kleiner als die optimale Betrachtungsentfernung.

Diese Nachteile werden bei bekannten Mehr-Ansichten-Systemen von autostereoskopischen
Anordnungen noch verschärft, weil diese so ausgelegt sind, daß der Betrachter mit einem
Auge überwiegend die Pixel bzw. Subpixel einer Auswahl von Ansichten gleichzeitig und mit
dem anderen Auge überwiegend die Pixel bzw. Subpixel einer anderen Auswahl von Ansich-
ten sieht. Besonders nachteilig sind Anordnungen, bei denen den Pixeln bzw. Subpixeln von
vorn herein die Informationen von mehr als zwei Ansichten oder sogar von allen Ansichten
zugeordnet werden, wie dies bei den in der o.g. WO 01/56302 beschriebenen Verfahren und
Anordnungen der Fall ist.

Nicht nur bei Zwei-, sondern auch bei Mehr-Ansichten-Systemen befinden sich zwischen
den orthoskopischen Positionen jeweils pseudoskopische Betrachtungspositionen, in denen
ein falscher Tiefeneindruck entsteht, weil die Tiefen "vorn" und "hinten" invers vertauscht
sind.

Ein weiterer Nachteil der bekannten autostereoskopischen Anordnungen ist die Tatsache,
daß jeder fusionierte Bildpunkt in der Fusionsebene nur von je einem Objektpunkt des Ste-
reopaares gebildet wird. Der 3D-Eindruck ist deshalb in der Fusionsebene nicht physikalisch
real und nur unter bestimmten Bedingungen als Lichterscheinung auf einem Schirm auf-
fangbar. Das 3D-Bild entsteht erst durch Fusion im Gehirn des Betrachters, es ist eine Illusi-
on im Ergebnis binokularer Stereopsis.

Ein weiterer Nachteil der bekannten autostereoskopischen Mehr-Ansichten-Systeme ist de-
ren begrenzte Zahl der Ansichten. Je größer die Zahl der Ansichten wird, die auf dem auto-
stereoskopischen Kombinationsbild ineinander verschachtelt dargestellt werden müssen,
desto kleiner sind die resultierende geometrische Auflösung und die Helligkeit der monokular
 wahrgenommenen Bilder und damit Auflösung und Helligkeit des wahrgenommenen 3D-
 Eindruckes. Die beispielsweise auf acht Ansichten ausgelegten autostereoskopischen An-
ordnungen (üblich ist daneben auch die Auslegung auf vier bis zehn Ansichten) haben nur
1/8 der Auflösung und Helligkeit der 2D-Bildschirme.

Die geringe Anzahl an Ansichten hat des weiteren eine sehr begrenzte horizontale und/oder
vordrucke orthokopische Bewegungsfreiheit des Betrachters, selbst in der optimalen Ebene,
zur Folge. Wegen der eingeschränkten "Rundumsicht" kann von einer natürlichen Bewe-
gungsparallaxe keine Rede sein. Der von modernen Flachdisplay heute zur Verfügung
gestellte horizontale und vertikale Sichtwinkelbereich von nahezu 180° kann bei weitem nicht
ausgenutzt werden. Er wird statt dessen eingeschränkt auf einzelne orthokopische Sehzo-
nen.

Bei Zwei-Ansichten-Systemen wie auch bei Mehr-Ansichten-Systemen tritt ein unnatürlicher
"Gummi-Effekt" auf. Der 3D-Eindruck folgt dem Betrachter bei dessen horizontaler bzw. ver-
tikaler Bewegung nach, ohne daß der Betrachter neue oder andere Ansichten der räumli-
chen Szene wahrnimmt. Mehrere Betrachter, die sich seitlich in den orthokopischen Seh-
zonen aufhalten, haben im Grunde genommen denselben 3D-Eindruck. Bei Zwei-Ansichten-
Systemen tritt zu dem lateralen "Gummi-Effekt" noch ein axialer "Gummi-Effekt" in Blickrich-
tung hinzu. Selbst zwei-Ansichten-Systeme mit z-Tracking, also Tracking in Blickrichtung,
zeigen einen unnatürlichen "Gummi-Effekt" in z-Richtung, wenn sich der Betrachter der au-
lostereoskopischen Anordnung nähert oder sich von dieser entfernt. Solche unnatürlichen
"Gummi-Effekte" in x-, y- und z-Richtung sind auch aus der Betrachtung einfacher Stereo-
Bilder mit bloßem Auge bekannt.

Ein weiterer Nachteil der bekannten auto stereoskopischen Zwei- und Mehr-Ansichten-
Systeme ist die unnatürliche "Größeninversion". Der 3D-Eindruck von ein und demselben
Objekt, das hinter der auto stereoskopischen Anordnung wahrgenommen wird, erscheint
größer als der 3D-Eindruck dieses Objekts, wenn dieses vor der auto stereoskopischen An-
ordnung wahrgenommen wird. In der Realität dagegen erscheinen entfernte Objekte kleiner
as nahe Objekte.

Ein noch weiterer Nachteil der bekannten auto stereoskopischen Zwei- und Mehr-Ansichten-
Systeme ist deren Begrenztheit bezüglich der Auswahl der zu verwendenden 2D-Basis-
Displays oder 2D-Basis-Projektoren, insbesondere wenn diese hohe Auflösung im Sinne
hoher Pixel- oder Subpixel-Dichten haben und/oder kleine optimale Betrachtungsentfernun-

Ein auffälliges Merkmal der bekannten autostereoskopischen Zwei- und Mehr-Ansichten-Systeme, insbesondere der Zwei-Ansichten-Systeme, sind die vertikalen Moiré-Erscheinungen, die jeder Betrachter beim Herantreten an die 3D-Bildwiedergabeeinrichtungen zu sehen bekommt. Der interessierte Betrachter muß eine solche Position im Abstand z vor der autostereoskopischen Anordnung aufsuchen, in welcher diese Moire-Streifen scheinbar verschwinden, indem sie einen Moire-Pitch (der Begriff Pitch wird hier im

Beschreibung der Erfindung

Ausgehend von dem dargestellten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren und dazugehörige Anordnungen zur autostereoskopischen Betrachtung von Bildern zu entwickeln, welche die beschriebenen Nachteile weitestgehend beseitig...
gen und dadurch die Qualität der Bildwiedergabe bei autostereoskopischen Anordnungen verbessern.

Erfindungsgemäß wird die Aufgabe gelöst mit einem Verfahren zur autostereoskopischen Bildwiedergabe, bei dem

- das von einem ersten, aus einzelnen Elementen gebildeten Array ausgehende, oder
- das von einer Lichtquelle kommende, durch die Elemente eines ersten Arrays hindurchtretende Licht
- auf ein zweites Array aus lichtdurchlässigen Elementen gerichtet ist, wobei
 - mit der Festlegung der Positionen der Elemente auf dem ersten Array,
 - mit der Festlegung der Positionen der Elemente auf dem zweiten Array und
 - mit der Festlegung des Abstandes der beiden Arrays voneinander
 - Ausbreitungsrichtungen für das von dem ersten Array kommende Licht vorgegeben werden,
- die sich in einer vor oder hinter den beiden Arrays liegenden Bildebene oder in mehreren vor und/oder hinter den beiden Arrays liegenden Bildebenen schneiden, und dadurch
 - in diesen Bildebenen Bilder erzeugt werden,
 - welche ein Betrachter, der sich außerhalb dieser Bildebenen mit Blick auf die beiden hintereinander angeordneten Arrays befindet, vor und/oder hinter den beiden Arrays autostereoskopisch wahrnimmt.

Die Aufgabe der Erfindung wird weiterhin gelöst mit einer Anordnung zur autostereoskopischen Bildwiedergabe, mit

- einem ersten Array, auf dem sich in vorgegebenen Positionen Elemente befinden,
- von denen Licht ausgeht, oder
- durch die von einer Lichtquelle kommendes Licht hindurchtritt, wobei
- das vom ersten Array kommende Licht auf ein zweites Array gerichtet ist, auf dem sich in vorgegebenen Positionen lichtdurchlässige Elemente befinden, so daß
- aufgrund der Positionen der Elemente auf dem ersten Array, aufgrund der Positionen der Elemente auf dem zweiten Array, und aufgrund des Abstandes beider Arrays voneinander
 - Ausbreitungsrichtungen für das vom ersten Arrays kommende Licht vorgegeben sind,
 - die sich in einer vor oder hinter den beiden Arrays liegenden Bildebene oder in mehreren vor und/oder hinter den beiden Arrays liegenden Bildebenen schneiden, und dadurch
 - in diesen Bildebenen Bilder erzeugt werden,
welche ein Betrachter, der sich außerhalb dieser Bildebene mit Blick auf die beiden hintereinander angeordneten Arrays befindet, vor und/oder hinter den beiden Arrays autostereoskopisch wahrnimmt.

5 Damit sind ein neuartiges Verfahren sowie das Prinzip einer neuartigen Anordnung zur autostereoskopischen 3D-Bildwiedergabe mit vielfältig verbesserter 3D-Bildqualität geschaffen. Die wesentlichen Vorteile gegenüber dem Stand der Technik sind folgende: die Darstellung der Bilder erfolgt in tiefengestaffelten Ebenen T vor (T > 0) und/oder hinter (T < 0) der autostereoskopischen Anordnung bei wesentlich größeren 3D-Tiefen,

10 – es werden reelle Bilder von Objekten und Figuren vor der autostereoskopischen Anordnung erzeugt (T > 0, so genanntes "out-screening"); die reellen Bilder können bei Bedarf (im Gegensatz zu virtuellen Bildern) auf einen Schirm in der Bildebene T projiziert werden,

15 – die Bildebene, in denen die Bilder von Objekten und Figuren entstehen, können durch Linsen, darunter auch Fresnel-Linsen, abgebildet werden,

20 – das "out-screening" ist nur durch den individuellen AC/A-Quotient (Accommodative Convergence/Accommodation) des Betrachters und dessen fusionale oder motorische Konvergenzleistung begrenzt,

25 – das "out-screening" ist bis in die Nähe des Betrachters möglich, da fusionale Konvergenzleistungen trainierbar sind; ein hoher individueller AC/A-Quotient ist dabei von Vorteil,

30 – es besteht weitestgehend freie Wahlmöglichkeit für den Abstand zwischen Bildschirm und Bildtrenneinrichtung,

35 – unkomplizierte Einstellbarkeit oder Änderung der 3D-Tiefen, dadurch ist eine einfache Anpassung der Tiefen an die Wünsche des Nutzers einer solchen Anordnung möglich,

– eine kontinuierliche Tiefenvariation ist möglich,

– der orthoskopische Betrachtungsraum ist in allen Koordinaten XYZ im wesentlichen unbegrenzt,

– in den Koordinaten X und Y ist der Betrachtungsraum nur durch den Sichtwinkelbereich des Bildschirms begrenzt,

– es gibt keine pseudoskopischen Betrachtungspositionen,

– die Bildtrennung ist im gesamten Betrachtungsraum vollkommen,

– die 3D-Bildqualität und die 3D-Tiefen sind von der Betrachtungsentfernung unabhängig,

35 – auch bei einem hochauflösenden Bildschirm sind kleine Betrachtungsentfernungen möglich,
es besteht hinsichtlich geringer Betrachtungsentfernungen keine konstruktive Beschränkung bei der Wahl des Bildschirms, des 2D-Basis-Displays oder eines Projektors,

der stereotrope „Gummi-Effekt“ ist in allen Koordinatenrichtungen XYZ beseitigt,

Realsierung richtiger bzw. natürlicher Bewegungsparallaxen in den Koordinatenrichtungen X und Y,

auch bei großem "out-screening" erscheinen keine "Doppelbilder",

die stereotropischen "Größeninversionen" (unrichtige Größenverhältnisse zwischen "vorn" und "hinten") sind beseitigt,

der 3D-Eindruck entsteht unabhängig von der azimutalen Orientierung der Augen relativ zum Bildschirm,

die Benutzung liegender Bildwiedergabeanordnungen ist möglich,

100%-ige Erkennungssicherheit der 3D-Informationen,

im 3D-Bild werden größere Helligkeitswerte und bessere Kontrastwerte erreicht,

die Farbbrillanz und der Farbkontrast sind besser, die Farbsättigung ist maximal,

Vollfarb-Tauglichkeit kann erreicht werden,

es ist weniger rechenintensive Bildgenerierungs-Software erforderlich,

statische und/oder echtzeit-dynamische Informationsdarstellung ist möglich,

es werden höhere Bildfolge-Frequenzen erreicht ohne Bildkomprimierungen und ohne Qualitätsverluste,

Kompatibilität zu herkömmlichen 3D/2D-Verfahren und -Anordnungen ist gegeben,

die Größe der erfindungsgemäßen autostereoskopischen Anordnung ist weitestgehend unbegrenzt,

keine Moire-Erscheinungen,

die erfindungsgemäßen Anordnungen sind unkompliziert aufgebaut, es bestehen geringe Anforderungen an die Fertigung und Montage.

Das erfindungsgemäße Verfahren und die zur Ausübung des Verfahrens geeigneten Anordnungen lassen sich wie nachfolgend beschrieben vorteilhaft ausbilden und anwenden:

b) erfindungsgemäße autostereoskopische Anordnungen können überall dort vorgesehen werden, wo mit extremem "out-screening", extrem großem Betrachtungsraum und/oder aus allen azimutalen Raumrichtungen bzw. bei allen azimutalen Display-Orientierungen auf visuelle Weise beim Betrachter optische Effekte erzielt werden sollen.

c) autostereoskopische Anordnungen gemäß a) oder b) können kombiniert mit den 3D/2D-Umschaltverfahren und -anordnungen der Firma 4D-Vision bzw. X3D (Germany) genutzt werden,

d) autostereoskopische Anordnungen gemäß a), b) oder c) können auf Teilbereichen von autostereoskopischen Anordnungen des Standes der Technik zwecks gleichzeitiger Nutzung der spezifischen Unterschiede beider Verfahren realisiert werden, beispielsweise für auffällige Firmenlogos von Unternehmen bei deren Produktwerbung als ständig sichtbare Bildlaufleiste mit extremem "out-screening",

e) autostereoskopische Anordnungen als Trainingshilfe für das schrittweise Üben und Erlernen der Wahrnehmung stereoptischer Bildeindrücke mit extremer Tiefe $T > 0$ durch Steigerung der individuellen fusionalen oder motorischen Konvergenzleistung, insbesondere bei Nutzern mit geringem AC/A-Quotient oder bei weitsichtigen oder alterssichtigen Brillenträgern mit dem Ziel der Erlebnissteigerung bei der 3D-Wahrnehmung.

Wie weiter oben bereits ausgeführt, werden die im Stand der Technik bekannten autostereoskopischen Anordnungen so dimensioniert, daß die lateralen Moire-Erscheinungen (das so genannte Verschiebungs-Moire), die an dem 2D-Basis-Display und der Bildtrenneinrichtung entstehen, in der (und nur in der) optimalen Betrachtungsentfernung verschwinden. In Betrachtungsentfernungen, die kleiner oder größer als diese optimale Entfernung E' sind, treten diese Moire-Erscheinungen als Störung auf und sind Ursache und zugleich Indiz für schlechte 3D-Bildqualität. Die azimutalen Moire-Erscheinungen (das so genannte Verdrehungs-Moire) lassen sich zwar durch Parallel-Justierung der maßgebenden Strukturen des 2D-Basis-Displays und der Bildtrenneinrichtung beseitigen, jedoch bleiben die lateralen Moire-Erscheinungen in Gestalt von vertikalen Moire-Streifen bestehen.
Im Unterschied zum Stand der Technik zielt die Erfindung nicht auf das „Verschwinden“ der lateralen Moire-Erscheinungen ab, sondern sie zielt auf deren bewusste Nutzung. Davon ausgehend wird nachfolgend das der Erfindung zu Grunde liegende Prinzip erläutert.

5 Vom Standpunkt der lateralen Moire-Erscheinungen aus gesehen bestehen die bekannten autostereoskopischen Anordnungen aus zwei Gittern mit parallel zueinander ausgerichteten Strukturen mit unterschiedlichem Gitter- bzw. Struktur-Pitch und in einem Abstand zueinander, der größer als Null ist.

10 Nimmt man an, das hintere Gitter 1 (beispielsweise ein 2D-Basis-Display) habe den linearen Pitch $m'B_{1P} = 1,2$ mm, und das davor im Abstand $D = 1$ mm angeordnete Gitter 2 (beispielsweise eine Bildtrenneinrichtung wie etwa ein Filterarray) den linearen Pitch $B_{1E} = 1,1914$ mm, so kann mit Formel (1) der resultierende Moire-Linear-Pitch M in Abhängigkeit von der Betrachtungsentfernung E berechnet werden.

$$M = \frac{m'B_{1P} \cdot B_{1E} \cdot E}{(E-D) \cdot m'B_{1P} - E \cdot B_{1E}} \quad (1)$$

Darin bedeuten:

M: linearer lateraler Moire-Pitch

$m'B_{1P}/E$: Winkel-Pitch des Gitters 1

$B_{1E}/(E-D)$: Winkel-Pitch des Gitters 2

D: Abstand der Gitter voneinander

E: Betrachtungsentfernung, Abstand der Betrachtungsebene vom Gitter 1

Fig. 1 zeigt die Abhängigkeit $M(E)$. Der Moire-Pitch wird in der Betrachtungsentfernung $E = 700$ mm unendlich. Dies ist die optimale Betrachtungsentfernung der beispielhaft zur Erläuterung gewählten autostereoskopischen Anordnung nach dem Stand der Technik mit maximaler 3D-Bildqualität, 100% Bildtrennung und minimalem Übersprechen. Für sehr große Betrachtungsentfernungen E nähert sich der Moire-Linear-Pitch M einem konstanten Wert, welcher sich aus der Formel

$$M = \frac{m'B_{1P} \cdot B_{1E}}{m'B_{1P} - B_{1E}} \quad (2)$$

für Gitter im Kontakt ($D = 0$) ergibt.

Es wird nun gemäß Formel (3) eine Größe T eingeführt

$$T = \frac{D}{1 - \frac{B_{1E}}{m'B_{1P}}} \quad (3)$$
Fig. 2 zeigt die Abhängigkeit des Moire-Linear-Pitchs M(E-T), wobei nach Formel (3) \(T = 700 \text{ mm} \) eingesetzt wurde. Im Unterschied zum Moire-Linear-Pitch M(E) hat der Moire-Linear-Pitch M(E-T) = 166,8 mm einen konstanten Wert. Dieses Ergebnis bedeutet, dass der Betrachter der aus den zwei Gittern bestehenden autostereoskopischen Anordnung binokular ein lineares stabiles Moire mit konstantem Pitch, unabhängig von seiner jeweiligen Betrachtungsentfernung E, wahrnehmen kann. Dieses stabile Moire im Abstand (E-T) vom Betrachter erzeugt einen starken Fusionsreiz, wodurch der Betrachter binokular auf die Entfernung (E-T) < E konvergiert.

Das Moire nach Fig. 1 sei als Moire 2 und das Moire nach Fig. 2 als Moire 1 bezeichnet. Für den Moire-Pitch \(M_1 \) des Moire 1 ergibt sich aus Formel (1) mit \(E = (E-T) \) und Formel (3)

\[
M_1 = m'B_{1P} \left(\frac{T}{D} - 1 \right) = B_{1E} \cdot \frac{T}{D} = \frac{B_{1E}}{1 - \frac{B_{1E}}{m'B_{1P}}} \quad (4a), (4b), (4c)
\]

Es ist leicht möglich, sich mit Hilfe von zwei großformatigen parallelen Gittern 1 und 2, welche die Gitterkonstanten bzw. Pitches gemäß Fig. 1 und Fig. 2 aufweisen, von diesen zwei unterschiedlichen Moire-Erscheinungen (Moire 1 und Moire 2) zu überzeugen.

Verfügt man nicht über genügend großformatige Gitter, so kann das folgende praktische Beispiel mit zwei parallel ausgerichteten 15"-Gittern mit den Pitches \(m'B_{1P} = 1,235 \text{ mm} \) und \(B_{1E} = 1,182 \text{ mm} \) im Abstand \(D = 6,25 \text{ mm} \) zur Erläuterung dienen. Hierbei fixiert der Betrachter aus einer beliebigen Entfernung \(E > T \) mit \(T = 145,6 \text{ mm} \) binokular auf eine Ebene, die sich im Abstand (E-T) vom Betrachter vor den Gittern bzw. vor der autostereoskopischen Anordnung frei im Raum befindet. Er sieht ein vertikales Streifen-Moire mit ungefähr sieben Hell-Dunkel-Streifen und einem Moire-Linear-Pitch \(M = M_1 = 27,5 \text{ mm} \). Die Konvergenz seiner Augen auf die Entfernung (E-T) fällt wegen der Fusionsreize, die bereits ein einfaches vertikales Streifenmuster ausübt, nach eine wenig Übung leicht. Es handelt sich um das Moire 1.

Ein zweites Moire 2, das dem in Fig. 1 analog ist, weil sein Moire-Pitch \(M_2 \) von der Betrachtungsentfernung E abhängt, kann der Betrachter wahrnehmen, wenn er seine Augen statt auf die Entfernung (E-T) auf eine größere Entfernung (E+T₂) hinter die autostereoskopische Anordnung richtet. Der Betrachter blickt dann eher nach unendlich als in die Nähe. Das Moire 2 wird durch "Parallelisierung" der Sehachsen (genauer: durch Verringerung der fusionalen Konvergenz) sichtbar.

Fig. 3 zeigt das Zustandekommen von Moire 1 und Moire 2. Die beiden Moire-Erscheinungen
unterscheiden sich nicht nur hinsichtlich ihres Moiré-Linear-Pitchs M_1 und M_2, wie beschrieben. Sie unterscheiden sich auch in der räumlichen Ebene, in der die Moiré-Erscheinungen vom Betrachter wahrgenommen werden. Ursache und maßgeblich für die „Dreidimensionalität“ von Moiré 1 und Moiré 2 ist, daß der Abstand D zwischen beiden Gittern, also zwischen der 2D-Basis-Display und der Bildtrenneinrichtung, verschieden von Null ist: $D > 0$ mm. Bei zwei Gittern im Kontakt $D = 0$ mm würde der Betrachter nur ein Moiré mit konstantem Linear-Moiré-Pitch M gemäß Formel 2 wahrnehmen. Wegen des Abstandes $D > 0$ mm sieht der Betrachter die lateralen Moiré-Erscheinungen mit seinem linken und rechten Auge lateral an unterschiedlichen Stellen. Er sieht von ihnen jeweils eine linke und eine rechte Ansicht.

Das Moiré 1 erscheint dabei unabhängig von der Betrachtungsentfernung $E > T$ im konstanten Abstand $T = 145,6$ mm vor der autostereoskopischen Anordnung. Die oben mit Formel (3) eingeführte Größe T ist somit eine Tiefe, beispielsweise der Abstand $T > 0$ des "out-screening" von der autostereoskopischen Anordnung.

Das Moiré 2 zeigt ein ganz anderes räumliches Verhalten. Für seine wahrnehmbare Tiefe T_2 gilt Formel (5).

$$T_2 = \frac{E \cdot M_1 - T \cdot A}{M_1 - A} \quad (5)$$

Darin ist A: die Pupillendistanz des/der Betrachter, Mittelwert $A = 65$ mm

Ursache für diesen „inversen Gummi-Effekt“ ist der nicht konstante Abstand (die stereoskopische Parallaxe) zwischen den fusionierten monokularen Seheindrücken der Gitter. Mit Reduzierung der Betrachtungsentfernung E verlagert sich der Seheindruck des linken Au-
ges, der links vom rechten Seheindruck des rechten Auges liegt, nach rechts und der rechte
Seheindruck des rechten Auges nach links (siehe Fig.3). Liegt schließlich der linke Sehein-
druck genau auf dem rechten Seheindruck (stereoskopische Parallaxe = 0), erscheint das
Moiré 2 in der Gitterebene T_{22} = 0). Bei weiterer Reduzierung der Betrachtungsentfernung E
verlagert sich der linke Seheindruck weiter nach rechts, der rechte Seheindruck weiter nach
links, so daß der linke Seheindruck rechts vom rechten Seheindruck liegt. Die Fusion ergibt
nun sogar ein Moiré 2 vor den Gittern, T_{23} > 0.

Es gibt weitere wesentliche Unterschiede zwischen Moiré 1 und Moiré 2: Das Moiré 1 kann
auf einem weißen Schirm optisch aufgefangen werden, wenn dieser in der Entfernung T
positioniert wird. Das Moiré 1 ist im Fall T > 0 eine reelle optische Erscheinung. Beim Moiré
2 ist das nicht der Fall. Das Moiré 2 weist neben seiner Variabilität hinsichtlich Moiré-Pitch
M_{2} und Tiefe T_{2} eine weitere Variabilität auf: dreht der Betrachter den Kopf um eine Achse
parallel zur Körperlängsachse, dreht sich auch das Moiré 2, und zwar in gleicher Richtung.
Die Ebene, in der das Moiré 2 erscheint, kippt um eine Achse, die parallel zur Drehachse
des Kopfes liegt. Dadurch erscheinen linke Teile des Moiré 2 beispielsweise in um so größer-
ren Tiefen T_{2} > 0 vor den Gittern, je weiter links sie gesehen werden, und rechte Teile des
Moiré 2 in um so kleineren Tiefen T_{2} < 0 hinter den Gittern, je weiter rechts sie gesehen
werden. Das Moiré 2 weist einen kontinuierlichen Verlauf seiner Tiefen T_{2} auf; es liegt in
einer Ebene, die nicht parallel zur autostereoskopischen Anordnung orientiert ist.

Es existiert noch ein weiterer Unterschied zwischen Moiré 1 und Moiré 2. Dieser bezieht sich
auf die wahrnehmbare Bewegungsparallaxe. Beim Moiré 2 ist die Bewegungsparallaxe für
das Moiré vor und hinter den Gittern gleichgerichtet, während sie beim Moiré 1 mit entge-
gengesetzter Richtung erfolgt, und zwar bei T > 0 entgegen der Kopfbewegung des Betrach-
ters und bei T < 0 mit dieser Bewegung. Die Bewegungsparallaxe entspricht damit nur beim
Moiré 1 der natürlichen Bewegungsparallaxe, beispielsweise bei zwei hintereinander ste-
henden Objekten in der Natur. Das quasi gleichzeitige Auftreten von Moiré 1 und Moiré 2
kann unter anderem vermieden werden, wenn für den Moiré-Pitch M_{1} die Bedingung erfüllt
wird:

\[M_{1} > A \] \hspace{1cm} (6)

Durch diese Bedingung wird die Fusion der binokularen Ansichten des Moiré 2 unterdrückt.
Das hinsichtlich Moiré-Pitch M_{1} und Tiefe T „stabile“ Moiré 1 ist dominant, Konflikte zwischen
beiden Moiré können erfindungsgemäß vermieden werden.

Die vorstehend zuletzt getroffene Aussage bedeutet aber keineswegs, daß die erfin-
dungsgemäße Nutzung von auf dem Moiré 2 basierenden autostereoskopischen Anordnun-
gen ausgeschlossen werden soll. Das gilt auch, wenn im weiteren die Erfindung ausschließ-

lich auf der Grundlage von Moire-Erscheinungen gemäß Moire 1 beschrieben wird.

Nachdem bis hierher die der Erfindung zu Grunde liegenden Moire-Erscheinungen erläutert wurden, wird die Erfindung nachfolgend im Detail beschrieben. Dabei werden die Realisierungsbedingungen für die erfinderische Idee ohne Beschränkung der Allgemeingültigkeit am Beispiel des „optikfreien“ bzw. „planplattenfreien“ Barriere-Verfahrens (mit Zwischenmedium mit optischer Brechzahl \(n = 1 \)) und am Beispiel pixelbasierter digitaler Bildwiedergabeeinrichtungen erläutert.

Es werden folgende Fälle betrachtet:

Fall a: Barriere vor dem Bildschirm angeordnet,
Fall b: Barriere hinter dem Bildschirm angeordnet,
Fall A: Bildebenen vor dem Bildschirm,
Fall B: Bildebenen hinter dem Bildschirm,

Fall 1: horizontaler/vertikaler Pixel-Pitch \(B_{IP} = \) horizontaler/vertikaler "Standard"-Pixel-Pitch \(B_{IPS} \) und horizontaler/vertikaler Element-Pitch \(B_{IE} \) \(\neq \) horizontaler/vertikaler "Standard"-Element-Pitch \(B_{IES} \).

Fall 2: horizontaler/vertikaler Pixel-Pitch \(B_{IP} \neq \) horizontaler/vertikaler "Standard"-Pixel-Pitch \(B_{IPS} \) und horizontaler/vertikaler Element-Pitch \(B_{IE} = \) horizontaler/vertikaler "Standard"-Element-Pitch \(B_{IES} \).

Das erfindungsgemäße Verfahren und zugehörige Anordnungen gelingen, indem die nachfolgenden Bedingungen realisiert werden. Sie gelten jeweils mindestens für die 4 Fälle Aa, Ab, Ba, Bb im Fall 1 und im Fall 2.

\[
T = \frac{D}{1 - \frac{B_{IE}}{m'B_{IP}}} \quad B_{IP} = 3C \quad (7a), (7b)
\]

Darin sind (siehe Fig.4a)

\(T \) : der gerichtete Abstand der Bildebene von dem Bildschirm (gerichtete Tiefe),
\(D \) : der gerichtete optische Abstand zwischen wirksamer Barriere-Ebene und wirksamer Ebene des Bildschirms,

\(B_{IE} \) : horizontaler/vertikaler Element-Pitch der Barriere,
\(B_{IP} \) : horizontaler/vertikaler Pixel-Pitch des Bildschirms,
\(m' \) : reelle Zahl, absoluter Betrag \(m' \geq 1 \)
\(m'B_{IP} \) : horizontaler/vertikaler Objekt-Pitch des Bildschirms,

\(C \) : horizontaler Subpixel-Pitch bei RGB-basiertem Bildschirm (LCD, PDP oder ähnlich)

Allgemeiner gilt
\[T = \frac{D}{m'' B_{1E}} \left(\frac{m'' B_{1E}}{m''' m'B_{1p}} \right) \] (7c)

mit \(m'' \) und \(m''' \) gemäß

\[\left(m''' m'B_{1p} \right) - \left(m'' B_{1E} \right) = \text{MIN} \] (7d)

Darin sind

\(m'', m''' \): natürliche Zahlen,

\(m'' B_{1p} \): ein verallgemeinerner Objekt-Pitch des Bildschirms, \(m' \leq m''' \),

\(m'' B_{1E} \): ein verallgemeinerner Element-Pitch der Barriere.

Für eine beispielhafte Gitter-Struktur mit dem Objekt-Pitch \(m' B_{1p} = 1,800 \text{ mm} \), einem Element-Pitch der Barriere \(B_{1E} = 1,180 \text{ mm} \) und einem Abstand \(D = 3,0 \text{ mm} \) sind \(m''' = 2 \) und \(m'' = 3 \). Das Gitter-Bild entsteht in der Bildebene mit der Tiefe \(T = 180 \text{ mm} \).

Im Unterschied zum Stand der Technik sind die Tiefen in Bildebenen mit der Tiefe \(T > 0 \) oder \(T < 0 \) gemäß Formel (7a) nur von konstruktiven Parametern der autostereoskopischen Anordnung abhängig. Die Tiefen \(T \) sind somit auf einfache Weise durch Wahl der Geräteeinparameter \(D, B_{1E} \) und/oder \(m'B_{1p} \) einstellbar und steuerbar. Kleine Tiefen \(T \) sind bei kleinen Abständen \(D \) möglich. Sind dem konstruktiven Grenzen gesetzt, können kleine Tiefen \(T \rightarrow D \) durch kleine \(B_{1E} \) erreicht werden. Für \(T = 0 \) ist jedoch eine 2D-Darstellung auf dem Bildschirm einfacher.

Im Unterschied zum Stand der Technik wird der 3D-Eindruck auch dann erreicht, wenn die Objekt-Struktur auf dem Bildschirm und die Element-Struktur der Barriere miteinander vertauscht werden.

Im Stand der Technik ist nur eine komplette Vertauschung von beispielsweise der LCD mit dem Filterarray möglich: Das beispielsweise transparent-opake Filterarray kann vor der LCD oder hinter der LCD angeordnet sein, wobei im wesentlichen nur der Filterarray-Pitch geändert wird. Bei der erfindungsgemäßen autostereoskopischen Anordnung kann dagegen die Anordnung der transparent-opaken Barriere vor der LCD oder hinter der LCD erhalten bleiben, d.h. die LCD mit ihren angesteuerten RGB-Subpixeln bleibt beispielsweise hinten und die Barriere mit ihren transparent-opaken Elementen bleibt vorn. Es wird lediglich die spezifische Objekt-Struktur der LCD auf die Barriere und die spezifische Element-Struktur der Barriere auf die LCD übertragen (siehe Ausführungsbeispiel 4).

Im Gegensatz zum Stand der Technik entspricht der Raumeindruck an der erfindungsgemäßen autostereoskopischen Anordnung vollkommen dem natürlichen Seheindruck. Wie die Objekte oder Szenen beim natürlichen Sehen weichen auch die Raumbilder der erfindungsgemäßen autostereoskopischen Anordnung bei Annäherung des Betrachters nicht vor diesem zurück oder folgen dem Betrachter nicht, wenn er sich entfernt. Der unnatürliche „Gummi-Effekt“ ist eliminiert.

In einem weiteren Unterschied zum Stand der Technik sind gewünschte Tiefen T bei getigter Barriere (materialisiertem Element-Pitch B_{1E}) ohne Qualitätsverlust gemäß Formel (7a) für alle Bildebenen auf einfache Weise durch Änderung des Abstandes D steuerbar. Im Stand der Technik führt eine Änderung des Abstandes D zu einer entsprechenden Änderung der angepaßten optimalen Betrachtungsentfernung E', wodurch normale typische Betrachtungsentfernungen E von der angepaßten optimalen Betrachtungsentfernung E' einen größeren Abstand erhalten, und wodurch sich im Stand der Technik die 3D-Qualität prinzipiell weiter verschlechtert, sich die 3D-Tiefe im nachhinein weiter verringert oder der Element-Pitch des Filterarrays im nachhinein geändert werden muß. Im Stand der Technik hat jede autostereoskopische Anordnung nur eine einzige angepaßte optimale Betrachtungsentfernung E'.

Bei der erfindungsgemäßen autostereoskopischen Anordnung dagegen sind alle Betrachtungsentfernungen E > T gleichermaßen angepaßte optimale Betrachtungsentfernungen E'.

Die Geräteparameter D, B_{1E}, m'B_{1P} in Formel (7a) können hardwareseltig vorgegeben werden. Das wird in den Ausführungsbeispielen weiter unten näher erläutert. Softwarelösungen hinsichtlich Element-Pitch B_{1E} oder/und Pixel-Pitch B_{1P} haben demgegenüber den Vorteil, daß Bildebenen mit variabler Tiefe, Anzahl und Anordnung in Echtzeit erzeugt werden können.
Es sei angemerkt, daß die Tiefe $T = 0$ bei erfindungsgemäßem $D > 0$ nur bei $B_{1E} \to \infty$ theoretisch möglich ist. Erfindungsgemäß wird die Tiefe $T = 0$, d.h. Bilder, die in der Ebene des Bildschirms liegen und deren stereoskopische Parallaxe gleich Null ist, dadurch realisiert, daß an der betreffenden Fläche die Barriere strukturlos ausgebildet ist und bei der LCD auf der entsprechenden Fläche das gewünschte 2D-Bild dargestellt wird. Zur Gewährleistung einer gleichmäßigen Flächenleuchtdichte der autostereoskopischen Anordnung wirkt die Barriere an dieser Fläche homogen absorbierend und/oder das 2D-Bild wird in seiner Flächenleuchtdichte entsprechend reduziert.

Weiter ist

$$E = \pm T \left(\frac{A}{\pm mB_{1P}} \pm 1 \right)$$

(8)

Darin sind (siehe Fig.4b)

E: Betrachtungsentfernung bzw. Abstand der Betrachtungsebene von der Ebene des Bildschirms ($E > 0$),

A: mittlerer Pupillenabstand des Betrachters,

m: reelle Zahl, absoluter Betrag $m > 2$,

mB_{1P}: gerichtete horizontale/vertikale Strecke auf dem Bildschirm.

Die $+/-$ Zeichen gelten für Bildebenen vor/hinter dem Bildschirm (Fall A/Fall B) und unabhängig davon, ob die Barriere vor oder hinter dem Bildschirm angeordnet ist (Fall a oder Fall b).

Im Fall a und Fall 1 gilt:

Fall A: $T > 0$

Fall B: $T < 0$

$$B_{1E} < B_{1E,StdT} = m_{StdT} B_{1P} \left(1 - \frac{D}{E'} \right)$$

$$B_{1E} > B_{1E,StdT} B_{1P} > B_{1E,StdT}$$

(9a), (9b)

Im Fall b und Fall 1 gilt: Fall A: $T > 0$

Fall B: $T < 0$

$$B_{1E} > B_{1E,StdT} = m_{StdT} B_{1P} \left(1 + \frac{D}{E'} \right)$$

$$B_{1E} < m_{StdT} B_{1P} < B_{1E,StdT}$$

(9c), (9d)

Darin sind

$B_{1E,StdT}$: Element-Pitch des Filterarrays im Stand der Technik für die „angepaßte“ Betrachtungsentfernung E',

E': „angepaßte“ Betrachtungsentfernung im Stand der Technik, Abstand der Betrachtungsebene von der Ebene des Bildschirms,
m′\text{Stand der Technik} = \text{reelle Zahl, absoluter Betrag } > 0, \text{ im Stand der Technik bei 8 Ansichten}
\\m′\text{Stand der Technik} = 8/3 = 2.6667,
\\m′\text{Stand der Technik}B_{1P} = \text{Ansichten-Pitch bzw. Summe der Subpixel-Pitches zwischen Subpixeln mit der Ansicht i und den übernächsten Subpixeln der Ansicht (i+1) im Stand der Technik bei 8 Ansichten}
\\m′\text{Stand der Technik}B_{1P} = 8 \text{ Subpixel-Pitches} = 8C.

Die Formeln (9) gelten für eine erfindungsgemäße autostereoskopische Anordnung mit m′ = m′\text{Stand der Technik}, d.h. für einen Spezialfall zum Zwecke der Verdeutlichung der Merkmalsunterschiede der Erfindung bzgl. des Stand der Technik. Formel (7a) zeigt, dass das erfindungsgemäße 3D-Verfahren auch bei m′ ≠ m′\text{Stand der Technik} funktioniert, indem der Element-Pitch der Barriere entsprechend der gewünschten Tiefe T der Bildebene gewählt wird.

Anmerkung: Im Fall 2 gelten zu (9a), (9b), (9c), (9d) analoge Bedingungen.

Die Bedingung (8) zeigt, wie die Tiefe T einer Bildebene im Vergleich zum Betrachterabstand E erfindungsgemäß in einem weiten Bereich verändert werden kann. Beispielsweise liegt im Fall A die Bildebene A1, für die mB_{1P} = A = 65 mm realisiert wird, im halben Betrachterabstand vor dem Bildschirm (T = E/2). Andererseits verschwindet im Fall B die Bildebene B1, für die mB_{1P} → A realisiert wird, im minus Unendlichen (T → -∞).

Weiter ist
\\W_1 = \pm B_{1E} \frac{T}{D} = \pm \frac{B_{1E}}{B_{1E} - m′B_{1P}} = \pm m′B_{1P} \cdot \left(\frac{T}{D} - 1 \right) \quad (11a), (11b), (11c)

Darin ist (siehe Fig.4a, Fig.4b)
\\W_1: \text{ horizontaler/vertikaler Bild-Pitch in der Bildebene mit der Tiefe } T

Die +/- Zeichen gelten hier für die Anordnungen Fall Aa und Fall Bb bzw. Fall Ab und Fall Ba.

Der Bild-Pitch W_1 ist ein Maß für die maximale Größe des Bildes in der Bildebene mit der Tiefe T. Vergleicht man die Formeln (4b) und (4c) mit den Formeln (11a) und (11b), so ergibt sich, dass der Bild-Pitch W_1 dem Moire-Pitch M_1 entspricht.
\\W_1 = M_1 \quad (12)

Der Bild-Pitch W_1 ist nach (11b) unabhängig vom Abstand D zwischen Bildschirm und Barriere. Aus (11a) und (7a) folgt weiter
\[T = W_1 \cdot \frac{D}{B_{1E}} \quad (13) \]

Damit kann die Tiefe \(T \) unabhängig vom Bild-Pitch \(W_1 \) durch Änderung, beispielsweise Vergrößerung des Abstandes \(D \), variiert, beispielsweise vergrößert werden. Dadurch ermöglicht die Erfindung große Tiefen \(T \) auch auf kleinen Displays mit entsprechend kleinen Bild-Pitchs \(W_1 \).

Für den Teil-Bild-Pitch \(w_1 \) gelten die Formeln (14)

\[w_1 = \frac{B_{1p} \cdot \left(1 - \frac{D}{T}\right)}{B_{1E}} \cdot W_1 = \frac{W_1}{m'} \quad (14a), (14b) \]

Darin sind (siehe Fig.5a, Fig.5b, Fig.5c, Fig.5d)

\(w_1 \): Teil-Bild-Pitch

\(m' \): Anzahl der möglichen Teilbilder pro Bild-Pitch \(W_1 \)

\(B_{1E} \) wurde gemäß Formel (7a) eingesetzt

\[B_{1E} = m' B_{1p} \cdot \left(1 - \frac{D}{T}\right) \quad (7aa) \]

was der erfindungsgemäßen Anpassung des Barriere-Pitchs \(B_{1E} \) an die Entfernung \(E_a = T \) entspricht. Im Stand der Technik wird \(B_{1E} \) an die „optimalen“ Betrachtungsentfernung \(E_{ab} = E' \) angepaßt, d.h. in Formel (7a) wäre \(T \) durch \(E' \) zu ersetzen. Im Stand der Technik existiert nur eine einzige „optimalen“ Betrachtungsentfernung \(E_{ab} = E' \). Mit zunehmender Abweichung der Entfernung \(E \) des Betrachters von der „optimalen“ Betrachtungsentfernung \(E' (E \neq E') \) verschlechtern sich prinzipiell die 3D-Bildqualität und die darstellbare Tiefe \(T \).

Der Begriff Bild bedeutet im folgenden den in der Bildebene mit der Tiefe \(T \) innerhalb des Bild-Pitchs \(W_1 \) wahrnehmbarer Bildeindruck. Der Bild-Pitch \(W_1 \) ist ein Maß für die Größe des wahrgenommenen Bildes. Ein solches Bild kann beispielsweise mindestens eines der Bilder aus der Fig.19a, Fig.19b, Fig.20 sein. In Fig.14a besteht das Bild beispielsweise aus zwei Bildern, beispielsweise den Ziffern 0 und 4 innerhalb des Bild-Pitchs \(W_1 \). (bei mehr als einem Bild innerhalb des Bild-Pitch \(W_1 \) könnte man auch von einer Bildgruppe sprechen: Dann wäre der wahrnehmbare Bildeindruck eine Bildgruppe. Oder man spricht generell von wahrnehmbarer Bildgruppe, die aus mindestens einem Bild besteht). Bilder werden erfindungsgemäß in der Regel aus Teilbildern zusammengesetzt, wie in Fig.12b und Fig.14a gezeigt. Der gesamte Bildschirm kann mehrere gleichartige oder vertikal oder diagonal angeordnete unterschiedliche Bilder bzw. Bildgruppen enthalten. In Fig.14a sind beispielsweise untereinander die Bilder bzw. Bildgruppen „Ziffern 0 und 4“, „zwei Punkte“, „Ziffern 3 und 7“ ange-
ordnet. Ein Bild kann auch aus nur einem Teilbild bestehen, wie jeder "Punkt" der Fig.14a zeigt.

Zur Größe der Bilder, das heißt zu deren Höhe und Breite in der Bildebene mit der Tiefe T und zu den Bedingungen für quadratische Teilbilder oder Bilder (im folgenden Teilbilder/Bilder) im Fall ausschließlich horizontaler Bewegungsparallaxe der erfindungsgemäßen autostereoskopischen Anordnung ist folgendes anzumerken:

Damit bleibt die wahrgenommene oder empfundene Größe eines natürlichen Objekts, beispielsweise eines Hauses, ob weit entfernt oder nahe, konstant – in Übereinstimmung mit der Erfahrung auf allen Stufen der Menschheitsentwicklung.

Bei gleicher Objektgröße auf dem Bildschirm werden also die Bilder eines Objekts, die stereoptisch in Bildebenen mit der Tiefe T > 0 vor dem Bildschirm, d.h. in der Entfernung (E-T) näher am Betrachter, wahrgenommen werden, scheinbar kleiner gesehen und Bilder des gleichen Objekts, die stereoptisch in Bildebenen mit der Tiefe T < 0 hinter dem Bildschirm, d.h. in der Entfernung (E+T) weiter weg vom Betrachter wahrgenommen werden, scheinbar größer gesehen.

Durch einfache stereoptische Experimente mittels "Kreuzblick" und "Parallelblick" läßt sich das Emmert'sche Gesetz leicht demonstrieren. Als stereoptisches Bildbeispiel kann Fig.X1
verwendet werden. Dabei zeigt sich, daß die im Unterschied zum natürlichen Sehen notwendige, auch extreme Entkoppelung von Akkommodation und Konvergenz das Phänomen der fehlenden "Größenkonstanz" bei dem stereoptischen Raumsehen nicht stört. Je näher am Betrachter der 3D-Eindruck wahrgenommen wird, desto kleiner erscheint dieser, je weiter weg vom Betrachter der 3D-Eindruck wahrgenommen wird, um so größer erscheint dieser.

Fig. X1 ist auch sehr gut geeignet, neben der fehlenden „Größenkonstanz“ den „Gummi-Effekt“ bei den autostereoskopischen Anordnungen im Stand der Technik in allen drei Raumrichtungen X,Y,Z deutlich zu machen. Der „Gummi-Effekt“ in Z-Richtung bedeutet beispielsweise, daß die Tiefe T des stereoptischen Raumeindrucks mit dem Betrachter „mitkommt“. Insbesondere zeigen zweikanalige autostereoskopische Anordnungen im Stand der Technik trotz aufwendiger Tracking-Systeme einen vollständigen „Gummi-Effekt“.

\[H_{E-T} = \frac{H}{E} \cdot (E - T) \]

(15a)

\[H = n \cdot 3C \]

(15b)

Darin sind \(H_{E-T} \): wahrgenommene oder scheinbare Höhe des Teilbildes/Bildes in der Bildebene mit der Tiefe T bei Betrachtung aus der Entfernung (E-T),
\(H \): Höhe des Teilobjekts bzw. Objekts auf dem Bildschirm,
\(n \): Anzahl der für die Darstellung des Teilobjekts oder Objekts verwendeten benachbarten Pixelzeilen,
3C: vertikaler Pixel-Pitch des Bildschirms,
\(H/E \): 2 x Tangens des halben Seh winkels, unter dem das Teilobjekt oder Objekt erscheint,
\(E-T \): wahrgenommene Entfernung des Betrachters von der Bildebene mit der Tiefe T.

Die stereoptisch wahrgenommene Höhe \(H_{E-T} \) ist damit im Unterschied zur Größenkonstanz beim natürlichen Sehen keine Konstante. Das Fehlen der Größenkonstanz gilt uneingeschränkt für die 3D-Displays aus dem Stand der Technik. Im vorliegenden Fall der erfindungsgemäßen autostereoskopischen Anordnung mit ausschließlich horizontaler Bewegungsparallaxe gilt das auch für die wahrgenommene Höhe der erfindungsgemäßen Teilbilder/Bilder. Teilbilder/Bilder in Bildebenen vor dem Bildschirm (T > 0) erscheinen in der Höhe kleiner, Teilbilder/Bilder in Bildebenen hinter dem Bildschirm (T < 0) erscheinen in der Höhe
größer als das monokular betrachtete Teilobjekt oder Objekt auf dem Bildschirm in der Entfernung E.

Es sei zur Erläuterung angemerkt, daß beim natürlichen Sehen bei der Annäherung an natürliche Objekte deren Sehwinkel wächst, während der Sehwinkel beim stereoptischen Sehen $H_{E,T}/E-T$ gemäß Formel (15a) konstant bleibt.

Zur Breite der Teilbilder/Bilder: Im folgenden wird gezeigt, daß im Unterschied zum Stand der Technik bei der erfindungsgemäßen autostereoskopischen Anordnung die Größenkonstanz des natürlichen Sehens existiert. Das wird im beschriebenen Fall mit ausschließlich horizontaler Bewegungsparallaxe für die wahrgenommene Breite der Teilbilder/Bilder nachgewiesen, gilt jedoch im Fall der horizontalen und vertikalen Bewegungsparallaxe der erfindungsgemäßen autostereoskopischen Anordnung für die Breite und Höhe der Teilbilder/Bilder in Bildebenen mit der Tiefe T.

Die gesamte Breite von Teilbildern/Bildern in der Bildebene mit der Tiefe T wird hier in Gestalt der Gesamt-(Halbwerts)Breite $H_{W B_{ges}}$ angegeben, wobei mit dem Begriff „Halbwertsbreite“ eine leuchtdichtebezogene Größe gemeint ist.

Die wahrgenommene, scheinbare Gesamt-(Halbwerts)Breite $H_{W B_{ges}}$ berechnet sich nach den Formeln (16).

\[
B_{E,T} = H_{W B_{ges}} = \pm \cdot n_{H_{W B_{ges}}} \cdot m' B_{1P} \cdot \frac{E-T}{E} \quad (16a)
\]

\[
H_{W B_{ges}} = \pm \frac{1+\Delta_{rel}}{m' q_p - q_E} \cdot m' B_{1P} \cdot \frac{E-T}{E} \quad (16b)
\]

\[
H_{W B_{ges}} = \pm \left(\frac{B_{0E} + \Delta B_{0E}}{D \cdot m' B_{1P}}\right) \cdot \frac{E}{E-T} \cdot m' B_{1P} \cdot \frac{E-T}{E} = \pm \left(\frac{B_{0E} + \Delta B_{0E}}{D}\right) \cdot \frac{T}{D} \quad (16c), (16d)
\]

\[
\Delta_{rel} = \frac{\Delta B_{0E}}{B_{0E}} \quad q_p = \frac{B_{1P}}{B_{0P}} \quad q_E = \frac{B_{1E}}{B_{0E}} \quad (16e), (16f), (16g)
\]

Darin sind

$B_{E,T}$: wahrgenommene, scheinbare Breite des Teilbildes/Bildes in der Bildebene mit der Tiefe T bei Betrachtung aus der Entfernung ($E-T$)

$n_{H_{W B_{ges}}}$ Anzahl (horizontal) benachbarter sichtbarer leuchtender (bei hellem Objekt) Subpixel des Bildschirms, für die gilt:
50\% \leq \text{sichtbare Subpixel-Größe/Breite} \leq 100\%

\[\Delta B_{OE} : \text{Größen-/Breitenänderung der transparenten Barriere-Elemente, } 0 \leq \Delta B_{OE} \]

T/D: Vergrößerungsfaktor

5 \text{ Nähert sich der Betrachter der Bildebene mit der Tiefe } T (E \to T) \text{ ist die HWB}_{pes} \text{ nicht mehr definiert. Weil der Moire-Pitch } M_1 \text{ über alle Grenzen wächst } (M_1 \to \infty), \text{ "tastet" die Barriere den Bildschirm nicht mehr ab.}

Die Breite } B_{OE} \text{ der transparenten Elemente der Barriere ist in den Formeln (16) immer als an die Breite } B_{OP} = C \text{ der leuchtenden Subpixel oder Pixel \text{"angepaßte\" Zahl zu verstehen. Siehe dazu Formeln (17) bzw. Formeln (20).}

In Formel (16d) stellt der Quotient T/D einen Vergrößerungsfaktor dar, der, auf die Breite der transparenten Elemente der Barriere } (B_{OE} + \Delta B_{OE}) \text{ angewandt, die wahrnehmbare Breite des Teilbildes/Bildes } B_{E-T} \text{ ergibt.}

Es ist darauf hinzuweisen, daß gemäß Formel (16d) die Breite monochromer Teilbilder/Bilder bei Bildwiedergabeeinrichtungen mit RGB-Subpixel-Struktur, etwa bei LCD, durch Änderung von \(\Delta B_{OE} \) der transparenten Barriere-Elemente variiert werden kann, im wesentlichen bis zu einem Faktor 3. Geschieht diese Änderung kontinuierlich, erfolgt auch eine kontinuierliche Variation der Breite.

Wegen des weiter unten erläuterten Beispiels zur Bildzeugung sei schon hier darauf hingewiesen, daß die Anzahl } n_{\text{HWB}} \text{ gemäß Formel (16c) sowohl vom Faktor } ET/(E-T) \text{ und damit von der Betrachtungsentfernung } E \text{ abhängt (vgl. dazu Fig.13), als auch wesentlich vom konstanten Faktor aus den Geräteparametern } B_{OE}, \Delta B_{OE}, D, m'B_{IP} \text{ der erfindungsgemäß autostereoskopischen Anordnung.}

Die Anzahl } n_{\text{HWB}} \text{ der sichtbaren benachbarten leuchtenden Subpixel des Bildschirms enthält im Nenner den Faktor } (E-T), \text{ vergleiche Formel (16a) und (16c). Damit wächst die Anzahl } n_{\text{HWB}} \text{ bei Annäherung des Betrachters an die Bildebene mit der Tiefe } T, T > 0. \text{ Das Produkt } n_{\text{HWB}} \times m'B_{IP} \text{ ist die monokular sichtbare Breite der Teilobjekte/Objekte auf dem Bildschirm. Im Grenzfall } E = T \text{ ist der erfindungsgemäß \text{"Anpassungsfall\" erreicht, bei dem monokular alle (horizontal) benachbarten leuchtenden Subpixel im Abstand des Objekt-Pitchs } m'B_{IP} \text{ auf dem Bildschirm gleichzeitig sichtbar sind. Die monokular sichtbare Breite \text{"explodiert\".}
Dieser Grenzfall $E = T$ tritt bei der erfindungsgemäßen autostereoskopischen Anordnung jedoch nicht auf, weil selbst bei maximalem Training des Betrachters zur Entkoppelung von Akkommodation und Konvergenz die binokulare Konvergenz nur auf eine endliche Entfernung ($E-T$) > 0 möglich ist.

Beim stereoptischen Sehen führt das entwicklungsgeschichtlich entstandene Konstanzphä-
nomen der „Größenkonstanz“ des visuellen Systems zu unnatürlichen Seheindrücken bzgl. der wahrgenommenen Größe der stereoptischen Seheindrücke, wie oben mit Fig. X1 und am Beispiel der Höhe $H_{E,T}$ erläutert wurde.

Im Stand der Technik fällt die Unnatürlichkeit des stereoptischen Sehens kaum auf, weil beispielsweise die Tiefen T der stereoptischen Seheindrücke vor dem 3D-Display im Vergleich zum Betrachterabstand E vom 3D-Display klein sind, bzw. ($E-T$) sehr groß ist.

Für die erfindungsgemäße autostereoskopische Anordnung zeigt Formel (16d), daß die wahrgenommene Entfernung ($E-T$) in der Emmert'schen „Größenkonstanz“ bei der wahrgenommenen, scheinbaren Breite $B_{E,T}$ unwirksam ist, indem sie sich im Gegensatz zur Höhe $H_{E,T}$ und zum Stand der Technik herauskürzt. Die wahrgenommene, scheinbare Breite $B_{E,T}$ ist unabhängig von der Betrachtungsentfernung E eine Konstante. Damit liegen beim erfindungsgemäßen stereoptischen Sehen dieselben Verhältnisse vor wie beim natürlichen Se-
hen: Der Sehwinkel wächst bei Annäherung und umgekehrt.

Das unterschiedliche Verhalten bzgl. der Höhe und Breite bei ausschließlich horizontaler Bewegungsparallaxe ist zu beachten, wenn Bilder aus quadratischen Teilbildern erzeugt werden sollen. Siehe dazu Formeln (22).

Die Gesamt-(Halbwerts)Breite $H_{WB_{ges}}$ setzt sich im allgemeinen aus zwei Beträgen zusammen:

$$H_{WB_{ges}} = H_{WB} + V_{WB}$$ \hspace{1cm} (16h)

Darin sind

H_{WB}: Halbwertsbreite von Teilbildern mit Vollwertsbreite $V_{WB} \geq 0$

V_{WB}: Vollwertsbreite von Teilbildern

Für die Halbwertsbreite und Vollwertsbreite gilt im Fall $0 \leq \Delta_{rel}, 0 \leq \Delta B_{OE}$ weiter

$$H_{WB} = n_{H_{WB}} \cdot m' B_{1p} \cdot \frac{E-T}{E} = \frac{1}{m' q_p - q_E} \cdot m' B_{1p} \cdot \frac{E-T}{E}$$ \hspace{1cm} (16i), (16j)
\[HWB = B_{0E} \cdot \frac{T}{D} \quad (16m) \]

\[VWB = n_{VWB} \cdot m'B_{1p} \cdot \frac{E - T}{E} = \frac{\Delta_{rel}}{m'q_p - q_E} \cdot m'B_{1p} \cdot \frac{E - T}{E} \quad (16k), (16l) \]

\[VWB = \Delta_{rel} \cdot \frac{T}{D} \quad (16n) \]

Darin sind

- \(n_{VWB} \): Anzahl sichtbarer benachbarter, bei hellem Objekt leuchtender Subpixel des Bildschirms, für die gilt: 50% ≤ sichtbare Subpixel-Breite < 100%

- \(n_{VWB} \): Anzahl benachbarter sichtbarer leuchtender (bei hellem Objekt) Subpixel des Bildschirms, für die gilt: sichtbare Subpixel-Breite = 100%

Die Schärfe des Teilbildes/Bildes wächst mit dem Quotienten \(VWB/HWB \), wird also von \(\Delta_{rel} \neq 0 \) bestimmt.

\[B_{OE} = B_{0p} \cdot \left(1 - \frac{D}{E} \right) = C \cdot \left(1 - \frac{D}{E} \right) \quad (17a), (17b) \]

Für maximale Flächenleuchttdichte im Bild soll die zugrunde gelegte Betrachtungsentfernung \(E \) der maximalen Betrachtungsentfernung \(E \) des Nutzers an der erfindungsgemäßen autostereoskopischen Anordnung entsprechen. Die Abhängigkeit \(B_{OE} \) (E) ist jedoch für \(E > T \) gering (siehe dazu auch Fig.6), so daß die maximale Flächenleuchttdichte in weitem Entfernungsbereich erhalten bleibt.

Die Vollwertsbreite \(VWB \) ist nur dann größer als Null, \(VWB > 0 \), wenn die Breite der transparenten Barriere-Elemente größer ist als die „angepaßte“ Breite, \(\Delta B_{OE} > 0 \). Aus (16)), (16l) und (16e) folgt

\[\frac{HWB}{VWB} = \frac{1}{\Delta_{rel}} = \frac{B_{OE}}{\Delta B_{0E}} \quad \Delta_{rel}, \Delta B_{OE} > 0 \quad (18) \]
Ein Maß für die „Unscharfe“ der Teilbilder/Bilder der erfindungsgemäßen autostereoskopischen Anordnung an ihren jeweiligen Außenrändern (bei ausschließlich horizontaler Bewegungsparallaxe an den vertikalen Außenrändern) ist die halbe Halbwertsbreite HWB/2. Formel (18) zeigt, daß die relative Randscharfe um so besser wird, je größer die Breite der transparenten Elemente der Barriere \((B_{\text{OE}} + \Delta B_{\text{OE}})\) im Vergleich zur „angepaßten“ Breite \(B_{\text{OE}}\) ist.

Bei Verzicht auf die maximale Flächenleuchtdichte im Bild, d.h. \(-1 < \Delta \text{rel} < 0\), \(-B_{\text{OE}} < \Delta B_{\text{OE}} < 0\), gelten die weiteren Formeln (16)

\[
HWB_{\text{ges}} = n_{\text{HWB,gse}} \cdot m' B_{1p} \cdot \frac{E - T}{E} = \frac{1}{m' q_p - q_E} \cdot m' B_{1p} \cdot \frac{E - T}{E} \quad (16\text{m})
\]

\[
HWB_{\text{ges}} = HWB + VWB \quad (16\text{n})
\]

\[
HWB = n_{\text{HWB}} \cdot m' B_{1p} \cdot \frac{E - T}{E} = \frac{1 + \Delta \text{rel}}{m' q_p - q_E} \cdot m' B_{1p} \cdot \frac{E - T}{E} \quad (16\text{o})
\]

\[
VWB = n_{\text{VWB}} \cdot m' B_{1p} \cdot \frac{E - T}{E} = \frac{- \Delta \text{rel}}{m' q_p - q_E} \cdot m' B_{1p} \cdot \frac{E - T}{E} \quad (16\text{p})
\]

Mit \(\Delta \text{rel} \to -1\) bleibt die Gesamt-(Halbwerts)Breite HWB_{ges} konstant, während die Halbwertsbreite HWB gegen Null geht und die Vollwertsbreite VWB entsprechend anwächst.

Die Homogenitätsbedingung lautet:

\[
HWB_{\text{ges}} = w_1 \quad (19)
\]

woraus mit den Formeln (16d), (14), (11), (7aa) folgt

\[
B_{0E} + \Delta B_{0E} = B_{0E,\text{hom}} = B_{1p} \cdot \left(1 - \frac{D}{T}\right) = 3C \cdot \left(1 - \frac{D}{T}\right) = \frac{B_{1E}}{m'} \quad (20\text{a}, \ 20\text{b}, \ 20\text{c})
\]

Darin ist

\(B_{0E,\text{hom}}\): Gesamt-Breite der transparenten Barriere-Elemente für homogene Helligkeit von aus Teilbildern bestehenden Bildern in der Bildebene mit der Tiefe \(T\)
Die Homogenitätsbedingung nach den Formeln (20a), (20b), (20c) gilt bei einem RGB-Bildschirm, zum Beispiel einem TFT-LCD, für ein Teilbild mit ein und derselben Farbe oder Mischfarbe (siehe auch Ausführungsbeispiel 1 weiter unten). Die Formeln (20a), (20b), (20c) stellen eine „Anpassungsbedingung“ für die Element-Breite $B_{\text{OE, hom}}$ der Barriere dar, und zwar bezüglich der Entfernung $E = T$ und dem Pixel-Pitch $B_{1P} = 3C$. Insofern und wegen $B_{\text{OE, hom}} > B_{\text{OE}}$ ersetzen die Formeln (20a), (20b), (20c) die „Anpassungsbedingung“ nach den Formeln (17a), (17b).

Es sei angemerkt, daß für dreifarbig Teilbilder, beispielsweise solchen aus einzelnen R-, G-, B-Farben, die „Homogenitätsbedingung“ wegen $\Delta B_{\text{OE}} = 0$ lautet:

$$B_{\text{OE}} = C \cdot \left(1 - \frac{D}{T}\right) = \frac{B_{1E}}{3m}$$ \hspace{1cm} (20d)

Die Homogenitätsbedingung gemäß den Formeln (20a), (20b), (20c) bedeutet, daß für Homogenität innerhalb und zwischen Teilbildern die Gesamt-Breite $B_{\text{OE, ges}}$ der transparenten Barriere-Elemente bezüglich der Betrachtungsentfernung E an die Pixel-Breite bzw. den Pixel-Pitch $B_{1P} = 3C$ bezüglich der Entfernung $E = T$ „angepaßt“ sein muß. Unter dieser Bedingung erscheinen beispielsweise im Fall a hinter den transparenten Barriere-Elementen und zwischen den Teilbildern benachbarte Subpixel mit Teil-Breiten, deren Summe sich jeweils zur Subpixel-Breite addiert, wodurch die Flächenleuchtdichte in den Teilbildern und zwischen diesen gleich ist.

Die Homogenitätsbedingung gemäß Formeln (20) hat einen weiteren, mit der Erfindung erzielten Vorteil. Störende RGB-Moire-Erscheinungen, welche die vertikalen RGB-Streifen bei RGB-Bildwiedergabeinrichtungen, wie LCD oder PDP, erzeugen, werden beseitigt.

Moiré-Erscheinungen, die von der sogenannten Black-Matrix des Bildschirms herrühren und auch im Stand der Technik auftreten, werden unterdrückt. Das ist um so mehr der Fall, je kleiner der Quotient aus der Breite der Black-Matrix-Streifen und der Element-Breite $B_{\text{OE, hom}}$ der Barriere ist. Die Streifenbreite der Black-Matrix ist im Stand der Technik $< C$; zur Helligkeitssteigerung bei PDP oder LCD auch $<< C$.

Damit ist bei Leuchtdichte-Homogenität nach Formel (16e) $\Delta_{rel} = 2$ und gemäß Formel (18) wird

\[
\frac{HWB}{VWB} = \frac{1}{2}
\]

(21)

Bei einem Bild in der Bildebene mit der Tiefe T, das beispielsweise aus drei monochromen Teilbildern horizontal nebeneinander besteht, hat die Randunschärfe auf jeder Seite des Bildes nur eine Breite, die $1/4$ VWB eines Teilbildes ist. Damit beträgt die Randunschärfe nur $1/18$ der Gesamt-(Halbwerts)Breite des Bildes $HWB_{ges} = 9 \times HWB$.

Fig.6 zeigt für eine erfindungsgemäsße autostereoskopische Anordnung, daß die Abhängigkeit der Gesamt-Breite $B_{ges} = B_{Ober}$ der transparenten Barriere-Elemente von der Betrachtungsentfernung E in einem weiten Entfernungsberreich sehr gering und sehr viel kleiner ist als eine im Stand der Technik häufig anzutreffende Subpixel-Breite $B_{SP} = C = 0,1$ mm. Somit ist die Homogenitätsbedingung (20) leicht zu realisieren und in der Praxis einzuhalten.

Es sei jedoch angemerkt, daß sichtbare "Trennungen" durch inhomogene Helligkeit zwischen Teilbildern von Bildern in Bildebenen mit der Tiefe T durchaus nicht in allen Anwendungen als störend empfunden werden müssen und bei Anwendung der Erfindung zugelassen sind.

Fig.7 zeigt die lineare Abhängigkeit der Gesamt-(Halbwerts)Breite HWB_{ges} von der relativen Breite Δ_{rel} der Barriere-Elemente. Die Breite von Bildern in der Bildebene mit der Tiefe T, die nur aus einem Teilbild bestehen, kann erfindungsgemäß mit Hilfe des Parameters Δ_{rel} gesteuert werden. Vorzugsweise liegt Δ_{rel} für einzelne Teilbilder im Bereich $0 < \Delta_{rel} < 2$. Werte $-1 < \Delta_{rel} < 0$ erlauben noch kleinere Teilbilder, jedoch zu Lasten der Flächenleuchtdichte im Teilbild. Werte $\Delta_{rel} > 2$ sind erfindungsgemäß nicht ausgeschlossen.

Zu quadratischen Teilbildern/Bildern (mit quadratischen Bildern sind gemeint Bilder, die nur aus einem quadratischen Teilbild bestehen oder Bilder, die aus horizontal und vertikal gleicher Anzahl quadratischer Teilbilder bestehen): Bei der erfindungsgemäßen autostereoskopischen Anordnung mit horizontaler und vertikaler Bewegungsparallaxe gelten die Formeln (16) nicht nur für die wahrgeommene Breite B_{E-T}, sondern analog auch für die wahrgenommene Höhe H_{E-T}. Auf diese Weise können beispielsweise quadratische Teilbilder/Bilder mit natürlicher Bewegungsparallaxe in quasi beliebig weiten Bewegungsbereichen in X-, Y- und Z-Richtung bei wahrnehmbaren, durch Höhe und Breite bestimmten Größen der Teilbilder/Bilder wie beim natürlichen Sehen realisiert werden.

$$B_{OE} = C \cdot \left(1 - \frac{D}{T}\right) \quad (20d)$$

Die Teilbilder/Bilder sind quadratisch, wenn beispielsweise im Standard-Modus in horizontaler Richtung Subpixel mit der Breite C_{h} kombinieren mit Elementen der Breite B_{OE,h} = 3 B_{OE} - "C_{h} x 3 B_{OE}\" - und in vertikaler Richtung Subpixel mit der Höhe C_{v} = 3 C_{h} = B_{tp} kombinieren mit Elementen der Höhe B_{OE} - "3 C_{h} x B_{OE}\".

Bei einer erfindungsgemäßen autostereoskopischen Anordnung mit ausschließlich horizontaler Bewegungsparallaxe (vorteilhafte Anwendungen dafür siehe weiter unten) wird zur Realisierung im wesentlichen quadratischer Teilbilder die Bedingung für die Anzahl n benachbarter Pixelzeilen nach den Formeln (22) erfüllt:

$$n = n_{m} \cdot \frac{1 + \Delta_{rel}}{m' q_{p} - q_{E}} \cdot \frac{B_{OE} + \Delta B_{OE}}{D \cdot B_{tp}} \cdot \frac{ET}{(E - T)} \quad (22a), (22b), (22c)$$

Darin ist

- n: Anzahl benachbarter Pixel-Zeilen des Bildschirms für quadratische Teilbilder in der Bildebene mit der Tiefe T

Vorzugsweise ist E darin eine für den jeweiligen Anwendungsfall typische Betrachtungsentfernung. Es sei angemerkt, daß im vorliegenden Fall der ausschließlich horizontalen Bewegungsparallaxe je nach Wahl der Anzahl n rechteckige Teilbilder entstehen. Bei n = 1 haben Teilbilder beispielsweise die kleinste mögliche Höhe H_{E,T,\text{min}}.

Zur Zahl der Ansichten: Nach Fig.4b gilt beispielsweise im Fall A) (T > 0):
\[O_{ij} = \frac{iA_T}{E} + jW_i \]

(23a)

Darin ist

- \(O_{ij} \): horizontales oder vertikales Maß der zu dem Bild/Bildgruppe mit dem Bild-Pitch \(W_i \) in der Bildebene mit der Tiefe \(T \) gehörenden binokularen Fläche in der Objektebene,
- die Ebene des Bildschirms,
- \(i \): reelle Zahl, \(i \geq 1 \)
- \(j \): reelle Zahl, \(j \geq 1 \)

Als binokulare Fläche enthält \(O_i \) neben der monokularen Fläche in der Objektebene auch die zu dem Bild mit dem Bild-Pitch \(W_1 \) in der Bildebene mit der Tiefe \(T \) gehörende stereoskopische Parallaxe in der Objektebene.

\[p = \frac{A}{E} - 1 \]

(23b)

Darin ist

- \(p \): stereoskopische Parallaxe, \(p > 0 \) für \(T > 0 \), \(p < 0 \) für \(T < 0 \)

Mit \(i,j = 1 \) ergibt sich das minimale Maß \(O_{\text{min}} = O_{11} \) der Fläche in der Objektebene. Aus \(O_{\text{min}} = O_{11} \) und der Breite \(B_{BW} \) des Bildschirms der autostereoskopischen Anordnung kann die Zahl der Perspektivansichten der erfindungsgemäßen autostereoskopischen Anordnung für ein und dasselbe Bild in der Bildebene mit der Tiefe \(T \) bestimmt werden.

\[N = \frac{B_{BW} - O_{11}}{m'B_{1P}} + 1 \]

(24a)

Darin sind

- \(N \): Zahl der (Perspektiv-)Ansichten für ein und dasselbe Bild in der Bildebene mit der Tiefe \(T \) und einem Bild-Pitch \(W_i \),
- \(B_{BW} \): Breite des Bildschirms,
- \(O_{11} \): Breite der zu dem Bild mit dem Bild-Pitch \(W_i \) in der Bildebene mit der Tiefe \(T \) gehörenden Fläche der Objektebene des Bildschirms,
- \(m'B_{1P} \): Objekt-Pitch des Bildschirms, zum Beispiel des LC-Arrays einer LCD

Da im allgemeinen \(O_{\text{min}} < B_{BW} \) oder sogar \(O_{\text{min}} << B_{BW} \) gilt, ist \(N \) sehr viel größer als im Stand der Technik, nämlich \(N \gg \gg 8 \), beispielsweise \(N > 100 \) Ansichten. Im Unterschied zu den 3D-Displays aus dem Stand der Technik bietet damit die erfindungsgemäße autostereoskopische Anordnung quasi-kontinuierliche, sprungfreie und „ruckelfreie“ Bewegungsparallaxen -
und das bei Raumeindrücken mit extremem „out-screening“, welches die 3D-Displays aus dem Stand der Technik prinzipiell nicht erzeugen können.

Berücksichtigt man den lateralen Bewegungsbereich der erfindungsgemäßen autostereoskopischen Anordnung und beschränkt man sich nicht auf ein und dasselbe Bild in der Bildebene mit der Tiefe T, sondern berücksichtigt man alle Bilder, die bei lateraler Bewegung des Betrachters nacheinander und nebeneinander sichtbar werden, wird die maximale Anzahl der Perspektivansichten nach Formel (24b)

$$N_{\text{max}} \gg N$$ \hspace{1cm} (24b)

Darin ist

- N_{max}: maximale Zahl der (Perspektiv-)Ansichten für alle Bilder in der Bildebene mit der Tiefe T und einem Bild-Pitch W_1.

Zum lateralen Bewegungsbereich und Schrägsichtwinkelbereich: Am Beispiel einer Bildebene mit der Tiefe $T > 0$ soll gezeigt werden, daß die erfindungsgemäße autostereoskopische Anordnung im Unterschied zu Stand der Technik bei natürlicher Bewegungsparallaxe einen unbegrenzten lateralen Bewegungsbereich des Betrachters erlaubt. Ohne Einschränkung sei eine autostereoskopische Anordnung mit ausschließlich horizontaler Bewegungsparallaxe angenommen. Die Parameter seien beispielsweise $B_{1p} = 3C = 3\text{mm}$, $m' = 4$, $m'B_{1p} = 12\text{mm}$, $D = 20\text{mm}$ $T = +200\text{mm}$.

Fig.X2 zeigt den horizontalen Schnitt durch die autostereoskopische Anordnung. Der Betrachter befinde sich der einfachen Darstellung wegen in einer sehr großen Entfernung E ($E \rightarrow \infty$), seine Sehstrahlen sind parallel (gestrichelt) eingezeichnet. Wie bereits weiter oben beschrieben, sind die Teilbilder in der Bildebene mit der Tiefe T reelle Bilder, die beispielsweise auf einem Schirm, etwa einer Leinwand, in dieser Ebene „aufgefangen“ werden können.

Die autostereoskopische Anordnung ist in ihrer gesamten Breite B_{aw} dargestellt. In der Bildebene sind zwei benachbarte Bilder N und M mit den Bild-Pitchs W_{1N} und W_{1M}, bestehend aus jeweils drei hellen Teilbildern $n1$, $n2$, $n3$ und $m1$, $m2$, $m3$ sowie je einem dunklen Teilbild $n0$ und $m0$ dargestellt.

Befindet sich der Betrachter zunächst in seiner rechten Position, sieht er das rechte Bild N komplett mit allen vier Teilbildern $n0$, $n1$, $n2$, $n3$. Vom linken Bild M sieht er aus dieser Position nur das dunkle Teilbild $m0$ und etwas weniger als die Hälfte des Teilbildes $m1$. Das übrige Teilbild $m1$ sowie die Teilbilder $m2$ und $m3$ kann er nicht sehen, weil sie außerhalb der LCD liegen und daher von dieser nicht "beleuchtet" werden.
Bewegt sich der Betrachter in die linke Position, verschwindet das rechte Bild N zunehmend am rechten Rand der LCD (es „geht unter“) und das linke Bild M erscheint am linken Rand der LCD immer vollständiger (es „geht auf“). Beide Bilder verschieben sich also nach rechts, entgegen der Bewegung des Betrachters nach links. Die erfindungsgemäße autostereoskopische Anordnung weist damit eine Bewegungsparallaxe wie beim natürlichen Sehen auf.

In der linken Position sieht der Betrachter das linke Bild M komplett mit allen vier Teilbildern m3, m2, m1, m0. Vom rechten Bild N sieht der Betrachter nur noch den äußersten linken Rand des Teilbildes n3. Das rechte Teilbild N ist am rechten Rand der LCD fast „untergegangen“.

Für die Lateralen Bewegungsbereiche in der Betrachtungsebene gilt

\[\Delta x, \Delta y = \frac{E}{T} \cdot (O_y - jW_1) - (O_y - A) \]

(23c)

Darin sind

\[\Delta x, \Delta y: \text{Bewegungsbereich des Betrachters in der Betrachtungsebene im Abstand } E \text{ bezgl. der Bildebene mit der Tiefe } T, O_{11} \geq W_1 \]

Der laterale Bewegungsbereich ist so groß, daß er am besten im Winkelmaß beschrieben wird. Für den Schrägsichtwinkelbereich der erfindungsgemäßen autostereoskopischen Anordnung gilt

\[\Delta \alpha_x, \Delta \beta_y = \pm 90 \text{ Grad} \]

(23d)

Darin sind

\[\Delta \alpha_x, \Delta \beta_y: \text{Schrägsichtwinkelbereich in horizontaler, vertikaler Richtung bezgl. einer Normalen auf die autostereoskopische Anordnung} \]

Diese Schrägsichtwinkelbereiche werden nur durch die maximalen Schrägsichtwinkel, insbesondere hinsichtlich Helligkeit, Helligkeits- und Farbkontrast, Helligkeits- und Farbverfärb-
schungen, des verwendeten Bildschirms begrenzt. Das erfindungsgemäße 3D-Verfahren an sich ist frei von Sichtbeschränkungen.

Weiter wird aus Formel (23a) für i = 1

\[j = \frac{O_y \left(1 - \frac{T}{E} \right) - A \frac{T}{E}}{W_1} \]

(23d)

Darin ist
j: Anzahl der gleichzeitig von einer festen Betrachtungsposition aus sichtbaren Bilder/Bildgruppen/Bild-Pitchs W₁ in der Bildebene mit der Tiefe T

Mit O₁₁ = Bbw = Breite des Bildschirms ergibt sich aus (23d) die maximale Anzahl J_{max} der gleichzeitig sichtbaren Bilder/Bildgruppen/Bild-Pitchs W₁

Weiter ist

\[\Delta z = \frac{(O_y - O₁₁) \cdot (E - T) \cdot \frac{1}{O₁₁ - W₁}}{1 + (O_y - O₁₁) \cdot \frac{1}{O₁₁ - W₁}} \]

(25)

Darin ist
Δz: Bewegungsbereich des Betrachters in Normalen-Richtung für ein Bild, eine Bildgruppe, bzw. einen Bild-Pitch der Größe W₁ in der Bildebene mit der Tiefe T

Die Formel (25) ist gegenüber der weiter unten stehenden Formel für Δz allgemeiner, sie gilt nicht nur für O₁₁ >> W₁.

Mit O₁₁ = Bbw = Breite des Bildschirms ergibt sich aus (25) der maximale Bewegungsbereich Δz_{max} in Normalen-Richtung für ein Bild, eine Bildgruppe bzw. einen Bild-Pitch mit der Größe W₁ in der Bildebene mit der Tiefe T. Für große autostereoskopische Anordnungen und damit großes Bbw geht Δz → (E - T), d.h. der Betrachter kann sich der autostereoskopischen Anordnung von einer beliebig großen Entfernung E bis fast an die Bildebene mit der Tiefe T.
nähern, ohne Verlust an 3D-Bildqualität zu erleiden. Sein Bewegungsbereich in Z-Richtung
wird bei Annäherung an die autostereoskopische Anordnung nur durch seine individuelle
erlernbare, trainierbare Fähigkeit zur fusionalen motorischen Konvergenz auf die Teilbild-
er/Bilder in der Bildebene mit der Tiefe T und durch seine Nah-Akkommodation auf den

Es sei angemerkt, daß erst bei (E-T) sehr nahe Null die 3D-Bildqualität durch die oben be-
schriebene „Explosion“ der Breite B_{E,T} (bei ausschließlich horizontaler Bewegungsparallaxe)
or der Breite B_{E,T} und Höhe H_{E,T} (bei horizontaler und vertikaler Bewegungsparallaxe)
beeinträchtigt wird.

Insgesamt folgt aus den Formeln (23c) und (25), daß dem Betrachter der gesamte Raum
zwischen der Betrachtetebene im Abstand E und der Bildebene im Abstand T von der auto-
stereoskopischen Anordnung ohne Pseudoskopie, Bildsprünge und andere Qualitätsschäden,
die der Stand der Technik hat, für das „out-screening“ zur Verfügung steht. Die verfahrens-
bedingten Grenzen des Standes der Technik sind überwunden.

Zu einem Qualitätsmerkmal für die Raumwahrnehmung: Der Quotient T/E ist wie beim natür-
lichen Sehen das physiologisch entscheidende Merkmal für die Raumwahrnehmung mit Hilfe
von stereoptischen Anordnungen. Die Tiefe T allein ist ein ungeeignetes Qualitätsmerkmal.
Aus der binokularen Raumwahrnehmung ist bekannt, daß der stereoptische Raumindruck
bei gleicher Tiefe T um so besser und um so genauer ist, je größer der Stereowinkel im Ver-
gleich zum Stereogrenzwinkel ist.

Formel (26a) folgt gleichermaßen aus den geometrischen Verhältnissen beim natürlichen
Sehen und bei der stereoptischen Anordnung.

\[
\frac{E}{T} = \frac{A}{\pm \delta \cdot E} \pm 1 \quad (26a)
\]

mit

\[
\delta = \frac{p}{E} \quad (26b)
\]

Darin ist

\(\delta\): der Stereowinkel

Die +/- Zeichen gelten für Bildebenen vor (T > 0) bzw. hinter (T < 0) dem Bildschirm.

Mit Formel (26a) wird gezeigt, daß die bei großen autostereoskopischen Anordnungen (z.B.
> 50 Zoll-Bildschirm) im Vergleich zu kleinen autostereoskopischen Anordnungen (z.B. 17
Zoll-Bildschirm) im Stand der Technik gern betonte größere Tiefe \(T, T > 0 \), wegen der größeren „optimalen“ Betrachtungsentfernung \(E \) keine Verbesserung des stereoptischen Raumeindruckes darstellt, weil das Qualitätsmerkmal \(T/E \) im Stand der Technik im wesentlichen konstant ist. Der im Stand der Technik verwendete Begriff „out-screening“ sollte deshalb dem Qualitätsmerkmal \(T/E \) vorbehalten sein.

Zur maximalen relativen Tiefe \(\frac{T_{\text{max}}}{E_{\text{min}}} \) (maximales "out-screening"): Bei der erfindungsge- gemäßen autostereoskopischen Anordnung gilt für das maximale „out-screening“ die Formel (26c)

\[
\frac{T_{\text{max}}}{E_{\text{min}}} = \frac{B_{\text{BW}} + m'B_{1,p}}{B_{\text{BW}} + A + \frac{E_{\text{min}}}{D} \cdot m'B_{1,p}}
\]

(26c)

Darin ist

- \(T_{\text{max}} \): maximale Tiefe \(T > 0 \) der Bildebene bei einem Bildschirm mit der Bildschirmbreite \(B_{\text{BW}} \)
- \(E_{\text{min}} \): minimale Betrachtungsentfernung bzgl. (individueller) Konvergenz-Leistung oder/und Nah-Akkommodations-Fähigkeit

Als Beispiel sei ein 45 Zoll TFT-LCD als 2D-Bildschirm im 4:3–Standard-Modus verwendet. Die Breite dieses Bildschirms ist \(B_{\text{BW}} = 914,4 \) mm, der Pixel-Pitch sei \(B_{1,p} = 0,4464 \) mm. Mit \(A = 65 \) mm, \(m' = 2 \), einem Element-Pitch der Barriere \(B_{\text{BE}} = 0,8910 \) mm und einem Abstand \(D = 1,37058 \) mm zwischen den Subpixeln des Bildschirms und der wirksamen Schicht der Barriere (bei Zwischenmedium mit der optischen Brechzahl \(n = 1 \)) ergibt Formel (26c) bei einer typischen Betrachtungsentfernung \(E = E_{\text{min}} = 679,8 \) mm = 700 mm eine maximale Tiefe \(T_{\text{max}} = 437,5 \) mm. Damit beträgt das maximale "out-screening" \(\frac{T_{\text{max}}}{E_{\text{min}}} = 64,4\% \). Der Betrachter konvergiert seine Augen auf das Bild im Abstand \((E_{\text{min}} - T_{\text{max}}) = 242,3 \) mm zwischen der er- findungsgemäßen autostereoskopischen Anordnung und seinen Augen, d.h. auf eine typi- sche Leseentfernung (die sog. "Normsehweite" = 250 mm).

Bei den autostereoskopischen Anordnungen im Stand der Technik sind so große relative Tiefen \(T_{\text{max}}/E = 64 \% \) prinzipiell nicht erreichbar, sie liegen statt dessen nur bei ca. 10% bis 15%. Wegen der im Stand der Technik (z.B. DE 100 03 326 C2) vollkommen beseitigten Kanal trennung entstehen prinzipiell bei Tiefen \(T \neq 0 \) gleichzeitig sichtbare Mehrfachbilder ein und desselben Gegenstandes der räumlichen Szene im Abstand der horizontalen Parallaxe \(p \) und in einer Anzahl, die der Anzahl \(k \) der verwendeten Ansichten (zum Beispiel \(k = 8 \)) entspricht. Zur Minimierung der Auffälligkeit \(p \) von Mehrfachbildern bleibt im Stand der Technik nur die Möglichkeit, die Tiefe \(T \) so weit zu reduzieren, daß Mehrfachbilder zu einem unscharfen, im Farb- und Helligkeitskontrast reduzierten und damit verfälschten Bild des Gegen- standes zusammenrücken. Um die Sichtbarkeit auch dieser Qualitätsmängel zu erschweren,
Ist man im Stand der Technik gezwungen, die Bilder mit Tiefen $T > 0$ mit schneller horizontaler Bildbewegung darzubieten.

Fig.8a und _Fig.8b_ zeigen die Möglichkeiten einer solchen erfindungsgemäßen 3D-Kombinations-Bildwiedergabeeinrichtung. Darin wurde der Element-Pitch B_{12} der Barriere jeweils so gewählt, daß die Bildebene mit der Tiefe T_{max} jeweils im Abstand $(E-T_{\text{max}}) = 250$ mm vor dem Betrachter liegt. Bei einer Breite $B_{\text{aw}} = 6000$ mm der 3D-Kombinations-Bildwiedergabeeinrichtung beträgt das extreme „out-screening“ $T_{\text{max}}/E = 84,4\%$, wobei sich der Betrachter im Abstand $E = 1603,3$ mm vor der 3D-Kombinations-Bildwiedergabeeinrichtung befindet.

Selbstverständlich können bei so großen Betrachtungsentfernungen E Bildschirme mit geringerer „Auflösung“ kombiniert werden. Entscheidend dafür kann der Sehwinkel sein, unter dem die das Teilbild/Bild erzeugenden Strukturen erscheinen. Im vorliegenden Beispiel beträgt dieser Sehwinkel 1,9 Winkelminuten. Dieser kann durchaus vergrößert werden, denn die erfindungsgemäße autostereoskopische Anordnung ist nicht auf unaufgelöste Strukturen des Teilbildes/Bildes beschränkt.

Zur Akkommodation und Konvergenz, "Entkoppelungszwang": Einwände gegen große relative Tiefen $T_{\text{max}}/E_{\text{min}}$ sind unbegründet. Die notwendige Entkoppelung von Akkommodation und Konvergenz ist weitgehend trainierbar. Asthenopische Beschwerden sind vermeidbar. Experimente bestätigen diese Aussagen, die im folgenden begründet wird.

Der menschliche Sehapparat ist sogar zu „entgegengesetzter“ Konvergenz in der Lage, indem die Augen im Schlaf oder bei Lidschluß über die Parallelstellung hinaus divergieren, sich nach oben und außen richten und von der Akkommodation vollkommen „entkoppeln“. Im Wachzustand und mit offenen Augen ist bereits eine ständige Muskelanspannung (Konvergenzmuskel-Tonus) notwendig, um die normale Parallelstellung der Augen aufrecht zu erhalten, während die Akkommodation auf Unendlich erfolgt. Das geschieht ganz zwanglos.

In der Augenoptik ist bekannt, daß bei festgehaltener Akkommodation das Einfachsehen auch bei vorgeschalteten Prismengläsern durch „fusionale“ Konvergenz möglich ist. Der Quotient AC/A, gemessen in cm, aus „accommodative convergence“ in cm/m und „accommodation“ in Dioptrien dpt (1 dpt = 1/m) ist von Mensch zu Menschen verschieden, für den einzelnen aber eine altersunabhängige individuelle Konstante. Der durchschnittliche Wert beträgt AC/A = 4 cm, im allgemeinen 3 cm bis 5 cm, und ist damit stets kleiner als der Idealwert = A cm (A = Pupillenabstand).

Ein Beispiel soll den Sachverhalt deutlich machen. Fixiert ein normalsichtiger Betrachter einen Punkt in der Entfernung E = 1 m, so beträgt seine Akkommodation +1 dpt. Die dafür notwendige Konvergenz, also das Einwärtschwenken beider Augen auf E = 1000 mm, beträgt das Doppelte der halben Pupillendistanz A/2 = 3,25 cm, also 6,5 cm auf 1000 mm.

Damit beträgt der Quotient aus notwendiger Konvergenz und aufgebrachter Akkommodation 6,5 cm. Dem gegenüber steht der AC/A-Quotient von nur 4 cm. Die „akkommodative“ Konvergenz reicht zur Fixation nicht aus, sie liefert nur 2 cm auf E = 1000 mm für jedes Auge.
Schon der Normalsichtige muß also zusätzliche „fusionale“ Konvergenz von 2,5 cm auf 1000 mm aufbringen.

In der Praxis, wo die Brillengläser oft die gesamte Akkommodationsleistung übernehmen, fehlt dem Fehlsichtigen sogar die gesamte „akkommodative“ Konvergenz. Der Betroffene muß die Fixation beispielsweise auf die Lesentfernung E = 500 mm allein durch „fusionale“ Konvergenz von 6,5 cm auf 500 mm aufbringen.

Aus der Augenoptik ist bekannt, daß das neue Zusammenspiel zwischen Akkommodation, Konvergenz und Fusion nach der Brillenanpassung erlernterbar ist. Es verlangt jedoch Zeit und Geduld.

Bei der erfindungsgemäßen autostereoskopischen Anordnung mit Bildebenen in der Tiefe T = +500 mm muß der normalsichtige Betrachter aus der Entfernung E = 1000 mm („out-screening“ T/E = 50 %) die oben bereits genannte Akkommodation von 1 dpt aufwenden. Bei einem AC/A von 4 cm verfügt er über eine „akkommodative“ Konvergenz von 4 cm auf 1000 mm = 2 cm auf 500 mm. Seine notwendige „fusionale“ Konvergenz beträgt 4,5 cm auf 500 mm. „Akkommodative“ Konvergenz und „fusionale“ Konvergenz leisten zusammen die Konvergenz bzw. das Einwärtschwenken seiner Augen um 6,5 cm auf Punkte in der Bild- ebene mit der Tiefe T = +500 mm, während seine Augen auf den Bildschirm in der Entfernung E = 1000 mm fokussieren.

Erst bei T = +618 mm und einem „out-screening“ T/E = 61,8 % ist aus unveränderter Betrachtungsentfernung E = 1000 mm dieselbe „fusionale“ Konvergenz von 6,5 cm auf 500 mm notwendig wie beim Brillenträger oben.
Dieses Beispiel macht deutlich, daß Menschen mit einem AC/A = 5 weniger, mit einem AC/A = 3 mehr motorische "fusionale" Konvergenz aufwenden müssen.

5 Damit ist gezeigt, daß die Argumentation mit dem "Entkoppelungszwang" mitunter nur ein willkommenes "Schutzargument" ist.

Es ist unzulässig, eventuelle asthenopische Beschwerden bei der Arbeit an stereoptischen 3D-Displays/Projektoren des Standes der Technik oder an der erfindungsgemäßen autostereoskopischen Anordnung vorschnell der Entkoppelung von Akkommodation und (akkommodativer) Konvergenz anzulasten.

Für die Durchführung serióser und ausschließlich stereoptischer Asthenopie-Tests bedeutet das den Ausschluß aller klinischen, sozialen, arbeitshygienischen und vor allem optischen Ursachen für asthenopische Beschwerden der jeweiligen Testpersonen.

25 **Zur Helligkeit in den Teilbildern/Bildern:** Die Helligkeit in Gestalt der photometrischen Flächenleuchtdichte in den Teilbildern/Bildern der erfindungsgemäßen autostereoskopischen Anordnung kann größer sein als im Stand der Technik bei einem 3D-Display mit acht Ansichten. Für die Helligkeit des monochromen R-, G- oder B-Bildes eines 3D-Displays im Stand der Technik mit acht Ansichten und einer an die optimale Betrachtungsentfernung E' des Stand der Technik angepaßten Breite B_{SE} der Barriere-Elemente gilt bei Vernachlässigung opaker "black matrix" und anderer helligkeitsmindernder Bestandteile von TFT-LCD des Stand der Technik

\[
L_{F,Std,T,G} = \frac{1}{3} \cdot \frac{1}{8} L_{SP,G} = \frac{1}{24} L_{SP,G} = \frac{1}{8} L_{F,G,2D}
\]

Darin sind

\[L_{F,Stand der Technik,G}\] Flächenleuchtdichte eines grünen (roten, blauen) Bildes auf dem Bildschirm im Stand der Technik,

\[L_{SP,G}\] Leuchtdichte der grünen (roten, blauen) Subpixel des Bildschirms,
$L_{F,G,\text{red}}$: Flächenleuchtdichte eines grünen (roten, blauen) Bildes auf dem Bildschirm im Stand der Technik

In diesem Abschnitt der Beschreibung wird die Helligkeit (in Gestalt der photometrischen Flächenleuchtdichte) im Teilbild/Bild der autostereoskopischen Anordnung ausführlicher als weiter unten behandelt.

Für die Helligkeit in der erfindungsgemäßen autostereoskopischen Anordnung werden drei Fälle unterschieden.

Fall 1: $B_{1E} = n_1 m' B_{1P}$ (1-D/T), mit $n_1 \geq 1$, n_1 ganze Zahl
Fall 2: $n_2 B_{1E} = m' B_{1P}$ (1-D/T), mit $n_2 \geq 2$, n_2 gerade ganze Zahl
Fall 3: $B_{1E} = (m' n_3) B_{1P}$ (1-D/T), mit $n_3 \geq 4$, n_3 gerade ganze Zahl

Auf eine allgemeingültige Beziehung für die Helligkeit in den Teilbildern/Bildern der erfindungsgemäßen autostereoskopischen Anordnung wird im folgenden verzichtet. Eine solche kann im Bedarfsfall aus der Theorie der Moire-Erscheinungen abgeleitet werden.

Im Fall 1 und Fall 2 haben nur grüne (rote, blaue) Subpixel im Abstand des Objekt-Pitches $m' B_{1P}$ eine Helligkeit > 0 (leuchtende, eingeschaltete Subpixel, "W_1-Subpixel"). Alle anderen grünen (roten, blauen) Subpixel haben die Helligkeit $= 0$ (nicht leuchtende, ausgeschaltete Subpixel).

Im Fall 3 leuchten sowohl grüne (rote, blaue) Subpixel im Abstand des Objekt-Pitches $m' B_{1P}$ ("W_1-Subpixel") als auch zusätzliche grüne (rote, blaue) Subpixel, deren Abstand kleiner ist als der Objekt-Pitch $m' B_{1P}$. Alle anderen grünen (roten, blauen) Subpixel haben die Helligkeit $= 0$ (nicht leuchtende, ausgeschaltete Subpixel).

Im Fall 1 gelten für die Helligkeit im Teilbild/Bild beim selben 2D-Basis-Display wie im Stand der Technik und bei (nur) horizontaler Bewegungsparallaxe der Teilbilder/Bilder in der Bildebene mit der Tiefe T die Formeln (28a) bis (28d).

$$L_{F,G} = 3 \cdot \frac{B_{1E,\text{SatT}}}{B_{1E}} L_{F,SatT,G} = 3 \cdot \frac{m' B_{1P}}{n_1 m' B_{1P}} \cdot (E - D) \cdot \frac{E}{T - D} \cdot \frac{T}{E} L_{F,SatT,G} \approx 3 \cdot \frac{m' B_{1P}}{n_1 m' B_{1P}} \cdot \frac{24 C}{n_1 m' B_{1P}} L_{F,SatT,G}$$

(28a), (28b), (28c)

$$L_{F,G} \approx \frac{24 C}{n_1 m' B_{1P}} L_{F,SatT,G}$$

(28d)
Darin sind
\[L_{F,G} \] Flächenleuchtichte eines grünen (roten, blauen) Teilbildes/Bildes der erfindungsgemäßen autostereoskopischen Anordnung,
\[B_{1E, \text{Stand der Technik}} \] horizontaler Element-Pitch des Filterarrays im Stand der Technik
\[B_{1E} \] horizontaler Element-Pitch der Barriere,
\[m'_{\text{Stand der Technik}} \] reelle Zahl, absoluter Betrag > 0, im Stand der Technik bei acht Ansichten
\[m'_{\text{Stand der Technik}} = \frac{8}{3} = 2,6667 \]
\[m'_{\text{Stand der Technik}}B_{1P} \] Ansichten-Pitch bzw. horizontaler Abstand zwischen Subpixeln mit derselben Ansicht, im Stand der Technik bei acht Ansichten
\[m'_{\text{Stand der Technik}}B_{1P} = 8C \]
\[C \] Subpixel-Breite bzw. horizontaler Subpixel-Pitch des Bildschirms

Der letzte Faktor in (28b) ist von untergeordneter Bedeutung, da er im allgemeinen wegen \(E, T >> D \) nur wenig von Eins abweicht (im Fall \(Aa > 1 \)). Wichtiger ist der zweite Faktor. Im Stand der Technik ist bei acht Ansichten
\[B_{1E, \text{Stand der Technik}} = m'_{\text{Stand der Technik}}B_{1P} = 8C. \]

Bei der erfindungsgemäßen autostereoskopischen Anordnung kann \(B_{1E} \) beim gleichen 2D-Basis-Display und Pixel-Pitch \(B_{1P} = 3C \), je nachdem welchen Wert \(m' \) hat, unterschiedliche Werte annehmen (Formel (7a)).

Beispielsweise kann der Objekt-Pitch \(m'B_{1P} = 4 \times 3C = 12C \) betragen, mit \(m' = 4 \), und der Element-Pitch \(B_{1E} \) der Barriere für \(n_1 = 1 \) ergeben. In diesem Beispiel sind die monochromen Teilbilder/Bilder der erfindungsgemäßen autostereoskopischen Anordnung doppelt so hell wie die monochromen Bilder im Stand der Technik, \(L_{F,G} = 2L_{F, \text{Stand der Technik}} \). Die Helligkeit der erfindungsgemäßen autostereoskopischen Anordnung mit \(N >>> 8 \) Ansichten entspricht in diesem Beispiel also der eines 3D-Displays im Stand der Technik mit nur vier Ansichten anstelle acht Ansichten.

Mit demselben Objekt-Pitch \(m'B_{1P} = 12C \) aber \(n_1 = 2 \) haben die monochromen Teilbilder/Bilder der autostereoskopischen Anordnung die gleiche Helligkeit wie die monochromen Bilder im Stand der Technik mit acht Ansichten, \(L_{F,G} = L_{F, \text{Stand der Technik}} \). Dasselbe gilt, wenn der Objekt-Pitch \(m'B_{1P} = 24C \) gewählt wird, mit \(m' = 8 \) und der Element-Pitch \(B_{1E} \) der Barriere für \(n_1 = 1 \) ergibt.

Andererseits ist beispielsweise mit \(m' = 1 \), Objekt-Pitch \(m'B_{1P} = 3C \) und \(n_1 = 1 \) die Helligkeit der erfindungsgemäßen autostereoskopischen Anordnung 8-fach größer als die des 3D-Displays im Stand der Technik mit acht Ansichten und damit genau so groß wie die Helligkeit
des monochromen Bildschirmes des 2D-Basis-Displays/von monochromen 2D-Bildern auf
dem Bildschirm/von einem „3D-Display“ mit nur einer Ansicht.

Im Fall 1 entstehen durch die grünen (roten, blauen) Subpixel im Abstand m'B_{1P} ("W_{1}-
Subpixel") Teilbilder/Bilder im Abstand des Bild-Pitchs W_{1}. Zusätzliche monochrome grüne
(rote, blaue) Subpixel, deren Abstand kleiner als der Objekt-Pitch m'B_{1P} ist, erzeugen Teilbil-
der Innerhalb des Bild-Pitchs W_{1} mit derselben Helligkeit gemäß Formel (28d) und mit Posi-
tionen, die den Positionen der zusätzlichen Subpixel entsprechen (T < 0) oder horizontal
invers dazu angeordnet sind (T > 0).

Im Fall 2 entstehen innerhalb des Bild-Pitchs W_{1} mehrere Teilbilder mit der Helligkeit gemäß
Formel (28e) und dem Teilbild-Pitch w_{1}, wobei die Anzahl der Teilbilder = n_{2} ist.

\[L_{F,G} \approx \frac{24C}{m' B_{1P}} L_{F,Std,G} \quad (28e) \]

Im Fall 3 entstehen innerhalb des Bild-Pitchs W_{1} mehrere Teilbilder mit dem Teilbild-Pitch w_{1}
und unterschiedlicher Helligkeit, wobei für die maximale Helligkeit Formel (28f) gilt.

\[L_{F,G,\max} \approx \frac{k \cdot 24C}{m' B_{1P}} L_{F,Std,G} \quad (28f) \]

Darin sind

\[L_{F,G,\max} \]: maximale Flächenleuchtdichte eines grünen (roten, blauen) Teilbildes/Bildes der
erfindungsgemäßen autostereoskopischen Anordnung

\[k-1 \]: Anzahl benachbarter zusätzlicher leuchtender grüner (roter, blauer) Subpixel, deren
Abstand kleiner ist als der Objekt-Pitch m'B_{1P}.

Bei einem Objekt-Pitch m'B_{1P} = 12C mit m' = 4 und einem Element-Pitch B_{1E} der Barriere,
welcher n_{3} = 4 ergibt sowie einem zusätzlichen grünen (roten, blauen) Subpixel im Abstand
= 3C oder im Abstand = 6C zum nächstgelegenen "W_{1}-Subpixel" ist k = 2. In diesen beiden
Beispielen sind alle n_{3} = 4 monochromen Teilbilder der erfindungsgemäßen autostereosko-
pischen Anordnung 4x so hell wie die monochromen Bilder im Stand der Technik, L_{F,G} =
L_{F,G,\max} = 4 L_{F,Std,Technik,G}.

Wird ein zweites zusätzliches grünes (rotes, blaues) Subpixel im Abstand = 3C zum ersten
zusätzlichen Subpixel oder zwischen dem "W_{1}-Subpixel" und dem ersten zusätzlichen Sub-
pixel eingeschaltet, k = 3, ist die Helligkeit der n_{3} = 4 monochromen Teilbilder der erfin-
dungsgemäßen autostereoskopischen Anordnung 6x so groß wie die der monochromen
Bilder im Stand der Technik, L_{F,G} = L_{F,G,\max} = 6 L_{F,Std,Technik,G}.
Schließlich wurde experimentell bestätigt, daß die Helligkeit in den $n_3 = 4$ Teilbildern 8x so groß ist wie im Stand der Technik, wenn ein drittes, letztes leuchtendes monochromes Subpixel im verbleibenden Abstand = 3C eingefügt wird, $L_{F,0} = L_{F,0,max} = 8 \cdot L_{F,\text{Stand der Technik}} \cdot C$. Mit $k = m' = 4$ sind dann alle grünen (roten, blauen) Subpixel innerhalb des Objekt-Pitches $m'B_{1p} = 12C$ eingeschaltet. Damit ist die Helligkeit der erfindungsgemäßen autostereoskopischen Anordnung genau so groß wie die Helligkeit des monochromen Bildschirmes des 2D-Basis-Displays.

Es sei angemerkt, daß in dem letzten Beispiel und bei Homogenisierung der Helligkeit zwischen den Teilbildern, wie oben bereits beschrieben, die zu den Teilbildern in der Bildebene mit der Tiefe T gehörende Fläche der Objektebene, also der Ebene des Bildschirms, für jedes Auge des Betrachters kleiner sein soll als die Gesamtflächen des Bildschirms in horizontaler Richtung unter Berücksichtigung der stereoskopischen Parallaxe der monokularen Fläche der Teilbilder. Auf diese Weise erscheinen auch große homogene monochrome Flächen als helles grünes (rotes, blaues) 3D-Bild beispielsweise in der Bildebene mit der extremen Tiefe $T > 0$ vor schwarzem Hintergrund.

Bei einem Objekt-Pitch $m'B_{1p} = 12C$ mit $m' = 4$ und einem Element-Pitch B_{1E} der Barriere, welcher zu $n_3 = 2$ gehört, ergeben sich wegen des halb so großen Element-Pitches B_{1E} der Barriere, je nach dem wie groß k ist, von Formel (28f) abweichende geringere und zum Teil unterschiedliche Helligkeiten sowie unterschiedliche Anzahl der Teilbilder innerhalb des Bild-Pitches W_1. Bei $k = 1$ entstehen zwei Teilbilder mit doppelter Helligkeit als im Stand der Technik, bei $k = 2$ werden zwei Teilbilder mit doppelter Helligkeit dazwischen "eingefügt", so daß vier Teilbilder mit doppelter gleicher Helligkeit entstehen. Bei $k = 3$ verdoppelt sich die Helligkeit der beiden Teilbilder von $k = 1$ (es liegt bzgl. dieser beiden Teilbilder der Fall 1 mit $n_1 = 1$ und $m' = 2$ vor), so daß vier Teilbilder mit abwechselnd doppelter und vierfacher Helligkeit entstehen, bei $k = 2$ und zusätzlichem grünem (roten, blauen) Subpixel im Abstand = 6C (Fall 1 mit $n_1 = 1$ und $m' = 2$) anstelle im Abstand = 3C entstehen zwei Teilbilder im Abstand wie bei $k = 1$, aber mit vierfacher Helligkeit.

Die monochromen Teilbilder/Bilder der erfindungsgemäßen autostereoskopischen Anordnung bestehen (im Fall mit horizontaler Bewegungsparallaxe) aus parallelen vertikalen grünen (roten, blauen) Linien. Derartige Bilder sind im Stand der Technik wohlbekannt und nicht ungewöhnlich. Beispielsweise sind die Teilbilder/Bilder der erfindungsgemäßen autostereoskopischen Anordnung analog zum (horizontal) gestreiften 2D-Firmenlogo von IBM. Laufschriften und Laufanzeigen werden häufig aus Leuchtpunkten gebildet (siehe Fig. 19b), wobei auch diese einen deutlichen visuellen Abstand voneinander haben.
Es sei angemerkt, daß die Streifigkeit dem Stand der Technik bei pixel- oder subpixel-strukturierten digitalen Bildschirmen (LCD, PDP, LED, OLED) geschuldet ist. Das erfindungsgemäße 3D-Verfahren kann jedoch durchaus Teilbilder/Bilder in Bildebenen mit der Tiefe T erzeugen, deren Linien- oder Punktdichte so groß ist, daß diese vom Betrachter visuell nicht mehr aufgelöst werden. Beispielsweise kann als Bildschirm ein analoger fotografischer Color-Film mit einer Auflösung 1/C = 120 Linienpaare/mm (C = 0,00833 mm) verwendet werden. Mit einem fotografischen Objekt-Pitch m'B_{1p} = 0,1000 mm, einem Abstand D = 1,2484 mm und einer Barriere mit dem Element-Pitch B_{1E} = 0,0998 mm entsteht eine Bildebene in der Tiefe T = +500 mm mit dem Bild-Pitch W_{1} = 39,95 mm. Die Liniendichte im Teilbild/Bild ist ungefähr eine Größenordnung höher als bei den digitalen Bildwiedergabeinrichtungen und beträgt 1/B_{1E} = ca. 10 Linien/mm.

Die oben mit den Formeln (28) für die drei Fälle sowie für n_{3} = 2 beschriebenen, bis zu 8-fach größeren Helligkeiten (Flächenleuchttdichten) des erfindungsgemäßen 3D-Verfahrens im Vergleich zum Stand der Technik haben ihre Ursache in der größeren Liniendichte der parallelen vertikalen grünen (roten, blauen) Linien. Im Fall 1 (B_{1E} \leq m'B_{1p}) ist die Liniendichte umgekehrt proportional zum Element-Pitch B_{1E} der Barriere. Im Fall 2 (B_{1E} < m'B_{1p}, k = 1) ist die Liniendichte umgekehrt proportional zum Objekt-Pitch m'B_{1p} auf dem Bildschirm. Im Fall 3 (B_{1E} < m'B_{1p}, k > 1) existiert auf dem Bildschirm innerhalb des Objekt-Pitchs m'B_{1p} mindestens noch ein (k = 2) kleinerer Pitch leuchtender grüner (rote, blaue) Subpixel.

Zusammenfassend wächst die Helligkeit der Teilbilder/Bilder bei der erfindungsgemäßen autostereoskopischen Anordnung in der Bildebene mit der Tiefe T mit abnehmendem Element-Pitch B_{1E} der Barriere und abnehmendem m' (m' \rightarrow MIN = 1) und immer dann, wenn den transparenten Elementen der Barriere leuchtende grüne (rote, blaue) Subpixel des Bildschirms mit dem verallgemeinerten Objekt-Pitch m'''m'B_{1p} nach den Formeln (7c) und (7d) zugeordnet werden.

\[m'''m'B_{1p} = \frac{m'B_{1E}}{1 - \frac{D}{T}} \left(m'''m'B_{1p} - (m'B_{1E}) \right) = MIN \quad (7c), (7d) \]

Im Portrait-Modus bei der erfindungsgemäßen autostereoskopischen Anordnung gelten dieselben Relationen zwischen den Helligkeiten für die weißen, vollfarbigen Teilbilder/Bilder wie oben in den Fällen 1, 2, 3 und \(n_3 = 2 \) beim Standard-Modus für monochrome Teilbilder/Bilder beschrieben. Unter der vereinfachenden Voraussetzung, daß die Leuchtdichte der RGB-Subpixel gleich ist und die Leuchtdichte eines weißen RGB-Pixels das 3-fache der monochromen Leuchtdichte eines Pixels beträgt, und die Breite \(B_{OE} \) der transparenten Elemente der Barriere an eine ausgewählte (typische) Entfernung nach Formel (17) angepaßt ist, wobei \(B_{OP} = C \) die Subpixel-Breite im Standard-Modus ist, sind die Flächenleuchtdichten in den Teilbildern/Bildern in beiden Modi gleich.

Im Vergleich zu einem weißen Bildschirm ohne Barriere beträgt die Helligkeit in weißen Teilbildern/Bildern wegen \(B_{OP} = B_{1p}/3 \) nur ein Drittel.

Im Portrait-Modus lautet die Homogenitätsbedingung

\[
B_{OE} = B_{OE, hom} = B_{OP} \left(1 - \frac{D}{T}\right) = C \cdot \frac{1 - \frac{D}{T}}{3m'} = \frac{B_{1p}}{3m'} \tag{30a}, (30b), (30c)
\]

Vergleicht man die Homogenitätsbedingung im Standard-Modus gemäß den Formeln (20a), (20b), (20c) mit der Homogenitätsbedingung im Portrait-Modus gemäß den Formeln (30a), (30b), (30c), stellt man fest, daß die Produkte aus Subpixel-Breite \(B_{OP} = C \) und Element-Breite \(B_{OE} + \Delta B_{OE} = 3B_{OE} \) sowie aus Pixel-Breite \(3B_{OP} = 3C \) und Element-Breite \(B_{OE} \) gleich sind.

Wird die Breite \(B_{OE} \) der transparenten Elemente der Barriere an die (leuchtende) Pixel-Breite \(3B_{OP} = B_{1p} = 3C \) angepaßt, ist wegen \(\Delta_{rel} = 0 \) die Vollwertsbreite \(VWB = 0 \), siehe Formel (16f). Für die Gesamt-(Halbwerts)Breite eines Teilbildes wird

\[
H_{WB, \text{ges,Portrait}} = H_{WB, \text{Portrait}} \tag{31a}
\]

Insgesamt ergeben sich für die Gesamt-(Halbwerts)Breiten \(H_{WB, \text{ges}} \) im Portrait-Modus dieselben Werte wie im Standard-Modus mit \(\Delta_{rel} = 2 \).

\[
H_{WB, \text{ges,Portrait}} = H_{WB, \text{ges,Standard}} \Delta_{rel} = 2 \tag{31b}
\]
Wie im Standard-Modus ist auch im Portrait-Modus bei \(-1 \leq \Delta_{rel} < 0\) die Gesamt-
(Halbwerts)Breite \(HWB_{ges,Portrait}\) konstant und es wird wie dort auf maximale Flächenleuchtdichte im Teilbild/Bild verzichtet. Visuell erscheinen die Teilbilder im Portrait-Modus breiter, weil beispielsweise die bei der \(HWB_{ges}\) sichtbaren 50% der Subpixel-Breite noch 3-fach breiter sind als im Standard-Modus.

Die Halbwertsbreiten \(HWB\) sind in beiden Modi verschieden:

\[
HWB_{Portrait} = 3 \cdot HWB_{standard, \Delta_{rel}=2}
\]

(31c)

Dadurch, daß auch im Portrait-Modus eine Homogenitätsbedingung erfüllt werden kann, haben Bilder in Bildebenen mit der Tiefe \(T\), die aus Teilbildern zusammengesetzt sind, eine homogene Helligkeit innerhalb und zwischen den Teilbildern.

In Fig.9 ist für den „Standard-Modus“ und den „Portrait-Modus“ der örtliche Helligkeitsverlauf, also der Verlauf der Flächenleuchtdichte, im Teilbild/Bild schematisch dargestellt. Für jeweils drei unterschiedliche Breiten \(B_{ref,ges} = B_{ge} + \Delta B_{ge}\) der transparenten Elemente der Barriere sind die Gesamt-(Halbwerts)Breite \(HWB_{ges}\), die Halbwertsbreite \(HWB\) und die Vollwertsbreite \(VWB\) eingetragen.

Es sei angemerkt, daß für Bildschirme mit räumlicher und/oder zeitlicher Vollfarb-Pixelstruktur die Unterscheidung in der oben beschriebenen Weise nach Standard- und Portrait-Modus nicht relevant ist. Das erfindungsgemäße 3D-Verfahren ist auf solche Bildschirme uneingeschränkt anwendbar.

Es sei weiter angemerkt, daß es sich bei der Helligkeit bei der erfindungsgemäßen autostereoskopischen Anordnung um die Flächenleuchtdichte im Teilbild/Bild handelt und nicht um eine Flächenleuchtdichte der gesamten Bildebene in der Tiefe \(T\). Diese besteht im allgemeinen aus hellen oder dunklen Teilbildern/Bildern in dunkler bzw. heller Umgebung, wobei "dunkel" und "hell" durch Subpixel des Bildschirms mit 0 Digit/0 < Digit ≤ 255 erzeugt sein kann.

Für die Beschreibung der in der Bildebene mit der Tiefe T wahrnehmbaren Erscheinungen kann das Verfahren gemäß DE 102 41 475 A1 genutzt werden.

Alternative Ausgestaltung im Rahmen der Erfindung:

Bei dieser Ausgestaltung handelt es sich um eine autostereoskopische Anordnung
mit einer sehr großen Zahl von dargestellten Ansichten einer Szene/eines Gegenstandes/eines Textes, bei dem die bildwirksamen Subpixel/Pixel/Flächenelemente der linken Ansicht und die bildwirksamen Subpixel/Pixel/Flächenelemente der rechten Ansicht auf der Bildwiedergabeinrichtung nicht deckungsgleich sind,

bei der horizontal und/oder vertikal benachbarten Subpixel/Pixel/Flächenelemente der Bildwiedergabeinrichtung optisch in mindestens einer Bildebene mit der Tiefe T superpositioniert werden, wobei sich die Tiefe T gemäß den Gleichungen

\[T = \frac{D}{1 - \frac{B_{1E}}{m'B_{1P}}} \quad \text{und} \quad B_{1P} = 3C \]

ergibt, worin gilt

- T ist der gerichtete Abstand der Bildebene von der Bildwiedergabeinrichtung (gerichtete Tiefe),
- D ist der gerichtete Abstand zwischen Barriere und Bildwiedergabeinrichtung,
- \(B_{1E} \) ist der horizontale/vertikale Element-Pitch der Barriere,
- \(B_{1P} \) ist der horizontale/vertikale Pixel-Pitch der Bildwiedergabeinrichtung,
- \(m' \) ist eine reelle Zahl, absoluter Betrag \(m' \geq 1 \),
- \(m'B_{1P} \) ist der horizontale/vertikale Objekt-Pitch der Bildwiedergabeinrichtung,
- C ist der horizontale Subpixel-Pitch bei RGB-basierter Bildwiedergabeinrichtung, sonst der Pixel-Pitch,
- wobei sich die Betrachtungsentfernungen gemäß der Gleichung

\[E = \pm T \left(\frac{A}{\pm mB_{1P}} + 1 \right) \]

ergeben, worin gilt

- E ist die Betrachtungsentfernung von der Bildwiedergabeinrichtung (\(E > 0 \)),
- A ist der mittlere Pupillenabstand des Betrachters,
- m ist eine reelle Zahl mit absolutem Betrag \(m > 2 \),
- \(m'B_{1P} \) ist die gerichtete horizontale/vertikale Strecke auf der Bildwiedergabeinrichtung,
- wobei die +/- Zeichen für Bildebenen vor/hinter der Bildwiedergabeinrichtung und unabhängig davon gelten, ob die Barriere vor oder hinter der Bildwiedergabeinrichtung angeordnet ist,
- bei der ferner ein Bildpunkt des dargestellten Bildes in der Bildebene mit der Tiefe T optisch einer großen Zahl von horizontal und/oder vertikal benachbarten Subpixeln/Pixeln/Flächenelementen der Bildwiedergabeinrichtung zugeordnet ist,
- bei der das linke und das rechte Auge des Betrachters bildwirksame Subpixel/Pixel/Flächenelemente mit im wesentlichen gleicher Helligkeits- und Farbinformation auf der Bildwiedergabeinrichtung sehen,
bei der die Superposition von benachbarten Subpixeln/Pixeln/Flächenelementen der Bildwiedergabeinrichtung mittels einer abbildenden optischen Vorrichtung, die vor und/oder hinter der Bildwiedergabeinrichtung angeordnet ist, bewerkstelligt wird,

bei der der Pitch der optischen Vorrichtung bevorzugt variabel ist,

bei der durch binokulare Betrachtung des 3D-Displays Bilder in mindestens einer Bildebene mit der Tiefe T sichtbar sind, wobei die Bildebenen nicht mit der Ebene der Bildwiedergabeinrichtung zusammenfallen,

bei der die Bildebenen in den Tiefen $T > 0$ (vor der Bildwiedergabeinrichtung) und/oder in Tiefen $T < 0$ (hinter der Bildwiedergabeinrichtung) erscheinen,

bei der die Bilder in Bildebenen mit der Tiefe $T > 0$ ähnlich reellen Bildern bei einer reellen optischen Abbildung auf einem Schirm, der in dieser Bildebene angeordnet ist, optisch aufgefangen werden können, und

bei der schließlich mehrere Betrachter gleichzeitig einen weiten Betrachtungsraum Δx, Δy, Δz nutzen können, innerhalb dessen die Bilder eine natürliche Bewegungsparallaxe in allen Raumrichtungen besitzen, wobei ihre Tiefe T konstant und unabhängig von der Betrachtungsentfernung ist.

Dabei sollten ferner für den horizontalen und/oder vertikalen Pitch der optischen Vorrichtung die folgenden Gleichungen gelten

$$B_{1E} < B_{1E'S} = m'B_{1p} \left(1 - \frac{D}{E'}\right)$$ sowie

für $T < 0$:

$$B_{1E} > B_{1E'S} = m'B_{1p}$$ und/oder

für $T > 0$:

$$B_{1E} > B_{1E'S} = m'B_{1p} \left(1 + \frac{D}{E}\right)$$ sowie

für $T < 0$:

$$B_{1E} < B_{1E'S} = m'B_{1p}$$, worin gilt

$B_{1E'S}$ ist der Element-Pitch der Barriere für die "angepaßte" Betrachtungsentfernung E' und

E' ist die "angepaßte" Betrachtungsentfernung.

Der Betrachtungsraum für ein und dasselbe Bild ergibt sich gemäß den Gleichungen

$$\Delta x, \Delta y = A(i - 1) = \frac{E}{T} \left(O_y - jW_1\right) - \left(O_y - A\right)$$ und

$$\Delta z = E \frac{(O_y - O_{11}) \left(1 - T\right)}{O_y}$$, worin gilt

Δx, Δy ist der Bewegungsbereich des Betrachters in der Betrachtungsebene im Abstand E bezüglich der Bildebene mit der Tiefe T, $O_{11} \geq W_1$ und
Δz ist der Bewegungsbereich des Betrachters in Normalen-Richtung für die Bildebene mit der Tiefe T im Fall $O_\| \gg W_1$, siehe Formel (25) weiter oben.

Vorteilhaft gilt weiterhin, daß der Quotient aus dem Pitch der optischen Vorrichtung und dem Objekt Pitch der Bildwiedergabe einrichtung bei Anordnung der optischen Vorrichtung vor der Bildwiedergabe einrichtung kleiner ist als bei Bildebene vor der Bildwiedergabe einrichtung (Tiefe $T > 0$) und größer als 1 ist bei Bildebene hinter der Bildwiedergabe einrichtung ($T < 0$), wobei ferner der Quotient aus dem Pitch der optischen Vorrichtung und dem Objekt-Pitch der Bildwiedergabe einrichtung bei Anordnung der optischen Vorrichtung hinter der Bildwiedergabe einrichtung größer ist als bei Bildebene vor der Bildwiedergabe einrichtung ($T > 0$) und kleiner als 1 ist bei Bildebene hinter der Bildwiedergabe einrichtung ($T < 0$).

Der Pitch der optischen Vorrichtung wird im Falle, daß diese von passiver Natur ist, hardwaremäßig eingestellt oder geändert.

Die Einstellung oder Änderung des Pitchs der optischen Vorrichtung erfolgt auf Teilflächen der optischen Vorrichtung.

Die Superposition benachbarter Subpixel/ Pixel/Flächenelemente der Bildwiedergabe einrichtung kann ebenso teilflächenweise erfolgen.

Die Teilflächen der Bildwiedergabe einrichtung Bildebene mit unterschiedlicher Tiefe T vor ($T > 0$) und/oder hinter ($T < 0$) sind der Bildwiedergabe einrichtung zugeordnet, wobei die Tiefe T in jeder dieser Bildebene einen örtlich und zeitlich konstanten Wert aufweist (statische frontoparallele Bildebene), indem der Quotient aus dem Pitch der optischen Vorrichtung und dem Objekt-Pitch der Bildwiedergabe einrichtung innerhalb der Teilflächen örtlich und zeitlich konstant ist.

Ferner kann gelten, daß den Teilflächen der Bildwiedergabe einrichtung Bildebene mit unterschiedlicher Tiefe T vor ($T > 0$) und/oder hinter ($T < 0$) der Bildwiedergabe einrichtung zugeordnet sind, wobei die Tiefe T in jeder dieser Bildebene einen örtlich konstanten Wert und in mindestens einer Bildebene einen zeitlich variablen Wert aufweist (mindestens eine dynamische frontoparallele Bildebene), indem der Quotient aus dem Pitch der optischen Vorrichtung und dem Objekt-Pitch der Bildwiedergabe einrichtung mindestens einer Bildebene zeitlich variabel ist.

Weiterhin ist es möglich, daß die zeitliche Variation des Quotienten aus dem Pitch der optischen Vorrichtung und dem Objekt-Pitch der Bildwiedergabe einrichtung in mindestens einer
Bildebene so erfolgt, daß der Betrachter eine kontinuierliche Änderung der Tiefe dieser frontoparallelen Bildebene wahrnimmt. In diesem Zusammen nimmt mit zunehmender oder abnehmender Tiefe (absoluter Betrag) der frontoparallelen Bildebene die Größe der zugehörigen Teilfläche der Bildwiedergabeeinrichtung zu oder ab.

Der Objekt-Pitch der Bildwiedergabeeinrichtung ist größer als der Subpixel-Pitch/ Pixel-Pitch/ Flächenelement-Pitch der Bildwiedergabeeinrichtung, er beträgt mindestens jedoch das Doppelte des Subpixel-Pitchs/ Pixel-Pitchs/ Flächenelement-Pitchs der Bildwiedergabeeinrichtung.

Außerdem kann das Synthetische Optische Element (SOE) eine optische Barriere mit in Zeilen und Spalten angeordneten optisch wirksamen Elementen sein.

Demgegenüber ist es auch möglich, daß die optische Vorrichtung ein optisches Linsenraster ist.

Ferner ist es von Vorteil, wenn die Zeilen der optischen Vorrichtung und die Zeilen der optischen Barriere parallel und/oder senkrecht zu den Zeilen der Bildwiedergabeeinrichtung orientiert sind.

Die optisch wirksamen Elemente sind transparente und schwarzopake Elemente und das Linsenraster besteht aus parallel zueinander ausgerichteten Zylinderlinsen oder aus Einzel- linsen in linearer oder wabenförmiger Anordnung mit großem Füllfaktor.

Das Synthetische Optische Element (SOE) ist parallel zur Bildwiedergabeeinrichtung angeordnet oder in vertikaler und/oder horizontaler Richtung zur Bildwiedergabeeinrichtung geneigt oder bei paralleler Anordnung um eine Normale um einen bestimmten Winkel gedreht.

Außerdem kann die optische Vorrichtung aus zwei Synthetischen Optischen Elementen SOE 1 und SOE 2 bestehen, die parallel zur Bildwiedergabeeinrichtung und in minimalem Abstand zu einander angeordnet sind, wobei sie gegeneinander um einen wählbaren Winkel verdreht sind und ihre Hauptachsen nicht zu den Hauptachsen der Bildwiedergabeeinrichtung parallel sind.

Ferner wird die Bildwiedergabeinrichtung im Standard-Modus oder im Portrait-Modus verwendet. Bevorzugt weist die Bildwiedergabeinrichtung keinen "Fliegengitter-Effekt" auf.

Unterschiedliche Bildinhalte werden dadurch erzeugt, daß die horizontale und/oder vertikale Ausdehnung der bildwirk samen Fläche je horizontalen oder vertikalen Objekt-Pitch oder die Zahl der bildwirk samen Vollfarbpixel oder RGB-Subpixel je horizontalen und/oder vertikalen Objekt-Pitch unterschiedlich und kleiner ist als der horizontale und/oder vertikale Objekt-Pitch oder die Gesamtzahl der Vollfarbpixel oder RGB-Subpixel je horizontalen und/oder vertikalen Objekt-Pitch.

"Falschfusionen" - insbesondere in Bildebenen mit Tiefen T < 0 - sollen vermieden werden.

In Bildebenen mit der Tiefe T < 0 wird ein Teil der horizontalen und/oder vertikalen Objekt-Pitch der Bildwiedergabeinrichtung in horizontaler und/oder vertikaler Richtung bildwirk sam gestaltet und der andere, nicht bildwirk sam gestaltete Teil der horizontalen und/oder vertikalen Objekt-Pitchs stellt mindestens eine nicht bildwirk samme Fläche dar.

Von Vorteil ist es ferner, wenn die Bildgestaltung in Bildebenen mit Tiefen T < 0 so erfolgt, daß der Betrachter bei Fixierung von Bildebenen mit der Tiefe T > 0 bei diesen Konvergenzstellungen seiner Augen keine fusionsfähigen Bildteile der Bilder in den Bildebenen mit den Tiefen T < 0 vorfindet.

In diesem Zusammenhang ist die Reihenfolge/Anordnung der bildwirk samen Fläche oder Flächen der Bildwiedergabeinrichtung innerhalb jedes bildwirk samen Objekt-Pitchs in horizontaler und/oder vertikaler Richtung bei Bildebenen mit der Tiefe T < 0 und bei Bildebenen mit der Tiefe T > 0 vertauscht/umgekehrt.

Teilflächen der Bildwiedergabeinrichtung sind ein und derselben Bildebene mit der Tiefe T zugeordnet und erzeugen unterschiedliche Bilder in dieser Bildebene, wobei in horizontal
nebeneinander angeordneten Teilflächen Farbe und Helligkeit der bildwirksamen Flächen vorzugsweise gleich sind und in vertikal übereinander angeordneten Teilflächen können Farbe und Helligkeit der bildwirksamen Flächen verschieden sein.

5 In Bildebenen mit der Tiefe T bei Bildern in nicht schwarzer Umgebung werden vorzugsweise zwei Bildebenen mit unterschiedlicher Tiefe T erzeugt, vorzugsweise eine Bildebene mit der Tiefe T < 0 und eine Bildebene mit der Tiefe T > 0.

15 Die Freiheit/Vielfalt in der Bildgestaltung wächst mit der Anzahl der Subpixel/Pixel/Flächen-enelemente pro horizontalen und/oder vertikalen Geekt-Pitch.

Der Helligkeitsverlauf im Bild wird durch den Quotient x_F/x_E gesteuert, wobei ein kontinuierlicher, symmetrischer Helligkeitsabfall zum Rand des Bildes bei $x_F/x_E \to 1$ erzielt wird.

20 Bildebenen mit varierbarer Tiefe T werden gegebenenfalls auch erzeugt, indem der Winkel zwischen den Synthetischen Optischen Elementen SOE 1 und SOE 2 variiert wird und gleichzeitig eine gleichgerichtete Drehung beider Synthetischer Optischer Elemente erfolgt.

25 Von Vorteil ist auch, wenn eine aktive optische Vorrichtung mit örtlich und/oder zeitlich variablen Geekt-Pitch verwendet wird.

30 Außerdem kann die Bildwiedergabeinrichtung so strukturiert werden, daß keine makroskopischen Strukturen entstehen, die störende Fusionsreize beim Betrachter auslösen.

35 Die Anwendungsbereiche auch dieser Ausgestaltung der Erfindung liegen in:
- 3D-Displays/Projektoiren in beliebigen Abmessungen mit tiefengestaffelten, gleichzeitig und nebeneinander angeordneten Bildebenen, auf denen optische/visuelle Informationen, beispielsweise mit Signalcharakter und/oder als Text und/oder als Ziffernanzeige und/oder als (einfaches) Bild, räumlich wahrnehmbar sind: Anzeigen/Automaten mit hohen Anforderungen oder hohem Gewinn an Aufmerksamkeit und/oder Erkennungssicherheit des Bedienenden/Nutzers,
3D-Display überall dort, wo mit extremem "out-screening" und/oder extremem Betrachtungsraum und/oder aus allen azimuthalen Raumrichtungen/bei allen azimuthalen Display-Orientierungen auf visuelle Weise beim Betrachter bestimmte Effekte/Wirkungen/Überraschung erzeugt werden sollen,

3D/2D-(Kombinations)Displays/Projektoren gemäß a) und/oder b) kombiniert mit 3D/2D-Umschaltverfahren und -anordnungen,

3D-(Kombinations)Displays/Projektoren gemäß a), b) oder c) realisiert auf Teilbereichen von 3D-Displays/Projektoren des Standes der Technik zwecks gleichzeitiger Nutzung der spezifischen Unterschiede beider Verfahren/Anordnungen: beispielsweise auffälliges Firmenlogo von Unternehmen bei deren Produktpräsentation, insbesondere bei Laufkundschaft, beispielsweise als ständig sichtbare "Laufliebe" mit beispielsweise extremem "out-screening" am Rand der 3D-Kombinations-Displays/Projektoren,

Trainingshilfe für das schrittweise Üben und Erlernen der Wahrnehmung stereoptischer Bildeindrücke mit extremer Tiefe T > 0 durch Steigerung der individuellen fusionalen/motorischen Konvergenzlust, insbesondere bei Nutzern mit geringem ACA-Quotient und/oder bei welfsichtigem oder alterssichtigen Brillenträgern mit dem Ziel der Erlebnissteigerung bei der 3D-Wahrnehmung.

Im Folgenden werden die Realisierungsbedingungen für die erfinderische Idee ohne Beschränkung der Allgemeinheit am Beispiel des „optikfreien/planplattenfreien“ Barriereverfahrens (Zwischenmedium mit optischer Brechzahl n = 1) und am Beispiel pixelbasierter (digitaler) Bildwiedergabeinrichtungen erläutert.

Im übrigen ist ein ausgehend von der erfindungsgemäßen Anordnung abzuleitendes Verfahren als im Schutzumfang des Patentes anzusehen.

Es werden wiederum folgende Fälle betrachtet:

Fall a): Barriere vor der Bildwiedergabeinrichtung oder
Fall b): Barriere hinter der Bildwiedergabeinrichtung angeordnet

Fall A): Bildebenen vor der Bildwiedergabeinrichtung und/oder
Fall B): Bildebenen hinter der Bildwiedergabeinrichtung

Fall 1): horizontaler/vertikaler Pixel-Pitch $B_{1P} = \text{horizontaler/vertikaler } \text{Standard } \text{Pixel-Pitch } B_{1PS}$ und horizontaler/vertikaler Element-Pitch $B_{1E} \neq \text{horizontaler/vertikaler } \text{Standard } \text{Element-Pitch } B_{1ES}$ oder
Fall 2): horizontaler/vertikaler Pixel-Pitch B_{IP} ≠ horizontaler/vertikaler „Standard“-Pixel-Pitch B_{IP} und horizontaler/vertikaler Element-Pitch $B_{IE} = $ horizontaler/vertikaler „Standard“-Element-Pitch B_{IES}.

5 Die erfinderische Anordnung gelingt, indem die nachfolgenden Bedingungen realisiert werden. Sie gelten jeweils für die vier Fälle Aa), Ab), Ba), Bb) im Fall 1) und Fall 2).

Zunächst soll gelten:

\[T = \frac{D}{1 - \frac{B_{IE}}{m'B_{IP}}} \quad \quad B_{IP} = 3C \quad (1a), (1b) \]

Darin sind

10 \(T \): gerichteter Abstand der Bildebene von der Bildwiedergabeeinrichtung (gerichtete Tiefe)

\(D \): gerichteter Abstand zwischen Barriere und Bildwiedergabeeinrichtung

\(B_{IE} \): horizontaler/vertikaler Element-Pitch der Barriere

\(B_{IP} \): horizontaler/vertikaler Pixel-Pitch der Bildwiedergabeeinrichtung

15 \(m' \): reelle Zahl, absoluter Betrag \(m' \geq 1 \)

\(m'B_{IP} \): horizontaler/vertikaler Objekt-Pitch der Bildwiedergabeeinrichtung

\(C \): horizontaler Subpixel-Pitch bei RGB-basierter Bildwiedergabeeinrichtung

Weiter ist

\[E = \pm T \left(\frac{A}{\pm m'B_{IP}} \pm 1 \right) \quad (2) \]

Darin sind

\(E \): Betrachtungsentfernung von der Bildwiedergabeeinrichtung, \(E > 0 \)

\(A \): mittlerer Pupillenabstand des Betrachters

\(m \): reelle Zahl, absoluter Betrag \(m > 2 \)

\(m'B_{IP} \): gerichtete horizontale/vertikale Strecke auf der Bildwiedergabeeinrichtung

25 Die +/- Zeichen gelten für Bildebene vor/hinter der Bildwiedergabeeinrichtung (Fall A)/Fall B)) und unabhängig davon, ob die Barriere vor oder hinter der Bildwiedergabeeinrichtung angeordnet ist (Fall a) oder Fall b)).

Im Fall a) und Fall 1) gilt

für \(T > 0 \): \(B_{IE} < B_{IES} = m'B_{IP} \left(1 - \frac{D}{E} \right) \) sowie

für \(T < 0 \): \(B_{IE} > B_{IES} = m'B_{IP} \)

Im Fall b) und Fall 1) gilt
für $T > 0$: $B_{1E} > B_{1ES} = m'B_{1P} \left(1 + \frac{D}{E'}\right)$ sowie

für $T < 0$: $B_{1E} < B_{1ES} = m'B_{1P}$.

Darin sind

B_{1ES}: Element-Pitch der Barriere im Stand der Technik für die "angepaßte" Betrachtungsentfernung E'

E': "angepaßte" Betrachtungsentfernung im Stand der Technik

Im Fall 2) gelten zu (3a), (3b), (3c), (3d) analoge Bedingungen.

Die Bedingung (2) zeigt, wie die Tiefe T einer Bildebene im Vergleich zum Betracherabstand E erfindungsgemäß in einem weiten Bereich verändert werden kann. Beispielsweise liegt im Fall A) die Bildebene A_1, für die $mB_{1P} = A = 65$ mm realisiert wird, in halbem Betracherabstand vor der Bildwiedergabeeinrichtung ($T = +E/2$). Andererseits verschwindet im Fall B) die Bildebene B_1, für die $mB_{1P} \rightarrow A$ realisiert wird, im minus Unendlichen ($T \rightarrow -\infty$).

Wieder ist

$$B_{0P} = x_P m'B_{1P} \quad \text{und/oder} \quad B_{0E} = x_E B_{1E} \quad (4a), (4b)$$

sowie

$$0 < x_P, x_E < 1 \quad (4c)$$

Darin sind

B_{0P}: horizontales/vertikales Maß der bilderzeugenden Sub-Pixel der Bildwiedergabeinrichtung mit Digit > 0 (beispielsweise Digit = 255) bei hellen Bildern in dunkler oder andersfarbiger Umgebung oder mit Digit $= 0$ bei dunklen oder andersfarbigen Bildern in hellen Umgebung

B_{0E}: horizontales/vertikales Maß transparenter Elemente der transparent-schwarzopaken Barriere

x_P, x_E: reelle Zahl

In Formel (16f) und Formel (16g) weiter oben sind die Quotienten q_P und q_E eingeführt worden. Sie stehen mit den Größen x_P und x_E in folgendem Zusammenhang: $x_P = 1/m'q_P$ und $x_E = 1/q_E$.

Die Parameter x_P, x_E bestimmen die Helligkeitsverteilung in der Bildebene. Je stärker das Verhältnis x_P/x_E von Eins abweicht, desto größer ist die Homogenität im Bild und dessen Schärfe.
Weiter ist
\[W_1 = \pm \frac{B_{1E}}{D} = \pm \frac{B_{1E}}{1 - \frac{B_{1E}}{m'B_{1p}}} \] (5a), (5b)

Darin ist
\[W_1: \text{ horizontaler/vertikaler Bild-Pitch in der Bildebene mit der Tiefe } T \]

Die +/- Zeichen gelten hier für die Anordnungen Fall Aa) und Fall Bb)/Fall Ab) und Fall Ba).
Der Bild-Pitch \(W_1 \) wächst im wesentlichen proportional mit der Tiefe \(T \) der Bildebene und mit dem Element-Pitch \(B_{1E} \) der Barriere, er ist im wesentlichen unabhängig vom Abstand \(D \).

Im Fall A) \(T > 0 \) gilt im Weiteren
\[O_y = \frac{iA \frac{T}{E} + jW_1}{1 - \frac{T}{E}} \] (6)

Darin ist
\[O_y: \text{ horizontales/vertikales Maß der zu der Bildebene mit dem Bild-Pitch } W_1 \text{ und der Tiefe } T \text{ gehörenden Teilfläche der Objektebene/der Ebene der Bildwiedergabeinrichtung} \]
\[i: \text{ reelle Zahl, } i \geq 1 \]
\[j: \text{ reelle Zahl, } j \geq 1 \]

Mit \(i,j = 1 \) ergibt sich das minimale Maß \(O_{\text{min}} = O_{11} \) der Teilfläche in der Objektebene. Der gewünschte Bewegungsbereich des Betrachters in der Betrachtungsebene mit dem Abstand \(E \) wird durch den Parameter \(i \) bestimmt.

\[\Delta x, \Delta y = A(i-1) = \frac{E}{T} (O_y - jW_1) - (O_y - A) \] (7)

Darin sind
\[\Delta x, \Delta y: \text{ Bewegungsbereich des Betrachters in der Betrachtungsebene im Abstand } E \text{ bezüglich der Bildebene mit der Tiefe } T, \text{ } O_{11} \geq W_1 \]

Mit \(O_y = B = \text{ Bildschirmbreite der Bildwiedergabeinrichtung} \text{ und } j = 1 \text{ ergibt sich beispielsweise aus (7) der maximale horizontale Bewegungsbereich } \Delta x_{\text{max}} \text{ für ein und dasselbe Bilddetail.} \]

\[j = \frac{O_y \left(1 - \frac{T}{E}\right) - A \frac{T}{E}}{W_1} \] (8)

Darin ist
j: Anzahl der gleichzeitig von einer festen Betrachtungsposition aus sichtbaren Bilder der Bildebene mit der Tiefe T, Zahl der Bild-Pitches W_t, $j \geq 1$

\[
\Delta z = E \frac{O_y - O_{11} \left(1 - \frac{T}{E}\right)}{O_y}
\]

(9)

Darin ist

\[\Delta z: \text{ Bewegungsbereich des Betrachters in Normalen-Richtung für die Bildebene mit der Tiefe } T \text{ im Fall } O_y >> W_t, \text{ siehe Formel (25) weiter oben}\]

Die Helligkeit (Flächenleuchtdichte) in den Bildern des neuartigen 3D-Displays ist größer als im Stand der Technik bei einem 3D-Display mit 8 Ansichten. Für die Helligkeit beispielsweise eines monochromen Bildes, also eines R-, G- oder B-Bildes gilt beispielsweise im Fall Aa1)

\[
L_{FB} = 3 \cdot \frac{B_{1E,Std}}{B_{1E}} \cdot \frac{B_{1E}}{B_{1E,FB,Std}} L_{FB,Std}
\]

(10)

Darin sind

\[L_{FB}: \text{ Flächenleuchtdichte in den (monochromen) Bildern des 3D-Displays}\]

\[L_{FB,Std}: \text{ Flächenleuchtdichte in (monochromen) Bildern eines X3D-Standard-Displays mit 8 Ansichten}\]

Weiter oben wird mit den Formeln (27) ff. die Helligkeit (in Gestalt der photometrischen Flächenleuchtdichte) im Teilbild/Bild der autostereoskopischen Anordnung ausführlich behandelt.

Der letzte Faktor in (10) ist von untergeordneter Bedeutung, da er nur wenig von Eins (hier > 1) abweicht. Von entscheidender Bedeutung ist der zweite Faktor. Im Stand der Technik ist bei 8 Ansichten $B_{1E,Std} = 8C$. Bei dem erfindungsgemäßen 3D-Display kann B_{1E} beim gleichen 2D-Basis-Display unterschiedliche Werte annehmen. Beispielsweise kann $B_{1E} = 12C$ betragen. In diesem Beispiel sind die monochromen Bilder des neuartigen 3D-Displays doppelt so hell wie die im Stand der Technik, $L_{FB} = 2 L_{FB,Std}$. Die Helligkeit des neuartigen 3D-Displays entspricht in diesem Beispiel also der eines 3D-Displays im Stand der Technik mit vier Ansichten.

Das neuartige 3D-Display hat gegenüber den 3D-Displays nach dem Stand der Technik einen weiteren Helligkeitsvorteil. Eine Vergrößerung der transparenten Elemente der Barriere, beispielsweise deren Verbreiterung, zwingt nicht wie die im Stand der Technik resultie-
rendernden Doppelbilder zu einer Reduzierung der 3D-Tiefe. Bei dem erfindungsgemäßen 3D-Display kann durch Vergrößerung der Quotienten B_{0E}/B_{1E} und/oder B_{0P}/B_{1P} die Helligkeit auch bei Bildebenen mit großer Tiefe erhöht werden, ohne daß störende Doppelbilder entstehen.

Unerwünschte Beugungserscheinungen werden vermieden durch Verwendung von 2D-Basis-Displays mit hinreichend großen Subpixeln/Pixeln/Flächenelementen (hinreichend große Displays mit großen Betracherabständen).

Das 2D-Basis-Display kann ein 20 Zoll TFT-LCD mit einer Bildwiedergabefläche $B \times H = 406,4 \text{ mm} \times 304,8 \text{ mm}$ und einer „Auflösung“ von $1600 \text{ Pixel} \times 1200 \text{ Pixel (UXGA)}$ sein. Der Subpixel-Pitch beträgt dabei $C = 0,08466 \text{ mm}$, der horizontale/vertikale Pixel-Pitch $3C = 0,254 \text{ mm}$.

Die Barriere sei vor der LCD angeordnet (Fall a)) und es wird der Fall 1) realisiert, bei dem der Objekt-Pitch $m'B_{1P}$ auf der gesamten Bildwiedergabeanrichtung konstant und der Element-Pitch B_{1E} der Barriere auf Teilflächen verschieden ist. Ein Betrachter befindet sich im Abstand $E = 700 \text{ mm}$ vor der Bildwiedergabeanrichtung. Mit $B_{1P} = 0,254 \text{ mm}$ und $m' = 2$ wird der Objekt-Pitch $m'B_{1P} = 0,508 \text{ mm}$ und mit $D = 1,37058 \text{ mm}$, $A = 65 \text{ mm}$ erhalten die Element-Pitches B_{1E} die 5 unterschiedlichen Werte $B_{1E1} = 0,51496 \text{ mm}$, $B_{1E2} = 0,50109 \text{ mm}$, $B_{1E3} = 0,50451 \text{ mm}$, $B_{1E4} = 0,50568 \text{ mm}$, $B_{1E5} = 0,50621 \text{ mm}$, so daß die Bildebenen bei den Tieffen $T_1 = -100,0 \text{ mm}$ (Fall B, virtuell)) und $T_2 = +100,7 \text{ mm}$, $T_3 = +199,5 \text{ mm}$, $T_4 = +300,1 \text{ mm}$, $T_5 = +389,6 \text{ mm}$ (Fälle A, real)) liegen. Die reelle Zahl m wird $m_1 = 32$, $m_2 = 43$, $m_3 = 102$, $m_4 = 192$, $m_5 = 321$. Der Bild-Pitch W_1 ist $W_{11} = 37,6 \text{ mm}$, $W_{12} = 36,8 \text{ mm}$, $W_{13} = 73,4 \text{ mm}$, $W_{14} = 110,7 \text{ mm}$, $W_{15} = 143,9 \text{ mm}$. Die zu den Bildebenen mit den Bild-Pitchs W_{11}, W_{12}, W_{13}, W_{14}, W_{15} und den Tieffen T_1, T_2, T_3, T_4, T_5 gehörenden Teilflächen der Objektebene/der Ebene der Bildwiedergabeanrichtung haben die minimalen Maße O_{11} mit $O_{111} = 24,8 \text{ mm}$, $O_{112} = 53,9 \text{ mm}$, $O_{113} = 128,6 \text{ mm}$, $O_{114} = 242,5 \text{ mm}$, $O_{115} = 405,8 \text{ mm}$.
An dieser Stelle sei angemerkt, daß mit Laser-Printern des Standes der Technik, die in der Leiterplattenindustrie Auflösungen bis 40.000 dpi (0,6 μm) und mehr erreichen, sowie mit darauf abgestimmten fotografischen Filmen die erfindungsgemäß notwendigen geometrischen Genauigkeiten der Struktur der fotografischen Barriere erreicht werden. Selbstverständlich müssen die Erfordernisse für die Dimensionsstabilität von Phototools dann besonders beachtet werden.

Für die Bildebene mit der Tiefe $T_2 = +100,7$ mm beträgt der maximale horizontale Bewegungsbereich für ein und denselben Bildpunkt $\Delta x_{\text{max}} = 2094$ mm. Der Betrachter sieht aus einer festen Position horizontal gleichzeitig $j = 9,2$ Bilder der Bildebene mit der Tiefe T_2. Dagegen existiert fast kein horizontaler Bewegungsbereich für die Bildebene mit der Tiefe $T_5 = 389,6$ mm, $\Delta x_{\text{max}} = 0$ mm. Der Betrachter sieht von der einen Betrachtungsposition aus ein einziges Bild der Bildebene mit der Tiefe T_5, $j = 1,0$.

Da ein zunehmender Bewegungsbereich Δx, Δy eine größere Anzahl j gleichzeitig von einer festen Betrachtungsposition aus sichtbarer identischer Bilder zur Folge hat (Gleichung (8)), besteht eine vorteilhafte Anwendung der Erfindung darin, auf der Teilfläche der Objekt ebene, die zur jeweiligen Bildebene mit der Tiefe T gehört, bei unveränderten Pitchs B_{1p} und B_{1e} nebeneinander verschiedene Objekte zu erzeugen. Das geschieht erfindungsgemäß durch Änderung vorzugsweise des Verhältnisses x_p der Bildwiedergabe einrichtung. Dieses Vorgehen ist besonders vorteilhaft für Bildebenen mit nicht zu großer Tiefe T, da die Teilfläche O_{11} viel kleiner als die Fläche der Bildwiedergabe einrichtung $B \times H$ ist und bei einer Teilfläche O_{ij} in der Größenordnung der Fläche der Bildwiedergabe einrichtung die Anzahl j der Bild-Pitches W_1 und damit der identischen Bilder groß wäre. Statt dessen sieht der Betrachter bei dieser bevorzugten Ausgestaltung gleichzeitig verschiedene Bilder in der Bildebene mit der Tiefe T.

Bei Anwendungen mit im wesentlichen fester Betrachtungsposition ist auch bei Bildebenen mit gleichzeitig mehreren sichtbaren Bildern ($j > 1$) die Darstellung nur eines isolierten Bildes möglich, indem die Teilfläche in der Objektebene im Minimum nur so groß gemacht wird, daß gerade nur dieses Bild sichtbar ist, $O_{ij} = O_{11}$.

Es ist weiterhin auch möglich, beispielsweise zwei tiefengestaffelte Bildebenen so ineinander zu fügen, daß beispielsweise die Ebene A_2 mit der Tiefe T_2 mehrfach innerhalb der Ebene A_1 mit der Tiefe T_1 vorhanden ist.

Erfindungsgemäß können weiterhin auf einfache Weise und ohne Erhöhung der Kosten andere Tiefen T in den fünf Bildebenen realisiert werden, indem anstelle der Barriere mit dem konstanten Element-Pitch B_{1e} eine Barriere mit etwas verändertem konstanten Element-
Pitch B_{1E} eingesetzt wird. So werden beispielsweise mit einer Barriere mit dem Element-Pitch $B_{1E} = 0,504$ mm anstelle $B_{1E} = 0,508$ mm fünf Bildebenen mit den Tiefen $T_1 = -103,5$ mm, $T_2 = +28,8$ mm, $T_3 = +48,2$ mm, $T_4 = +75,7$ mm, $T_5 = +105,7$ mm erzeugt. Auf diese Weise erhält man beispielsweise eine dichtere Tiefenstaffelung.

5

10

Zur Erläuterung dieser Ausgestaltung der Erfindung dienen die Zeichnungen Fig. 21a bis Fig. 27

15

Auch diese Ausgestaltung löst die eingangs genannte Aufgabe und erfüllt die genannten Zielstellungen und erweist sich dadurch vorteilhaft gegenüber dem Stand der Technik.

20

Kurze Erläuterung der Zeichnungen

Es zeigen:

Fig.1 Moire-Pitch M einer autostereoskopischen Anordnung in Abhängigkeit von der Betrachtungs-entfernung E,

30 Fig.2 Moire-Pitch M einer autostereoskopischen Anordnung in Abhängigkeit von der Betrachtungs-entfernung (E-T),

Fig.3 schematische Darstellung zur Entstehung der Moire 1 und Moire 2,

Fig.4a ausschnittweise Darstellung funktionswesentlicher Größen der erfindungsgemäßen autostereoskopischen Anordnung,

35 Fig.4b Darstellung weiterer funktionswesentlicher Größen der erfindungsgemäßen autostereoskopischen Anordnung,

Fig.5a Darstellung zur Entstehung der Teilbild-Pitchs w_1 bei $m' = 1$,

Fig.5b Darstellung zur Entstehung der Teilbild-Pitchs w_1 bei $m' = 2$,
Darstellung zur Entstehung der Teilbild-Pitchs \(w_1 \) bei \(m' = 4 \),

Darstellung zur Entstehung der Teilbild-Pitchs \(w_1 \) bei \(m' = 8 \),

graphische Darstellung der Element-Breite \(B_{gegg} \) in Abhängigkeit von der Betrachtungsentfernung \(E \),

graphische Darstellung der Teilbildbreite \(HWB_{gegg} \) in Abhängigkeit von der relativen Breite \(\Delta_{rel} \) der transparenten Barriere-Elemente,

graphische Darstellung der maximalen Tiefe \(T_{max} \) in Abhängigkeit von der Breite \(b_{BW} \) des Bildschirms,

graphische Darstellung des 3D-Qualitätsmerkmals \(T_{max}/E \) für \((E-T_{max}) = 250 \) mm in Abhängigkeit von der Breite \(b_{BW} \) des Bildschirms

Leuchtdichteverlauf im monokularen Teilbild bei kontinuierlicher Abtastung im Standard-Modus und Portrait-Modus unter Vernachlässigung von Beugungserscheinungen.

schematische Darstellung der erfindungsgemäßen autostereoskopischen Anordnung in Aufsicht/Frontsicht mit fünf vertikal angeordneten Bildebenen mit den Tiefen \(T_1 < T_2 < T_3 < T_4 < T_5 \),

schematische Darstellung der erfindungsgemäßen autostereoskopischen Anordnung in Seitenansicht mit den fünf tiefengestaffelten Bildebenen von Fig.10a,

schematische Darstellung der erfindungsgemäßen autostereoskopischen Anordnung in Aufsicht/Frontsicht nach Fig.10a mit in die fünf Bildebenen schematisch eingetragenen Relationen zwischen den fünf Element-Pitchs \(B_{IE} \) und den zwei Element-Pitchs \(B_{IFS} \) des Stand der Technik,

schematische Darstellung der erfindungsgemäßen autostereoskopischen Anordnung in Vertikalsicht mit einer Bildebene mit großer Tiefe \(T \) und großem "out-screening" \(T/E \),

schematische Darstellung der erfindungsgemäßen autostereoskopischen Anordnung in Aufsicht/Frontsicht mit der Bildebene \(A_2 \) mit der Tiefe \(T_2 \), die mehrfach innerhalb der Bildebene \(A_1 \) mit der Tiefe \(T_1 \) angeordnet ist

schematische Darstellung der erfindungsgemäßen autostereoskopischen Anordnung in Aufsicht/Frontsicht mit fünf Bildebenen mit den Tiefen \(T > 0 \) und \(T < 0 \) sowie einer 2D-Bildebene mit der Tiefe \(T = 0 \),

schematische Darstellung der erfindungsgemäßen autostereoskopischen Anordnung von Fig.11a mit einer Barriere mit einer Teilfläche ohne Barriere-Struktur,

schematische Darstellung der monokularen Bildentstehung durch Strukturierung des Bildschirms,
schematische Darstellung des vom Betrachter monokular wahrnehmbaren Bildes gemäß Fig.12a,
schematische Darstellung der monokularen Bildentstehung durch Strukturierung der Barriere,
graphische Darstellung der Funktion ET/(E-T) in Abhängigkeit von der Betrachtungsentfernung E für unterschiedliche Tiefen T,
Frontansicht einer/der 3D-Digitaluhr,
Dimensionierungs- und Leistungsparameter der 3D-Digitaluhr von Fig.14a,
Objekt-Struktur auf dem Bildschirm der 3D-Digitaluhr nach Fig.14a mit grünen Ziffern in schwarzem Umfeld,
Objekt-Struktur auf dem Bildschirm der 3D-Digitaluhr nach Fig.14a mit gelben Ziffern in rotem Umfeld,
Objekt-Struktur auf dem Bildschirm der 3D-Digitaluhr nach Fig.14a mit magenta gefärbten Ziffern in blauem Umfeld,
"diagonal-schräge" Objekt-Struktur auf dem Bildschirm der 3D-Digitaluhr für das oberste/erste Teilbild der Stunden-Ziffern nach Fig.14a mit grünen Ziffern,
"diagonal-schräge" Element-Struktur der Barriere zu Fig.15a,
Element-Struktur der Barriere gemäß der Objekt-Struktur von Fig.14c ohne Erfüllung der Homogenitätsbedingung,
Element-Struktur der Barriere gemäß der Objekt-Struktur von Fig.14c mit erfüllter Homogenitätsbedingung,
zwei stilisierte Pfeilspitzen für einen 3D-Spiel-Automaten für zwei Gruppen von Spielern,
Dimensionierungs- und Leistungsparameter des 3D-Spiel-Automaten von Fig.17a,
vergrößerter Ausschnitt der Element-Struktur der Barriere gemäß Fig.17a,
vergrößerter Ausschnitt der Objekt-Struktur für die Pfeilspitze der Gruppe 1 gemäß Fig.17a,
vergrößerter Ausschnitt der Objekt-Struktur für die Pfeilspitze der Gruppe 2 gemäß Fig.17a,
Darstellung eines erfindungsgemäß gekippten Bildes,
Alphabet der Großbuchstaben für m' = 4 und horizontale Bewegungsparallaxe,
Beispiel von Groß- und Kleinbuchstaben für m' = 8 und horizontale Bewegungsparallaxe,
bildbeispiele,
einen (horizontalen) Schnitt durch das 3D-Display mit Betrachter,
einen vergrößerten (horizontalen) Schnitt durch das 3D-Display,
Fig.22a eine Frontansicht des 3D-Displays mit fünf tiefengestaffelten Bildebenen, schematisch,
Fig.22b eine Seitenansicht des 3D-Displays mit fünf tiefengestaffelten Bildebenen, schematisch,
Fig.22c eine Frontansicht des 3D-Displays mit eingetragenen Bedingungen für die Tiefenstaffelung, schematisch
Fig.23 eine Seitenansicht des 3D-Displays mit einer Bildebene mit großer Tiefe, schematisch,
Fig.24a eine Frontansicht des 3D-Displays mit beliebig angeordneten tiefengestaffelten Bildebenen und einer 2D-Bildebene, schematisch,
Fig.24b Frontansicht auf die Barriere für das 3D-Display der Fig. 24a, schematisch,
Fig.25a eine vereinfachte Darstellung der Bildentstehung am 3D-Display,
Fig.25b ein sichtbares Bild entsprechend Fig. 25a, schematisch,
Fig.25c die Erzeugung eines Buchstabens,
Fig.26 den Leuchtdichteverlauf bei kontinuierlicher Abtastung, Helligkeitsverlauf im monokularen Bild unter Vernachlässigung von Beugungserscheinungen, sowie
Fig.27 eine Frontansicht mit innerhalb einer Bildebene mehrfach angeordneter tiefen-
gestaffelter Bildebene mit anderer Tiefe, schematisch,
Fig.X1 stereoptisches Bildbeispiel für die Gültigkeit des Emmert'schen Gesetzes der wahrnehmungspsychologischen Größenkonstanz,
Fig.X2 horizontaler Schnitt durch die erfindungsgemäße autostereoskopische Anord-
nung zur Erklärung des lateralen Bewegungsbereichs.

25 Ausführliche Erläuterung der Zeichnungen
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen unter Zugrundelegung der Zeichnungen näher erläutert werden.

Ausführungsbeispiel 1:

Der 2D-Bildschirm sei ein 20 Zoll TFT-LCD mit einer Bildwiedergabefläche $B_{BW} \times H_{BW} = 406,4 \text{ mm} \times 304,8 \text{ mm}$ und einer „Auflösung“ von 1.600 Pixel \times 1.200 Pixel (UXGA). Der Subpixel-Pitch beträgt $C = 0,08466 \text{ mm}$, der horizontale/vertikale Pixelpitch $B_{1P} = 3C = 0,254 \text{ mm}$.

35 Die Barriere sei vor der LCD angeordnet (Fall a) und es wird der Fall 1 realisiert, bei dem der Objekt-Pitch $m'B_{1P}$ auf dem gesamten Bildschirm konstant und der Element-Pitch B_{1E} der Barriere vom Element-Pitch im Stand der Technik abweicht und auf Teilflächen verschieden
ist. Ein Betrachter befindet sich im Abstand E = 700 mm vor dem Bildschirm. Mit B_{IP} = 0,254 mm und m_{A} = 2 wird der Objekt-Pitch m_{B_{IP}} = 0,508 mm und mit D = 1,37056 mm, A = 65 mm sollen die Element-Pitches B_{IE} die 5 unterschiedlichen Werte B_{IE1} = 0,51496 mm, B_{IE2} = 0,50109 mm, B_{IE3} = 0,50451 mm, B_{IE4} = 0,50568 mm, B_{IE5} = 0,50621 mm erhalten. Nach Formel (7a) liegen damit Bildebenen bei den Tiefen T_1 = -100,0 mm (Fall B, virtuell) und T_2 = +100,7 mm, T_3 = +199,5 mm, T_4 = +300,1 mm, T_5 = +389,6 mm (Fälle A, reell).

An dieser Stelle sei darauf hingewiesen, daß mit Laser-Printern des Standes der Technik, die beispielsweise in der Leiterplattenindustrie Auflösungen bis 40.000 dpi (0,6 μm) und mehr erreichen, sowie mit darauf abgestimmten fotografischen Filmen und Verarbeitungs- verfahren, die erfindungsgemäß erforderlichen geometrischen Genauigkeiten der Struktur der fotografischen Barriere (in erster Linie des Element-Pitchs B_{IE}) erreicht werden. Selbstverständlich müssen die im Stand der Technik bekannten Erfordernisse zur Einhaltung der Dimensionsstabilität der fotografischen Filme beachtet werden, wenn die Barriere vom fotografischen Typ ist.

Mit einer Bildebene mit der Tiefe T_5 wird ein „out-screening“ T/E von 55,6% der Betrachtungsentfernung E realisiert, also eine extreme 3D, – im Stand der Technik unerreichbar.

20 Die reelle Zahl m wird m_1 = 32, m_2 = 43, m_3 = 102, m_4 = 192, m_5 = 321. Der Bild-Pitch W_{1} ist W_{11} = 37,6 mm, W_{12} = 36,8 mm, W_{13} = 73,4 mm, W_{14} = 110,7 mm, W_{15} = 143,9 mm. Die zu den Bildebenen mit den Bild-Pitchs W_{11}, W_{12}, W_{13}, W_{14}, W_{15} und den Tiefen T_1, T_2, T_3, T_4, T_5 gehörenden Teilflächen der Objektebene, d.h. der Ebene des Bildschirms, haben die minimalen Maße O_{11} mit O_{111} = 24,8 mm, O_{112} = 53,9 mm, O_{113} = 128,6 mm, O_{114} = 242,5 mm, O_{115} = 405,8 mm. Die Teilfläche O_{115} beispielsweise enthält in der Objektebene nach Formel (23b) eine stereoskopische Paralleaxe von p = 81,58 mm.

Für die Bildebene mit der Tiefe T_2 = +100,7 mm beträgt der maximale horizontale Bewegungsbereich für ein und denselben Bildpunkt Δx_{max} = 2094 mm. Der Betrachter kann aus einer festen Position horizontal gleichzeitig j = 9,2 Bilder in der Bildebene mit der Tiefe T_2 sehen. Dagegen existiert fast kein horizontaler Bewegungsbereich für die Bildebene mit der Tiefe T_5 = 389,6 mm, Δx_{max} ≈ 0 mm. Der Betrachter sieht von der einen Betrachtungsposition aus ein einziges Bild in der Bildebene mit der Tiefe T_5, j = 1,0.

35 **Fig.10a** zeigt in Aufsicht, wie die Bildebenen mit den fünf unterschiedlichen Tiefen T_1, T_2, T_3, T_4 und T_5 auf der erfindungsgemäßen autostereoskopischen Anordnung angeordnet sein können. Bevorzugt werden die Bildebenen gleicher Tiefe T vertikal übereinander angeordnet, wobei deren Reihenfolge auch anders als in **Fig.10a** sein kann, beispielsweise T_3, T_1,
T₄, T₅, T₂ von oben oder unten. Die unterschiedliche Höhe der Bildebenen soll schematisch die weiter oben beschriebene erfindungsgemäße Vergrößerung der Höhe, der Breite und des Sehwinkels für die Teilbilder/Bilder bei zunehmender Tiefe T bzw. bei Verkleinerung von (E-T) verdeutlichen.

Es sei angemerkt, daß es insbesondere bei zwei und mehr Bildebenen mit unterschiedlichen Tiefen T in bestimmten Bildebenen zu „Falsch-Fusionen“ und damit zu falschen Tiefen T solcher Bildebenen kommen kann. Es handelt sich dabei um Moire-Erscheinungen vom Typ Moire 2.

Diese entstehen besonders dann, wenn die fusionale Konvergenz bzgl. einer Bildebene mit der richtigen Tiefe T gleich oder nahe ist der fusionalen Konvergenz für Teilbilder/Bilder. Gibt es beispielsweise zwei Bildebenen, die erste mit der regulären Tiefe T₁ > 0 und die zweite mit der regulären Tiefe T₂ < 0 und ist der Bild-Pitch in der ersten Bildebene W₁₁ und der Bild-Pitch in der zweiten Bildebene beispielsweise 2W₁₂ ≈ W₁₁, dann führt die gleiche fusionale Konvergenz für die reguläre Tiefe T₁ > 0 ("Kreuzblick") zur "Falsch-Fusion" der zweiten Bildebene in die falsche Tiefe T₂ ≈ T₁ > 0 mit demselben "Kreuzblick".

Solche "Falsch-Fusionen" lassen sich nach einiger Übung weitestgehend vermeiden. Technisch können sie beispielsweise verhindert werden, indem Bildebenen mit Tiefen T₂ < 0 nicht mehr als zwei Bilder aufweisen (j₂ ≤ 2) und/oder ihr Bild-Pitch W₁₂ kein ganzzahliges Vielfaches des Bild-Pitchs W₁₁ ist und/oder Bildteile in den Bildebenen mit den Tiefen T₂ < 0 vermieden werden, die einen Bildteil-Pitch haben, der ein ganzzahliges Vielfaches des Bild-Pitchs W₁₁ ist.

Generell ist es von Vorteil, wenn Teilbilder/Bilder in Bildebenen mit den Tiefen T₂ < 0 so gestaltet werden, daß sie keine falschen Fusionsreize erzeugen bzw. die regulären Fusionsreize stärker sind als falsche Fusionsreize.

In Fig.10b ist in einer Seitenansicht schematisch die Lage der fünf Bildebenen im Raum vor und hinter der autostereoskopischen Anordnung gezeigt.

In Fig.10c sind schematisch in die fünf Bildebenen die Bedingungen für die jeweiligen fünf unterschiedlichen Element-Pitches B₁E₁, B₁E₂, B₁E₃, B₁E₄, B₁E₅ der Barriere eingetragen. Mit B₁E₅ sind die Element-Pitches des Filterarrays im Stand der Technik für die angepaßte optmale Betrachtungsentfernung E' gemeint, wobei die nachfolgenden Indizes dieselbe Bedeutung haben wie bei den Fallunterscheidungen weiter oben.
In Fig.10d ist die erfindungsgemäße autostereoskopische Anordnung in der Ansicht von oben (oder von der Seite) dargestellt. Es wird darin gezeigt, daß bei sehr großem "out-screening" T/E der laterale Bewegungsbereich Δx (Δy) von der Breite (Höhe) des 2D-Bildschirms bestimmt wird.

Dies gilt gleichermaßen für 3D-Displays/Projektoren des Standes der Technik, wenn diese über ebenso große "out-screenings" verfügen würden.

Es sei angemerkt, daß die Betrachtungsentfernung E von der erfindungsgemäßen autostereoskopischen Anordnung vorzugsweise im Bereich E > T_{max} = T_o liegen soll.

Bei erfindungsgemäßen autostereoskopischen Anordnungen, die ausschließlich bzgl. der horizontalen Bewegungsparallaxe dimensioniert sind, existiert die Beschränkung nur bzgl. des horizontalen Bewegungsbereichs Δx. Solche erfindungsgemäßen autostereoskopischen Anordnungen sind in bestimmten Anwendungsfällen vorteilhaft. Beispielsweise bei Anwendungen mit "Laufkundschaft", wo unterschiedlich große Menschen in unterschiedlichen Betrachtungsentfernungen vor der erfindungsgemäßen autostereoskopischen Anordnung stehen(bleiben) oder an diesem vorbeilaufen. Ein konkretes Ausführungsbeispiel einer erfindungsgemäßen autostereoskopischen Anordnung in Form einer "3D-Digitaluhr" wird unten noch beschrieben.

Bei Anwendungen mit im wesentlichen fester Betrachtungsposition ist auch bei Bildebenen mit gleichzeitig mehreren sichtbaren Bildern (j > 1) die Darstellung nur eines einzelnen Bildes möglich, indem die Teilfläche O_{ij} in der Objektlebene im Minimum nur so groß vorgegeben wird, daß im wesentlichen nur diese sichtbar ist, O_{ij} = O_{11}.

Es ist weiterhin auch möglich, beispielsweise zwei tiefengestaffelte Bildebenen so ineinander zu fügen, daß die Ebene A2 mit der Tiefe T_2 mehrfach innerhalb der Ebene A1 mit der Tiefe T_1 vorhanden ist. Das ist in Fig.10e schematisch dargestellt. In erfindungsgemäßen autostereoskopischen Anordnungen mit ausschließlich horizontaler Bewegungsparallaxe werden vorzugsweise in horizontalen Streifen oder Teilflächen in der Objektlebene, welche die Bildebenen A1 sowie A1 und A2 ergeben, jeweils gleichartige Bildinhalte dargestellt.

Das erfindungsgemäße 3D-Verfahren erlaubt gemäß Formel (7a) nicht nur frontoparallele Bildebenen mit den Tiefen T, sondern auch eine oder mehrere Bildebenen, die beispielsweise um eine horizontale Achse geneigt sind. Eine solche Bildebene bietet dem Betrachter einen 3D-Eindruck mit quasi kontinuierlicher Variation der Tiefe T in vertikaler Richtung. Erfindungsgemäß kann das auf zweierlei Weise erreicht werden.
Die Änderung/Einstellung des Element-Pitchs B_{1E} muß im derzeitigen Stand der Technik hardwareseitig erfolgen. Dagegen wäre eine softwareseitige Änderung/Einstellung des Element-Pitchs B_{1E} der Barriere wünschenswert, wodurch die Vorteile des erfindungsgemäßen 3D-Verfahrens noch besser genutzt werden könnten. Das Problem der softwareseitigen Änderung/Einstellung des Element-Pitchs B_{1E} der Barriere ist derzeit noch nicht gelöst.

Kontinuierliche Variation der Tiefe T bei frontoparalleler Barriere: Wird in der Anordnung nach Fig.10a die Anzahl der Bildebenen mit unterschiedlicher Tiefe T erhöht, indem man zwischen die Bildebenen mit den Tiefen T_1, T_2, T_3, T_4, T_5 weitere Bildebene mit den mittleren Tiefen $T = (T_n + T_{n+1})/2$ einfügt und dieses Einfügen von Zwischenbildebenen so lange forsetzt, bis die gewünschte Kontinuität in der Variation der Tiefe T erreicht ist, erhält man eine Bildebene, in der die Tiefe T quasi kontinuierlich vertikal zwischen der Tiefe T_1 und der Tiefe T_5 variiert. In dieser Variante besteht die Barriere nach Fig.10c aus mehr als fünf horizontalen Streifen mit beispielsweise von oben nach unten quasi kontinuierlich wachsenden Element-Pitchs B_{1E} und entsprechend verringerten Höhen dieser Streifen. Die Barriere bleibt parallel zum Bildschirm ausgerichtet.

Diese erste Ausführung kann noch weiter verallgemeinert werden, indem man beispielsweise zwischen die oben genannten Bildebenen mit den Tiefen T_3, T_1, T_4, T_6, T_2 Zwischenebenen nach der Regel $T = (T_n + T_{n+1})/2$ einfügt, so daß eine in vertikaler Richtung gekrümmte Bildebene mit quasi kontinuierlicher Variation der Tiefe T entsteht.

Selbstverständlich kann der Element-Pitch B_{1E} der Barriere auch innerhalb der horizontalen Streifen variabel gestaltet sein. Aus einer beispielsweise kontinuierlichen Variation der Element-Pitchs B_{1E1}, B_{1E2}, B_{1E3}, B_{1E4}, B_{1E5} resultieren fünf Bildebenen mit kontinuierlicher Variation der Tiefen T in horizontaler Richtung.

Kontinuierliche Variation der Tiefe T bei geneigter Barriere: In einer zweiten Anordnung habe die Barriere nur einen einzigen Element-Pitch B_{1E}, beispielsweise den Element-Pitch B_{1E5} aus Fig.10c, so daß in Fig.10a eine einzige Bildebene mit der Tiefe T_5 entsteht. Bei dieser Anordnung bleibt der Element-Pitch B_{1E5} der Barriere unverändert konstant. Die Barriere wird lediglich um eine horizontale Achse, die in der Barriere liegt, geneigt. Je nach Lage dieser Achse und Neigungswinkel der Barriere entsteht eine Bildebene mit kontinuierlich variabler Tiefe T. Liegt die Achse beispielsweise am unteren Rand der Barriere und erfolgt eine Neigung der Barriere hin zum Bildschirm, entsteht eine Bildebene mit kontinuierlicher Variation der Tiefe T von der Tiefe $T < T_5$ bis zur Tiefe $T = T_5$. Die zweite Anordnung hat den Vorteil, daß für geneigte Bildebenen keine neue Barriere (mit variablen Element-Pitch B_{1E})
hergestellt werden muß. Außerdem besteht durch Wahl der Lage der Achse und des Neigungswinkels bei ein und derselben Barriere eine weitgehende Freiheit in der Gestaltung der erfindungsgemäßen autostereoskopischen Anordnung.

Selbstverständlich können die eben beschriebenen beiden Anordnungen auch miteinander kombiniert werden.

Zu Fragen der 2D- und 3D-Darstellung: Fig.11a zeigt beispielsweise eine erfindungsgemäße autostereoskopische Anordnung in Aufsicht, die außer Bildebenen A1, A2, A3 und B4, B5 mit Tiefen T₁, T₂, T₃ > 0 und T₄, T₅ < 0 auch mindestens eine zentrale Bildebene "2D" mit der Tiefe T = 0 aufweist. Genau so kann innerhalb einer Bildebene "2D" mit der Tiefe T = 0 eine zentrale Bildebene A1 oder B2 mit den Tiefen T₁ > 0 oder T₂ < 0 angeordnet sein.

Die Bildebene "2D" wird erzeugt, indem die ihr zugeordnete Fläche der Barriere keine Barriereestruktur aufweist (vgl. Fig.11b). Erfindungsgemäß kann diese Fläche eine homogene Transparenz aufweisen, die im wesentlichen der gemittelten Transparenz der übrigen Flächen der Barriere entspricht. Die zu der Bildebene "2D" gehörende Objektfäche auf dem Bildschirm wird des weiteren anders angesteuert als die Objektebenen für die Bildebenen A1 und B2, und zwar wie eine 2D-Darstellung auf einem 2D-Bildschirm im Stand der Technik.

Erläuterung zur Ansteuerung des Bildschirms der erfindungsgemäßen autostereoskopischen Anordnung siehe weiter unten.

Ausführungsbeispiel 2:

erfindungsgemäß können in einer zweiten Ausgestaltungsvariante der erfindungsgemäßen autostereoskopischen Anordnung auf einfache Weise und ohne Erhöhung der Herstellungs kosten mit derselben Barriere wie im Ausführungsbeispiel 1 andere Tiefen T in den fünf Bild ebenen realisiert werden, indem nach Formel (7a) ein anderer Abstand D zwischen Bildschirm und frontparalleler Barriere gewählt wird. Bei einem Abstand D = 1,0 mm anstelle von D = 1,37058 mm aus dem Ausführungsbeispiel 1 entsteht eine engere Tiefenstaffelung der Bildebenen mit den Tiefen T₁ = -73,0 mm, T₂ = +73,5 mm, T₃ = +145,6 mm, T₄ = 218,9 mm, T₅ = 284,2 mm.

Im Unterschied zum Stand der Technik, bei dem sich der angepaßte optimale Betrachterabstand E' bei jeder Änderung des Abstandes D ebenfalls ändert, wodurch sich die 3D Bildqualität im Stand der Technik prinzipiell verschlechtert, sind bei der erfindungsgemäßen autostereoskopischen Anordnung alle Betrachtungsentfernungen E > T gleichzeitig auch
angepaßte optimale Betrachtungsentfernungen E' und bleiben dies auch bei Änderung des Abstandes D.

Bei der erfindungsgemäßen autostereoskopischen Anordnung dagegen werden mit einer Barriere mit den neuen Element-Pitchs $B_{IE1} = 0,51816 \text{ mm}$, $B_{IE2} = 0,49791 \text{ mm}$, $B_{IE3} = 0,50291 \text{ mm}$, $B_{IE4} = 0,50461 \text{ mm}$, $B_{IE5} = 0,50539 \text{ mm}$ auch beim größeren Abstand $D = 2,0 \text{ mm}$ bei unveränderter 3D-Bildqualität dieselben Tiefen T erreicht wie in der Variante 1 und zwar $T_1 = -100,0 \text{ mm}$, $T_2 = +100,7 \text{ mm}$, $T_3 = +199,5 \text{ mm}$, $T_4 = +300,1 \text{ mm}$, $T_5 = +389,6 \text{ mm}$.

Ausführungsbeispiel 3:

Formel (7a) erlaubt die Einstellung oder Änderung der Tiefe T prinzipiell auch durch hardwareseitige Einstellung bzw. Änderung des Objekt-Pitchs $m'B_{IP}$, genauer des Pixelpitchs $B_{IP} = 3C$ des 2D-Bildschirms.

Beispielsweise entstehen bei einer TFT-LCD mit Pixel-Pitch $B_{IP} = 3C = 0,255 \text{ mm}$ anstelle von $3C = 0,254 \text{ mm}$ wie in Ausführungsbeispiel 1 bei sonst unveränderten Bedingungen bzgl. des Abstandes D und gleicher Barriere/gleichen Element-Pitchs B_{IE} Bildebenen in den neuen Tiefen $T_1 = -140,9 \text{ mm}$, $T_2 = +78,4 \text{ mm}$, $T_3 = +127,32 \text{ mm}$, $T_4 = +161,8 \text{ mm}$, $T_5 = +184,6 \text{ mm}$.

Durch Kombination von Ausführungsbeispiel 1 und Ausführungsbeispiel 3 können auch für diesen 2D-Bildschirm Bildebenen mit den selben Tiefen $T_1 = -100,0 \text{ mm}$, $T_2 = +100,7 \text{ mm}$, $T_3 = +199,5 \text{ mm}$, $T_4 = +300,1 \text{ mm}$, $T_5 = +389,6 \text{ mm}$ bei gleichem Abstand D wie in Ausführungsbeispiel 1 erzeugt werden, wenn eine Barriere mit den Element-Pitchs $B_{IE1} = 0,51699 \text{ mm}$, $B_{IE2} = 0,50306 \text{ mm}$, $B_{IE3} = 0,50650 \text{ mm}$, $B_{IE4} = 0,50767 \text{ mm}$, $B_{IE5} = 0,50821 \text{ mm}$ verwendet wird.
Schließlich ist auch eine Kombination der Ausführungsbeispiele 1, 2 und 3 möglich.

Ausführungsbeispiel 4:

Anstelle einer optischen Barriere kann erfindungsgemäß auch ein optisches Linsenraster aus parallelen, insbesondere plankonvexen oder asphärischen Zylinderlinsen oder plankonvexen oder asphärischen Einzellinsen in linearer, wabenförmiger oder anderer Anordnung mit großem Füllfaktor vorgesehen sein, wobei die wirksamen Strukturen des Bildschirms im wesentlichen in der Nähe, aber außerhalb der objektseitigen Brennebene des Linsenrasters angeordnet werden, wobei im wesentlichen eine optische Abbildung der Objektebene des Bildschirms in die Ebene des Betrachters erfolgt, so daß die Lupenvergrößerung jeder Linse gegen Unendlich geht (die Lupenvergrößerung "explodiert").

Dem Element-Pitch der Barriere entspricht in diesen Ausgestaltungen der Linsen-Pitch des optischen Linsenrasters. Vorteil des Linsenrasters ist eine größere Helligkeit der autostereoskopischen Anordnung im Vergleich zu dem mit Barriere aufgrund der Leuchtdichte-Invarianz bei der optischen Abbildung.

Nachteil gegenüber der Ausgestaltung mit Barriere ist die begrenzte Größe solcher 3D-BildwiedergabeEinrichtungen wegen der höheren Fertigungskosten der Linsenraster, insbesondere wenn Bildebenen in unterschiedlichen Tiefen \(T \) durch unterschiedliche Linsen-Pitchs erzeugt werden sollen.

Die Erzeugung von Bildebenen mit stetiger Änderung der Tiefe \(T \) durch Neigung des Linsenrasters, analog zum Ausführungsbeispiel 1 mit Barriere, ist ganz unmöglich.

Hinzu kommen optische Störungen, wie Aberrationen, die beispielsweise am planparallelen Substrat des Linsenrasters und generell an derartigen einfachen optischen Elementen mit homogener optischer Brechzahl entstehen und mit dem Schrägsichtwinkel auf die autostereoskopische Anordnung bzw. mit deren Größe zunehmen. Die Minimierung dieser optischen Störungen verteuert das Linsenraster weiter.

Ein weiterer Nachteil sind die großen "Bildpunkte", deren Größe der Größe bzw. dem Durchmesser der Linsen entspricht.

Zur Bilderzeugung:
Bilderzeugung auf dem Bildschirm: In Fig.12a und Fig.12b ist die monokulare Bilderzeugung auf dem Bildschirm schematisch dargestellt. Der Bildschirm sei der Einfachheit halber eine TFT-LCD ohne Farbfilter. Gezeigt ist ein Ausschnitt der erfindungsgemäßen autostereoskopischen Anordnung mit 7 Subpixel-Zeilen.

5 In Fig.12a sind in 7 Gruppen a), b), c), d), e), f), g) jeweils untereinander eine Subpixel-Zeile der LCD, die Element-Zeile der davor angeordneten Barriere und die Zeile der monokular sichtbaren Subpixel der Subpixelzeile gezeichnet. Weiß dargestellte Subpixel leuchten beispielsweise mit maximaler Leuchtdichte (255 Digit), schwarz dargestellte Subpixel sind ausgeschaltet (0 Digit). Der Objekt-Pitch entspricht der Breite von 8 Subpixeln, m'B_{1P} = 8C. Die Barriere ist an den weiß gezeichneten Rechtecken transparent, sonst opak. Der Element-Pitch der Barriere ist kleiner als der Objekt-Pitch und entspricht der Breite von 7 Subpixeln der LCD, B_{1E} = 7C.

10 Die Element-Pitchs B_{1E} der Barriere sind in allen 7 Gruppen identisch, ebenso der Objekt-Pitch m'B_{1P}. Die Subpixel-Zeilen der LCD unterscheiden sich aber in benachbarten Gruppen dadurch, daß sich die Anzahl benachbarter leuchtender Subpixel pro Objekt-Pitch im Vergleich zur Anzahl nichtleuchtender Subpixel um ein Subpixel ändert. So leuchten in der Gruppe a) pro Objekt-Pitch m'B_{1P} = 8C von acht Subpixeln sieben Subpixel, dagegen leuchten in der Gruppe g) von acht Subpixeln nur ein Subpixel.

15 Ohne Einschränkung der Allgemeingültigkeit ist in Fig.12a der Fall angenommen, bei dem sich der Betrachter in sehr großem Abstand (genauer gesagt in der Betrachtungsentfernung E = ∞) vor der autostereoskopischen Anordnung positioniert hat und zwar so, daß er monokular durch das jeweils äußerste linke transparente Element der Barriere das jeweils dahinter befindliche (hier ausgeschaltete, schwarze) Subpixel der LCD gerade vollständig sieht. Das entspricht der "Anpassung" von B_{1E} der Barriere gemäß Formel (17).

20 In der jeweils unteren Zeile der Gruppen a) bis g) sind weiß die jeweils monokular aus dieser Position der Betrachtungsebene mit der sehr großen Entfernung E sichtbaren, leuchtenden Subpixel der LCD dargestellt.

25 Mit m'B_{1P} = 8C = 8 mm, B_{1E} = 7C = 7 mm und einem angenommenen Abstand D = 10 mm entsteht nach Formel (7a) eine Bildebene in der Tiefe T = +80 mm vor der autostereoskopischen Anordnung.

30 Würde der Betrachter sich in diese erfindungsgemäß angepaßte Entfernung E = E_a = T begeben, könnte er beispielsweise für sein linkes Auge in dieser frontparallelen Ebene eine
Position finden, von der aus sein linkes Auge beispielsweise nur ausgeschaltete Subpixel in den sieben Gruppen a) bis g) sehen würde. Er sieht einen vollkommen dunklen, schwarzen Bildschirm. Bewegt er sich in dieser Ebene um \(w_1 = 7 \text{ mm} \) nach links, sieht er die Subpixel-Zeile in der Gruppe a) über den gesamten Bildschirm weiß, während die übrigen Subpixel-Zeilen über den gesamten Bildschirm schwarz sind.

Bei weiteren fünf Bewegung jeweils um \(w_1 = 7 \text{ mm} \) nach links sieht der Betrachter sukzessive die Subpixel-Zeilen b), c), d), e), f) über den gesamten Bildschirm weiß werden, während die jeweils übrigen über den gesamten Bildschirm schwarz sind. Schließlich sieht er bei der siebenten Bewegung um \(w_1 = 7 \text{ mm} \) nach links alle sieben Subpixel-Zeilen über den gesamten Bildschirm weiß. Bei der achten Bewegung um \(W_1 = 8 \text{ w}_1 = 56 \text{ mm} \) nach links sieht er alle sieben Subpixel-Zeilen wieder über den gesamten Bildschirm schwarz.

Es sei angemerkt, daß ein Betrachter aus einer Entfernung \(E = T = +80 \text{ mm} < \text{ Normsehweite} = 250 \text{ mm} \) die Subpixel-Zeilen in der Regel nicht mehr scharf sehen kann. Das sukzessive Wechseln von oben nach unten jeweils über den gesamten Bildschirm kann er aber wahrnehmen.

Die vorstehende Erläuterung hatte den Zweck, die Wirkung der "Anpassung" der erfindungsgemäßen autostereokopischen Anordnung an eine Entfernung \(E = E_a = T < E_{as} = E' \) gemäß Formel (7aa) noch einmal näher zu erläutern.

Was der Betrachter aus der sehr großen Entfernung \(E >> T \) tatsächlich sieht, zeigen, wie oben bereits erwähnt, die jeweils unteren Zeilen in den Gruppen a) bis g) der Fig.12a. Im Entfernungs bereich \(E = 200 \text{ mm} \) bis \(E = 1000 \text{ mm} \) variiert der Faktor \(ET/(E-T) \) in Formel (16c) im Bereich 133 mm bis 87 mm (Fig.13). Der Faktor aus den Geräteparametern in Formel (16c) hat mit \(\Delta B_{EE} = 0 \text{ mm} \) nur den Wert 0,0125 mm\(^{-1} \). Damit liegt die Anzahl \(n_{HWB_{ges}} \) im Bereich 1,6 bis 1,1 und geht bei sehr großen Betrachtungsentfernungen \(E \rightarrow \infty \) gegen 1,0, und es werden die Teilbilder der erfindungsgemäßen autostereokopischen Anordnung im vorliegenden Beispiel jeweils durch ein einziges sichtbares Subpixel gebildet. Gemäß Formel (16d) hat die gesamte Halbwertsbreite \(HWB_{ges} \) bei den sehr großen Betrachtungsentfernungen \(E \) den Wert \(HWB_{ges} \leq 8,0 \text{ mm} \).

Es sei angemerkt, daß die Verhältnisse bei der oben beschriebenen autostereokopischen Anordnungen mit 20 Zoll TFT-LCD als Bildschirm bzgl. der Anzahl \(n_{HWB_{ges}} \) anders liegen. Bei der oben verwendeten Betrachtungsentfernung \(E = 700 \text{ mm} \) und der Bildebene beispielsweise mit der Tiefe \(T = +100,7 \text{ mm} \) ist \(ET/(E-T) = 117,6 \text{ mm} \). Die Geräteparameter ergeben den Faktor 0,122 mm\(^{-1} \), einen 10-fach größeren Wert als zuvor. Damit bestehen die Teilbil-
der von Bildern in der Tiefe $T = +100,7 \text{ mm}$ aus $n_{\text{WBges}} = 14,3$ sichtbaren Subpixeln. Durch geeignete Dimensionierung des "Gerätefaktors" kann somit vorteilhaft erreicht werden, daß benachbarte Teilbilder an einander "anschließen". Die gesamte Halbwertsbreite HWB_{ges} nach Formel (16d) liegt dagegen in derselben Größenordnung, $\text{HWB}_{\text{ges}} = 6,2 \text{ mm}$.

In Fig.12b ist der vom Betrachter der erfindungsgemäßen autostereoskopischen Anordnung aus sehr großer Entfernung E monokular wahrgenommene Bildschirm ausschnittweise stark vergrößert dargestellt.

Man erkennt aus Fig.12a und Fig.12b, wie die Bilderzeugung durch unterschiedliche Anzahl eingeschalteter, heller und ausgeschalteter, dunkler Subpixel pro Objekt-Pitch m_{BIP} erfolgt. Der Einfachheit halber sind die opaken Dunkelbereiche, die horizontal zwischen den hellen, transparenten Elementen der Barriere existieren und die die Breite ($B_{\text{TE}} - B_{\text{OE}} = 6 \text{ mm}$ im vorliegenden Beispiel haben, nicht dargestellt.

Zum einen kann der Betrachter aus der sehr großen Betrachtungsentfernung E die beleuchteten hellen transparenten Elemente der Barriere visuell nicht auflösen. Er sieht in horizontaler Richtung homogene helle Flächen mittlerer Flächenleuchtdichte, die von dunklen Bereichen der Breiten 13 mm (Gruppe a), 20 mm (Gruppe b), 27 mm (Gruppe c), 34 mm (Gruppe d) getrennt sind.

Zum anderen haben LCD im Stand der Technik meist einen Subpixel-Pitch $C < 0,1 \text{ mm}$ statt $C = 1,0 \text{ mm}$ wie in Fig.12a und Fig.12b angenommen. Die Dunkelbereiche haben dann nur noch eine Breite von $< ca. 0,6 \text{ mm}$. Ob die Struktur der Teilbilder aus üblichen Betrachtungsentfernungen E noch visuell aufgelöst erscheinen, hängt von vielen Einflußfaktoren ab.

Bei den Ausführungsbeispielen 1, 2 und 3 beträgt der Abstand zwischen den sichtbaren Strukturen, den Subpixeln der LCD bzw. den hellen, transparenten Elementen der Barriere eines Teilbildes, $B_{\text{TE}} = 0,5 \text{ mm}$. Ein Gitter mit dieser Gitterkonstanten hat aus der Betrachtungsentfernung $E = 700 \text{ mm}$ eine Ortsfrequenz von ca. 23 Perioden/Grad. Die Modulationsübertragungsfunktion des Auges hat bei dieser Ortsfrequenz, bei maximaler Modulation 1,0 im Objekt, photooptischen Adaptationsleuchtdichten $> 100 \text{ cd/m}^2$, Sinusgitter und weiteren Bedingungen einen Wert von ca. 0,12. In der Praxis kann dieser Wert deutlich kleiner sein, wodurch Teilbilder nahe oder auch unter der Kontrastschwelle für diese Ortsfrequenz bzw. nahe oder unter der Auflösungsgrenze liegen.

Es sei bemerkt, daß die Sichtbarkeit oder Unsichtbarkeit der Struktur der Teilbilder/Bilder der erfindungsgemäßen autostereoskopischen Anordnung gemäß Formel (7a) bei gleicher Tiefe
T der Bildebenen durch den Pixel-Pitch \(B_{1P} = 3C \) des 2D-Bildschirms gesteuert werden kann.

Weil der Bild-Pitch \(W_1 \) viel kleiner ist als die Breite des Bildschirms \(B_{BW} \), erscheinen auf dem Bildschirm mehrere identische Bilder (in Fig.12b ist \(j = 7 \)).

Weiter oben wurde bereits festgestellt, daß die Bilder der neuartigen autostereoskopischen Anordnung in den Bildebenen mit den Tiefen \(T \) erfindungsgemäß aus Teilbildern zusammengesetzt sind. In Fig.5a, Fig.5b, Fig.5c und Fig.5d wurde am Beispiel einer erfindungsgemäßen autostereoskopischen Anordnung im "Standard-Modus" mit monochromen (grünen) Teilbildern/Bildern in der Bildebene mit der Tiefe \(T > 0 \) gezeigt, wie bei gleichem Pixel-Pitch \(B_{1P} = 3C \) des TFT-LCD 2D-Bildschirms unterschiedliche Anzahlen \(m_1^1 = 1, m_2^2 = 2, m_3^3 = 4 \) und \(m_4^4 = 8 \) von Teilbildern pro Bild-Pitch \(W_1 \) erzeugt werden können. Gemäß den Formeln (11) wächst der Bild-Pitch \(W_1 \) mit der Anzahl \(m' \). Der Teilbild-Pitch \(w_1 \) bleibt gemäß den Formeln (14) konstant.

Bilderzeugung auf der Barriere: In der bisherigen Beschreibung der erfindungsgemäßen autostereoskopischen Anordnung, zuvor beispielsweise in Fig.12a, wurde stillschweigend davon ausgegangen, daß die Barriere eine linear-vertikale Streifen-Struktur hat, also transparente Element-Streifen oder -Spalten der Breite \(B_{OE} \) bzw. \(B_{OE,nom} \), und dazwischen opake Streifen der Breite \((B_{OE} - B_{OE}) \) bzw. \((B_{OE} - B_{OE,nom}) \). Die Bilderzeugung erfolgt dabeisoftwaremäßig durch Strukturierung der Objektebene bzw. des Bildschirms, wie das schematisch in Fig.12a und Fig.12b gezeigt wurde.

Es ist jedoch auch eine Umkehrung dieser Herangehensweise möglich, indem die bilderzeugende Strukturierung in die Barriere verlegt wird und die Objektebene eine einfache linear-vertikale Streifen-Struktur erhält. Es handelt sich dabei um eine Hardware-Lösung, falls kei ne element-ansteuerbare transparente Barriere, beispielsweise eine TFT-LCD ohne Farbfilter, verwendet wird.

In Fig.12c ist diese Lösung in Fortführung von Fig.12a gezeigt. Der TFT-LCD-Bildschirm ist in jeder Subpixel-Spalte mit dem Objekt-Pitch \(m' B_{1P} = 8C \) hell, also eingeschaltet. In den sechs Gruppen g) bis l) ändert sich jeweils nur die Anzahl der beispielsweise benachbarten transparenten Elemente der Barriere innerhalb des Element-Pitchs \(B_{1E} = 7C \). Die jeweils aus der sehr großen Betrachtungsentfernung \(E \) sichtbaren hellen, eingeschalteten Subpixel des Bildschirms sind wie in Fig.12a als weiße Rechtecke mit schwarzem Rahmen gekennzeichnet. Man erkennt dieselben Teilbilder/Bilder in den Gruppen f) und h), e) und i), d) und j), c) und k), b) und l) von Fig.12a und Fig.12c.
Die Kombination beider Verfahren ist Bestandteil der Erfindung.

Ausführungsbeispiel 5:

Im Folgenden wird ein konkretes Ausführungsbeispiel der erfindungsgemäßen autostereoskopischen Anordnung im Detail beschrieben. Es handelt sich um eine "3D-Digitaluhr" mit beispielsweise grünen Ziffern auf dunklem, schwarzem Hintergrund, wobei die Ziffern in einer Bildebene vor dem Bildschirm in einer Tiefe T > 0 erscheinen sollen. Da diese Digitaluhr beispielsweise in einer Schalterhalle eines Bahnhofs oder einer Bank zwar von Menschen mit unterschiedlicher Größe und in unterschiedlichem Abstand wahrgenommen werden soll, immer aber mit im wesentlichen normaler, vertikaler Kopfhaltung, wird die autostereoskopische Anordnung nur mit horizontaler Bewegungsparallaxe ausgestattet.

Fig.14a zeigt die Digitaluhr schematisch. Erfindungsgemäß werden die Bilder in Form von Ziffern aus Teilbildern zusammengesetzt. Die Uhrzeit sei 04:37. Die Stunden und Minuten werden zweistellig dargestellt, die Stunden oben, die Minuten darunter. Dazwischen blinkt im Sekundentakt ein horizontal liegender Doppelpunkt aus zwei Teilbildern. Die Ziffern selbst werden analog zur Sieben-Segment-Zifferanzeige des Standes der Technik gebildet, wobei die Segmente selbst aus bis zu drei Teilbildern bestehen können.

Als 2D-Bildschirm soll das 20 Zoll TFT-LCD dienen, der bereits in oben beschriebenen Ausführungsbeispielen verwendet wurde. Die Parameter sind: Bildwiedergabefläche $B_{BW} \times H_{BW} = 406.4 \text{ mm} \times 304.8 \text{ mm}$, „Auflösung“ 1600 Pixel $\times 1200$ Pixel (UXGA), Subpixel-Pitch $C = 0.08466 \text{ mm}$, horizontaler/vertikaler Pixel-Pitch $B_{1P} = 3C = 0.254 \text{ mm}$.

Der Objekt-Pitch $m'B_{1P} = 2.032 \text{ mm}$, wobei $m' = 8$ gewählt wurde. Die Anzahl der horizontalen Teilbilder pro Bild-Pitch W_1 beträgt damit $m' = 8$. Somit kann jede Ziffer aus horizontal bis zu 3 benachbarten hellen, grünen Teilbildern erzeugt und durch ein dunkles, schwarzes Teilbild voneinander getrennt werden (**Fig.14a**).

Die Ziffern sollen in einer Bildebene mit der Tiefe $T = +500 \text{ mm}$ vor der Digitaluhr erscheinen. Bei einem Abstand $D = 10,712 \text{ mm}$ beträgt der Element-Pitch B_{1E} der vor der LCD angeordneten Barriere nach Formel (7a) $B_{1E} = 1.9885 \text{ mm}$. Der Bild-Pitch beträgt nach den Formeln (11) $W_1 = 92.81 \text{ mm}$.
Erfindungsgemäß können Betrachter in beliebigen Betrachtungsentfernungen \(E > T = 500 \) mm eine 3D-Digitaluhr mit im Raum davor erscheinender, im Raum schwebender Uhrzeit wahrnehmen.

5 Im vorliegenden Ausführungsbeispiel sei der Entfernungsbereich \(E = 1000 \) mm bis \(E = 10000 \) mm. Damit beträgt das maximale "out-screening" \(T/E_{\text{min}} = 50\% \). Dieser Wert ist wegen der in einem Schaltorraum möglichen kleinsten Betrachtungsentfernung \(E_{\text{min}} = 1 \) m sacherart festgelegt worden, damit die fusionale Konvergenzfähigkeit mancher Betrachter nicht überfordert wird. Bei Anwendungen mit größerer minimaler Betrachtungsentfernung \(E_{\text{min}} \) kann auch die Tiefe \(T, T > 0 \), vergrößert werden, je nach Konvergenzfähigkeit der Betrachter auch auf ein "out-screening" \(T_{\text{max}}/E_{\text{min}} > 50\% \).

10 Die Homogenitätsbedingung gemäß den Formeln (20) ergibt für die Element-Größe bzw. Breite der Barriere den Wert \(B_{E,T,\text{hom}} = 0,2486 \) mm. Die Anzahl \(n_{\text{WBges}} \) horizontal benachbarter sichtbarer leuchtender grüner Subpixel der LCD variiert im Entfernungsbereich zwischen \(n_{\text{WBges}} = 11,4 \) und 6,0. Die wahrgenommene Teilbildbreite in der Bildebene mit der Tiefe \(T = 500 \) mm ist konstant und beträgt nach Formel (16d) \(B_{E,T} = \text{HWB}_{\text{ges}} = 11,60 \) mm.

15 Die "Quadratbedingung" für quadratische Teilbilder nach den Formeln (22) kann, wie bereits erläutert, bei ausschließlich horizontaler Bewegungsparallaxe nicht automatisch für jede Betrachtungsentfernung \(E \) eingehalten werden. Es muß eine Betrachtungsentfernung \(E \) im vorgesehenen Entfernungsbereich ausgewählt werden. Vorzugsweise soll eine solche Betrachtungsentfernung \(E \) mit gültiger "Quadratbedingung" festgelegt werden, bei der die Träge der maximalen Abweichungen der wahrgenommenen Höhe \(H_{E,T} \) von der wahrgenommenen Breite \(B_{E,T} \) für die minimale und maximale Betrachtungsentfernungen \(E_{\text{min}} = 1 \) m und \(E_{\text{max}} = 10 \) m gleich sind. Im vorliegenden Ausführungsbeispiel ist das bei der Betrachtungsentfernung \(E = 1818,2 \) mm der Fall. In der Betrachtungsentfernung \(E_{\text{min}} = 1 \) m ist die wahrgenommene Höhe der Teilbilder \(H_{E,T} = 8,00 \) mm um maximal 3,60 mm kleiner als die wahrgenommene Breite \(B_{E,T} \). In der maximalen Betrachtungsentfernung \(E_{\text{max}} = 10 \) m ist die wahrgenommene Höhe der Teilbilder \(H_{E,T} = 15,20 \) mm und damit um maximal 3,60 mm größer als die wahrgenommene Breite \(B_{E,T} \). Die Erkennungssicherheit der 3D-Uhrzeit wird dadurch nicht beeinträchtigt.

20 Es sei angemerkt, daß die maximale Differenz zwischen wahrgenommener Breite \(B_{E,T} \) und wahrgenommener Höhe \(H_{E,T} \) kleiner wird, wenn der Entfernungsbereich \(E_{\text{max}} - E_{\text{min}} \) im Anwendungsfall verkleinert werden kann.
Die Teilobjektgröße H auf der LCD ist nach Formel (15b) konstant und hat für $n = \text{ganze Zahl}$ = 63 Pixelzeilen den Wert $H = 16,002 \text{ mm}$. Die gesamte Höhe H_{ges} der Ziffernanzeige auf der LCD, bestehend aus 15 Teilobjekten (Fig.14a), beträgt damit $H_{\text{ges}} = 240,03 \text{ mm}$, was 945 Pixelzeilen entspricht. Die übrigen 255 Pixelzeilen bilden den oberen und unteren dunklen, schwarzen Rand auf der LCD.

Je nach Betrachtungsentfernung $E_{\min} \leq E \leq E_{\max}$ nimmt der Betrachter in der Bildebene mit der Tiefe $T = +500 \text{ mm}$, $1,8 \leq j_{\max} \leq 4,1$ Bild-Pitchs W_1 wahr. Der Betrachter sieht die Uhrzeit 04:37 mehrfach nebeneinander, woraus eine 100%-ige Erkennungssicherheit aus allen Raumlängen/Schrägaufsichtswinkeln resultiert.

Die Anzahl der Perspektivansichten dieser 3D-Digitaluhr ist um mindestens eine Größenordnung größer als im Stand der Technik. Die Anzahl N für ein und dasselbe Bild bzw. ein und denselben Bild-Pitch W_1 variiert im Bereich der Betrachtungsentfernungen 1000 mm $\leq E \leq 10000 \text{ mm}$ zwischen 78 $\leq N \leq 151$. Im Stand der Technik beträgt $N = 8$.

In der Tabelle von Fig.14b sind alle wichtigen Dimensionierungs- und Leistungsparameter der "3D-Digitaluhr" noch einmal übersichtlich zusammengestellt. In der untersten Zeile der Tabelle wird gezeigt, daß bei der erfindungsgemäßen 3D-Verfahren durch Wahl des Abstandes D_0 bei gleicher Tiefe T quadratische Teilbilder/Bilder mit kleinen Abmaßen, beispielsweise $b_{E,T} \times h_{E,T} = 1,02 \text{ mm} \times 1,02 \text{ mm}$, möglich sind.

Es sei angemerkt, daß in Fig.14b beispielsweise bei einer Betrachtungsentfernung $E = 1818,2 \text{ mm}$ und einer Anzahl $n = 1$ horizontal-rechteckige Teilbilder mit den HWB $b_{E,T} \times h_{E,T} = 11,602 \text{ mm} \times 0,184 \text{ mm}$ entstehen würden.

Die Barriere für dieses Ausführungsbeispiel hat im einfachsten Fall eine linear-vertikale Struktur mit transparenten Streifen der Breite $b_{DE,\text{hom}}$ und opaken Streifen der Breite ($b_{IE} - b_{DE,\text{kom}}$). Solche Strukturen sind besonders leicht herzustellen.

Die Objektstruktur für das Bild in der Tiefe $T = +500 \text{ mm}$ mit der grünen Uhrzeit "04:37" ist in Fig.14c gezeigt. Der Einfachheit halber sind die bei TFT-LCD vertikal-rechteckigen Subpixel ($B \times H = C \times 3C$) als Quadrate gezeichnet. Wegen $T > 0$ muß die Objektstruktur der Ziffernanzeige auf der LCD gegenüber der Darstellung in Fig.14a horizontal gespiegelt werden.

Die ersten 24 Subpixel-Spalten der LCD enthalten bereits die gesamte notwendige Information für die Darstellung der Uhrzeit. Subpixel, die mit der Zahl "0" ausgefüllt sind, werden
wegen einer kontrastreichen und daher gut lesbaren Uhr vorzugsweise mit 0 Dgit angesteu-
er (schwarze, ausgeschaltete Subpixel). Subpixel, die mit der Zahl "1" ausgefüllt sind, wer-
den mit 0 < Dgit ≤ 255 angesteuert, vorzugsweise mit 255 Dgit.

5 Von den 1200 Pixel-Zellen enthalten 693 Zeilen die Informationen für die die Uhrzeit
anzeigenenden Zahlen „1“ (5+1+5 = 11 Teilbilder zu je n = 63 Pixelzeilen). Die übrigen Pixel-
Zellen sind schwarz, das entspricht den Zahlen „0“. Die 24 Subpixel-Spalten werden 200x
horizontal wiederholt, so daß die gesamte LCD mit 3 x 1600 = 4800 Subpixel-Spalten und
1200 Pixel-Zellen im wesentlichen mit "Uhrzeit-Informationen" belegt ist.

10 Die Software für die Strukturierung des LCD-Bildschirms ist erfindungsgemäß sehr viel ein-
facher und schneller als im Stand der Technik. In Anwendungen, bei denen die erfindungs-
gemäße "3D-Digitaluhr" im wesentlichen nur in einem eingeschränkten Entfernungsbereich
mit einer typischen mittleren Betrachtungsentfernung E genutzt wird, kann die "Uhrzeit-
Information" auf der LCD auf einen horizontalen Bereich beschränkt werden, der kleiner ist
als die Breite B_W der LCD. Ist diese Betrachtungsentfernung beispielsweise E = 1818 mm,
so kann die Breite der "Uhrzeit-Information" gemäß Fig.14b im wesentlichen auf 153 mm/C
= 1807 Subpixel-Spalten in der Mitte der LCD reduziert werden. Die übrigen 2993 Subpixel-
Spalten links und rechts daneben haben nur schwarze, ausgeschaltete Subpixel. Diese Art
der Objektstrukturierung hat analog zu Fig.X2 den Vorteil, daß die Uhrzeit "04:37" im we-
sentlichen nur einmal (j = 1) gesehen wird. Ein weiterer Vorteil ist die noch weitere Reduzie-
rung der Software-Anforderungen.

20 Anstelle einer grünen Uhrzeit kann durch die Ansteuerung ausschließlich roter oder blauer
Subpixel links bzw. rechts neben denen mit der Zahl „1“ eine Digitaluhr mit roter oder blauer
Uhrzeit vor schwarzem Hintergrund realisiert werden. Ebenso ist es möglich, beispielsweise
die Minuten grün und die Stunden rot darzustellen oder nur den Doppelstrich in einer ande-
enen Farbe als die Ziffern zu gestalten. Auch können die Minuten, Stunden und/oder der Dop-
nelstrich beispielsweise im Sekundentakt an- und ausgeschaltet werden, wobei dies auch
mit einer Zeitverschiebung von beispielsweise einer halben Sekunde geschehen kann.

30 Es sind darüber hinaus nicht nur Digitaluhren mit Ziffernanzeige auf schwarzem Hintergrund
möglich, sondern auch das Inverse, also eine Digitaluhr mit schwarzen Ziffern in monochro-
matischer Umgebung.

35 Weiter sind nicht nur Ziffern in monochromen R-, G- und/oder B-Farben möglich, sondern
auch Ziffern in Mischfarben. Fig.14d zeigt beispielsweise die Objektstruktur für gelbe Uhrzeit
in rotem Umfeld. Erfindungsgemäß erhalten alle R-Subpixel in den acht roten Subpixel-
Spalten der 24 Subpixel-Spalten die Information „1“. R-Subpixel, die mit der Zahl ”1“ ausgefüllt sind, werden mit 0 < Digit ≤ 255 angesteuert, vorzugsweise mit 255 Digit für im wesentlichen ”reines ”Gelb“. Eine unterschiedliche Abhängigkeit \(L_{RG} = f(Digit_{RG}) \) sei außer acht gelassen. Je nach dem Quotient \(L_0/L_R \) kann die Mischofarbe der Uhrzeit zwischen grün (\(L_R = 0 \)) und orange bzw. nahe rot (\(L_0 < L_R \)) variiert werden, wobei im Fall 0 < Digit_{GR} ≤ 255 die Helligkeit im roten Umfeld abnimmt.

Analog zu Fig.14d zeigt Fig.14e die Objektstruktur für magenta-farbige Uhrzeit in blauem Umfeld. Erfindungsgemäß erhalten auch hier, wie in Fig.14d, die Subpixel in den acht Subpixel-Spalten (blau) links neben den Subpixel-Spalten für die Uhrzeit (rot) die Information „1“. B-Subpixel, die mit der Zahl ”1“ ausgefüllt sind, werden mit 0 < Digit ≤ 255 angesteuert, vorzugsweise mit 255 Digit für im wesentlichen ”reines“ magenta. Eine unterschiedliche Abhängigkeit \(L_{BR} = f(Digit_{BR}) \) sei außer acht gelassen. Je nach dem Quotient \(L_R/L_B \) kann die Mischofarbe der Uhrzeit zwischen rot (\(L_B = 0 \)) und nahe blau (\(L_R < L_B \)) variiert werden, wobei im Fall 0 < Digit_{BR} ≤ 255 die Helligkeit im blauen Umfeld abnimmt.

Die Anordnung der Subpixel-Spalten für das Umfeld links neben den Subpixel-Spalten für die Uhrzeit gilt erfindungsgemäß nicht nur für Bildebenen mit der Tiefe \(T > 0 \), sondern ebenso für eine "3D-Digitaluhr" mit Uhrzeit in einer Bildebene in der Tiefe \(T < 0 \).

Analog zu Fig.14d und Fig.14e kann auch eine "3D-Digitaluhr" mit cyan-farbiger Uhrzeit in grünem Umfeld verwirklicht werden.

Es sei angemerkt, daß jede Art von subpixel- oder pixelweise ansteuerbaren Bildschirmen in der erfindungsgemäßen autostereoskopischen Anordnung Verwendung finden können. Es kann sich dabei um transparente, passive Bildschirme mit homogener Backlight oder Side-
light-Beleuchtung handeln, beispielsweise TFT-LCD, oder auch um aktive, selbstleuchtende Bildwiedergabeinrichtungen, beispielsweise PDP oder LED-basierte Systeme.

Keinesfalls sind Bildschirme ausgeschlossen, bei denen die gewünschte Objekt-Struktur hardwaremäßig, beispielsweise mit weißem Licht abstrahlenden LED, erzeugt wird. Eine besonders einfache erfindungsgemäße autostereoskopische Anordnung entsteht, wenn der Bildschirm nur an solchen Positionen ihrer Objektebene mit einzelnen "Leuchtelementen" ausgestattet ist, die der gewünschten Objekt-Struktur entsprechen. Weil der überwiegende Teil der Objektebene frei von "Leuchtelementen" sein kann, entsteht eine besonders einfache und somit preiswerte autostereoskopische Anordnung.

Ebenso kann die gewünschte Objekt-Struktur in ihrer Geometrie/Form durch ein einziges "Leuchtmittel" erzeugt werden.

Ausführungsbeispiel 6:

Der bisherigen Erfindungsbeschreibung lag stillschweigend die oben für die "3D-Digitaluhr" verwendete einfache linear-vertikale Streifen- oder Element-Struktur der Barriere in Kombination mit einer im wesentlichen vertikalen Objekt-Struktur des Bildschirms zugrunde. Dies ist aber nur eine von zahlreichen weiteren Kombinationen von Barriere und Bildschirm beim Aufbau einer erfindungsgemäßen autostereoskopischen Anordnung.

Die im Ausführungsbeispiel 5 beschriebene "3D-Digitaluhr" mit grünen Ziffern kann auch durch eine veränderte Objekt-Struktur der TFT-LCD und eine veränderte Element-Struktur der Barriere erzeugt werden.

In **Fig.15a** ist eine "diagonale" Objekt-Struktur für die TFT-LCD gezeigt. Ohne Einschränkung der Allgemeingültigkeit und zur übersichtlichen Darstellung wird von der Objekt-Struktur für die Ziffernanzeige nur ein Teil dargestellt, hier die 24 Pixelzeilen, die zum obersten Teilbild der Stunden-Ziffern "04" gehören. Zwecks bessner Übersicht sind die Zahlen "0" für schwarze, ausgeschaltete Subpixel nicht eingetragen. Die grünen Subpixel, welche wie im Ausführungsbeispiel 5 mit der Zahl "1" gekennzeichnet sind, befinden sich in benachbarten Pixel-Zeilen nicht mehr in ein und derselben Subpixel-Spalte, sondern sind sukzessive von Pixel-Zeile zu Pixel-Zeile vorzugsweise um den Pixel-Pitch B_{1P} = 3C und beispielsweise nach links verschoben.

In Verbindung mit der in **Fig.15b** dargestellten Barriere, die ebenfalls eine "diagonale" Struktur besitzt, wird in der Bildebene mit der Tiefe T dieselbe grüne Ziffernanzeige erzeugt wie
Im Ausführungsbeispiel 5. Dazu werden die transparenten Elemente, die in Fig.15b schwarz gekennzeichnet sind, sukzessive von Element-Zelle zu Element-Zelle um den Wert B_{15}/m^2 ebenfalls nach links verschoben. Zwecks Helligkeits-Homogenisierung beträgt die Element-Breite wie im Beispiel 1 $B_{OE,\text{hom}} = 3 B_{OE} = B_{15}/\text{m}^2$.

Die "3D-Digitaluhr" nach Ausführungsbeispiel 6 weist gegenüber der nach Ausführungsbeispiel 5 eine Besonderheit auf. Während im Ausführungsbeispiel 5 wegen der vorausgesetzten ausschließlichen horizontalen Bewegungsparallaxe die Zifferenanzeige dem Betrachter bei vertikaler Änderung seiner Kopfposition stetig nachfolgt (vertikaler "Gummi-Effekt"), bewegt sich die Zifferenanzeige im Ausführungsbeispiel 6 schrittweise nach links, wenn der Betrachter seinen Kopf vertikal nach unten verlagert oder sich der "3D-Digitaluhr" nähert, die im Schalterraum höher angebracht ist als seiner Körpergröße entspricht. Nach $m' = 8$ solcher Schritte erscheint die Zifferenanzeige wieder in der Ausgangslage.

Die autostereoskopische Anordnung nach Ausführungsbeispiel 6 findet vorzugsweise Anwendung bei im wesentlichen unveränderten Positionen der Betrachter bzgl. einer vertikalen Ebene, andernfalls bei größeren Betrachtungsentfernungen E oder/und kleineren Tiefen T. Andererseits kann die "Besonderheit" auch genutzt werden, um beim Betrachter beispielsweise die Aufmerksamkeit für das wahrnehmbare 3D-Bild zu erhöhen.

Ausführungsbeispiel 7:

Eine lineär-vertikale Barriere mit eingehaltener Homogenitätsbedingung für die Element-Breite B_{OE} gemäß Formel (20d), also mit $\Delta B_{OE} = 0$, und mit angepasstem Element-Pitch B_{15} gemäß Formel (7aa), erzeugt bei einer TFT-LCD, bei der innerhalb des Objekt-Pitchs $m'B_{1P}$ mit $m' = 4$ die RGB-Subpixel beispielsweise in drei benachbarten Subpixel-Spalten eingeschaltet sind und bei der die Quadratbedingung gemäß den Formeln (22) erfüllt ist, ein quadratisches Teilbild pro Bild-Pitch W_{1}, das bei $T > 0$ aus den Farben blau, grün, rot und bei $T < 0$ aus den Farben rot, grün, blau jeweils von links nach rechts aufgebaut ist.

Diese dreifarbbigen Teilbilder könnten wie die grünen Teilbilder im Ausführungsbeispiel 5 angeordnet werden, um eine dreifarbbige "3D-Digitaluhr" zu erhalten. Die Objektenebene des LCD-Bildschirms wird analog zu Fig.14c strukturiert, wobei jedoch zusätzlich zur Zahl "1" für grüne Subpixel auch die jeweils links und rechts benachbarten roten und blauen Subpixel die Zahl "1" erhalten.

Wird die Element-Breite B_{OE} um ΔB_{OE} erhöht, wobei die Homogenitätsbedingung gemäß den Formeln (20a), (20b), (20c) im wesentlichen eingehalten werden soll, entsteht in der Bild-
ebene mit der Tiefe $T > 0$ ein mehrfarbiges Teilbild aus den Farben blau, cyan, weiß, gelb, rot und in der Bildebene mit der Tiefe $T < 0$ ein Teilbild aus den Farben rot, gelb weiß, cyan, blau, jeweils von links nach rechts. Durch einen geeigneten Wert für ΔB_{OE}, $\Delta B_{OE} > 0$, kann die Farbe "weiß" in Teilbildern/Bildern auch eliminiert werden.

Es sei angemerkt, daß das neue 3D-Verfahren Bilder in Bildebenen mit der Tiefe T erzeugen kann, die aus monochromatischen R-, G- oder B-Teilbildern bestehen, wobei diese monochromatischen Teilbilder aus wenigen R-, G-, oder B-Subpixeln bestehen, im Grenzfall aus nur einem einzigen dieser Subpixel.

Auch dieses Beispiel soll die mannigfachen Möglichkeiten des erfindungsgemäßen 3D-Verfahrens verdeutlichen. Nicht alle Abwandlungen können hier beschrieben werden, sind aber Bestandteil der Erfindung.

Ausführungsbeispiel 8:

Die oben für die "3D-Digitaluhr" verwendete einfache linear-vertikale Streifen-Struktur der Barriere lag der bisherigen Erfindungsbeschreibung stillschweigend zugrunde. Sie ist aber nur eine von zahlreichen weiteren Ausführungsformen der Barriere für die erfindungsgemäß e autostereoskopische Anordnung.

Die gleiche grüne "3D-Digitaluhr" erhält man erfindungsgemäß, wenn die Objekt-Struktur auf dem LCD-Bildschirm und die Element-Struktur in der Barriere vertauscht werden (siehe auch Fig.12a, Fig.12c).

In dem LCD-Bildschirm wird gemäß $m^t = 8$ jedes Subpixel in jeder achten grünen Subpixel-Spalte mit der Information "1" belegt, d.h. jedes dieser grünen Subpixel wird mit $0 < \text{Digit} \leq 255$ angesteuert (grüne, linear-vertikale Subpixel-Spalten analog zur linear-vertikaler Streifen- oder Element-Struktur der Barriere). Alle grünen Subpixel in den übrigen grünen Subpixel und alle roten und blauen Subpixel erhalten die Information "0", d.h. sie werden mit 0 Digit angesteuert, sind also schwarz, ausgeschaltet. Mit dieser Objekt-Struktur wird eine besonders einfache und schnelle Software-Ansteuerung des LCD-Bildschirms ermöglicht.

Im Unterschied zur linear-vertikalen Streifen- oder Element-Struktur der Barriere aus Ausführungsbeispiel 5 erhält die Barriere im Ausführungsbeispiel 8 eine Struktur, die der Objekt-Struktur auf dem LCD-Bildschirm aus Ausführungsbeispiel 5 analog ist.
Versteht man die Barriere analog dem LCD-Bildschirm aus einzelnen, in Spalten und Zeilen angeordneten, transparenten Elementen aufgebaut, die in der Form und im wesentlichen in der Größe den vertikal-rechteckförmigen Subpixeln des LCD-Bildschirms entsprechen, entsteht eine Barriere mit der Struktur gemäß Fig.16a, wobei eine Element-Breite B_{OE} der Barriere zugrunde gelegt wurde, welche die Homogenitätsbedingung nicht erfüllt.

In Fig.16b erfüllt die Element-Breite der Barriere die Homogenitätsbedingung, $B_{OE, hom} = 3 \times B_{OE}$. Es ist bei Anordnungen gemäß Ausführungsbeispiel 8 unmittelbar ersichtlich, daß die Helligkeit innerhalb und zwischen den Teilbildern einen homogenen Verlauf der Flächenleuchtdichte hat.

Beispielsweise können die transparenten Elemente der Barriere eine gekrümmte geometrische Form aufweisen oder sowohl aus rechteckigen und/oder quadratischen, als auch aus gekrümmten Formen bestehen. Ebenso sind dreieckige, konvex-viereckige (rhomboide, rautenförmige, trapezoide, drachenförmige) und konkav-viereckige Formen der transparenten Barriere-Elemente möglich. Dabei variert die Breite der Teilbild/Bilder in der Bildebene mit der Tiefe T gemäß Formel (16d) und (16e) entsprechend der jeweiligen Breite ΔB_{OE} des transparenten Barriere-Elementes.

Eine weitere Strukturierung der transparenten Elemente der Barriere ermöglicht eine quasi-kontinuierliche Krümmung von aus Teilbildern zusammengesetzten Bildern in Bildebenen mit der Tiefe T. Dazu erhalten transparente Elemente in vorzugsweise benachbarten Element- und Zeilen der Barriere einen Versatz in Zeilenrichtung um einen Wert $\pm \Delta x$, wobei gilt $0 < \text{absoluter Betrag } |\Delta x| < B_{OE}/m'$, vorzugsweise $< B_{OE}/3m'$.
Aus Ausführungsbeispiel 8 ergibt sich umgekehrt auch, daß das erfindungsgemäße 3D-Verfahren keineswegs auf Bildschirmen mit rechteckiger oder quadratischer Form ihrer Sub-pixel, Pixel oder Leuchtelemente beschränkt ist. Beispielsweise bezieht sich das erfindungsgemäße 3D-Verfahren auch auf "chevron"-förmige Leuchtelemente des Standes der Technik.

Wie weiter oben bereits erläutert, ist der Austausch von Objekt-Struktur und Element-Struktur bei autostereoskopischen Anordnungen im Stand der Technik nicht möglich.

Ausführungsbeispiel 9:

Die "3D-Digitaluhr" an der Wand einer Schalterhalle oder Bank hat einen Nachteil, der allerdings bei dieser Anwendung kaum ins Gewicht fällt: Bei zunehmender Neigung des Kopfes um eine Achse in Blickrichtung und bei wachsenden "out-screening" $T_{\text{max}}/E_{\text{min}}$, wird die Fusion der stereoptischen Ansichten zum Einfachbild zunehmend erschwert. Ursache ist die ausschließlich horizontale Bewegungsparallaxe in den obigen Beispielen.

Es sind jedoch Anwendungsfälle denkbar, in denen beispielsweise eine Bildinformation von allen azimutalen Raumrichtungen aus, d.h. aus 360°, in ein und derselben Tiefe T wahrgenommen werden muß. Für solche Anwendungen wird die autostereoskopische Anordnung beispielsweise liegend angeordnet.

In Fig.17a sind zwei vereinfachte, stilisierte Pfeilspitzen mit den Richtungen 0° und 45° dargestellt, die jeweils zu einer Mannschaft gehören. Dabei ist angenommen, daß die vier Spieler beider Mannschaften abwechselnd um die liegend angeordnete autostereoskopische Anordnung sitzen. Die Pfeilspitzen der Mannschaft 1 können die azimutalen Winkel 0°, 90°, 180° und 270° annehmen, die Pfeilspitzen der Mannschaft 2 die Winkel 45°, 135°, 225° und 315°. Die Pfeilspitzen bestehen jeweils aus drei quadratischen Teilbildern.

Als 2D-Bildschirm soll ein achteckig abgedecktes 15 Zoll TFT-LCD im Standard-Modus dienen mit einer "Auflösung" 1024 Pixel x 768 Pixel (XGA), einem horizontalen Subpixel-Pitch $C_h = 0,1$ mm und einem vertikalen Subpixel-/Pixel-Pitch $C_v = 3C_h = 0,3$ mm. Vorzugsweise
soll die TFT-LCD über einen weiten Sichtwinkelbereich verfügen, wie es im Stand der Technik der Fall ist.

Der Objekt-Pitch horizontal und vertikal ist \(m'B_{1p} = 1,2 \text{ mm} \), wobei \(m' = 4 \) gewählt wird. Die Bildinformation in Form der Pfellspitzen soll in einer Bildebene mit der Tiefe \(T = +150 \text{ mm} \) oberhalb des Bildschirms erscheinen und so scheinbar schweben. Bei einem Abstand \(D = 3 \text{ mm} \) beträgt der horizontale und vertikale Element-Pitch der oberhalb der LCD angeordneten Barriere \(B_{1e} = 1,176 \text{ mm} \). Die Element-Breite ist horizontal \(B_{0eh} = 0,294 \text{ mm} \), die Element-Höhe ist vertikal \(B_{0ev} = 0,098 \text{ mm} \). Die quadratischen Teilbilder in der Bildebene mit der Tiefe \(T \) oberhalb des Bildschirms haben die Abmaße \(B_{e-T} \times H_{e-T} = 14,7 \text{ mm} \times 14,7 \text{ mm} \). Die acht Spieler können sich in ganz unterschiedlichen Betrachtungsebenen befinden, beispielsweise in Ebenen mit den Abständen \(E \geq 500 \text{ mm} \).

Die Tabelle in Fig.17b enthält die wichtigsten Daten des erfindungsgemäßen "3D-Spiele-Automaten".

Fig.17c zeigt einen vergrößerten Ausschnitt der Element-Struktur der Barriere. Fig.17d und Fig.17e enthalten die vergrößerten Ausschnitte der Objekt-Strukturen für die Pfellspitze 0° der Mannschaft 1 und für die Pfellspitze 45° der Mannschaft 2. Die Objekt-Strukturen für die jeweils anderen drei azimutalen Winkel der Pfellspitzen sind daraus leicht abzuleiten, wobei wegen \(T > 0 \) horizontal und vertikal gespiegelt werden muß. Die vertikale-rechteckigen Subpixel sind wie bisher nur als Quadrate dargestellt. Leere, zahlenlose Subpixel werden wieder mit 0 Digit, Subpixel mit der Information "1" werden mit 0 < Digit ≤ 255 angesteuert, vorzugsweise mit 255 Digit.

Der "3D-Spiel-Automat" nach Ausführungsbeispiel 9 bietet jedem der acht Spieler aus beliebiger individueller Lage des Kopfes im Raum einen vollkommen natürlichen räumlichen Seheindruck mit im Raum scheinbar weit über dem Bildschirm schwebender Bildinformation, ein Seheindruck, der niemals verschwindet und in seiner räumlichen Tiefe stabil bleibt, mit natürlicher und kontinuierlicher Bewegungsparaaxie nach allen Richtungen, natürlichen Größenverhältnissen und höchster Erkennungssicherheit.

Es sei angemerkt, daß bei Anwendungen mit unbekannter oder veränderlicher relativer azimutaler Orientierung zwischen beispielsweise liegender autostereoskopischer Anordnung und den Betrachtern die Erkennungssicherheit für das 3D-Bild - im Vergleich zu erfindungsgemäßen autostereoskopischen Anordnungen mit ausschließlich horizontaler Bewegungsparallaxe oder zu autostereoskopischen Anordnungen des Stand der Technik - auf 100% erhöht wird.
Selbstverständlich kann der beschriebene 3D-Spiel-Automat auch nur für vier Mitspieler ausgelegt sein, beispielsweise die Spieler der Mannschaft 1. Andererseits kann die räumliche Bildinformation auch erweitert werden. Beispielsweise können die jeweils gewonnenen oder verlorenen "Punkte" jedem Spieler als im Raum schwebende Anzahl quadratischer oder rechteckiger "Chips" angezeigt werden. Die Barriere nach **Fig. 17c** kann dazu Flächen mit ungleicher Element-Struktur aufweisen.

Auch kann die Element-Struktur der Barriere nach **Fig. 17c** auf eine kleinere Fläche als die Fläche des Bildschirms begrenzt sein, wobei die Barriere in den übrigen Flächen schwarz-opak ist. Die kleinere Fläche kann beispielsweise quadratisch sein und sich in der Mitte des Bildschirms befinden. Ihre Abmaße können im wesentlichen 2 x O₁₁ betragen.

Es sei noch angemerkt, daß beispielsweise durch Kombination linear-vertikaler Subpixel des Bildschirms mit B:H = 1:3 mit linear-horizontalen Elementen der Barriere mit B:H = 1:3 vertikal-rechteckige Teilbilder mit HWB Bₑₑₑطوری 3 وال 4

Im Unterschied zum Stand der Technik kann die relative azimutale Orientierung zwischen der makroskopischen und mikroskopischen Element-Struktur der Barriere und der makroskopischen und mikroskopischen Subpixel- bzw. Pixel-Struktur des Bildschirms in einem bestimmten azimutalen Winkelbereich von der Parallelität abweichen, wodurch erfindungsgemäß zusätzlich Verdrehungs-Moire genutzt werden.

Bei autostereoskopischen Anordnungen mit ausschließlich horizontaler Bewegungsparallaxe werden dadurch in Bildebenen bei unveränderter Tiefe T "schräge" Bilder erzeugt. Im Ausführungsbeispiel 5 mit der "3D-Digitaluhr" würden sich ehemals vertikale Bildteile, beispielsweise die beiden vertikalen Schenkel der Ziffer "0", bei T > 0 in dieselbe Drehrichtung "schräg" stellen (bei T < 0 in die entgegengesetzte Drehrichtung), wobei die Bildhöhe unverändert bleibt. Die beiden kurzen horizontalen Schenkel der Ziffer "0" behalten ihre horizontale Ausrichtung bei. Die ehemals quadratischen Teilbilder verformen sich jeweils zu einem bei T > 0/T < 0 in Drehrichtung oder entgegen der Drehrichtung gekippten Rhomboid, dessen horizontale Breite unverändert bleibt (siehe **Fig. 18**).
Eine Bildkippung um mehr als 45° ist ohne weiteres möglich. Bei gleicher relativer Verdrehung ist die Bilddrehung in Bildebenen mit Tiefen T > 0 größer als die entgegengesetzte Bilddrehung in Bildebenen mit der Tiefe T < 0. Die Bildschärfe an den ehemals vertikalen Bildkanten ist in gekippten Bildern größer. Die Bilddrehung bleibt bei Verringerung der Betrachtungsentfernung E im wesentlichen unverändert. Die horizontale Bewegungsparallaxe bleibt bei gekippten Bildern erhalten.

Die gewünschte Schräglage oder Kippung von Bildern in im wesentlichen unveränderter Tiefe T kann auf einfache Weise durch mechanische Verdrehung der Barriere eingestellt und ebenso einfach verändert werden, ohne daß eine neue Barriere mit "schräger" Element-Struktur hergestellt werden muß.

Ausführungsbeispiel 10:

Bei autostereoskopischen Anordnungen mit horizontaler und vertikaler Bewegungsparallaxe können durch Drehung der Barriere oder/und des Bildschirms andere Änderungen im Teilbild/Bild erzeugt und genutzt werden.

Bei kontinuierlicher Drehung der Barriere relativ zum Bildschirm verdreht sich das gesamte Bild bei T > 0 in Drehrichtung und bei T < 0 entgegen der Drehrichtung, wobei die Tiefe T beispielsweise von Bildebenen mit der Tiefe T > 0 sich kontinuierlich verringert. Die Teilbilder/Bilder werden kontinuierlich allseitig kleiner, weswegen die quadratische Form von Teilbildern erhalten bleibt. Bei Verringerung der Betrachtungsentfernung E dreht sich das Teilbild/Bild bei T > 0 weiter in Drehrichtung der Barriere und bei T < 0 weiter entgegen der Drehrichtung der Barriere. Die Richtung der ehemals horizontalen und vertikalen Bewegungsparallaxe verdreht sich relativ zur horizontalen und vertikalen Kopfbewegung des Betrachters und zwar genauso wie das Teilbild/Bild selbst.

Ausführungsbeispiel 11:

Fig.19a enthält mögliche Darstellungen für das Alphabet aus Großbuchstaben mit dem Parameter m' = 4 und horizontaler Bewegungsparallaxe. Fig.19b enthält ausgewählte Groß- und Kleinbuchstaben, die bei horizontal sowie bei horizontaler und vertikaler Bewegungsparallaxe mit dem Parameter m' = 8 erzeugt werden können. Der größere Parameter m' erlaubt eine größere Gestaltungsvielfalt, beispielsweise auch die zusätzliche Darstellung der Kleinbuchstaben. Bezüglich der Darstellung der Ziffern "0" bis "9" sei auf das Ausführungsbeispiel 5 "3D-Digitaluhr" mit m' = 4 verwiesen.
Vorzugsweise werden unterschiedliche Objekte (beispielsweise unterschiedliche Buchstaben/unterschiedliche Buchstabengruppen oder Text) auf dem Bildschirm vertikal und/oder diagonal angeordnet, wobei bei diagonaler Anordnung die Anzahl der unterschiedlichen Bilder in Bildebenen mit den Tiefen T nicht größer ist als der Parameter j nach Formel (23a) oder Formel (23d).

Eine horizontale Anordnung unterschiedlicher Objekte auf dem Bildschirm ist in solchen Anwendungen möglich, bei denen es nicht auf einen großen Bewegungsbereich des Betrachters ankommt. Indem $O_r < B_{sw}$ oder $O_g << B_{sw}$ verwirklicht wird, können j unterschiedliche Objekte nebeneinander in Bildebenen mit der Tiefe T wahrgenommen werden, wobei der Bewegungsbereich durch die Größe i mitbestimmt wird.

In Fig.20 ist eine Auswahl möglicher weiterer Bilder der erfindungsgemäßen autostereoskopischen Anordnung zusammengestellt.

Anhand von mehr als elf Versuchsanordnungen und verschiedener, auf Leiterplatten-Plottern mit Auflösung von 16.000 dpi hergestellter, transparent-schwarzopaker Barrieren konnte das neuartige 3D-Verfahren verifiziert werden. Dabei wurden u. a. die folgenden 3D-Bildinhalte realisiert:

- monochrome (grüne) Buchstaben "E" in schwarzem Umfeld in zwei Bildebenen mit den Tiefen $T < 0$ und $T > 0$, horizontale Bewegungsparallaxe, Display im Standard-Modus (horizontal),
- monochrome (rote) Buchstaben "E" in schwarzem Umfeld in zwei Bildebenen mit den Tiefen $T < 0$ und $T > 0$, horizontale Bewegungsparallaxe, Display im Standard-Modus (horizontal),
- monochrome (blaue) Buchstaben "E" in schwarzem Umfeld in zwei Bildebenen mit den Tiefen $T < 0$ und $T > 0$, horizontale Bewegungsparallaxe, Display im Standard-Modus (horizontal),
- monochrome (blaue, rote, grüne) "Quadrat" in schwarzem Umfeld in zwei Bildebenen mit den Tiefen $T < 0$ und $T > 0$, horizontale Bewegungsparallaxe, Display im Standard-Modus (horizontal),
- komplementäre (gelbe) Buchstaben "E" in rotem Umfeld in der Bildebene mit der Tiefe $T > 0$ und komplementäre (magenta) Buchstaben E in blauem Umfeld in der Bildebene mit der Tiefe $T < 0$, horizontale Bewegungsparallaxe, Display im Standard-Modus (horizontal),
- monochrome (grüne) "Schachbrett-Kreuze" in schwarzen Umfeld in zwei Bildebenen mit den Tiefen T < 0 und T > 0, horizontale Bewegungsparallaxe, Display im Standard-Modus (horizontal),

- monochrome (grüne) Schachbrett-Kreuze (getrennt angeordnet) in schwarzem Umfeld in zwei Bildebenen mit den Tiefen T < 0 und T > 0, mit Lücke in der Bildebene mit der Tiefe T < 0, horizontale Bewegungsparallaxe, Display im Standard-Modus (horizontal),

- monochrome (grüne) Buchstaben "E" in schwarzem Umfeld in der Bildebene mit der Tiefe T > 0 und monochrome (rote) Ziffer "8" in schwarzem Umfeld in der Bildebene mit der Tiefe T < 0, horizontale Bewegungsparallaxe, Display im Standard-Modus (horizontal),

- monochrome (grüne) Buchstaben "AUGE" in schwarzem Umfeld in der Bildebene mit der Tiefe T > 0, horizontale Bewegungsparallaxe, Display im Standard-Modus (horizontal),

- vollfarbige (weiße) Buchstaben "E" in schwarzem Umfeld in der Bildebene mit der Tiefe T > 0, horizontale Bewegungsparallaxe, Display im Portrait-Modus (vertikal)

- monochrome (grüne) "Schachbrett-Kreuze" (vertikal zusammenhängend) in schwarzem Umfeld in der Bildebene mit der Tiefe T > 0, horizontale und vertikale Bewegungsparallaxe, Display im Portrait-Modus (vertikal).
Patentansprüche

1. Verfahren zur autostereoskopischen Bildwiedergabe, bei dem
 - das von einem ersten, aus einzelnen Elementen gebildeten Array ausgehende, oder
 - das von einer Lichtquelle kommende, durch die Elemente eines ersten Arrays hindurchtretende Licht
 - auf ein zweites Array aus lichtdurchlässigen Elementen gerichtet ist, wobei
 - mit der Festlegung der Positionen der Elemente auf dem ersten Array,
 - mit der Festlegung der Positionen der Elemente auf dem zweiten Array und
 - mit der Festlegung des Abstandes der beiden Arrays voneinander
 - Ausbreitungsrichtungen für das von dem ersten Array kommende Licht vorgegeben werden,
 - die sich in einer vor oder hinter den beiden Arrays liegenden Bildebene oder in mehreren vor und/oder hinter den beiden Arrays liegenden Bildebenen schneiden, und dadurch
 - in diesen Bildebenen Bilder erzeugt werden,
 - welche ein Betrachter, der sich außerhalb dieser Bildebenen mit Blick auf die beiden hintereinander angeordneten Arrays befindet, vor und/oder hinter den beiden Arrays autostereoskopisch wahrnimmt.

2. Verfahren nach Anspruch 1, bei dem
 - von den Elementen des ersten Arrays Licht bestimmter Farbe und/oder Helligkeit ausgeht, oder
 - von der Lichtquelle kommendes Licht durch die Elemente des ersten Arrays hindurchtritt, wobei diese Elemente als Farb- und/oder Helligkeitsfilter wirken, und
 - das zweite Array als Barriere dient.

3. Verfahren nach Anspruch 1, bei dem
 - von der Lichtquelle kommendes Licht durch die Elemente des ersten Arrays hindurchtritt, wobei das erste Array als Barriere dient, und
 - die Elemente des zweiten Arrays als Farb- und/oder Helligkeitsfilter wirken.

4. Anordnung zur autostereoskopischen Bildwiedergabe, mit
 - einem ersten Array, auf dem sich in vorgegebenen Positionen Elemente befinden,
 - von denen Licht ausgeht, oder
durch die von einer Lichtquelle kommendes Licht hindurchtritt, wobei
das vom ersten Array kommende Licht auf ein zweites Array gerichtet ist, auf dem
sich in vorgegebenen Positionen lichtdurchlässige Elemente befinden, so daß
aufgrund der Positionen der Elemente auf dem ersten Array, aufgrund der Positionen
der Elemente auf dem zweiten Array, und aufgrund des Abstandes beider Arrays von-
einander
Ausbreitungsrichtungen für das vom ersten Arrays kommende Licht vorgegeben sind,
die sich in einer vor oder hinter den beiden Arrays liegenden Bildebene oder in mehre-
ren vor und/oder hinter den beiden Arrays liegenden Bildebenen schneiden, und da-
durch
in diesen Bildebenen Bilder erzeugt werden,
welche ein Betrachter, der sich außerhalb dieser Bildebenen mit Blick auf die beiden
hintereinander angeordneten Arrays befindet, vor und/oder hinter den beiden Arrays
autostereoskopisch wahrnimmt.

5. Anordnung nach Anspruch 4, bei der die Elemente des ersten Arrays Bildpunkte eines
Bildschirms oder einer Bildwiedergabeinrichtung mit aktiver oder passiver, emissiver
oder transmissiver, analoger oder digitaler Bildwiedergabe sind.

6. Anordnung nach Anspruch 5, bei welcher der Bildschirm bzw. die Bildwiedergabein-
richtung als Display, Flachdisplay nach dem LCD-, PDP-, LED- oder OLED-Prinzip
oder als Projektionsdisplay ausgeführt ist.

7. Anordnung nach einem der Ansprüche 4 bis 6, bei der das zweite Array als Linsenra-
ster oder Wellenlängenfilterarray ausgeführt ist.

8. Anordnung nach einem der Ansprüche 4 bis 7, bei der mindestens eine Bildebene vor
dem Bildschirm vorgesehen ist.

9. Anordnung nach einem der Ansprüche 4 bis 7, bei der mindestens eine Bildebene
hinter dem Bildschirm vorgesehen ist.

10. Anordnung nach einem der Ansprüche 4 bis 7, bei der jeweils mindestens eine Bil-
debene vor und hinter dem Bildschirm vorgesehen ist.

11. Anordnung nach einem der Ansprüche 5 bis 10, bei der
– der horizontale und/oder vertikale Pixel-Pitch \(B_{\text{HP}} \) auf dem ersten Array gleich dem
horizontalen bzw. vertikalen "Standard"-Pixel-Pitch \(B_{\text{1PS}} \) auf derartigen Arrays ist, und
bei der der horizontale und/oder vertikale Element-Pitch B_{1E} auf dem zweiten Array ungleich dem horizontalen bzw. vertikalen "Standard"-Element-Pitch B_{1ES} auf derartigen Arrays ist.

12. Anordnung nach einem der Ansprüche 5 bis 10, bei der
 - der horizontale und/oder vertikale Pixel-Pitch B_{1P} auf dem ersten Array ungleich dem horizontalen bzw. vertikalen "Standard"-Pixel-Pitch B_{1PS} auf derartigen Arrays ist, und
 - bei der der horizontale und/oder vertikale Element-Pitch B_{1E} auf dem zweiten Array gleich dem horizontalen bzw. vertikalen "Standard"-Element-Pitch B_{1ES} auf derartigen Arrays ist.

13. Autostereoskopische Anordnung mit einer Bildwiedergabeeinrichtung, die zur Bildwiedergabe Subpixel und/oder Pixel und/oder Flächenelemente enthält,
 - mit einer sehr großen Zahl von dargestellten Ansichten einer Szene/eines Gegenstandes/eines Textes, bei dem die bildwirk samen Subpixel/ Pixel/ Flächenelemente der linken Ansicht und die bildwirk samen Subpixel/ Pixel/ Flächenelemente der rechten Ansicht auf der Bildwiedergabeeinrichtung nicht deckungsgleich sind,
 - bei der horizontal und/oder vertikal benachbarte Subpixel/ Pixel/ Flächenelemente der Bildwiedergabeeinrichtung optisch in mindestens einer Bildebene mit der Tiefe T superpositioniert werden, wobei sich die Tiefe T gemäß den Gleichungen
 \[T = \frac{D}{1 - \frac{B_{1E}}{m' B_{1P}}} \quad \text{und} \quad B_{1P} = 3C \]
 ergibt, worin gilt
 - T ist der gerichtete Abstand der Bildebene von der Bildwiedergabeeinrichtung (gerichtete Tiefe),
 - D ist der gerichtete Abstand zwischen Barriere und Bildwiedergabeeinrichtung,
 - B_{1E} ist der horizontale/ vertikale Element-Pitch der Barriere,
 - B_{1P} ist der horizontale/ vertikale Pixel-Pitch der Bildwiedergabeeinrichtung,
 - m' ist eine reelle Zahl, absoluter Betrag $m' \geq 1$,
 - $m' B_{1P}$ ist der horizontale/ vertikale Objekt-Pitch der Bildwiedergabeeinrichtung,
 - C ist der horizontale Subpixel-Pitch bei RGB-basierter Bildwiedergabeeinrichtung, sonst der Pixel-Pitch,
 - wobei sich die Betrachtungsentfernungen gemäß der Gleichung
 \[E = \pm T \left(\frac{A}{\pm m B_{1P}} \pm 1 \right) \]
 ergeben, worin gilt
 - E ist die Betrachtungsentfernung von der Bildwiedergabeeinrichtung ($E > 0$),
 - A ist der mittlere Pupillenabstand des Betrachters,
m ist eine reelle Zahl mit absolutem Betrag \(m > 2 \),

\(m B_{1P} \) ist die gerichtete horizontale/vertikale Strecke auf der Bildwiedergabeeinrichtung,

wobei die +/- Zeichen für Bildebenen vor/hinter der Bildwiedergabeeinrichtung und unabhängig davon gelten, ob die Barriere vor oder hinter der Bildwiedergabeeinrichtung angeordnet ist,

bei der ferner ein Bildpunkt des dargestellten Bildes in der Bildebene mit der Tiefe \(T \) optisch einer großen Zahl von horizontal und/oder vertikal benachbarten Subpixeln/Pixeln/Flächenelementen der Bildwiedergabeeinrichtung zugeordnet ist,

bei der das linke und das rechte Auge des Betrachters bildwirksame Subpixel/Pixel/Flächenelemente mit im wesentlichen gleicher Helligkeits- und Farbinformation auf der Bildwiedergabeeinrichtung sehen,

bei der die Superposition von benachbarten Subpixeln/Pixeln/Flächenelementen der Bildwiedergabeeinrichtung mittels einer abbildenden optischen Vorrichtung, die vor und/oder hinter der Bildwiedergabeeinrichtung angeordnet ist, bewerkstelligt wird,

bei der der Pitch der optischen Vorrichtung bevorzugt variabel ist,

bei der durch binokulare Betrachtung des 3D-Displays Bilder in mindestens einer Bildebene mit der Tiefe \(T \) sichtbar sind, wobei die Bildebenen nicht mit der Ebene der Bildwiedergabeeinrichtung zusammenfallen,

bei der die Bildebenen in den Tiefen \(T > 0 \) (vorne der Bildwiedergabeeinrichtung) und/oder in Tiefen \(T = 0 \) (hinter der Bildwiedergabeeinrichtung) erscheinen,

bei der die Bilder in Bildebenen mit der Tiefe \(T > 0 \) ähnlich reellen Bildern bei einer reellen optischen Abbildung auf einem Schirm, der in dieser Bildebene angeordnet ist, optisch aufgefangen werden können, und

bei der schließlich mehrere Betrachter gleichzeitig einen weiten Betrachtungsraum \(\Delta x \), \(\Delta y \), \(\Delta z \) nutzen können, innerhalb dessen die Bilder eine natürliche Bewegungsparallaxe in allen Raumrichtungen besitzen, wobei ihre Tiefe \(T \) konstant und unabhängig von der Betrachtungsentfernung ist.

Anordnung nach Anspruch 13, dadurch gekennzeichnet, daß für den horizontalen und/oder vertikalen Pitch der optischen Vorrichtung die folgenden Gleichungen gelten

- für \(T > 0 \):
 \[B_{1E} < B_{1FS} = m' B_{1P} \left(1 - \frac{D}{E} \right) \]
sowie

- für \(T < 0 \):
 \[B_{1E} > B_{1FS} = m' B_{1P} \]
 und/oder

- für \(T > 0 \):
 \[B_{1E} > B_{1FS} = m' B_{1P} \left(1 + \frac{D}{E} \right) \]
sowie
- 95 -

für $T < 0$: $B_{1E} < B_{1ES} = m' B_{1I}$,
worin gilt B_{1ES} ist der Element-Pitch der Barriere für die angepaßte Betrachtungsentfernung E' und E' ist die "angepaßte" Betrachtungsentfernung im Stand der Technik.

15. Anordnung nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, daß der Betrachtungsraum sich für ein und dasselbe Bild gemäß den Gleichungen

$$\Delta x, \Delta y = A(i-1) = \frac{E}{T} \left(O_y - j W_1 \right) - \left(O_y - A \right)$$
und

$$\Delta z = E \frac{O_y - O_{11}}{O_y} \left(1 - \frac{T}{E} \right)$$

ergibt, worin gilt
- $\Delta x, \Delta y$ ist der Bewegungsbereich des Betrachters in der Betrachtungsebene im Abstand E bezüglich der Bildebene mit der Tiefe T, $O_{11} \geq W_1$ und
- Δz ist der Bewegungsbereich des Betrachters in Normalen-Richtung für die Bildebene mit der Tiefe T.

16. Anordnung nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß der Quotient aus dem Pitch der optischen Vorrichtung und dem Objekt-Pitch der Bildwiedergabeinrichtung bei Anordnung der optischen Vorrichtung vor der Bildwiedergabeinrichtung kleiner ist als im Stand der Technik bei Bildebenen vor der Bildwiedergabeinrichtung (Tiefe $T > 0$) und größer als 1 ist bei Bildebenen hinter der Bildwiedergabeinrichtung ($T < 0$), wobei ferner der Quotient aus dem Pitch der optischen Vorrichtung und dem Objekt-Pitch der Bildwiedergabeinrichtung bei Anordnung der optischen Vorrichtung hinter der Bildwiedergabeinrichtung größer ist als im Stand der Technik bei Bildebenen vor der Bildwiedergabeinrichtung ($T > 0$) und kleiner als 1 ist bei Bildebenen hinter der Bildwiedergabeinrichtung ($T < 0$).

17. Anordnung nach einem der der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß für den Pitch einer passiven optischen Vorrichtung eine hardwaremäßig Einstellung oder Änderung vorgesehen ist.

18. Anordnung nach einem der der Ansprüche 13 bis 17, dadurch gekennzeichnet, daß die Einstellung oder Änderung des Pitchs der optischen Vorrichtung auf Teilflächen der optischen Vorrichtung vorgesehen ist.

19. Anordnung nach einem der der Ansprüche 13 bis 18, dadurch gekennzeichnet, daß die Superpositionierung benachbarter Subpixel/Pixel/Flächenelemente der Bildwiedergabeinrichtung teilflächenweise vorgesehen ist.
20. Anordnung nach einem der Ansprüche 13 bis 19, dadurch gekennzeichnet, daß Teilflächen der Bildwiedergabeeinrichtung Bildebenen mit unterschiedlicher Tiefe \(T > 0 \) und/oder hinter \(T < 0 \) der Bildwiedergabeinrichtung zugeordnet sind, wobei die Tiefe \(T \) in jeder dieser Bildebenen einen örtlich und zeitlich konstanten Wert aufweist (statische frontoparallele Bildebenen), indem der Quotient aus dem Pitch der optischen Vorrichtung und dem Objekt-Pitch der Bildwiedergabeinrichtung innerhalb der Teilflächen örtlich und zeitlich konstant ist.

21. Anordnung nach einem der Ansprüche 13 bis 20, dadurch gekennzeichnet, daß den Teilflächen der Bildwiedergabeinrichtung Bildebenen mit unterschiedlicher Tiefe \(T > 0 \) und/oder hinter \(T < 0 \) der Bildwiedergabeinrichtung zugeordnet sind, wobei die Tiefe \(T \) in jeder dieser Bildebenen einen örtlich konstanten Wert und in mindestens einer Bildebene einen zeitlich variablen Wert aufweist (mindestens eine dynamische frontoparallele Bildebene), indem der Quotient aus dem Pitch der optischen Vorrichtung und dem Objekt-Pitch der Bildwiedergabeinrichtung mindestens einer Bildebene zeitlich variabel ist.

22. Anordnung nach Anspruch 21, dadurch gekennzeichnet, daß die zeitliche Variation des Quotienten aus dem Pitch der optischen Vorrichtung und dem Objekt-Pitch der Bildwiedergabeinrichtung in mindestens einer Bildebene so erfolgt, daß der Betrachter eine kontinuierliche Änderung der Tiefe dieser frontoparallelen Bildebene wahrnimmt.

25. Anordnung nach einem der Ansprüche 13 bis 24, dadurch gekennzeichnet, daß die optische Vorrichtung ein Synthetisches Optisches Element (SOE) ist.

27. Anordnung nach Anspruch 26, dadurch gekennzeichnet, daß zum Plotten die Verwendung eines Laser-Plotters mit Auflösung > 16.000 dpi vorgesehen ist.

29. Anordnung nach einem der der Ansprüche 13 bis 28, dadurch gekennzeichnet, daß die optische Vorrichtung ein optisches Linsenraster ist.

30. Anordnung nach Anspruch 29, dadurch gekennzeichnet, daß die Zeilen der optischen Vorrichtung und die Zeilen der optischen Barriere parallel und/oder senkrecht zu den Zeilen der Bildwiedergabeinrichtung orientiert sind.

32. Anordnung nach Anspruch 25, dadurch gekennzeichnet, daß das Synthetische Optische Element (SOE) parallel zur Bildwiedergabeinrichtung angeordnet oder in vertikaler und/oder horizontaler Richtung zur Bildwiedergabeinrichtung geneigt oder bei paralleler Anordnung um eine Normale um einen bestimmten Winkel gedreht ist.

33. Anordnung nach Anspruch 25, dadurch gekennzeichnet, daß die optische Vorrichtung aus zwei Synthetischen Optischen Elementen SOE 1 und SOE 2 besteht, die parallel zur Bildwiedergabeinrichtung und in minimalem Abstand zu einander angeordnet sind, wobei sie gegeneinander um einen wählbaren Winkel verdreht sind und ihre Hauptachsen nicht zu den Hauptachsen der Bildwiedergabeinrichtung parallel sind.

34. Anordnung nach einem der Ansprüche 13 bis 33, dadurch gekennzeichnet, daß die Bildwiedergabeinrichtung ein Bildwiedergabemedium mit aktiver oder passiver, mit analoger oder digitaler Bildwiedergabe ist.
35. Anordnung nach Anspruch 34, dadurch gekennzeichnet, daß die Bildwiedergabeeinrichtung ein Display, Flachdisplay oder ein Projektionsdisplay ist.

36. Anordnung nach Anspruch 34, dadurch gekennzeichnet, daß die Bildwiedergabeeinrichtung ein Bildwiedergabefilm ist.

37. Anordnung nach Anspruch 35, dadurch gekennzeichnet, daß die Bildwiedergabeeinrichtung ein LCD, PDP, OLED ist.

38. Anordnung nach Anspruch 36 oder 37, dadurch gekennzeichnet, daß die Bildwiedergabeeinrichtung über Vollfarbpixel oder RGB-Subpixel verfügt, wobei diese in Zeilen und Spalten angeordnet sind.

41. Anordnung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß die Bildwiedergabeeinrichtung bevorzugt keinen "Fliengengitter-Effekt" aufweist.

42. Anordnung nach Anspruch 35, dadurch gekennzeichnet, daß unterschiedliche Bildinhale dadurch erzeugt werden, daß die horizontale und/oder vertikale Ausdehnung der bildwirksamen Fläche je horizontalem oder vertikalem Objekt-Pitch oder die Zahl der bildwirksamen Vollfarbpixel oder RGB-Subpixel je horizontalem und/oder vertikalem Objekt-Pitch unterschiedlich und kleiner ist als der horizontale und/oder vertikale Objekt-Pitch oder die Gesamtzahl der Vollfarbpixel oder RGB-Subpixel je horizontalem und/oder vertikalem Objekt-Pitch.

43. Anordnung nach einem der Ansprüche 13 bis 42, dadurch gekennzeichnet, daß "Falschfusionen" insbesondere in Bildebenen mit Tiefen T < 0 vermieden sind.

44. Anordnung nach Anspruch 43, dadurch gekennzeichnet, daß in Bildebenen mit der Tiefe T < 0 ein Teil der horizontalen und/oder vertikalen Objekt-Pitchs der Bildwiedergabeeinrichtung in horizontaler und/oder vertikaler Richtung bildwirksam gestaltet wird und der andere, nicht bildwirksam gestaltete Teil der horizontalen und/oder vertikalen Objekt-Pitchs mindestens eine nicht bildwirksame Fläche darstellt.
45. Anordnung nach Anspruch 43, dadurch gekennzeichnet, daß die Bildgestaltung in Bildebenen mit Tiefen \(T < 0 \) so erfolgt, daß der Betrachter bei Fixierung von Bildebenen mit der Tiefe \(T > 0 \) bei diesen Konvergenzstellungen seiner Augen keine fusionsfähigen Bildteile der Bilder in den Bildebenen mit den Tiefen \(T < 0 \) vorfindet.

46. Anordnung nach Anspruch 42, dadurch gekennzeichnet, daß die Reihenfolge/Anordnung der bildwirksamen Fläche oder Flächen der Bildwiedergabeeinrichtung innerhalb jedes bildwirksamen Objekt-Pitchs in horizontaler und/oder vertikaler Richtung bei Bildebenen mit der Tiefe \(T < 0 \) und bei Bildebenen mit der Tiefe \(T > 0 \) vertauscht bzw. umgekehrt ist.

47. Anordnung nach einem der Ansprüche 13 bis 46, dadurch gekennzeichnet, daß Teillflächen der Bildwiedergabeeinrichtung ein und derselben Bildebene mit der Tiefe \(T \) zugeordnet sind und unterschiedliche Bilder in dieser Bildebene erzeugen, wobei in horizontal nebeneinander angeordneten Teillflächen Farbe und Helligkeit der bildwirksamen Flächen vorzugsweise gleich sind und in vertikal übereinander angeordneten Teillflächen Farbe und Helligkeit der bildwirksamen Flächen verschieden sind.

48. Anordnung nach einem der Ansprüche 13 bis 47, dadurch gekennzeichnet, daß in Bildebenen mit der Tiefe \(T \) bei Bildern in nicht schwarzer Umgebung vorzugsweise zwei Bildebenen mit unterschiedlicher Tiefe \(T \) erzeugt werden, vorzugsweise eine Bildebene mit der Tiefe \(T < 0 \) und eine Bildebene mit der Tiefe \(T > 0 \).

51. Anordnung nach einem der Ansprüche 13 bis 50, dadurch gekennzeichnet, daß die Vielfalt in der Bildgestaltung mit der Anzahl der Subpixel/Pixel/Flächenelemente pro horizontalen und/oder vertikalen Objekt-Pitch wächst.
52. Anordnung nach einem der Ansprüche 13 bis 51, dadurch gekennzeichnet, daß der Helligkeitsverlauf im Bild durch den Quotient x_p/x_E gesteuert wird, wobei die Erzielung eines kontinuierlichen, symmetrischen Helligkeitsabfalls zum Rand des Bildes bei $x_p/x_E \to 1$ vorgesehen ist.

53. Anordnung nach Anspruch 33, dadurch gekennzeichnet, daß die Erzeugung von Bildebenen mit variabler Tiefe T vorgesehen ist, indem der Winkel zwischen den synthetischen Optischen Elementen SOE 1 und SOE 2 variiert wird und gleichzeitig eine gleichgerichtete Drehung beider synthetischer Optischer Elemente erfolgt.

54. Anordnung nach einem der Ansprüche 13 bis 53, dadurch gekennzeichnet, daß die Verwendung einer aktiven optischen Vorrichtung mit örtlich und/oder zeitlich variablen Objekt-Pitch vorgesehen ist.

55. Anordnung nach einem der Ansprüche 13 bis 54, dadurch gekennzeichnet, daß die Bildwiedergabeinrichtung so strukturiert ist, daß keine makroskopischen Strukturen entstehen, die störende Fusionsreize beim Betrachter auslösen.
<table>
<thead>
<tr>
<th>m'B1P</th>
<th>D</th>
<th>B1E</th>
<th>E</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>1,2</td>
<td>5</td>
<td>1,1914</td>
<td>50</td>
<td>-12,8</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>-27,8</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td>-66,7</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td>-125,1</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td>-222,4</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td>-417,0</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td>-1000,8</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td>unendlich</td>
</tr>
<tr>
<td>800</td>
<td></td>
<td></td>
<td></td>
<td>1334,4</td>
</tr>
<tr>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td>750,6</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td>556,0</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td>256,6</td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td>217,6</td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td>202,2</td>
</tr>
<tr>
<td>5000</td>
<td></td>
<td></td>
<td></td>
<td>194,0</td>
</tr>
<tr>
<td>1000000</td>
<td></td>
<td></td>
<td></td>
<td>166,9</td>
</tr>
</tbody>
</table>

Fig. 1
Moire-Pitch M eines 3D-Displays/Projektors in Abhängigkeit von der Betrachtungsentfernung (E-T)

<table>
<thead>
<tr>
<th>m'B1P</th>
<th>D</th>
<th>B1E</th>
<th>E</th>
<th>T</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>1,2</td>
<td>5</td>
<td>1,1914</td>
<td>50</td>
<td>700</td>
<td>166,8</td>
</tr>
<tr>
<td>100</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100000</td>
<td>166,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2
Betrachter

Bildebene
Tiefe T

3D-Display

W1

w1

m' = 1

Barriere

LCD

Fig. 5a
$[B_{0Eges}(E) - B_{0Eges}(E=500\, \text{mm})]$ in Abhängigkeit von der Betrachtungsentfernung E
Abhängigkeit der Halbwertsbreite \(HWB_{\text{gas}} \) von Teilbildern von der relativen Breite \(\Delta_{\text{rel}} \) der Barriere-Elemente

Fig. 7

\[\text{HWB}_{\text{gas}} \quad \text{in mm} \]

\[\Delta_{\text{rel}} \]
Maximale Tiefe T_{max} und Betrachtungsentfernung E für (E-T_{max}) = 250 mm für unterschiedlich große 2D-Basis-Displays

Breite des 2D-Basis-Displays, in mm

Tiefe T_{max} in mm

Betrachtungsentfernung E
3D-Qualitätsmerkmal T_{max}/E (maximales "outscreening")
für $(E-T_{\text{max}}) = 250$ mm
für unterschiedlich große 2D-Basis-Displays
Flächenleuchtdichte im Teilbild

Standard - Modus

\[B_0P = \frac{B_1P}{3} = C \]

\[VWB/HWB \]

\[B_0Eges = B_1P(1-D/E) = 3C(1-D/E) \]

\[HWB = HWBges \]

\[B_0Eges = \frac{B_1P(1-D/E)}{3} = \frac{C(1-D/E)}{2} \]

Portait - Modus

\[B_0P = B_1P = 3C \]

\[VWB/HWB \]

\[B_0Eges = 4B_1P(1-D/E) = 4C(1-D/E) \]

\[HWB = HWBges \]

\[B_0Eges = B_1P(1-D/E) = 3C(1-D/E) \]

\[VWB/HWB \]

\[B_0Eges = \frac{B_1P(1-D/E)}{3} = \frac{C(1-D/E)}{2} \]

Fig. 9
<table>
<thead>
<tr>
<th>B_1E_1</th>
<th>B_1E_2</th>
<th>B_1E_3</th>
<th>B_1E_4</th>
<th>B_1E_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$> B_1E'SBa_1$</td>
<td>$< B_1E'SAa_1$</td>
<td>$< B_1E'SAa_1$</td>
<td>$< B_1E'SAa_1$</td>
<td>$< B_1E'SAa_1$</td>
</tr>
</tbody>
</table>
3D-Display

eine Bildebene
mit sehr großer Tiefe T

Fig. 10d
Subpixel-Zeile der Bildwiedergabeeinrichtung, \(m' \text{B1P} = 8C \)
Element-Zeile der Barriere, \(\text{B1E} = 7C < m' \text{B1P} \)
monokular sichtbare Subpixel der Subpixel-Zeile aus sehr großer Betrachtungsentfernung \(E \)
Subpixel-Zeile der Bildwiedergabeeinrichtung, m'B1P = 8C

Element-Zeile der Barriere, B1E = 7C < m'B1P

monokular sichtbare Subpixel der Subpixel-Zeile aus sehr großer Betrachtungsentfernung E
Die Funktion $ET/(E-T)$ in Abhängigkeit von der Betrachtungsentfernung E für unterschiedliche Tiefen T

![Graph](image)

Fig. 13
<table>
<thead>
<tr>
<th>n</th>
<th>C</th>
<th>n'Bp</th>
<th>D</th>
<th>T</th>
<th>B</th>
<th>W</th>
<th>B</th>
<th>E</th>
<th>O</th>
<th>jmax</th>
<th>B_{E, bol}</th>
<th>n_{H2/Bol}</th>
<th>R_{E},(E-E)</th>
<th>n</th>
<th>H_{(E-E)}</th>
<th>15^3n^3C</th>
<th>H_{BW}</th>
<th>Δz</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.084667</td>
<td>2.032</td>
<td>10,712</td>
<td>500</td>
<td>1,98846</td>
<td>92.81</td>
<td>406.4</td>
<td>751.62</td>
<td>406.4</td>
<td>1.00</td>
<td>0.2486</td>
<td>17.06</td>
<td>11.60</td>
<td>136.4</td>
<td>5,36</td>
<td>240.03</td>
<td>304.8</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1500</td>
<td>1800</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>3500</td>
<td>4000</td>
<td>4500</td>
<td>5000</td>
<td>10000</td>
<td>113.77</td>
<td>7.00</td>
<td>0.0812</td>
<td>1.00</td>
<td>1.016</td>
<td>8.00</td>
<td>1.016</td>
<td>383</td>
<td>145</td>
</tr>
</tbody>
</table>

Fig. 14b
<table>
<thead>
<tr>
<th>Subpixel</th>
<th>1 ...</th>
<th>24 ...</th>
<th>4800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
<tr>
<td>1 bis</td>
<td>00000</td>
<td>00000</td>
<td>0000</td>
</tr>
<tr>
<td>128</td>
<td>00000</td>
<td>00000</td>
<td>0000</td>
</tr>
<tr>
<td>129 bis</td>
<td>01000</td>
<td>01000</td>
<td>0100</td>
</tr>
<tr>
<td>191</td>
<td>01000</td>
<td>01000</td>
<td>0100</td>
</tr>
<tr>
<td>192 bis</td>
<td>01000</td>
<td>01000</td>
<td>0100</td>
</tr>
<tr>
<td>254</td>
<td>01000</td>
<td>01000</td>
<td>0100</td>
</tr>
<tr>
<td>255 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>317</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>318 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>380</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>381 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>443</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>444 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>505</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>507 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>569</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>570 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>632</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>633 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>695</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>696 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>758</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>759 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>821</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>822 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>884</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>885 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>947</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>948 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>1010</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>1011 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>1073</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>1074 bis</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
<tr>
<td>1200</td>
<td>01001</td>
<td>01001</td>
<td>0100</td>
</tr>
</tbody>
</table>

Fig. 14c
Fig. 15b

transiente Elemente

opak Elemente, im Auflicht schwarz

B1E (1-D/\gamma) = B1E/m
B0E, hom = 3 B0E

Element-Spalte 1...
Element-Zeile 129 bis 152
<table>
<thead>
<tr>
<th>Element-Zeile</th>
<th>1 bis 128</th>
<th>129 bis 191</th>
<th>192 bis 254</th>
<th>255 bis 317</th>
<th>318 bis 380</th>
<th>381 bis 443</th>
<th>444 bis 506</th>
<th>507 bis 569</th>
<th>570 bis 632</th>
<th>633 bis 695</th>
<th>696 bis 758</th>
<th>759 bis 821</th>
<th>822 bis 884</th>
<th>885 bis 947</th>
<th>948 bis 1010</th>
<th>1011 bis 1073</th>
<th>1074 bis 1200</th>
</tr>
</thead>
</table>

transparente Elemente

opake Elemente, im Auflieht schwarz

Fig. 16a
Fig. 16b

<table>
<thead>
<tr>
<th>Element-Zeile</th>
<th>1 bis 128</th>
<th>129 bis 191</th>
<th>192 bis 254</th>
<th>255 bis 317</th>
<th>318 bis 380</th>
<th>381 bis 443</th>
<th>444 bis 506</th>
<th>507 bis 569</th>
<th>570 bis 632</th>
<th>633 bis 695</th>
<th>696 bis 758</th>
<th>759 bis 821</th>
<th>822 bis 884</th>
<th>885 bis 947</th>
<th>948 bis 1010</th>
<th>1011 bis 1073</th>
<th>1074 bis 1200</th>
</tr>
</thead>
</table>

- transparente Elemente
- opake Elemente, im Auflicht schwarz
\[m' = 4 \]

Fig. 17a
Gruppe 1
0 Grad

Gruppe 2
45 Grad

35/45
<table>
<thead>
<tr>
<th>m'</th>
<th>C_h</th>
<th>C_v</th>
<th>B_{1P}=C</th>
<th>m' B_{1P}</th>
<th>D</th>
<th>T</th>
<th>B_{1EH}=B_{1EV}</th>
<th>W_{1H}=W_{1V}</th>
<th>E</th>
<th>O_{11H}=O_{11V}</th>
<th>B_{0E,hom,h}</th>
<th>B_{0E,hom,v}</th>
<th>B_{(E-T)}</th>
<th>H_{(E-T)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0,10</td>
<td>0,30</td>
<td>0,30</td>
<td>1,20</td>
<td>3,00</td>
<td>150</td>
<td>1,1760</td>
<td>58,80</td>
<td>500</td>
<td>92,12</td>
<td>0,294</td>
<td>0,098</td>
<td>14,70</td>
<td>14,70</td>
</tr>
</tbody>
</table>

Fig. 17b
Transparente Elemente

opake Elemente/Flächen, im Auflicht schwarz

B1Ev

B0Ev

B0Eh

B1Eh