
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0284687 A1

Guyette

US 20120284687A1

(43) Pub. Date: Nov. 8, 2012

(54)

(75)

(73)

(21)

(22)

(63)

DEVELOPNG CONFIGURABLE SOFTWARE
SYSTEMIS IN A LARGE SOFTWARE
DEVELOPMENT COMMUNITY

Inventor: Thomas Michael Guyette, North
Chelmsford, MA (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Appl. No.: 13/553,435

Filed: Jul.19, 2012

Related U.S. Application Data

Continuation of application No. 12/049.335, filed on
Mar. 16, 2008, now Pat. No. 8,250,532, which is a
continuation of application No. 10/736,065, filed on
Dec. 15, 2003, now Pat. No. 7,373,635.

Publication Classification

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl. .. T17/109
(57) ABSTRACT

An automated Software process for acquiring and distributing
information regarding design guidelines relevant to develop
ers of a software system. The system Supports developer
decisions regarding design guidelines for operational charac
teristics, such as “points of variability' (POV), of a system
under development. Operational characteristics of the system
under development are “profiled through answers to ques
tions reflecting the high level system design. The collected
answers indicate a category of operational characteristics
associated with a design guideline. A developer obtains the
design guidelines appropriate for a given operational charac
teristic when the answers entered by the developer with
regard to that operational characteristic are used to determine
one of the elements in the category array. Technical leader
ship establishes a high-level system design, and determines
questions leading to design guidelines for categories of
operational characteristics of the system. The design guide
lines may then be conveniently accessed by the developer.

ESTABSH HSH EVE SYSTEM
DESGN RECUREMENS

20

DETERMINE NEEDS FOR CATEGORIES
OF OPERATIONAL CHARACTERISTICS

DEFINE DIMENSONS OF CATEGORY ARRAY
124

CONVERT CATEGORY ARRAY INTO FLOW
26

DETERMINE ENDS FOR FOW BRANCHES
28

CREATE COMPONENTS OR NDS
FLOWEBRANCES

130

DEVELOP COMPONENS USNGERPORARY
SORAGE FOR OPERAONAL CHARACTERSCS

132

DEVELOPERS USE SYSTEM TO BEERVNE
STORES FOR OPERAIONAL CHARACTERISTCS

EVELOPERS USE STORES NOCAED
BYSYSTEM TO STORE OERAONAL

CHARACTERISCS

Patent Application Publication Nov. 8, 2012 Sheet 1 of 5 US 2012/0284687 A1

CEN
SYSTEMS

--
ENERPRISE O

Patent Application Publication Nov. 8, 2012 Sheet 2 of 5 US 2012/0284687 A1

SAME FOR ALL USERS, OR
OFFERENT FOREACH USER

70

SAME FOR ALL LOCATIONS, OR
OFFERENT FOR EACH OCATION?

72

WHO CAN READ THE DATA

73

WHO CAN EDT THE DATA2

74

WHEN IS HE DATA EDIABLE

Patent Application Publication Nov. 8, 2012 Sheet 3 of 5 US 2012/0284687 A1

SAME FOR A OFFEREN FOR EACH
USERS USER

SAME FOR AL SAME FOR A
OCATIONS OCAONS

82 84.

SAME FOR AL DFFERENT FOR EACH
USERS USER

OFFERENT FOREACH DFFERENT FOR EAC
OCATION OCATON

Y
CATEGORY ARRAY

80

FIG. 3

Nov. 8, 2012 Sheet 4 of 5 US 2012/0284687 A1 Patent Application Publication

Þ01,

f, "ADIAH

86

Patent Application Publication Nov. 8, 2012 Sheet 5 of 5 US 2012/0284687 A1

ESABS- HGH EVE SYSTEM
OESGN RECRUREMENTS

20

DETERMNE NEEDS FOR CATEGORIES
OF OPERATIONAL CHARACTERISTICS

DEFNE OMENSONS OF CATEGORY ARRAY
124

CONVERT CAEGORY ARRAY INTO FOW
126

DETERMNE ENDS FOR FLOW BRANCHES
128

CREATE COMPONENTS FOR ENDS OF
FLOW BRANCHES

130

DEVELOP COMPONENTS USING TEMPORARY
STORAGE FOR OPERATIONAL CHARACTERSTCS

132

DEVELOPERS USE SYSTEM TO DETERMINE
STORES FOR OPERATIONAL CHARACTERISTICS

134

DEVELOPERS USE STORES NOCAED
BY SYSTEM TO STORE OPERATIONA

CHARACTERISTICS

US 2012/0284687 A1

DEVELOPING CONFIGURABLE SOFTWARE
SYSTEMS IN A LARGE SOFTWARE
DEVELOPMENT COMMUNITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present application is a Continuation applica
tion under 35 U.S.C. 120 of commonly owned prior applica
tion Ser. No. 12/049,335, filed on Mar. 16, 2008 in the name
of Thomas Michael Guyette, which is a Continuation of com
monly owned prior application Ser. No. 10/736,065, filed
Dec. 15, 2003, also in the name of Thomas Michael Guyette,
issued May 13, 2008 as U.S. Pat. No. 7,373,635.

FIELD OF THE INVENTION

0002 The present invention relates generally to software
development systems, and more specifically to increasing
decision-making efficiency in large-scale Software develop
ment projects.

BACKGROUND OF THE INVENTION

0003. In software development communities made up of
large numbers of software developers, it is frequently difficult
to communicate relevant architectural decisions to develop
ers at times when such information is needed. Specifically,
when a developer is ready to develop or significantly modify
a program code component, he or she needs immediate assis
tance in making myriad design decisions according to stan
dards established for the project. Such assistance must either
be sought by searching through a potentially large, unwieldy,
and potentially out-of-date body of project documents, or
from team leadership, who can be bottlenecks to getting an
answer quickly. Existing systems for code management in the
development process have not addressed this problem
adequately.
0004. A common example is the developer faced with
choosing where to store persistent settings for “points of
variability” (“POV data'), such as configuration values,
application assembly values, and the like, for a component
s/he is developing. Guidance on where and how to store POV
data (and the “where-and-how of other project standards)
can be difficult to find, and when the system under develop
ment is relatively complex, there are often many different
places to store suchPOV data. Although the design and devel
opment process gradually reveals what the POV for a com
ponent should be, making the right decision about where to
store POV data is not always obvious.
0005. Several undesirable consequences may result from

this situation. First, different developers may each indepen
dently make their own determinations as to where POV data
should be stored. This likely leads to a proliferation of dis
parate, disconnected data stores (e.g., separate text files, rela
tional data stores, etc.) across the system. Second, developers
may choose to use existing data stores that have inappropriate
characteristics for the specific data to be stored. For example,
a poorly chosen Store might not be available to the component
in certain use cases, or may not be translatable to all Supported
languages, etc. Developers could spend large amounts of
development time learning the characteristics of all data
stores just so they can make an informed decision about
where to store the POV data for the components they develop.
0006 None of these consequences are desirable, and each
may result in bad design decisions that must be fixed and

Nov. 8, 2012

re-written, and, in the case where the product has already been
shipped and installed in live production, migrated from one
POV data store to another as storage decisions are re-made in
newer versions of the product.
0007 For the above reasons and others, it would be desir
able to have a new system for software system development
that provides a convenient way for developers to access
“development guide' information reflecting architectural
decisions about a system under development in a just-in-time
fashion—that is, when they need such information to make
specific design decisions about their component. Such a sys
tem would be applicable to providing convenient, clear, on
demand guidance in determining storage locations for storing
POV data, and to making other component design decisions
not related to POV data value storage.

SUMMARY OF THE INVENTION

0008 To address the problems described above and oth
ers, a system and method are disclosed that provide an auto
mated Software process for acquiring, representing, and dis
tributing information to Software developers regarding
Software system architectural decisions. Using the disclosed
system, a development team follows a series of well-defined
steps to establish standards for implementation of compo
nents in the system. Information about project standards
flows from the architects, who determine overall system char
acteristics and general component needs, into a profiling sys
tem that can later be used by developers to assist in making
implementation decisions.
0009. The disclosed system can be used to facilitate devel
oper decisions regarding storage of operational characteris
tics, such as POV data, by a component under development,
using consistent, deterministic project guidelines. During
operation of the disclosed system, the POV needs of the
component under development are “profiled by obtaining
answers to a series of questions relevant to the high level
system design. For example, the flowchart of questions for a
given POV data value may be presented to a developer within
a graphical user interface (GUI) presented by the disclosed
system. The collected answers to the questions lead the devel
oper to a "node that can be represented as an element in a
category array having dimensions equal in number to the
number of questions. For example, a decision tree with two
questions, each having two possible answers, translates into a
two-dimensional category array with four array elements; a
decision tree with three questions, each having two possible
answers, translates into a three-dimensional category array
with eight array elements, etc. Each element of the category
array represents a category of POV data, and contains one or
more associated design guidelines. During operation of the
disclosed system, a developer obtains the design guidelines
appropriate for a given piece of POV data when the answers
entered by the developer with regard to that POV data value
are used to identify one of the elements in the category array.
For example, a design guideline for one of the array elements
in the category array may indicate that POV data with that
element's characteristics should be stored in a text file on the
local hard drive, while another array element may indicate the
POV data should be stored using a reusable user preference
storage component developed by the system team.
0010. In order to set up and use the disclosed system in the
context of developing a specific Software system, a series of
steps is followed. First, the technical leadership team for the
project establishes high-level system design requirements.

US 2012/0284687 A1

Next, based on these requirements, the technical leadership
determines questions leading to design guidelines for catego
ries of POV data of the system. The design guidelines may
then be accessed by the developer, or automatically associ
ated with a program component under development as indi
cated by the answers provided by a developer.
0011 Thus there is disclosed a new system for software
system development that provides a convenient way for
developers to access information reflecting architectural
decisions about a program. The disclosed system enables a
developer to obtain design guidelines based on the system
design when Such information is needed during the develop
ment process. The disclosed system would further be appli
cable to providing convenient developer access to informa
tion relevant to determining storage locations for POV data of
the system under development, such as configuration values.

BRIEF DESCRIPTION OF THE DRAWINGS

0012. In order to facilitate a fuller understanding of the
present invention, reference is now made to the appended
drawings. These drawings should not be construed as limiting
the present invention, but are intended to be exemplary only.
0013 FIG. 1 is a block diagram illustrating a topology for
a software system under development, shown as a distributed
Software application;
0014 FIG. 2 is a flow chart diagram illustrating questions
provided during operation of an embodiment of the disclosed
system to obtain a profile for a POV of a system under devel
opment;
0015 FIG. 3 is an illustration of a category array in an
embodiment of the disclosed system; and
0016 FIG. 4 is a flow chart diagram illustrating steps
performed during operation of an embodiment of the dis
closed system to determine an appropriate data store for a
POV data value; and
0017 FIG. 5 is a flow chart illustrating steps performed to
use an embodiment of the disclosed system during the Soft
ware system development process.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

0018 Many software programs are designed for coordi
nated operation across multiple computer systems, and are
sometimes described as “distributed or “enterprise' pro
grams or applications. FIG. 1 illustrates the execution envi
ronment of a client-server enterprise application program, for
the purpose of describing how the disclosed system can be
used to facilitate good Software developer design decisions, in
particular during development of such distributed software
systems.
0019. As shown in FIG. 1, a software program under
development may, for example, consist of an enterprise appli
cation program that can be accessed from, or executed on,
multiple computer systems in a networked computer environ
ment. As shown in FIG.1, an enterprise 10 includes a site A50
having a server system 30 and associated client systems 32.
34, 36, 38 and 40, some of which may be shared among
multiple users. A site B52 is shown having a server system 12
and associated client systems 14, 16, 18 and 20, and a server
system 22 and associated client systems 24, 26 and 28. The
server and client systems in FIG. 1 are connected through a
communications network. The server and client systems of
FIG.1 may each, for example, include one or more processors

Nov. 8, 2012

and associated program code storage, such as program
memory, as well as various input/output (I/O) devices or
interfaces. A distributed Software program may include com
ponents distributed among and executing on Some or all of the
server and client systems shown in the enterprise 10. Accord
ingly, operational characteristics, such as, for example, POV
data of a Software program distributed across the server and
client systems of the enterprise 10, might similarly be distrib
uted across Such multiple, separate computer systems.
0020. During development of a distributed software appli
cation operable across the systems shown in the enterprise 10
of FIG. 1, software developers are faced with a variety of
decisions regarding POV data of the software components
they develop. For example, a developer may be faced with
deciding where and/or how certain POV data, such as con
figuration values, application assembly values, and the like
should be stored. Examples of configuration values in distrib
uted programs include user buddy lists for chat applications,
various user settings for word processing applications, indi
vidual user and shared lists or groups for electronic mail
systems, and system configuration values defining security
policies, resource allocation, and/or many other system con
figuration parameters.
0021. As will be evident to those skilled in the art, indi
vidual POV data values may be user-related values relevant to
Some or all users, or system-related values relevant to Some or
all systems. For example, a given user POV data value may be
relevant to all users, only users associated with one or more
designated server or client systems, or relevant only to an
individual user. Similarly, a system configuration value may
be relevant to all server and client systems, only certain des
ignated server or client systems, or only an to an individual
client or server system. Accordingly, the data store for a POV
should be selected in a way that is consistent with the
attributes of that piece of POV data. When the software sys
tem under development is a distributed software application
capable of having components executing on distributed
server and client systems, such as those client and server
systems shown in the enterprise 10 of FIG. 1, multiple data
stores may be defined for storage of configuration values.
Such configuration value data stores may each be designed
for storage of certain types or categories of configuration
values within the system under development. The number of
different data stores used for storing configuration values in a
distributed Software program operating across multiple client
and server systems may be relatively large. Accordingly, a
developer of a software component for a complex, distributed
Software program often faces a difficult task when determin
ing the appropriate data store to be used for storing a given
configuration value.
0022. The disclosed system may be embodied to deter
mine a data store in which a given POV data value should be
stored for use by a distributed software component under
development. The disclosed system issues a number of ques
tions to a software developer regarding a specific piece of
POV data that the developer is interested in determining a
data store for. The answers provided by the developer to these
questions result in a profile for the piece of POV data. The
profile is used by the disclosed system to determine one or
more design guidelines for the profiled piece of POV data. For
example, in the case of a POV data value consisting of a
configuration value, an embodiment of the disclosed system
may be used to determine a design guideline consisting of an
appropriate data store for the configuration value. In Such an

US 2012/0284687 A1

embodiment, the data store determined for the configuration
value may include any specific type of data storage or data
storage location for the configuration value, including but not
limited to, any specific type or location of one or more data
structures, such as files, databases, text documents, etc. More
over, an embodiment of the disclosed system may operate to
provide design guidelines for storing configuration values in
different categories within a shared data store by associating
meta-data tags with the configuration values. In this context,
the term “meta-data' is used to refer to any specific type of
data used to describe the properties of other data. In this case,
the meta-data is used to describe and distinguish one or more
categories of configuration values sharing a common data
StOre.

0023 FIG. 2 illustrates a flow of questions provided by an
embodiment of the disclosed system to determine a profile for
an POV data value consisting of a configuration value. The
questions described by the FIG. 2 flow may be provided
through any appropriate graphical user interface (GUI) on a
user computer system. Similarly, the answers to the questions
described by the FIG. 2 flow may be obtained through any
appropriate graphical user interface. Those skilled in the art
will recognize that the order of the questions in
0024 FIG. 2 is for purposes of explanation only, and that
any question order may used. Similarly, the specific questions
in FIG. 2 are also given only for purposes of explanation, and
the specific questions provided in different embodiments may
vary, depending on the overall requirements and system
design of the system under development.
0025. At step 70 of the embodiment shown in FIG. 2, the
disclosed system displays a question to the user as to whether
the configuration value is to be maintained as the same value
for all users of the system under development, or as a different
value for each user. The disclosed system captures the answer
provided by the user to the question of step 70, and at step 72
displays a question to the user as to whether the configuration
value is to be maintained as the same value for all locations
over which the system under development is deployed, or is to
be maintained separately in each location. After capturing the
answer to the question of step 72, the disclosed system dis
plays a question at step 73 to determine who is to be allowed
to read the configuration value. The answer to the question of
step 73 is then captured, and the disclosed system displays a
question at step 74 to determine who is to be permitted to read
the configuration value, and captures the answer to that ques
tion. The disclosed system then operates to display a question
to determine whether the configuration value is to be editable
at Step 75, and captures the answer to that question. Thus, as
shown for purposes of explanation in FIG. 2, the disclosed
system may be embodied to determine whether a given POV
data value is the same for all users or different for each user,
whether the POV data value is the same in all locations or
different for different locations, which users are permitted to
read and/or edit the POV data value, and whether the POV
data value should be modifiable at development time, instal
lation time, and/or runtime. Questions provided by the dis
closed system, such as those shown for purposes of explana
tion in FIG. 2, are system-specific, and determined by
technical leadership.
0026. After capturing the user's answers to a set of profil
ing questions relating to a POV data value of the system under
development, such as the questions shown in the flow of FIG.
2, the disclosed system accesses an entry in a category array
determined by those answers. The category array has a num

Nov. 8, 2012

ber of dimensions dependent on the number of possible
answers to the set of profiling questions. For example, the
number of entries in the category array may equal the set of
possible answer combinations to the profiling questions. In a
case where the set of profiling questions for an implementa
tion includes two questions, each of which may be answered
by “True' or “False the number of entries in the category
array would be four. Such a category array 80 is shown for
purposes of explanation in FIG.3. The two questions in the set
of profiling questions for the category array 80 of FIG. 3 are
the questions associated with steps 70 and 72 of FIG. 2.
0027. The category array 80 includes a first entry 82 asso
ciated with a category of configuration values that are the
same for all users, and the same for all locations in the system
under development. A second entry 84 is associated with a
category of configuration values that are different for each
user, but are the same for each location. The entry 86 is
associated with a category of configuration values that are the
same for each user, but are different for each location, and the
entry 88 is associated with a category of configuration values
that are the different for each user and different for each
location. Each of the entries in the category array 80 of FIG.
3 are associated with one or more design guidelines to be
provided to a user with regard to a POV data value that maps
to that entry. For example, in the case where the POV data
value is a configuration value, each of the entries in the
category array 80 may be associated with a separate data store
for storing configuration values, or with meta-data to identify
different categories of configuration values stored within a
shared data store. The four entry category array 80 of FIG. 3
is shown for purposes of illustration only, and an embodiment
of the disclosed system may have a category array having any
appropriate number of entries to reflect the specific set of
profiling questions for that embodiment. In any event, after
the user has answered the set of profiling questions, the POV
data value in question is associated by the disclosed system
with one and only one of the entries in the category array.
0028 FIG. 4 is a flow chart illustrating steps performed by
an embodiment of the disclosed system to process the
answers to profiling questions. The flow of FIG. 4 is respon
sive to answers input to the disclosed system for the profiling
questions 70 and 72 of FIG. 2. After starting at step 90, the
disclosed system operates at step 92 to determine whether the
POV data value is the same for all users of the system under
development. If not, step 92 is followed by step 96, in which
the disclosed system operates to determine whether the POV
data value is the same for all locations at which the system is
deployed. If not, then a branch of the flow terminates with a
display of design guideline 104, consisting of an indication of
a Data Store D: User-specific local store. If at step 96 the
disclosed system determines that the POV data value is the
same at all locations, then the branch of the flow terminates
with a display of design guideline 102, consisting of an indi
cation of Data Store C: User-specific replicated store.
0029. If the disclosed system determines at step 92 that the
POV data value is the same for all users, then step 92 is
followed by step 94, in which the disclosed system operates to
determine whether the POV data value is the same for all
locations in which the system under development may be
deployed. If not, then the flow terminates with a display of the
design guideline 100, shown as an indication of the Data Store
B: Shared local store. If at step 94 the disclosed system
determines that the POV data value is the same for all loca

US 2012/0284687 A1

tions, then the flow terminates with a display of the design
guideline 98, shown as an indication of the Data Store A:
Shared replicated store.
0030 Thus the flow chart of FIG. 4 represents a flow of
answers to the profiling questions of an embodiment of the
disclosed system, and the terminating nodes of the flow chart
in FIG. 4 represent respective entries within the category
array. The disclosed system may operate to display the design
guideline associated with the appropriate entry for an POV
data value, or may operate to automatically associate the POV
data value with the selected design guideline. Accordingly, in
the illustrative embodiment, each design guideline associated
with one of the terminating nodes of the flow chart in FIG. 4
may include either: 1) meta-data that is used to tag the POV
data value. Such as, for example an access control list, 2) an
indication or name for a separate data store, and/or 3) code
that may be output for use by the programmer.
0031 FIG. 5 is a flow chart showing steps of a method for
using an embodiment of the disclosed system in the process of
developing a distributed Software system. The process shown
in FIG.5 illustrates a preferred order of steps to be performed,
and requires the users of the disclosed system to give explicit
thought to the profiling questions, category array, and profil
ing flow, in order to insure maximum efficiency of designing
and developing a configurable distributed system.
0032. As shown in FIG. 5, at step 120, a technical leader
ship team for a software development project establishes
high-level system design requirements for security, location
distributivity, etc. At step 122, the technical leadership team
uses the system design determined at step 120 to determine
needs for different types of configuration data storage. At step
124, the technical leadership team defines the list of dimen
sions for the category array, and at step 126, re-tools the
category array into a code flow representation. Next, at step
128, the technical leadership team “caps the end of each
code flow branch in the flow determined at step 126 with a
node containing a design guideline. Such as a description of
where and how a configuration value matching the profile
question answers represented by that flow branch should be
stored. A configuration system development team then cre
ates components at Step 130 representing the data store indi
cations in the design guidelines defined at step 128. These
components created at step 130 are then usable by other
developers to store configuration data in an appropriate place.
0033. At step 132 developers develop their software com
ponents using temporary data storage locations for the nec
essary POV data values, in this case configuration values,
Such as text files, as "rough drafts” of Such components, until
the configuration system team finishes developing the con
figuration Subsystem having the data stores associated with
the design guidelines in the entries of the category array.
When the developers are ready to integrate their components
into the overall system being developed, they use the dis
closed system to traverse the flow for each temporarily stored
POV data value at step 134, and the displayed results of using
the disclosed system for such a traversal informs them where
and how to store the configuration value of interest at step
136.

0034 Developers may also have a need for further division
of configuration value storage, (i.e., for adding another
dimension to the category array). In these cases, the developer
approaches the configuration Subsystem team to re-work the
configuration design to meet their needs. Developers use the
configuration systems provided to store their configuration

Nov. 8, 2012

data, and remove their “rough draft' storage code. The dis
closed system, as illustrated in FIG. 5, thus assists developers
in making important design decisions.
0035 FIGS. 2, 4 and 5 are flowchart illustrations of meth
ods, apparatus (systems) and computer program products
according to an embodiment of the invention. It will be under
stood that each block of the flowchart illustrations, and com
binations of blocks in the flowchart illustrations, can be
implemented by computer program instructions. These com
puter program instructions may be loaded onto a computer or
other programmable data processing apparatus to produce a
machine, such that the instructions which execute on the
computer or other programmable data processing apparatus
create means for implementing the functions specified in the
flowchart block or blocks. These computer program instruc
tions may also be stored in a computer-readable memory that
can direct a computer or other programmable data processing
apparatus to function in a particular manner. Such that the
instructions stored in the computer-readable memory pro
duce an article of manufacture including instruction means
which implement the function specified in the flowchart block
or blocks. The computer program instructions may also be
loaded onto a computer or other programmable data process
ing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus
to produce a computer implemented process Such that the
instructions which execute on the computer or other program
mable apparatus provide steps for implementing the func
tions specified in the flowchart block or blocks.
0036 Those skilled in the art should readily appreciate
that programs defining the functions of the present invention
can be delivered to a computer in many forms; including, but
not limited to: (a) information permanently stored on non
Writable storage media (e.g. read only memory devices within
a computer such as ROM or CD-ROM disks readable by a
computer I/O attachment); (b) information alterably stored on
Writable storage media (e.g. floppy disks and hard drives); or
(c) information conveyed to a computer through communi
cation media for example using baseband signaling or broad
band signaling techniques, including carrier wave signaling
techniques, such as over computer or telephone networks via
a modem.
0037. While the invention is described through the above
exemplary embodiments, it will be understood by those of
ordinary skill in the art that modification to and variation of
the illustrated embodiments may be made without departing
from the inventive concepts herein disclosed. Moreover,
while the preferred embodiments are described in connection
with various illustrative program command structures, one
skilled in the art will recognize that the system may be
embodied using a variety of specific command structures.
Accordingly, the invention should not be viewed as limited
except by the scope and spirit of the appended claims.

I claim:
1. A method, embodied in at least one computer, compris

ing:
generating, by said at least one computer responsive to a

plurality of questions, a category array containing ele
ments, wherein each element in said category array cor
responds to a unique set of answers to said plurality of
questions regarding an input one of a plurality of con
figuration values of a software system under develop
ment, wherein each element in said category array con
tains a corresponding one of a plurality of design

US 2012/0284687 A1

guidelines, and wherein each of said plurality of design
guidelines indicates a name of a corresponding one of a
plurality of data stores for storing said plurality of con
figuration values of said software system under devel
opment;

inputting one of said plurality of configuration values of
said Software system under development;

inputting answers to said plurality of questions, wherein
said answers are with regard to said input one of said
plurality of configuration values of said software system
under development; and

locating, responsive to said input answers and said cat
egory array, one of said plurality of design guidelines
indicating a name of one of said plurality of data stores
for storing said input one of said plurality of configura
tion values of said Software system under development.

2. The method of claim 1, further comprising inputting said
plurality of questions.

3. The method of claim 1, wherein said plurality of ques
tions reflect a system design of said software system under
development.

4. The method of claim 1, further comprising:
displaying, by said at least one computer, said plurality of

questions to at least one developer of said software sys
tem under development.

5. The method of claim 1, further comprising:
displaying, by said at least one computer, said name of one

of said plurality of data stores for storing said input one
of said plurality of configuration values of said Software
system under development indicated by said located one
of said plurality of design guidelines.

6. A system comprising:
a computer readable memory and at least one processor,

wherein said computer readable memory has program
code stored thereon, and wherein said program code
configured to, when executed on said at least one pro
CSSO

generate, responsive to a plurality of questions, a cat
egory array containing elements, wherein each ele
ment in said category array corresponds to a unique
set of answers to said plurality of questions regarding
an input one of a plurality of configuration values of a
Software system under development, wherein each
element in said category array contains a correspond
ing one of a plurality of design guidelines, and
wherein each of said plurality of design guidelines
indicates a name of a corresponding one of a plurality
of data stores for storing said plurality of configura
tion values of said Software system under develop
ment,

input one of said plurality of configuration values of said
Software system under development,

input answers to said plurality of questions, wherein said
answers are with regard to said input one of said
plurality of configuration values of said Software sys
tem under development, and

locate, responsive to said input answers and said cat
egory array, one of said plurality of design guidelines
indicating a name of one of said plurality of data
stores for storing said input one of said plurality of
configuration values of said software system under
development.

Nov. 8, 2012

7. The system of claim 6, wherein said program code is
further configured to input said plurality of questions.

8. The system of claim 6, wherein said plurality of ques
tions reflect a system design of said software system under
development.

9. The system of claim 6, wherein said program code is
further configured to display said plurality of questions to at
least one developer of said software system under develop
ment.

10. The system of claim 6, wherein said program code is
further configured to display said name of one of said plural
ity of data stores for storing said input one of said plurality of
configuration values of said software system under develop
ment indicated by said located one of said plurality of design
guidelines.

11. A computer program product including a non-signal
computer readable medium, wherein said non-signal com
puter readable medium has program code stored thereon, and
wherein said program code is configured to:

generate, responsive to a plurality of questions, a category
array containing elements, wherein each element in said
category array corresponds to a unique set of answers to
said plurality of questions regarding an input one of a
plurality of configuration values of a Software system
under development, wherein each element in said cat
egory array contains a corresponding one of a plurality
of design guidelines, and wherein each of said plurality
of design guidelines indicates a name of a corresponding
one of a plurality of data stores for storing said plurality
of configuration values of said software system under
development;

input one of said plurality of configuration values of said
Software system under development;

input answers to said plurality of questions, wherein said
answers are with regard to said input one of said plurality
of configuration values of said software system under
development; and

locate, responsive to said input answers and said category
array, one of said plurality of design guidelines indicat
ing a name of one of said plurality of data stores for
storing said input one of said plurality of configuration
values of said software system under development.

12. The computer program product of claim 11, wherein
said program code is further configured to input said plurality
of questions.

13. The computer program product of claim 11, wherein
said plurality of questions reflect a system design of said
Software system under development.

14. The computer program product of claim 11, wherein
said program code is further configured to display said plu
rality of questions to at least one developer of said Software
system under development.

15. The computer program product of claim 11, wherein
said program code is further configured to display said name
of one of said plurality of data stores for storing said input one
of said plurality of configuration values of said software sys
tem under development indicated by said located one of said
plurality of design guidelines.

c c c c c

