

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2012/153319 A1

(43) International Publication Date

15 November 2012 (15.11.2012)

WIPO | PCT

(51) International Patent Classification:

A61B 17/32 (2006.01) A61B 17/16 (2006.01)
A61B 17/29 (2006.01) A61B 17/00 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/IB2012/052406

(22) International Filing Date:

14 May 2012 (14.05.2012)

(25) Filing Language:

English

(26) Publication Language:

English

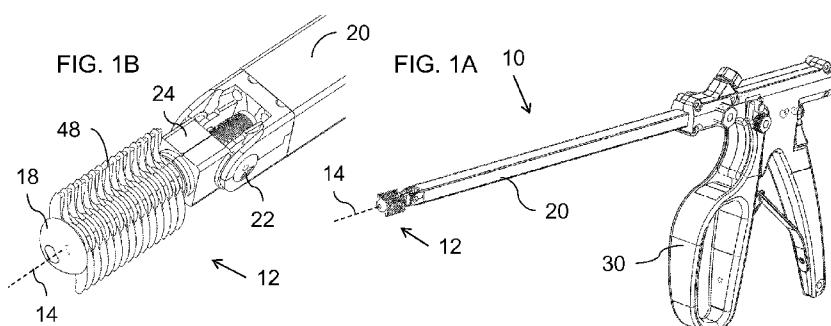
(30) Priority Data:

61/485,140 12 May 2011 (12.05.2011) US

(71) Applicant (for all designated States except US): **NON-LINEAR TECHNOLOGIES LTD.** [IL/IL]; 6 Yoni Netanyahu, 60376 Or Yehuda (IL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **SIEGAL, Tzony** [IL/IL]; 23 Moshav Shoeva, 90855 Shoeva (IL). **LOEBL, Oded** [IL/IL]; 18 Hasigalit St., 40600 Tel Mond (IL). **TOUBIA, Didier** [IL/IL]; 11 Hagdud Haivri St., 43559 Raanana (IL).


(74) Agent: **DR. MARK FRIEDMAN LTD.**; Moshe Aviv Tower, 54th floor, 7 Jabotinsky St., 52520 Ramat Gan (IL).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: TISSUE DISRUPTION DEVICE AND CORRESPONDING METHODS

(57) Abstract: A tissue disruption device (10) for deployment via a rigid conduit (100) includes a rotary tissue disruptor (12) insertable along the conduit with its axis of rotation (14) parallel to the direction of conduit elongation (16). An angular displacement mechanism allows selective displacement of the rotary tissue disruptor (12) such that the axis of rotation (14) sweeps through a range of angular motion. A rotary drive is linked to the rotary tissue disruptor so as to drive the rotary tissue disruptor in rotary motion while the rotary tissue disruptor is at a range of angular positions within the range of angular motion.

WO 2012/153319 A1

Tissue Disruption Device and Corresponding Methods

FIELD AND BACKGROUND OF THE INVENTION

The present invention relates to one or more devices configured to cut, grind or otherwise disrupt soft or hard tissue in a human or animal body, typically to facilitate removal of the tissue.

It is known to use various tools to disrupt tissue within the body. Examples of documents which may provide background for the present invention include US Patents Nos. 7083623, 7500977, 7578820, 7914534 and US Pre-Grant Patent Application Publication Nos. 2005/0203527, 2006/0264957, 2010/0030216 and 2010/0161060.

SUMMARY OF THE INVENTION

The present invention is a tissue disruption device and corresponding method.

According to an embodiment of the teachings of the present invention there is provided, a tissue disruption device for deployment via a rigid conduit having an open proximal end, a distal opening and a direction of elongation, the tissue disruption device comprising: (a) a rotary tissue disruptor having an axis of rotation, the rotary tissue disruptor being configured for insertion along the rigid conduit with the axis of rotation parallel to the direction of elongation; (b) an angular displacement mechanism associated with the rotary tissue disruptor and configured to selectively displace the rotary tissue disruptor such that the axis of rotation sweeps through a range of angular motion; and (c) a rotary drive linked to the rotary tissue disruptor so as to drive the rotary tissue disruptor in rotary motion while the rotary tissue disruptor is at a range of angular positions within the range of angular motion.

According to a further feature of an embodiment of the present invention, the angular displacement mechanism generates angular motion of the rotary tissue disruptor within a plane including the direction of elongation of the conduit.

According to a further feature of an embodiment of the present invention, the angular displacement mechanism generates angular motion that is asymmetric relative to the direction of elongation of the conduit.

According to a further feature of an embodiment of the present invention, the angular displacement mechanism generates angular motion of the rotary tissue disruptor through an angle of at least 30 degrees.

5 According to a further feature of an embodiment of the present invention, the angular displacement mechanism generates angular motion of the rotary tissue disruptor through an angle of at least 45 degrees.

According to a further feature of an embodiment of the present invention, the angular displacement mechanism includes a pivotal linkage at least partially defining a path of the angular motion.

10 According to a further feature of an embodiment of the present invention, there is also provided an elongated member deployable so as to extend through the conduit and linked so as to support the rotary tissue disruptor during the angular motion, and wherein the angular displacement mechanism includes an elongated actuator deployable so as to extend along the conduit and linked to the rotary tissue disruptor such that relative displacement of the elongated actuator and the elongated member actuates the angular motion of the rotary tissue disruptor.

15 According to a further feature of an embodiment of the present invention, the elongated actuator is a rotary drive shaft linking the rotary drive to the rotary tissue disruptor.

20 According to a further feature of an embodiment of the present invention, there is also provided a rotary drive shaft deployable so as to extend through the conduit and linking the rotary drive to the rotary tissue disruptor.

25 According to a further feature of an embodiment of the present invention, the rotary drive comprises at least one miniature motor deployed in proximity to the rotary tissue disruptor for insertion along the conduit.

According to a further feature of an embodiment of the present invention, the rotary drive comprises at least one miniature motor integrated with the rotary tissue disruptor so as to undergo angular motion together with the rotary tissue disruptor.

30 There is also provided according to an embodiment of the present invention, a tissue disruption system comprising: (a) the aforementioned tissue disruption device;

and (b) a rigid conduit for receiving the tissue disruption device, the rigid conduit having an open proximal end and a distal opening.

According to a further feature of an embodiment of the present invention, there is also provided an elongated member deployable so as to extend through the conduit and linked so as to support the rotary tissue disruptor during insertion of the rotary tissue disruptor along the conduit, and wherein at least one of the rotary tissue disruptor and the elongated member mechanically interacts with the conduit such that linear displacement of the rotary tissue disruptor parallel to the direction of elongation is limited to a predefined range of displacement during the angular motion.

According to a further feature of an embodiment of the present invention, there is also provided an elongated member extending through the conduit and linked so as to support the rotary tissue disruptor during insertion of the rotary tissue disruptor along the conduit, and wherein at least one of the rotary tissue disruptor and the elongated member mechanically interacts with the conduit such that linear displacement of the rotary tissue disruptor parallel to the direction of elongation is prevented during the angular motion.

According to a further feature of an embodiment of the present invention, the distal opening includes an open tip of the conduit.

According to a further feature of an embodiment of the present invention, a distal tip of the conduit is closed, and wherein the distal opening is implemented as a lateral opening proximal to the distal tip.

According to a further feature of an embodiment of the present invention, the rotary tissue disruptor comprises a rotating shaft located on the axis of rotation and a plurality of blades projecting radially from, and spaced along, the shaft.

According to a further feature of an embodiment of the present invention, the plurality of blades include at least a first blade having a first radial length and at least a second blade having a second radial length smaller than the first radial length.

According to a further feature of an embodiment of the present invention, the plurality of blades include blades of differing radial lengths arranged such that an

intermediate region along a length of the rotating shaft has blades of a first radial length and regions distal and proximal to the intermediate region have blades of a second radial length smaller than the first radial length.

According to a further feature of an embodiment of the present invention
5 configured for insertion along a conduit having a given maximum internal dimension, the plurality of blades span a dimension perpendicular to the axis of rotation greater than the given maximum internal dimension, at least a subset of the blades being formed with a predefined flexion region configured to allow flexing of a part of the blades for insertion along the conduit.

10 According to a further feature of an embodiment of the present invention, the rotating shaft terminates in a rounded non-cutting tip.

According to a further feature of an embodiment of the present invention, at least one of the plurality of blades comprises: (a) a base portion mounted for rotation together with the rotating shaft; (b) a pivotal portion pivotally mounted relative to the 15 base portion so as to be displaceable between a folded position folded towards the rotating shaft and a cutting position extended away from the rotating shaft; and (c) a biasing element deployed to bias the pivotal portion towards the folded position such that, during rotation of the rotating shaft, the blade opens under the effect of centripetal force to the cutting position and, when stopped, the blade is biased 20 towards the folded position.

According to a further feature of an embodiment of the present invention, the rotary tissue disruptor comprises a plurality of rotating segments flexibly interlinked so as to rotate together, and wherein the axis of rotation is the axis of rotation of a first of the segments.

25 According to a further feature of an embodiment of the present invention, a distal segment of the rotary tissue disruptor is pivotally anchored to a support element such that the angular motion occurs as an arching motion of the plurality of segments.

There is also provided according to an embodiment of the present invention, a 30 method for disrupting target tissue in a human or animal body, the method

comprising the steps of: (a) introducing a rigid conduit into the body, the conduit having an open proximal end and a distal opening, the conduit being fixed in a position with the distal opening adjacent to the target tissue; (b) introducing through the rigid conduit the aforementioned tissue disruption device so that at least part of the rotary tissue disruptor projects from the distal opening; and (c) actuating both the rotary drive and the angular displacement mechanism so that the rotary tissue disruptor rotates at a plurality of positions within the range of angular motion, thereby disrupting the target tissue.

According to a further feature of an embodiment of the present invention, the target tissue includes at least part of an intervertebral disc.

According to a further feature of an embodiment of the present invention, the target tissue is soft tissue.

According to a further feature of an embodiment of the present invention, the target tissue is bone.

According to a further feature of an embodiment of the present invention, the target tissue is hard tissue.

According to a further feature of an embodiment of the present invention, the target tissue is a tumor.

According to a further feature of an embodiment of the present invention, at least part of the target tissue is removed by application of suction via the rigid conduit.

According to a further feature of an embodiment of the present invention, at least part of the target tissue is removed through removal of the rotary tissue disruptor with a quantity of the target tissue lodged therein.

25 BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:

FIG. 1A is an isometric view of a tissue disruption device, constructed and operative according to an embodiment of the present invention, shown with an end portion in a first angular position;

FIG. 1B is an enlarged view of the end portion of the device of FIG. 1A;

5 FIG. 2A is an isometric view of the device of FIG. 1A shown with the end portion in a second angular position;

FIG. 2B is an enlarged view of the end portion of the device of FIG. 2A;

FIG. 3A is a side view of the device as illustrated in FIG. 2A;

FIGS. 3B and 3C are enlarged side and cut-away views of a pivotal axis from 10 the end portion of the device of FIG. 3A;

FIG. 4 is a partially disassembled view of the device of FIG. 3A showing the inner structure of a handle portion of the device;

FIG. 5A is a partially cut-away view of the region of the pivotal axis of FIGS. 3B and 3C, showing a flexing region of a rotary drive shaft;

15 FIG. 5B is an enlarged isometric view of the flexing region of FIG. 5A;

FIGS. 6A and 6B are schematic isometric views of the device of FIG. 1A in use inserted via a conduit to perform at least part of a discectomy, the device being shown with the end portion in first and second angular positions, respectively;

20 FIGS. 7A-7C are schematic plan views showing an area of the intervertebral disc swept through by a rotary tissue disruptor of the device of FIG. 6A;

FIGS. 8A-8C are side, front and isometric views, respectively, of a blade for use in the rotary tissue disruptor of an embodiment of the present invention, the blade including flexion regions;

25 FIGS. 8D and 8E are isometric and side views, respectively, illustrating a rotary tissue disruptor assembled from a plurality of the blades of FIGS. 8A-8C mounted on a rotating shaft;

FIGS. 9A and 9B are schematic side views illustrating the insertion of the rotary tissue disruptor of FIG. 8D along a conduit and the recovery of a transverse dimension of the disruptor after emerging from the conduit, respectively;

FIGS. 10A-10C are side, front and isometric views, respectively, of a further example of a blade for use in the rotary tissue disruptor of an embodiment of the present invention;

5 FIG. 11A is a schematic side view of a rotary tissue disruptor according to an embodiment of the present invention, employing graduated blade lengths;

FIG. 11B is a schematic illustration of an application of the rotary tissue disruptor of FIG. 11A for discectomy and endplate preparation;

10 FIGS. 12A-12C are schematic side views of rotary tissue disruptors having sequentially increasing dimensions, for use in procedures according to teachings of an aspect of the present invention;

FIGS. 13A-13D are schematic side views of additional rotary tissue disruptors according to embodiments of the present invention, illustrating additional options for variable cutting element size, sequence and spacing;

15 FIGS. 14A and 14B are schematic illustrations of an end portion of a tissue disruption device according to an embodiment of the present invention illustrating a further angular displacement mechanism in an insertion state and a deflected state, respectively;

20 FIGS. 15A and 15B are schematic illustrations of an end portion of a tissue disruption device according to an embodiment of the present invention illustrating a further angular displacement mechanism in an insertion state and a deflected state, respectively;

FIGS. 16A-16E are schematic illustrations of alternative forms of cutting elements for use in embodiments of the present invention;

25 FIGS. 17A and 17B are schematic illustrations of an alternative form of a cutting element for use in embodiments of the present invention, shown in a compacted state and a deployed state, respectively;

FIGS. 18A and 18B are schematic illustrations of an alternative form of a cutting element for use in embodiments of the present invention, shown in a compacted state and a deployed state, respectively;

FIGS. 19A and 19B are schematic illustrations of an alternative form of a cutting element for use in embodiments of the present invention, shown in a compacted state and a deployed state, respectively;

5 FIG. 20 is a schematic illustrations of an alternative form of a cutting element for use in embodiments of the present invention;

FIG. 21 is a schematic illustrations of an alternative form of a cutting element for use in embodiments of the present invention;

10 FIGS. 22A and 22B are schematic isometric views of an alternative implementation of a rotary tissue disruptor including a plurality of rotary segments in a straightened form and an arched form, respectively;

FIGS. 22C and 22D are schematic isometric and end views, respectively, of an implementation of a segment from the rotary tissue disruptor of FIG. 22A;

FIG. 23A is a schematic isometric view of a rotary tissue disruptor similar to that of FIG. 22B but employing segments mounted on a common flexible shaft;

15 FIGS. 23B and 23C are schematic side and cross-sectional views illustrating the mounting of segments on a common flexible shaft according to the principles of FIG. 23A; and

20 FIG. 24 is a schematic isometric view of a variant of the devices of FIGS. 22A and 23A in which tissue disruption is performed by a suitably modified flexible shaft without identifiably distinct segments.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is a tissue disruption device and corresponding method.

25 A preferred embodiment is particularly configured for cutting and grinding intervertebral disc material during discectomy or fusion procedures in the cervical, thoracic and lumbar spine

The principles and operation of devices and methods according to the present invention may be better understood with reference to the drawings and the accompanying description.

Referring now generically to the drawings, there is shown a tissue disruption device, generally designated **10**, for deployment via a rigid conduit **100** (FIGS. 6A and 6B) having an open proximal end **102** and a distal opening **104**. The term “distal opening” in this context denotes an opening which is either at the tip of the conduit, 5 or in the case of a lateral opening, which is sufficiently near the distal end of the conduit to provide allow tissue disruption device **10** to disrupt tissue adjacent to the distal end of the conduit.

In general terms, tissue disruption device **10** includes a rotary tissue disruptor **12** having an axis of rotation **14**. Rotary tissue disruptor **12** is configured for insertion 10 along the rigid conduit with its axis of rotation **14** parallel to an insertion direction **16**, corresponding to the direction of elongation of the conduit. An angular displacement mechanism is configured to selectively displace rotary tissue disruptor **12** such that axis of rotation **14** sweeps through a range of angular motion α (FIG. 15 3A). A rotary drive is linked to rotary tissue disruptor **12** so as to drive the rotary tissue disruptor in rotary motion about axis **14** while the rotary tissue disruptor is at a range of angular position within the range of angular motion.

As illustrated in the accompanying drawings, the angular displacement mechanism preferably generates angular motion of rotary tissue disruptor **12** within a plane that includes insertion direction **16**, and preferably in a motion that is 20 asymmetric relative to insertion direction **16**. In the preferred implementations illustrated here, the range of motion is from the straight insertion state in which axis of rotation **14** is parallel to the insertion direction **16** and a deflected state in which axis **14** is inclined by angle α relative to the insertion direction **16**. In certain preferred implementations, the range of deflection α is at least 30 degrees, and in 25 some cases at least 45 degrees.

The positioning and orientation of rotary tissue disruptor **12** is preferably delineated by the conduit position such that careful alignment of the conduit is sufficient to ensure that target outside the region of target tissue cannot be accidentally damaged by operation of the rotary tissue disruptor. In the case of a 30 purely lateral distal opening in the conduit, the nature of the angular motion together

with the distal and proximal ends of the opening inherently delimit the region of operation of the tissue disruptor **12**. Where the distal opening includes an open distal tip of the conduit, the tissue disruption device **10** and conduit **100** preferably include complementary abutment features (not shown) which define a fully inserted position, 5 thereby preventing incursion of the rotary tissue disruptor **12** beyond the target tissue at a given depth beyond the conduit tip.

Structurally, rotary tissue disruptor **12** is preferably supported by an elongated member **20** deployable so as to extend through the conduit. Either rotary tissue disruptor **12** or elongated member **20** preferably mechanically interacts with conduit 10 **100** such that linear displacement of the rotary tissue disruptor parallel to the direction of elongation is limited to a predefined range of displacement during the angular motion. In other preferred implementations, linear displacement of rotary tissue disruptor **12** parallel to the direction of insertion is substantially prevented during the angular motion.

15 As a further precaution against unintended penetration beyond the desired target tissue, in certain implementations, the tip of tissue disruptor **12** terminates in a rounded non-cutting tip **18**.

Turning now to the angular displacement mechanism, as mentioned, this is configured to selectively displace rotary tissue disruptor **12** such that axis of rotation 20 **14** sweeps through a range of angular motion α . The phrase “sweep through” is used in this context to refer to the motion caused by pivoting about a location near or beyond one end of the tool, or any other motion in which the tool’s axis of rotation over most or all of the length of the rotating body advances in the same general direction, even if with variable magnitude, so as to sweep out an area in which the 25 tissue is to be disrupted. This motion is suited to the various implementations of the rotary tissue disruptor presented herein, in which the cutting or disrupting of tissue occurs primarily, if not exclusively, as the disruptor advances laterally through tissue, i.e., in a direction significantly non-parallel with the axis of rotation of the rotary tissue disruptor.

In certain particularly preferred implementations, the angular displacement mechanism includes a pivotal linkage at least partially defining a path of the angular motion. The pivotal linkage may be implemented as a pivot pin sliding in a slot, a hinge, or any other mechanical engagement which defines a pivotal engagement.

5 FIGS. 1A-7C illustrate an implementation in which rotary tissue disruptor **12** is mounted to elongated member **20** at a fixed hinge **22** which supports a base block **24** of the disruptor.

In order to achieve controlled displacement of tissue disruptor **12** within its range of motion, the angular displacement mechanism preferably uses a positive 10 displacement mechanism, meaning that motion of an actuating member forces a corresponding motion of tissue disruptor **12**, in contrast to relying upon resilient biasing. Most preferably, the angular displacement mechanism employs a rigid linkage to actuate the displacement.

Thus, by way of one non-limiting example, as best seen in FIGS. 3A and 3C, 15 tissue disrupting device **10** here includes an elongated actuator **26** extend along alongside, or in this case within, elongated member **20**, and linked to tissue disruptor **12** such that relative displacement of elongated actuator **26** and elongated member **20** actuates the angular motion of rotary tissue disruptor **12**. In the implementation illustrated here, actuator **26** is located on the side of hinge **22** away from the direction 20 of deflection such that advancing of actuator **26** distally causes increased deflection of axis of rotation **14** from direction of insertion **16** while retraction in a proximal direction returns disruptor **12** towards its straightened state. FIG. 3C shows the use of toothed engagement to allow transfer of significant torque to the angular displacement of disruptor **12**, with teeth **28a** near the end of actuator **26** engaged in 25 corresponding teeth/recesses **28b** formed as part of base block **24**. A manually operated handle grip **30** is linked so as to advance actuator **26** when squeezed and to retract actuator **26** when released.

Referring here briefly to FIGS. 14A-14B and 15A-15B, these illustrate 30 alternative non-limiting examples of angular deflection mechanisms according to the present invention. In the case of FIGS. 14A and 14B, a pin **32** projecting from each

side of base block **24** is engaged in an arcuate slot **34** formed in elongated member **20**. Arcuate slot **34** is configured such that, when block **24** is advanced relative to elongated member **20**, pin **32** rides along slot **34** to generate deflection as illustrated in FIG. 14B. Advancing of base block **24** may be achieved either by a dedicated 5 actuator element as described above or by applying longitudinal force to a torsion drive shaft passing along the elongated body.

Turning to FIGS. 15A and 15B, these illustrate a case where a pivot hinge **22** is at one side of base block **24**, such that rearward displacement of the torsion drive shaft causes angular displacement of rotary tissue disruptor **12**. The cut-away view of 10 FIG. 15A shows the torsion drive train, here including a rotary drive shaft **36** with a universal joint **38**.

Turning now to details of the rotary drive of the present invention, as mentioned above, this is linked to rotary tissue disruptor **12** so as to drive the rotary tissue disruptor in rotary motion about axis **14** while the rotary tissue disruptor is at a 15 range of angular position within the range of angular motion. Most preferably, one or more motor is used to provide the motive force to drive tissue disruptor **12**. The motor may be electric, hydraulic or pneumatically driven, with the electric option typically preferred for reasons of convenience of implementation. Manually actuated rotary drive arrangements, for example, with a manually rotated power input handle, 20 also fall within the scope of the present invention.

In a first set of implementations of the present invention, the rotary drive is located in the proximal portion of the device, outside the body, as exemplified by motor **40** and step-down gear **42** in FIGS. 6A and 6B. In this case, the output power is transferred along elongated member **20** by a rotary drive shaft **36**, which must be 25 configured to transfer rotary power to tissue disruptor **12** while accommodating the angular motion of the disruptor. In the example illustrated in FIGS. 5A and 5B, this is achieved by using a drive shaft **36** with an integrated flexion region **44** formed by a series of orthogonally cut slots. An alternative to this approach is the use of one or more flexible linkage, such as the aforementioned universal joint **38** illustrated in 30 FIG. 15A.

As an alternative to this approach, alternative implementations of the present invention employ one or more miniature motor deployed in proximity to rotary tissue disruptor **12**, i.e., near the distal end of the device **10**, so that the motor is itself inserted along conduit **100** into the body. In a most preferred implementation of this 5 approach, the miniature motor(s) are integrated within base block **24** or at any other location beyond the point of pivoting, thereby avoiding the need for a flexible linkage. The required electrical supply can readily be provided along the length of the elongated member **20** by use of flexible wires which accommodate the required motion.

10 Suitable miniature motors are commercially available from a number of sources, such as the product line “DC-Micromotors” available from Dr. Fritz Faulhaber GmbH (Germany), and rotary SQUIGGLE™ motors available from NewScale Technologies of Victor, NY (USA). The required motor specifications can readily be chosen by one ordinarily skilled in the art according to the power, speed 15 and maximum torque required for each given application. In some cases, a plurality of miniature motors may be connected in series to increase the total output power of the assembly.

20 Turning now to details of rotary tissue disruptor **12**, it should be noted that this may be any type of rotating tool for disrupting tissue of any type. The term “disrupting” as used herein refers generically to any process which changes the state or properties of tissue by direct application of mechanical energy, including but not limited to, cutting, scoring, severing, slicing, lacerating, grinding and pulverizing. The tissue disruption may be performed on healthy or diseased tissue, whether hard tissue or soft tissue. For simplicity of terminology, the elements which directly 25 perform the tissue disruption will be referred to herein as “blades” or “cutting elements”, but depending upon the type of tissue and the type of disruption desired, these cutting elements may not be sharped, and may in some cases be implemented as flexible or brush-like elements. Various non-limiting exemplary “cutting elements” will be illustrated herein. A suitable selection of cutting elements suitable 30 for each particular application will readily be made by a person ordinarily skilled in

the art on the basis of the examples described together with an understanding of each particular intended application.

In a first set of particularly preferred but non-limiting implementations, rotary tissue disruptor **12** is formed with a rotating shaft **46** located on axis of rotation **14** and a plurality of blades **48** projecting radially from, and spaced along, shaft **46**.
5 Examples of this type are illustrated herein in FIGS. 1A-15B.

Blades **48** may have many different forms. Two non-limiting but preferred examples are illustrated in FIGS. 8A-8C and FIGS. 10-10C, respectively. In both cases, blades **48** have a shaped central opening **50** for non-rotatable mounting on
10 shaft **46** and two diametrically opposed cutting portions **52**. Although shown here with two cutting portions per blade, a single cutting portion per blade, or 3 or more cutting portions per blade, may also be used.

FIGS. 8D and 8E show a partially assembled tissue disruptor **12** formed from a number of the blades of FIGS. 8A-8C with interposed spacers **54**. In this example,
15 all of the blades are of equal dimensions and are equally spaced.

FIG. 11A illustrates a partially assembled tissue disruptor **12** which has different radial lengths of blades in different regions. The term “radial length” is used herein to refer to the maximum distance reached by any part of a blade from the axis of rotation. In the example illustrated here, an intermediate region **56** along a length
20 of rotating shaft **46** has blades of a first radial length and regions **58** distal and proximal to the intermediate region have blades of a second radial length smaller than the first radial length. This configuration is particularly useful in certain applications, such as for example during a spinal fusion or disc replacement procedure. Specifically, this variable length profile is effective to break up
25 intervertebral disc material as part of a discectomy procedure and at the same time penetrates more deeply in a central region, helping to bare “bleeding bone” for effective anchoring and integration of an implant. FIGS. 7A-7C illustrate the extent of coverage achieved using such a profile in an axial plane during discectomy.

FIGS. 12A-12C illustrate a set of uniform-length blades in three different sizes, which may be used sequentially to perform gradually increased tissue
30

disruption. For this purpose, and to switch between any other variant implementations described herein, tissue distraction device **10** is preferably constructed to allow quick release and interchange of tissue disruptors **12** during a procedure. Quick release mechanisms of various types are known in the art, and will 5 not be described here in detail.

FIGS. 13A-13D illustrate further variant implementations of varying radial length and spacing of blades **48**. Variations in the lengths and density of the cutting elements can be used to vary the type of tissue disruption performed, the texture of the adjacent tissue at the border of the disrupted tissue, and the quantity of disrupted 10 tissue which tends to be lodged between the blades and removed together with the device after use.

Referring again to the blade structure of FIGS. 8A-8C, blades **48** as illustrated here have predefined flexion regions **60** which allow parts of the blades to flex. This feature is particularly valuable in cases where blades **48** span a dimension 15 perpendicular to axis of rotation **14** greater than a given maximum internal dimension of the conduit through which they are introduced. As shown in FIGS. 9A and 9B, flexibility of the blades allows them to flex for insertion along conduit **100** and then to return to their intended dimensions on leaving the conduit, ready for use.

A range of other possible implementations of tissue disruptors **12** are 20 illustrated in FIGS. 16A-21, and are mostly self-explanatory. The examples include various configurations of cutting wires or strips (FIGS. 16A, 16E and 17A-18B) and various other rigid cutter forms (FIGS. 16B-16D and 21) and a brush-like form (FIG. 20). In the examples of FIGS. 17A-17B, 18A-18B and 19A-19B, the cutters each 25 have a low-profile form for insertion through the conduit and a larger-diameter open cutting form. Generally, the transition between these forms may occur either elastically, simply by being squeezed into the conduit, or may be actuated by a suitable actuator element (not shown). Particularly in the case of FIGS. 19A-19B, the cutter is formed with a base portion **62** mounted for rotation together with rotating shaft **46** and one or more pivotal portion **64** pivotally mounted relative to the base 30 portion so as to be displaceable between a folded position (FIG. 19A) folded towards

the rotating shaft and a cutting position (FIG. 19B) extended away from the rotating shaft. A biasing element (not shown) is deployed to bias the pivotal portion towards the folded position such that, during rotation of the rotating shaft, the blade opens under the effect of centripetal force to the cutting position and, when stopped, the 5 blade is biased towards the folded position.

Although described thus far in the context of a rotary tissue disruptor which has a single rigid rotating shaft **46**, it should be noted that various implementations of the present invention may use a rotary tissue disruptor which has either a segmented or flexible rotary shaft. In such cases, the aforementioned axis of rotation **14** is taken 10 to be the axis of rotation at the proximal end of the tissue disruptor structure.

By way of example of a tissue disruptor with a segmented or flexible rotary shaft, reference is now made to FIGS. 22A-24. Specifically, FIGS. 22A and 22B illustrate a tissue disruptor **12** in which rotating shaft **46** is subdivided into three segments **46a-46c** interconnected by flexible drive linkages **66**. The end of distal 15 segment **46c** is pivotally anchored at a hinge **68** while being still free to rotate about its longitudinal axis. Similarly, the proximal end of proximal segment **46a** is pivotally anchored by a pin-in-slot arrangement **70** while being free to rotate about its longitudinal axis. When rotary drive shaft **36** is advanced, pin-in-slot arrangement **70** allows the tissue disruptor to transform from the state of FIG. 22A to that of FIG. 20 22B, performing an arching motion of the segments, and sweeping through a D-shaped volume of tissue. It will be noted that the proximal segment **46a** performs a motion fully analogous to that described above with reference to the earlier embodiments, and answers to the same geometric definitions used there. When rotary drive shaft **36** is retracted, the device returns to the configuration of FIG. 22A.

25 As in previous embodiments, segments **46a-46c** are preferably provided with a plurality of radially projecting and axially spaced blades **48**, such as those illustrated in FIGS. 22C and 22D.

FIGS. 23A-23C illustrate a further embodiment similar to that of FIGS. 22A-30 22D except that the segments here are all mounted on a common flexible shaft **72**. In the version of FIG. 24, flexible shaft **72** itself becomes the direct support for the

various blades (not shown) or other structures for disrupting tissue. In the latter case, the tangential direction at the proximal end of flexible shaft 72 is taken to be the “axis of rotation” of the tissue disruptor for the purpose of the geometrical definition of the present invention.

5 It will be appreciated that the various devices described herein are of value in a wide range of procedures, and corresponding methods, for disrupting target tissue in a human or animal body in various contexts and for various purposes. In use, rigid conduit 100 is first introduced into the body and fixed in a position with the distal opening adjacent to the target tissue. Tissue disruptor 12 is then introduced through 10 the rigid conduit so that at least part of the rotary tissue disruptor projects from the distal opening. Both the rotary drive and the angular displacement mechanism are then actuated so that the rotary tissue disruptor rotates at a plurality of positions within the range of angular motion, thereby disrupting the target tissue. Most preferably, rotation of the tissue disruptor occurs continuously during the angular 15 motion.

As mentioned, the technique of the present invention may be used to advantage on soft target tissue, and in particular, at least part of an intervertebral disc, as well as hard target tissue, and in particular, bone. It may also be advantageously used to disrupt a tumor.

20 Depending on the nature of the procedure being performed, at least part of the target tissue may be removed, during or after the tissue disruption process, either by application of suction via the rigid conduit or by removal of at least part of the target tissue through removal of the rotary tissue disruptor with a quantity of the target tissue lodged therein.

25

It will be appreciated that the above descriptions are intended only to serve as examples, and that many other embodiments are possible within the scope of the present invention as defined in the appended claims.

WHAT IS CLAIMED IS:

1. A tissue disruption device for deployment via a rigid conduit having an open proximal end, a distal opening and a direction of elongation, the tissue disruption device comprising:
 - (a) a rotary tissue disruptor having an axis of rotation, said rotary tissue disruptor being configured for insertion along the rigid conduit with said axis of rotation parallel to the direction of elongation;
 - (b) an angular displacement mechanism associated with said rotary tissue disruptor and configured to selectively displace said rotary tissue disruptor such that said axis of rotation sweeps through a range of angular motion; and
 - (c) a rotary drive linked to said rotary tissue disruptor so as to drive said rotary tissue disruptor in rotary motion while said rotary tissue disruptor is at a range of angular positions within said range of angular motion.
2. The tissue disruption device of claim 1, wherein said angular displacement mechanism generates angular motion of said rotary tissue disruptor within a plane including the direction of elongation of the conduit.
3. The tissue disruption device of claim 1, wherein said angular displacement mechanism generates angular motion that is asymmetric relative to the direction of elongation of the conduit.
4. The tissue disruption device of claim 1, wherein said angular displacement mechanism generates angular motion of said rotary tissue disruptor through an angle of at least 30 degrees.

5. The tissue disruption device of claim 1, wherein said angular displacement mechanism generates angular motion of said rotary tissue disruptor through an angle of at least 45 degrees.

6. The tissue disruption device of claim 1, wherein said angular displacement mechanism includes a pivotal linkage at least partially defining a path of said angular motion.

7. The tissue disruption device of claim 1, further comprising an elongated member deployable so as to extend through said conduit and linked so as to support said rotary tissue disruptor during said angular motion, and wherein said angular displacement mechanism includes an elongated actuator deployable so as to extend along said conduit and linked to said rotary tissue disruptor such that relative displacement of said elongated actuator and said elongated member actuates said angular motion of said rotary tissue disruptor.

8. The tissue disruption device of claim 7, wherein said elongated actuator is a rotary drive shaft linking said rotary drive to said rotary tissue disruptor.

9. The tissue disruption device of claim 1, further comprising a rotary drive shaft deployable so as to extend through said conduit and linking said rotary drive to said rotary tissue disruptor.

10. The tissue disruption device of claim 1, wherein said rotary drive comprises at least one miniature motor deployed in proximity to said rotary tissue disruptor for insertion along the conduit.

11. The tissue disruption device of claim 1, wherein said rotary drive comprises at least one miniature motor integrated with said rotary tissue disruptor so as to undergo angular motion together with said rotary tissue disruptor.

12. A tissue disruption system comprising:
 - (a) the tissue disruption device of claim 1; and
 - (b) a rigid conduit for receiving said tissue disruption device, said rigid conduit having an open proximal end and a distal opening.
13. The tissue disruption system of claim 12, further comprising an elongated member deployable so as to extend through said conduit and linked so as to support said rotary tissue disruptor during insertion of said rotary tissue disruptor along said conduit, and wherein at least one of said rotary tissue disruptor and said elongated member mechanically interacts with said conduit such that linear displacement of said rotary tissue disruptor parallel to said direction of elongation is limited to a predefined range of displacement during said angular motion.
14. The tissue disruption system of claim 12, further comprising an elongated member extending through said conduit and linked so as to support said rotary tissue disruptor during insertion of said rotary tissue disruptor along said conduit, and wherein at least one of said rotary tissue disruptor and said elongated member mechanically interacts with said conduit such that linear displacement of said rotary tissue disruptor parallel to said direction of elongation is prevented during said angular motion.
15. The tissue disruption system of claim 12, wherein said distal opening includes an open tip of said conduit.
16. The tissue disruption system of claim 12, wherein a distal tip of said conduit is closed, and wherein said distal opening is implemented as a lateral opening proximal to said distal tip.
17. The tissue disruption device of claim 1, wherein said rotary tissue disruptor comprises a rotating shaft located on said axis of rotation and a plurality of blades projecting radially from, and spaced along, said shaft.

18. The tissue disruption device of claim 17, wherein said plurality of blades include at least a first blade having a first radial length and at least a second blade having a second radial length smaller than said first radial length.

19. The tissue disruption device of claim 17, wherein said plurality of blades include blades of differing radial lengths arranged such that an intermediate region along a length of said rotating shaft has blades of a first radial length and regions distal and proximal to said intermediate region have blades of a second radial length smaller than said first radial length.

20. The tissue disruption device of claim 17, configured for insertion along a conduit having a given maximum internal dimension, and wherein said plurality of blades span a dimension perpendicular to said axis of rotation greater than said given maximum internal dimension, at least a subset of said blades being formed with a predefined flexion region configured to allow flexing of a part of said blades for insertion along said conduit.

21. The tissue disruption device of claim 17, wherein said rotating shaft terminates in a rounded non-cutting tip.

22. The tissue disruption device of claim 17, wherein at least one of said plurality of blades comprises:

- (a) a base portion mounted for rotation together with said rotating shaft;
- (b) a pivotal portion pivotally mounted relative to said base portion so as to be displaceable between a folded position folded towards said rotating shaft and a cutting position extended away from said rotating shaft; and
- (c) a biasing element deployed to bias said pivotal portion towards said folded position such that, during rotation of said rotating shaft, said blade opens under the effect of centripetal force to said cutting position and, when stopped, said blade is biased towards said folded position.

23. The tissue disruption device of claim 1, wherein said rotary tissue disruptor comprises a plurality of rotating segments flexibly interlinked so as to rotate together, and wherein said axis of rotation is the axis of rotation of a first of said segments.

24. The tissue disruption device of claim 23, wherein a distal segment of said rotary tissue disruptor is pivotally anchored to a support element such that said angular motion occurs as an arching motion of said plurality of segments.

25. A method for disrupting target tissue in a human or animal body, the method comprising the steps of:

- (a) introducing a rigid conduit into the body, the conduit having an open proximal end and a distal opening, the conduit being fixed in a position with said distal opening adjacent to said target tissue;
- (b) introducing through said rigid conduit the tissue disruption device of claim 1 so that at least part of said rotary tissue disruptor projects from said distal opening; and
- (c) actuating both said rotary drive and said angular displacement mechanism so that said rotary tissue disruptor rotates at a plurality of positions within said range of angular motion, thereby disrupting said target tissue.

26. The method of claim 25, wherein said target tissue includes at least part of an intervertebral disc.

27. The method of claim 25, wherein said target tissue is soft tissue.

28. The method of claim 25, wherein said target tissue is bone.

29. The method of claim 25, wherein said target tissue is hard tissue.

30. The method of claim 25, wherein said target tissue is a tumor.

31. The method of claim 25, further comprising removing at least part of the target tissue by application of suction via said rigid conduit.

32. The method of claim 25, further comprising removing at least part of the target tissue through removal of said rotary tissue disruptor with a quantity of the target tissue lodged therein.

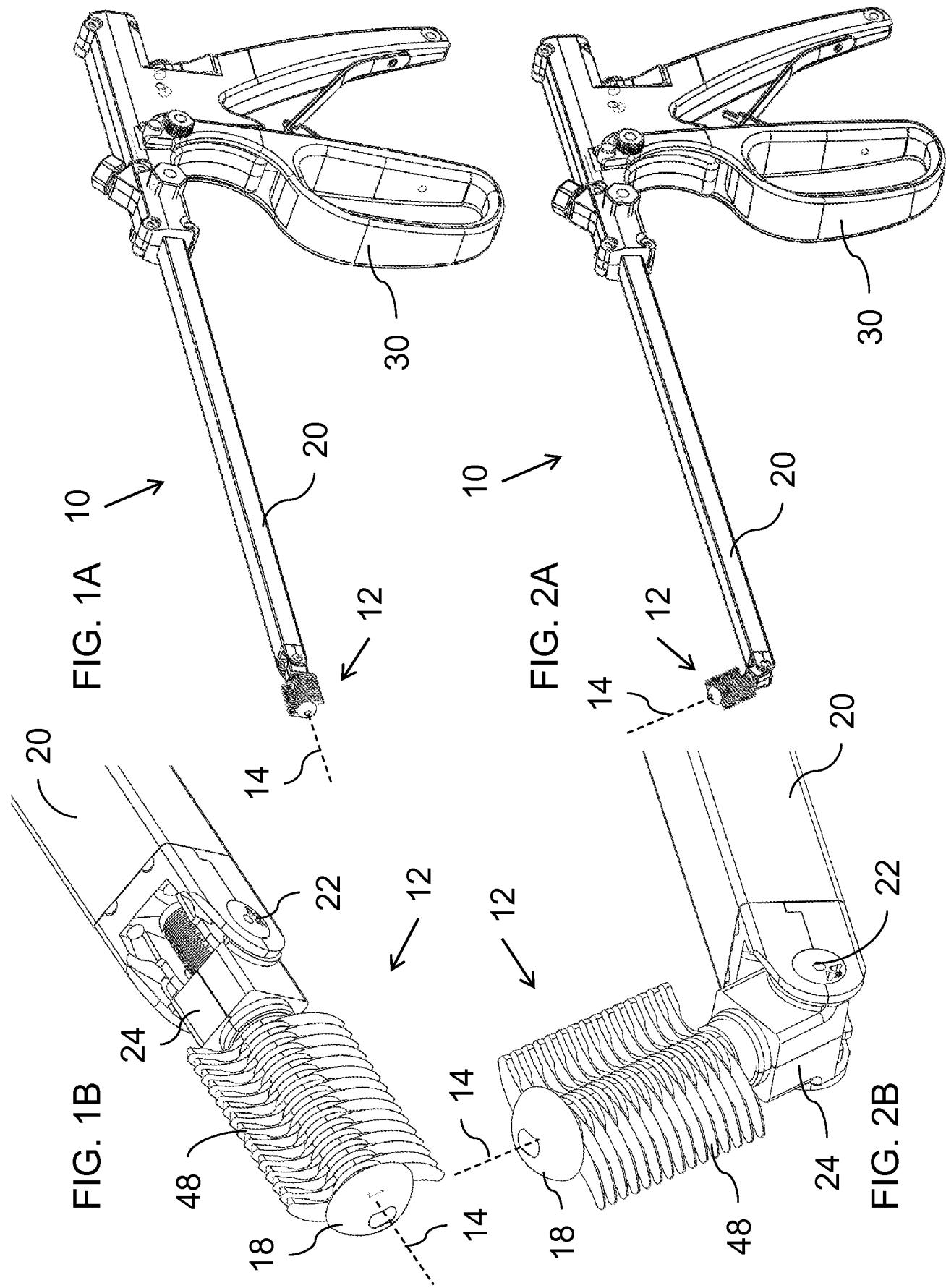


FIG. 3A

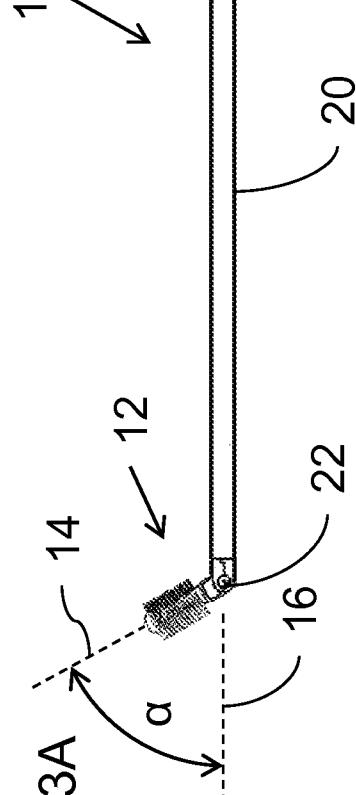


FIG. 3B

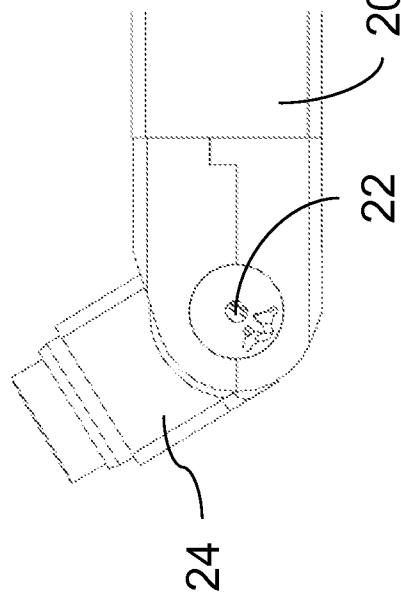
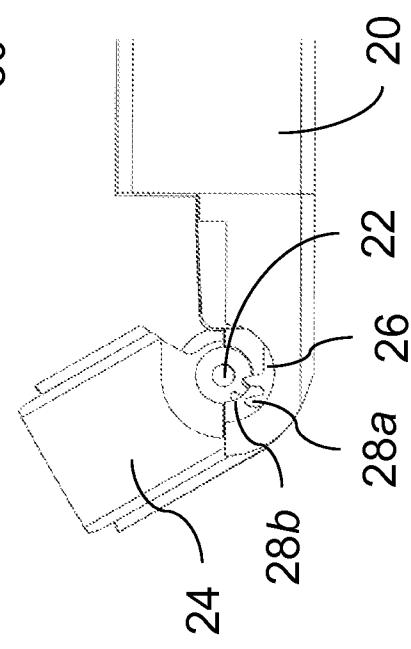



FIG. 3C

30

20
22
26
28a

28b

20
22

FIG. 4

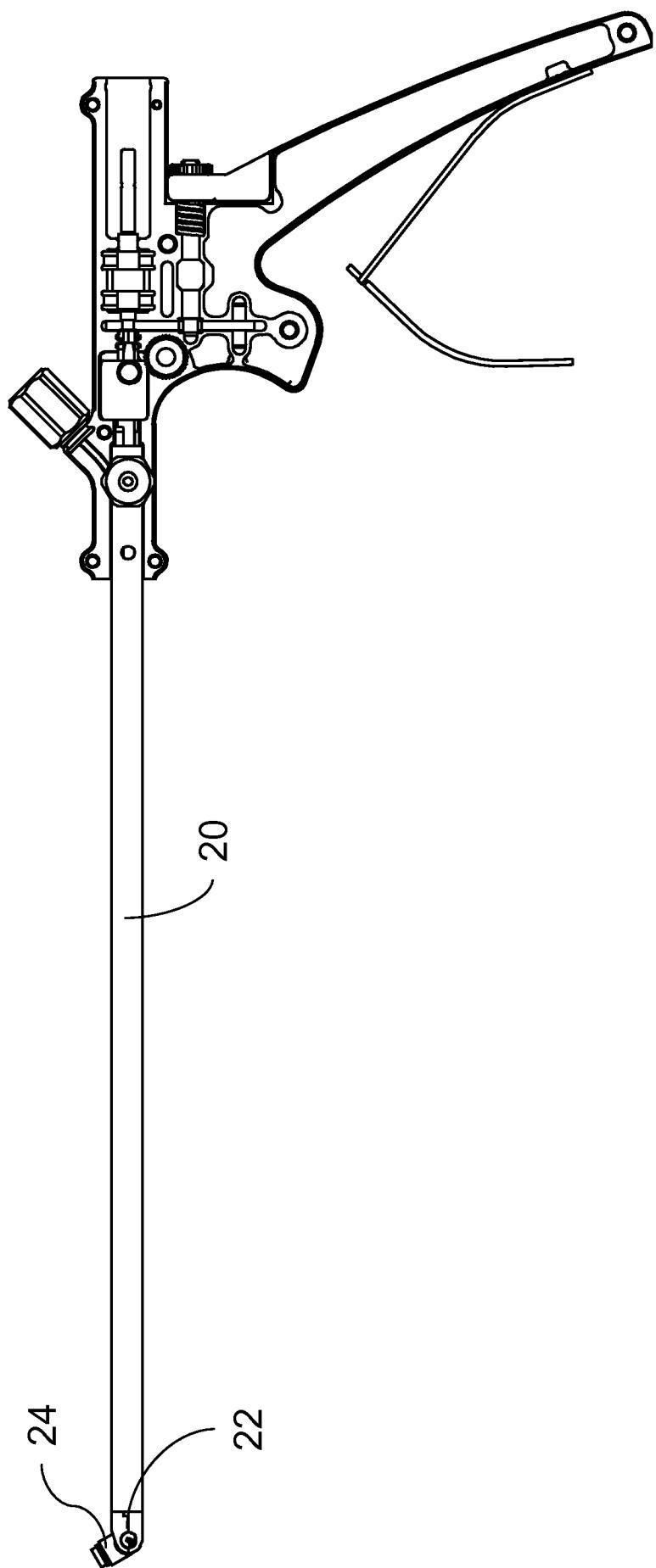


FIG. 5A

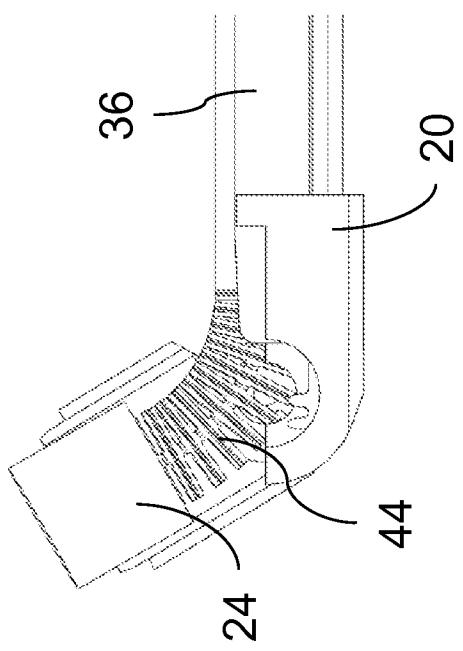
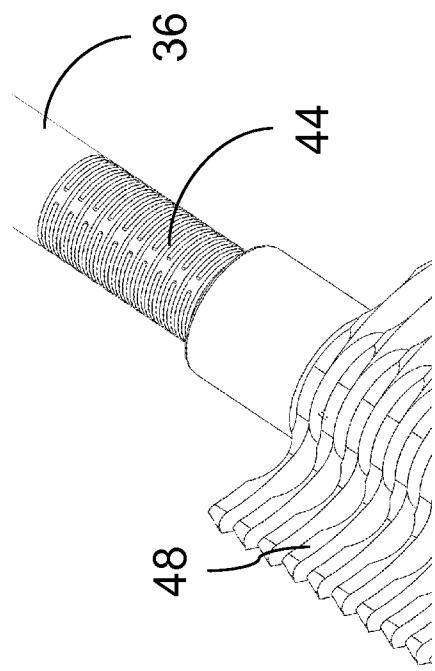
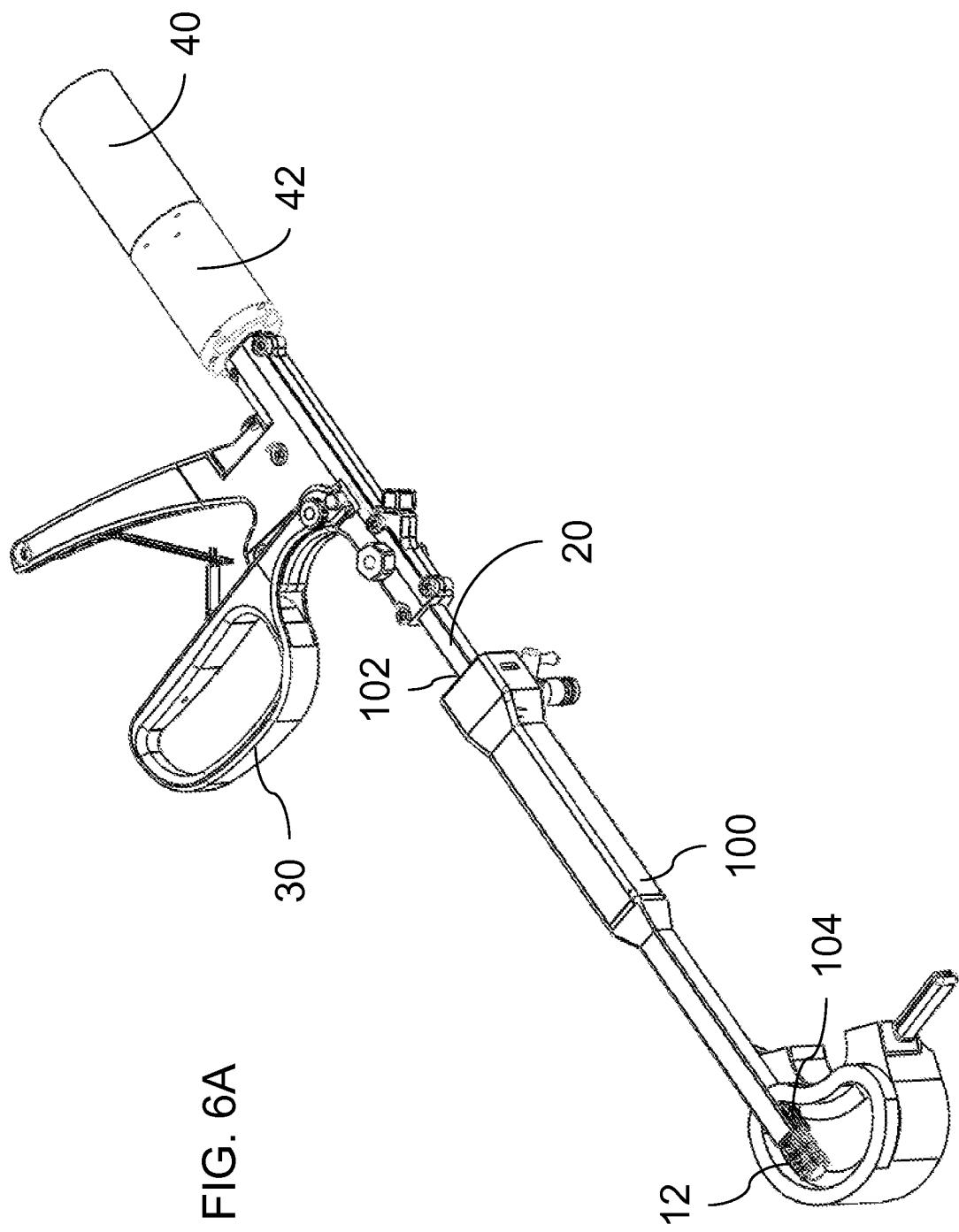




FIG. 5B

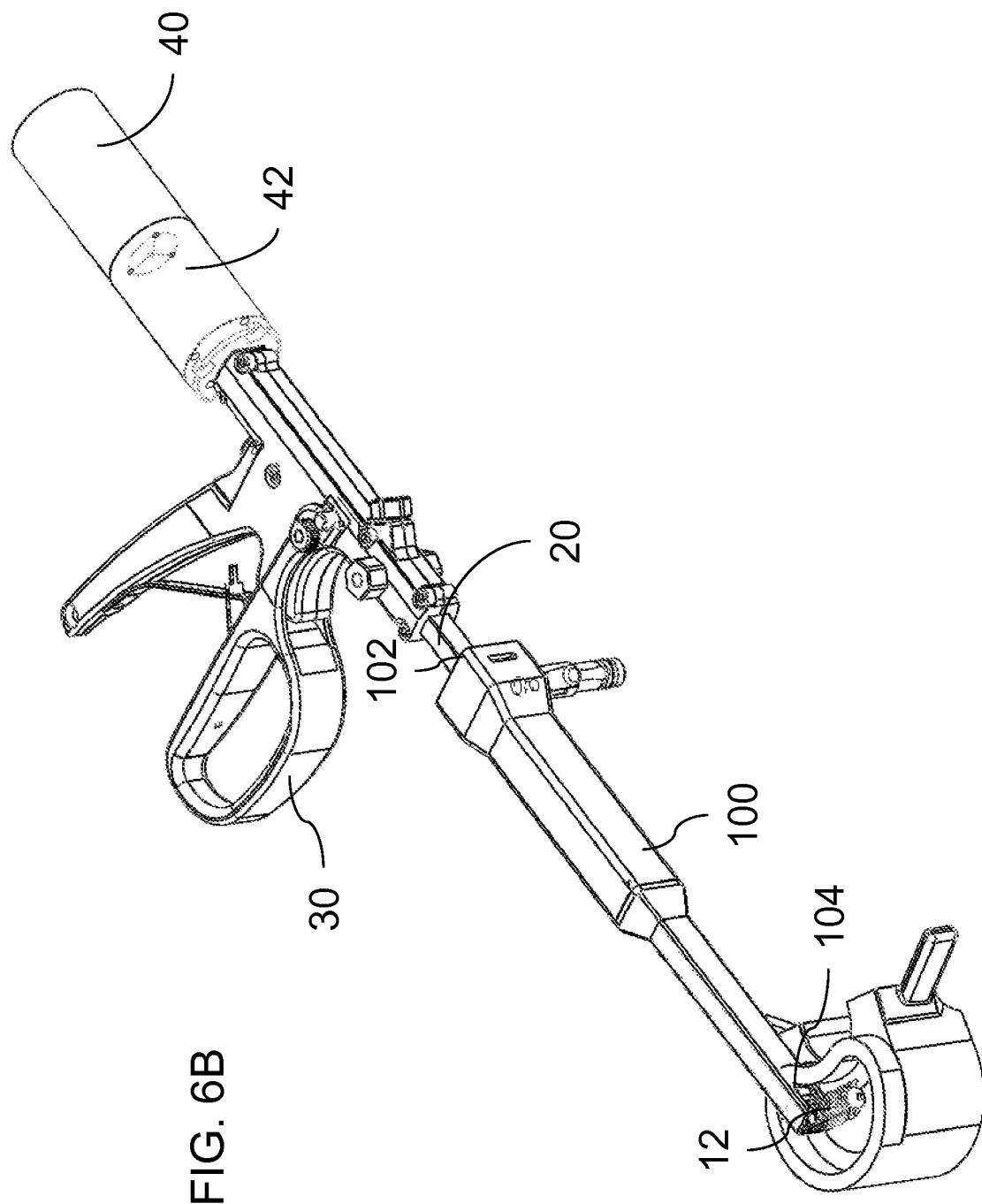


FIG. 6B

FIG. 7A

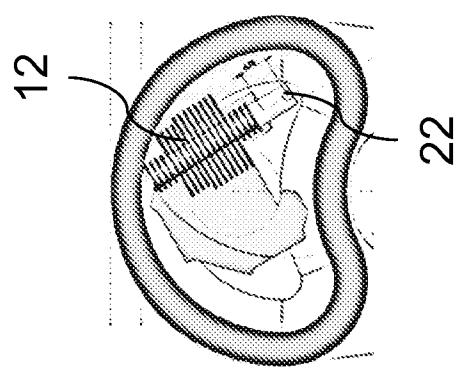


FIG. 7B

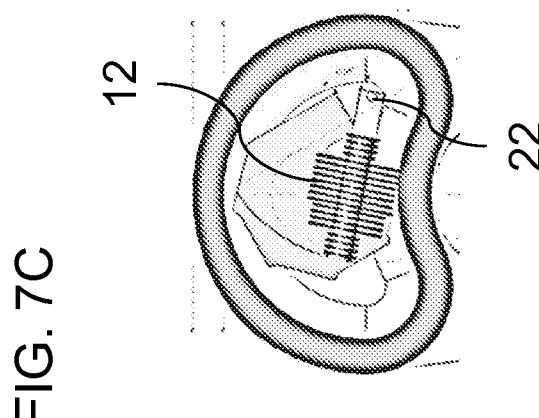
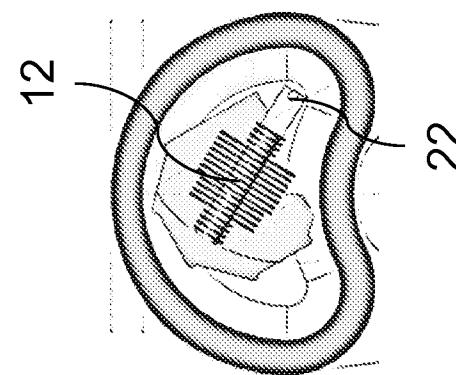



FIG. 8A

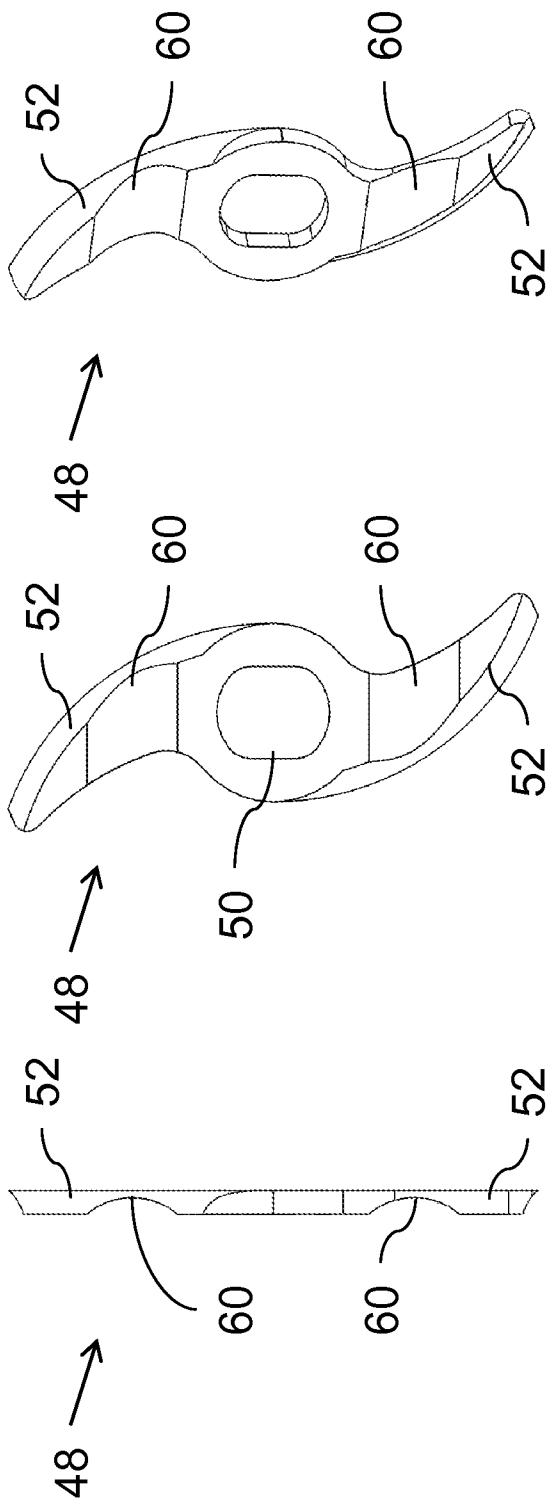


FIG. 8B

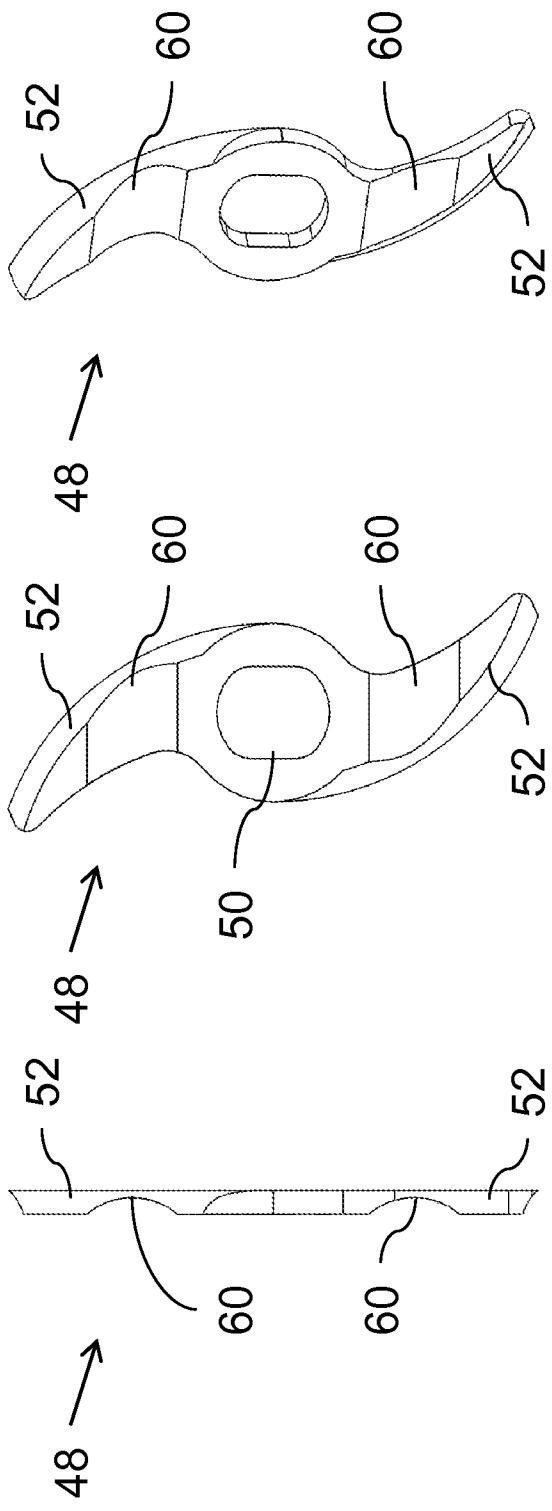


FIG. 8C

FIG. 8D

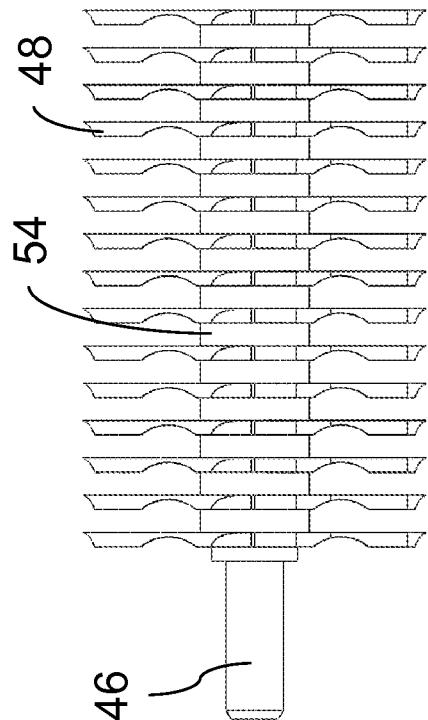
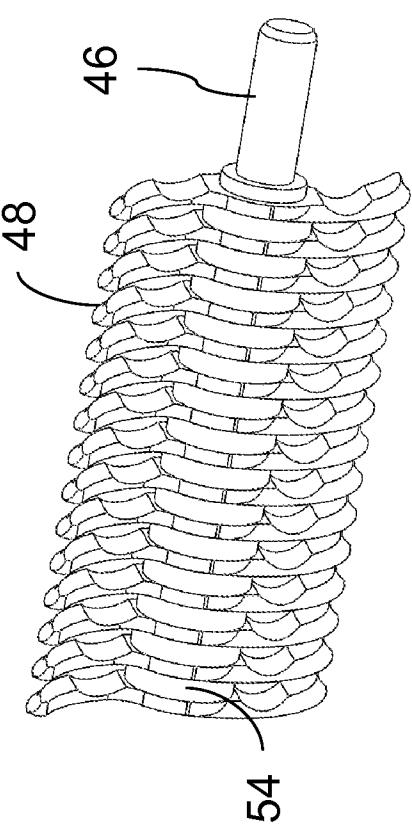



FIG. 9A

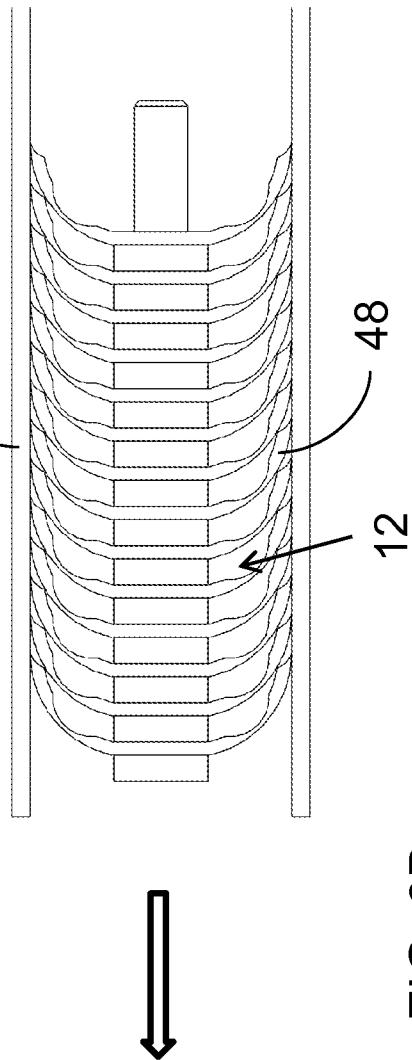


FIG. 9B

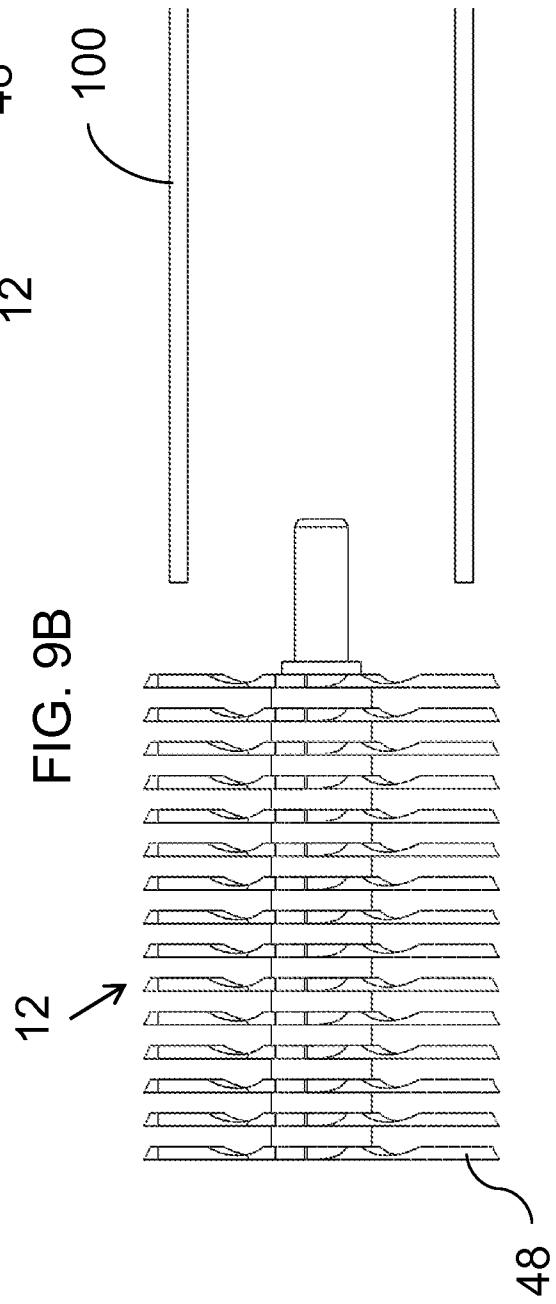


FIG. 10A

FIG. 10B

FIG. 10C

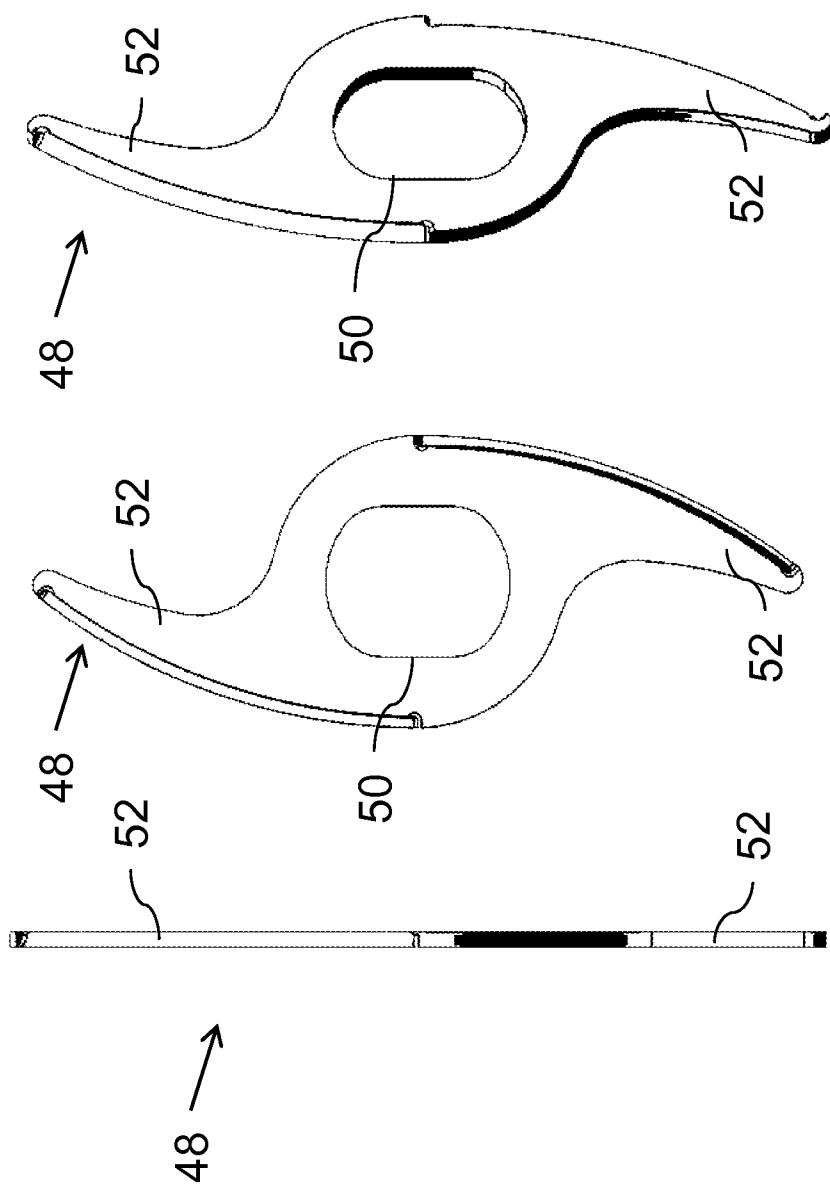


FIG. 11A

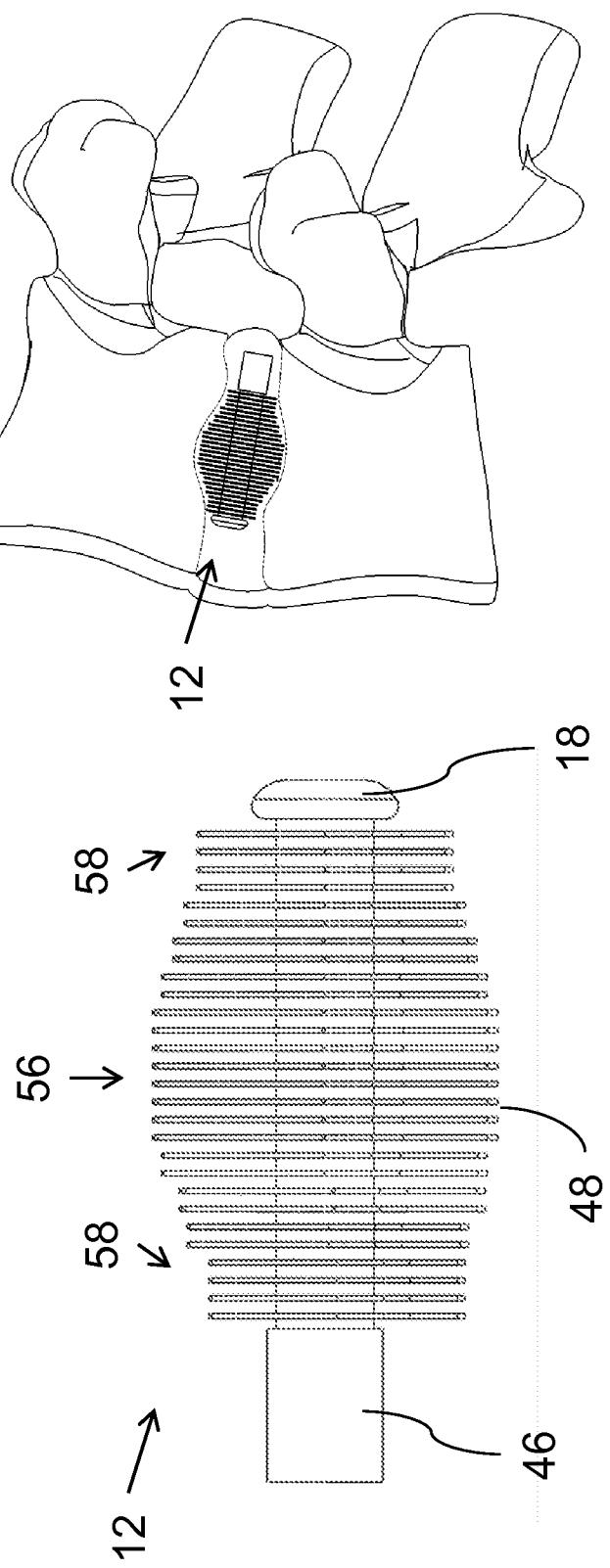
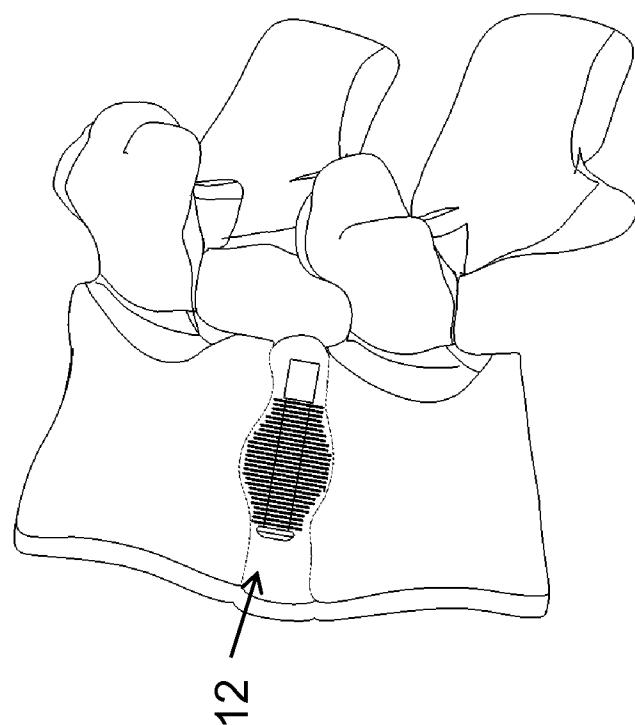



FIG. 11B

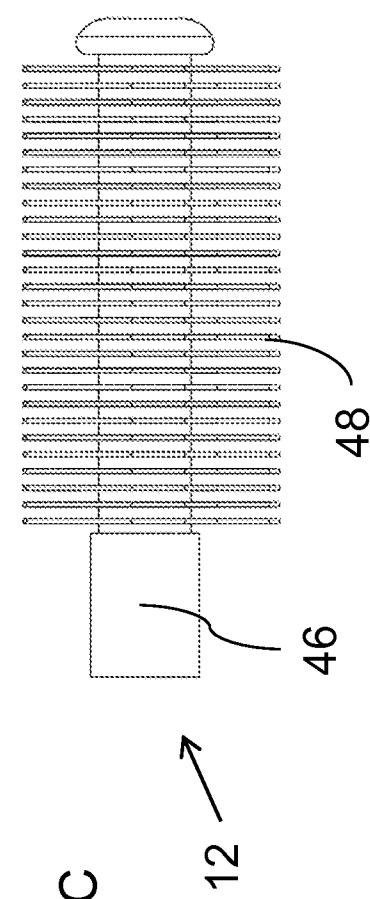
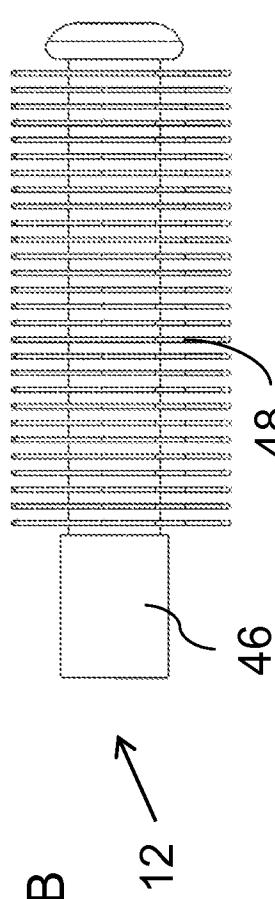
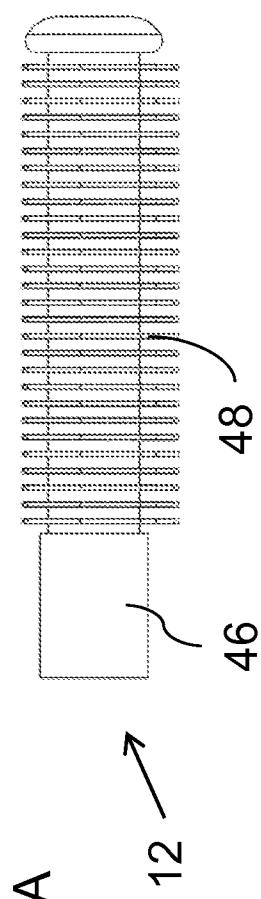




FIG. 13A

FIG. 13B

FIG. 13C

FIG. 13D

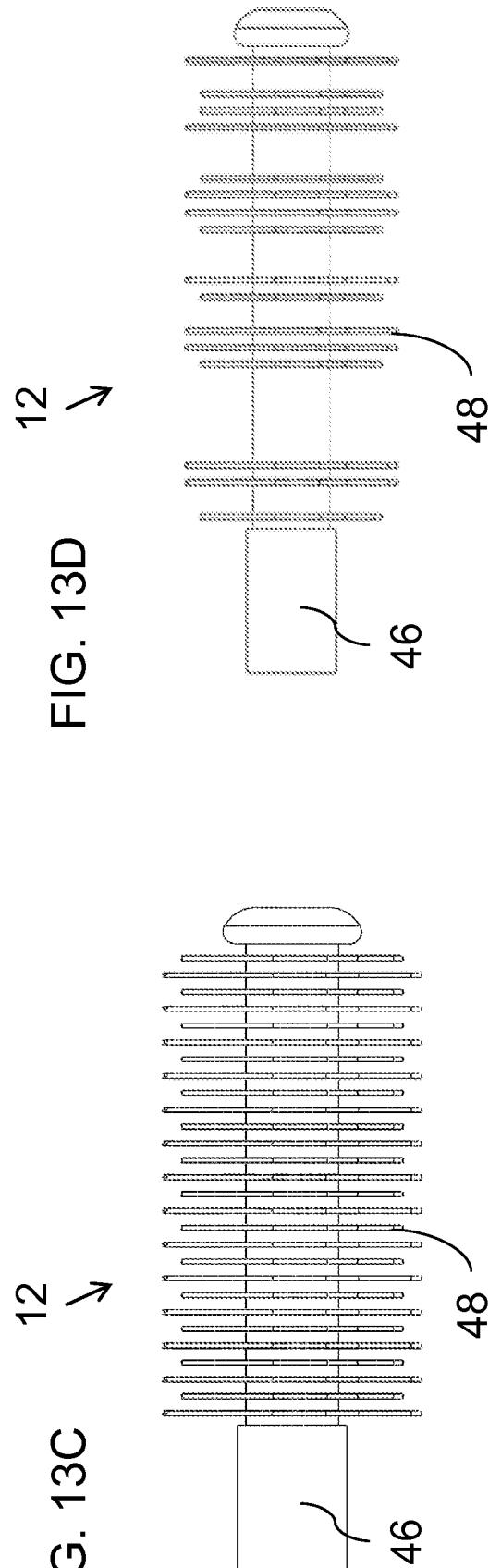
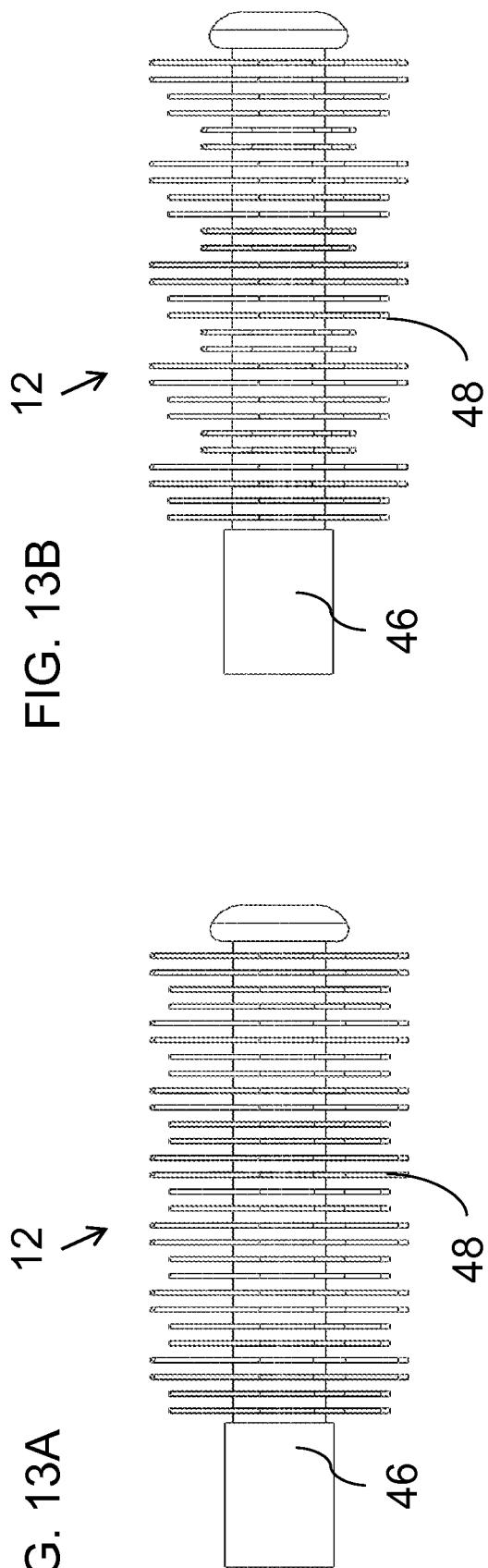



FIG. 14A

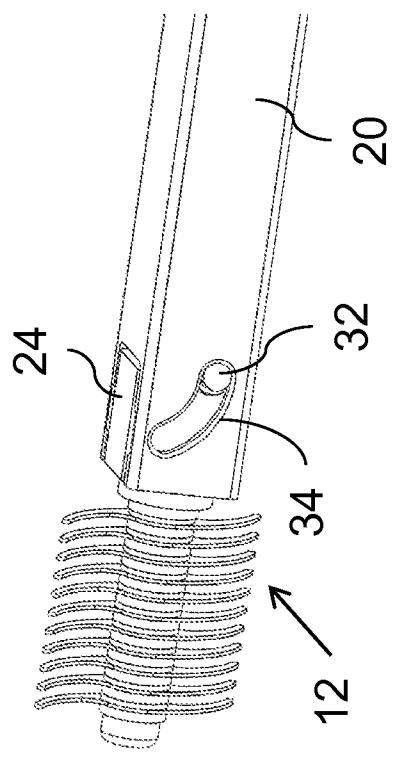


FIG. 14B

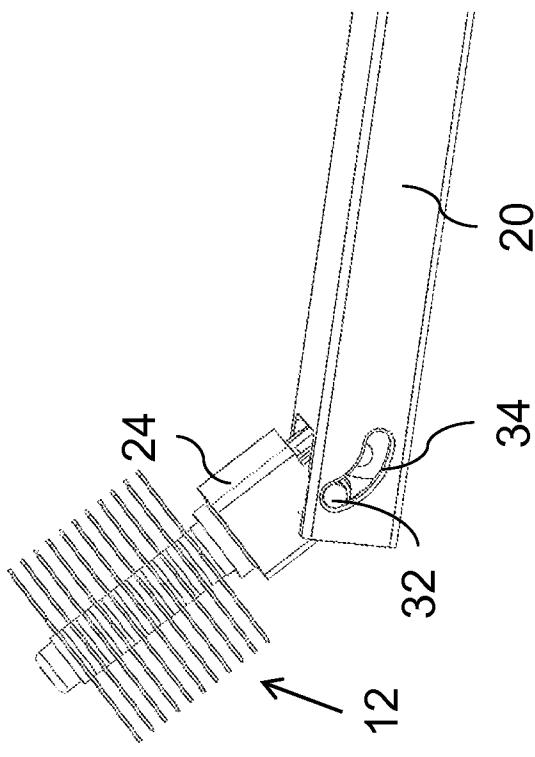


FIG. 15A

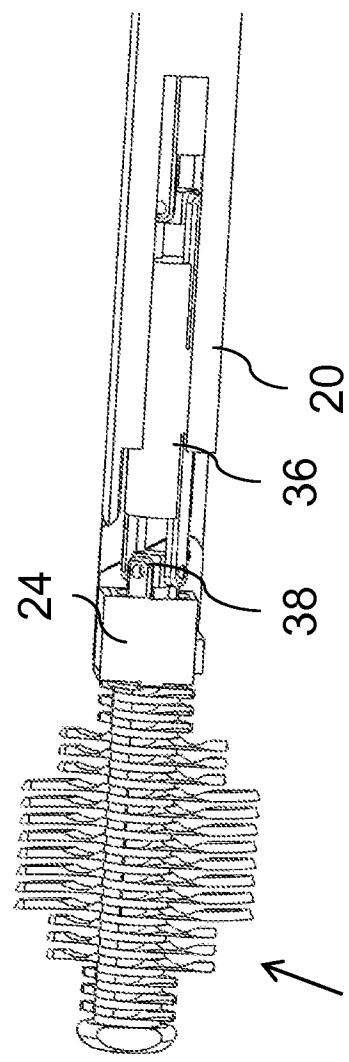


FIG. 15B

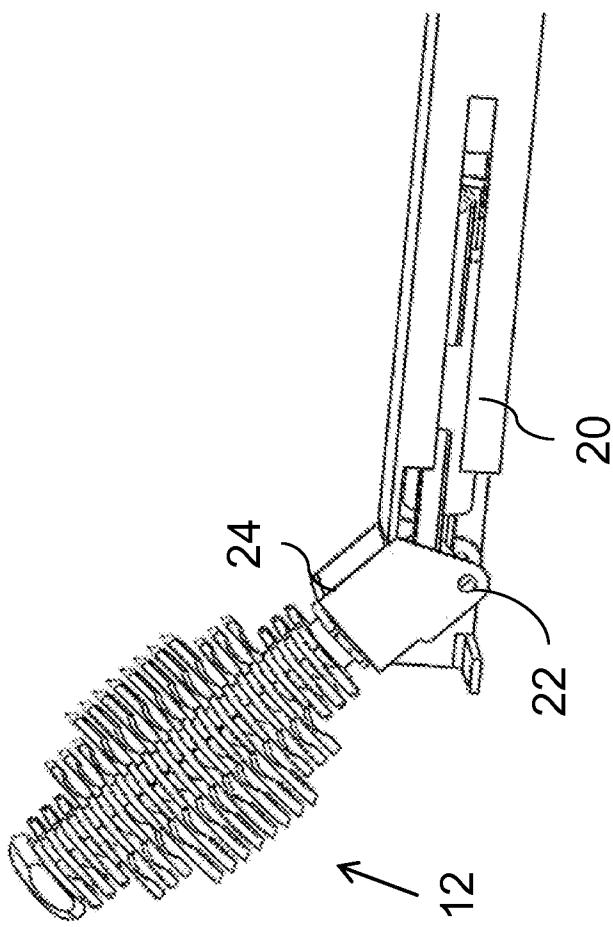


FIG. 16A

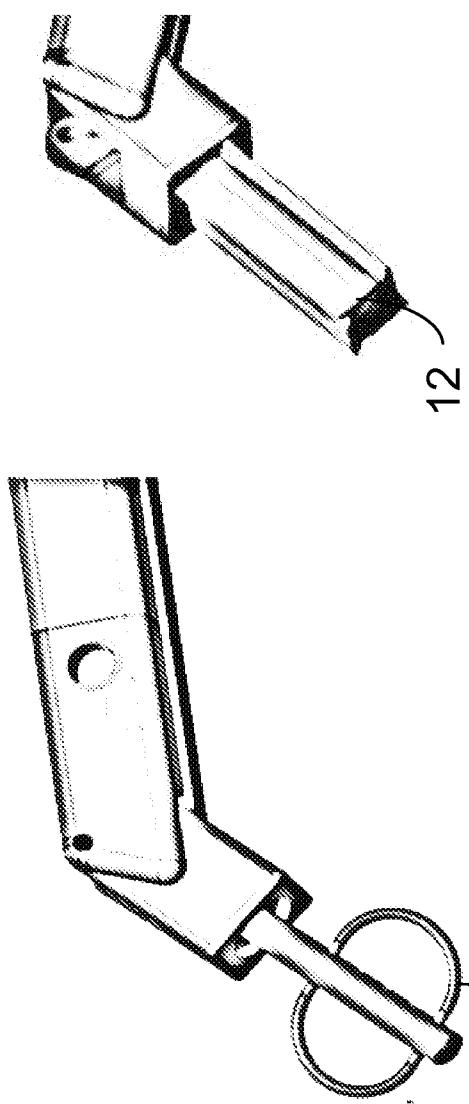


FIG. 16B

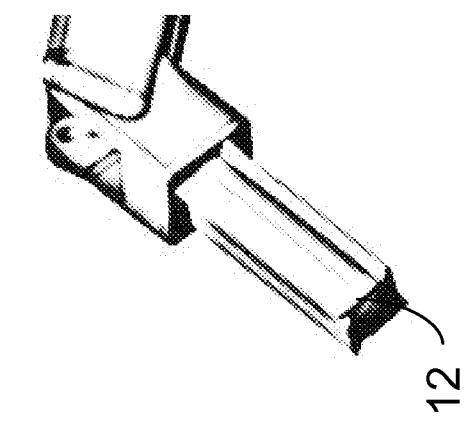


FIG. 16C

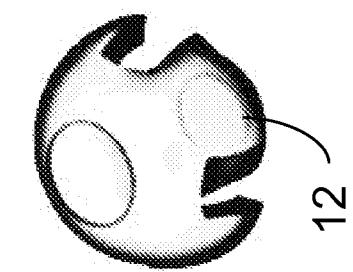


FIG. 16D

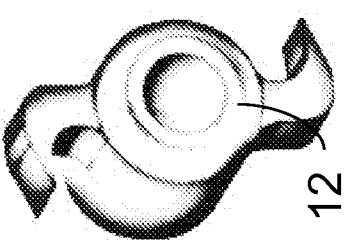


FIG. 16E

FIG. 17A

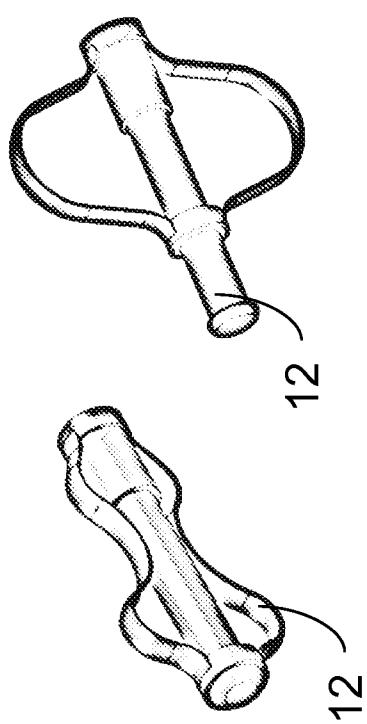


FIG. 17B

FIG. 20

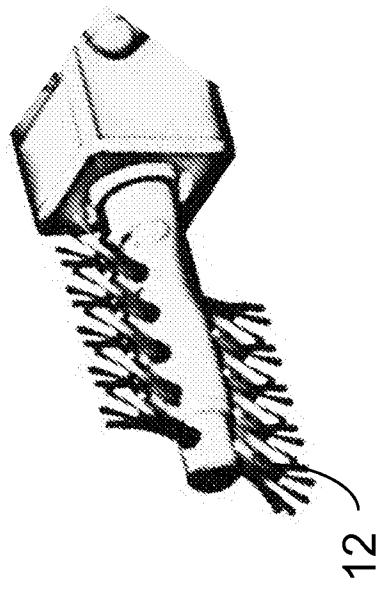


FIG. 18B

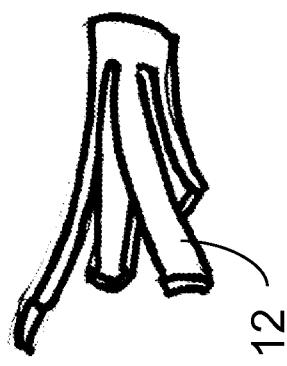


FIG. 18A

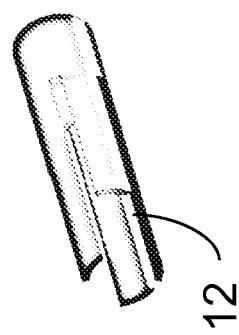


FIG. 21

FIG. 19B

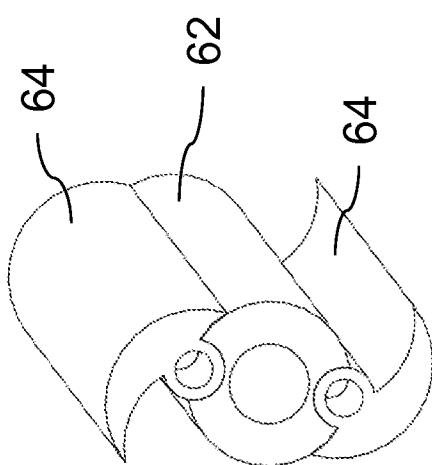
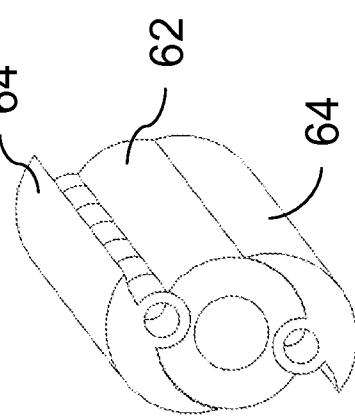



FIG. 19A

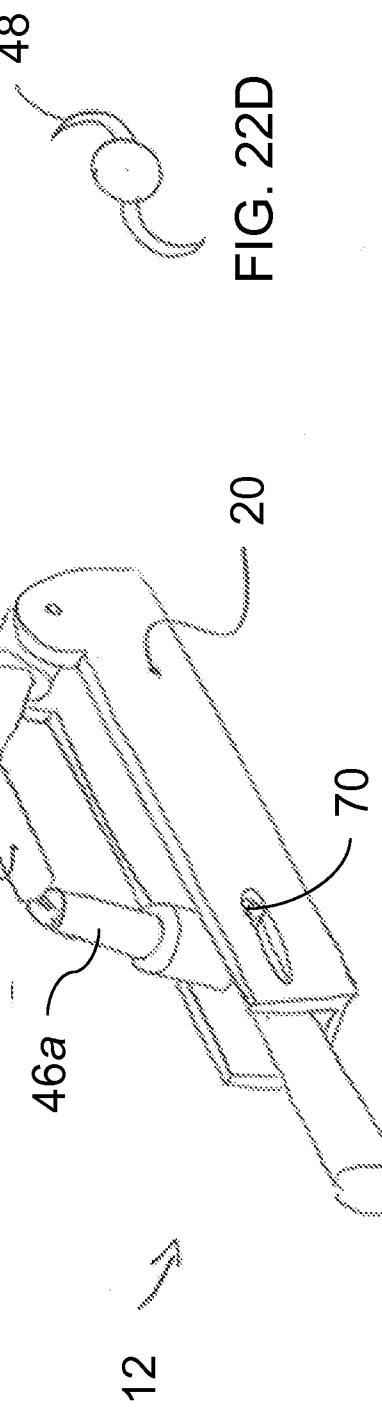
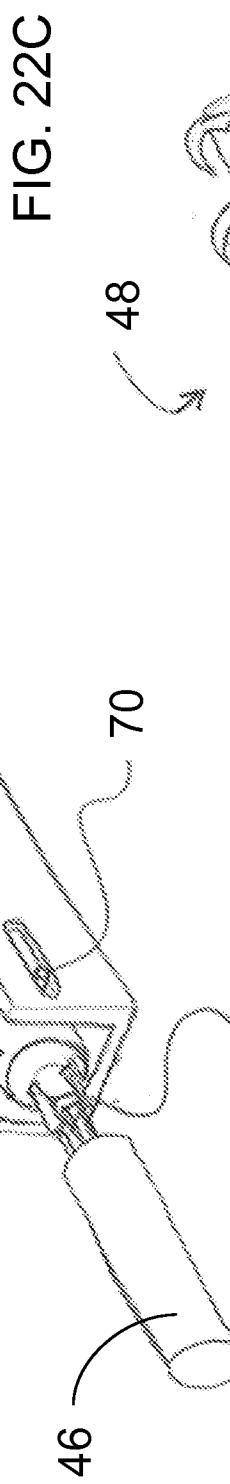
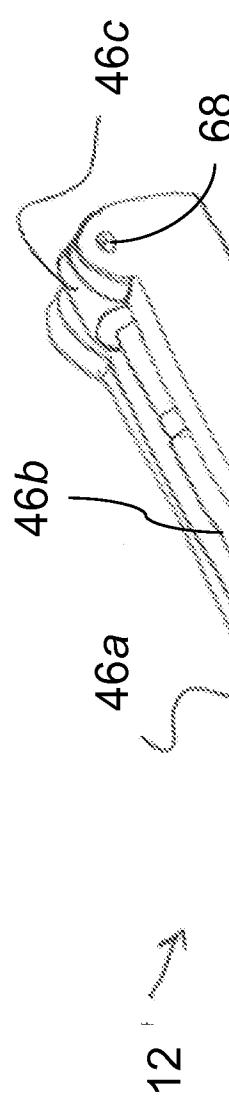




FIG. 22B

FIG. 23A

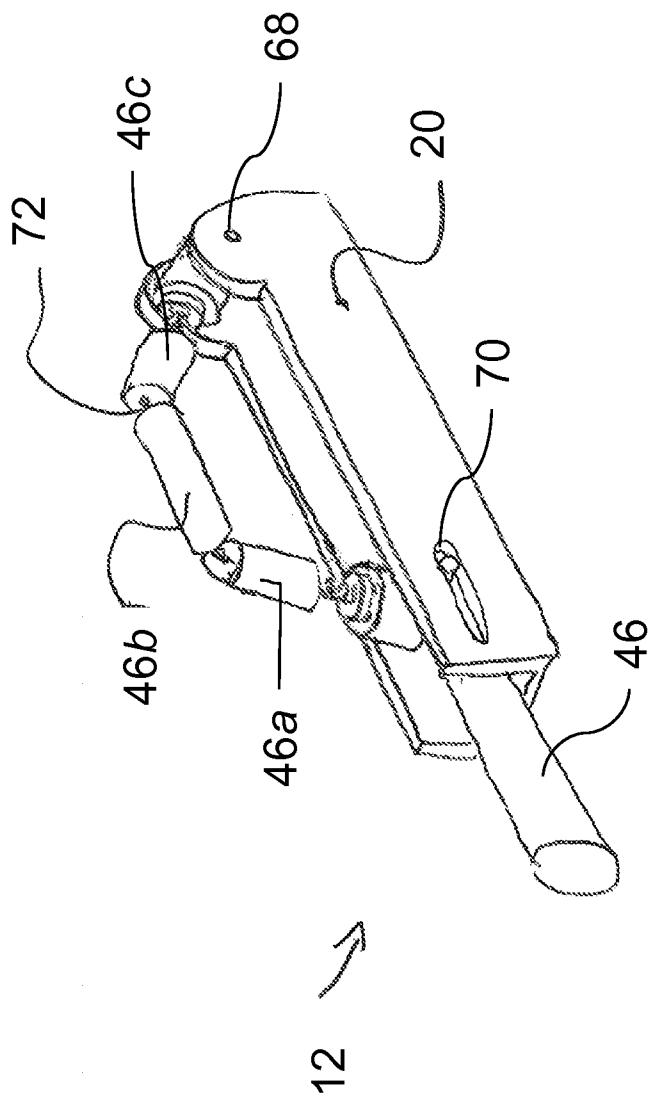


FIG. 23B

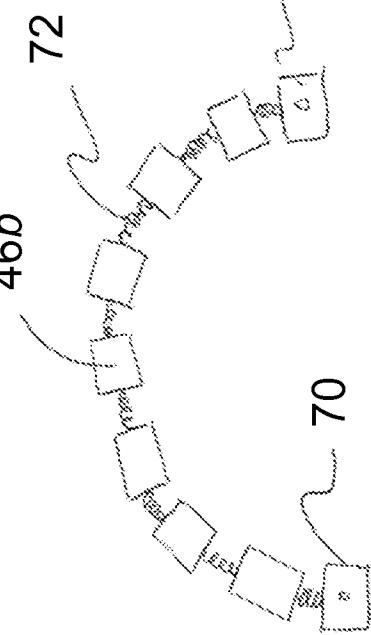


FIG. 23C

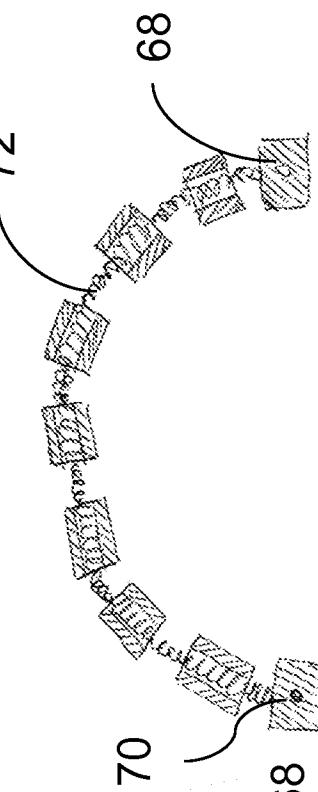
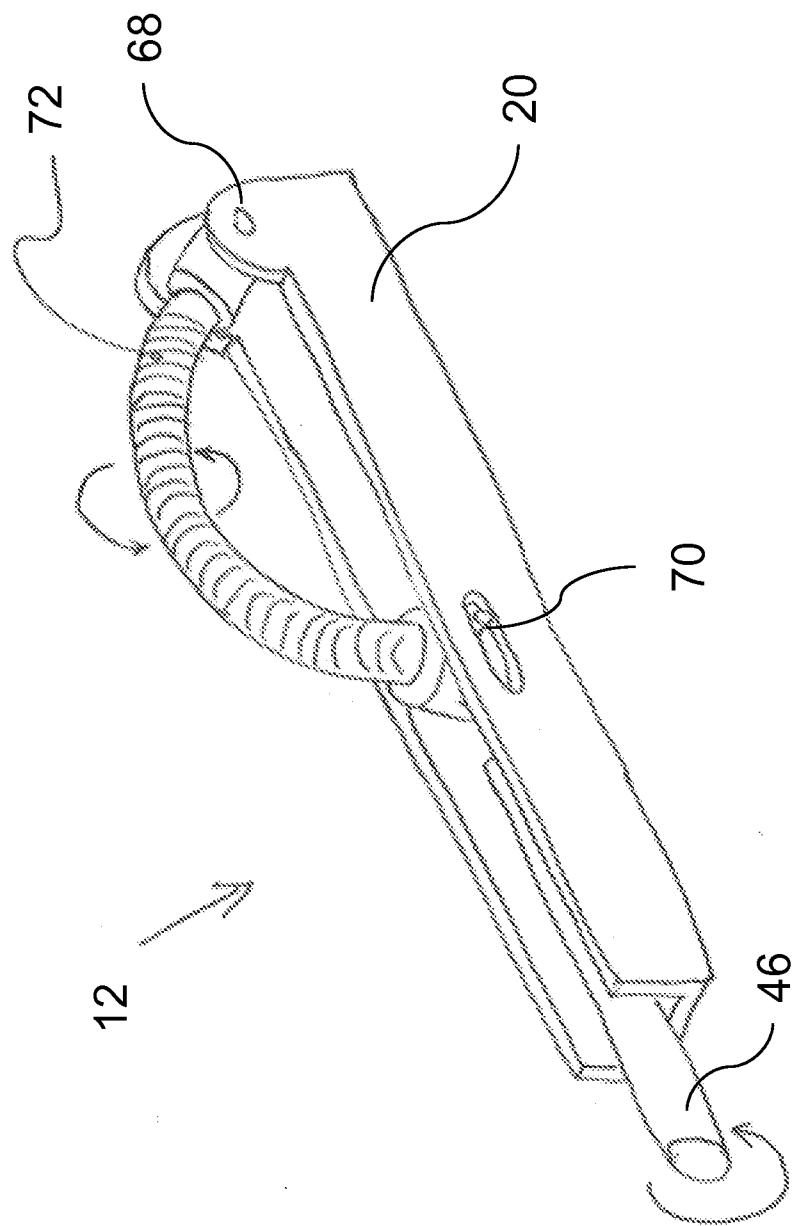



FIG. 24

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2012/052406

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61B17/32
ADD. A61B17/29 A61B17/16 A61B17/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2005/261692 A1 (CARRISON HAROLD F [US] ET AL) 24 November 2005 (2005-11-24) paragraph [0049] - paragraph [0070]; figures 5-16 -----	1-7, 9, 12, 15 17-20, 22, 23
X	US 2010/234866 A1 (ARCENTIO GREG [US] ET AL) 16 September 2010 (2010-09-16) paragraph [0075] - paragraph [0101]; figures 14-21 -----	1, 2, 4, 5, 7, 9, 12, 15, 17, 21
X	WO 2008/060277 A2 (AOI MEDICAL INC [US]; GOLDIN MARK [US]; SCHUMACHER BRIAN [US]) 22 May 2008 (2008-05-22) paragraph [0243] - paragraph [0245]; figures 87, 88 ----- -/-	1-7, 9

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

2 October 2012

09/10/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Herberhold, C

INTERNATIONAL SEARCH REPORT

International application No PCT/IB2012/052406

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2008/294166 A1 (GOLDIN MARK [US] ET AL) 27 November 2008 (2008-11-27) paragraph [0045] - paragraph [0056]; figures 5-7 -----	1-7,9
X	US 2010/179557 A1 (HUSTED DANIEL S [US]) 15 July 2010 (2010-07-15) figures 1,2 -----	1-7,9
X, P	WO 2011/060077 A1 (SPINE VIEW INC [US]; TO JOHN T [US]; DAVIS JOHN W [US]; CHIN SINGFATT) 19 May 2011 (2011-05-19) paragraph [0028]; figures 5-8 -----	1-7
X, P	WO 2012/004766 A2 (WEITZMAN YOSEPH [IL]) 12 January 2012 (2012-01-12) pages 10-25; figures 1-16 -----	1,2,4-9, 12,15, 17,23
X	WO 2010/135507 A2 (UNIV MICHIGAN [US]; JAFFERI TAARIF [TH]; KATRAGADDA RAGHUNATH SAI [US]) 25 November 2010 (2010-11-25) the whole document -----	1,10
A	WO 2007/021433 A1 (CORESPINE TECHNOLOGIES INC [US]; NORTON BRITT K [US]; HORTON CHRISTINE) 22 February 2007 (2007-02-22) figures 7,8 -----	11
Y	US 2004/215222 A1 (KRIVORUCHKO MICHAEL [US]) 28 October 2004 (2004-10-28) paragraphs [0031], [0032]; figures 1-5 -----	17-20, 22,23

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2012/052406

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 2005261692	A1	24-11-2005	NONE		
US 2010234866	A1	16-09-2010	NONE		
WO 2008060277	A2	22-05-2008	EP 2088938 A2 WO 2008060277 A2	19-08-2009 22-05-2008	
US 2008294166	A1	27-11-2008	CA 2692002 A1 CN 101795629 A EP 2164405 A2 EP 2206467 A1 JP 2010527705 A US 2008294166 A1 US 2008294167 A1 US 2009131952 A1 WO 2008144709 A2	27-11-2008 04-08-2010 24-03-2010 14-07-2010 19-08-2010 27-11-2008 27-11-2008 21-05-2009 27-11-2008	
US 2010179557	A1	15-07-2010	US 2010179557 A1 WO 2010083362 A2	15-07-2010 22-07-2010	
WO 2011060077	A1	19-05-2011	NONE		
WO 2012004766	A2	12-01-2012	NONE		
WO 2010135507	A2	25-11-2010	US 2012157766 A1 WO 2010135507 A2	21-06-2012 25-11-2010	
WO 2007021433	A1	22-02-2007	EP 1915097 A1 JP 2009504315 A US 2007055259 A1 WO 2007021433 A1	30-04-2008 05-02-2009 08-03-2007 22-02-2007	
US 2004215222	A1	28-10-2004	US 2004215222 A1 US 2005165431 A1	28-10-2004 28-07-2005	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/IB2012/052406

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: **25-32**
because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6 4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box II.1

Claims Nos.: 25-32

Claims 25 - 32 relate to a "method for disrupting target tissue in a human or animal body" comprising the step of "actuating both said rotary drive and said angular displacement mechanism so that said rotary tissue disruptor rotates....thereby disrupting said target tissue". The method is thus clearly of surgical nature. No international search and no preliminary examination are required for such methods (Art. 17(2)(a)i, Rule 39.1(iv); Art. 34(4)(a)I, Rule 67.1(iv), PCTGL 9.08-9.10)