A method for constructing a mobile home that minimizes the cost of transporting the mobile home, that facilitates the construction of two story mobile homes, that minimizes the cost of the construction plant used to assemble mobile homes, and that facilitates building mobile home that have elevations similar to those found in conventional residential home construction. The method utilizes orthogonal mobile home sections that are provided with roof lines of differing elevation and differing orientation with respect to the longer dimension of each section, and that assembles each of such mobile home sections by lifting components from a first separate assembly area to a second separate assembly area to lower the components into the second assembly area to construct at least the shell of the mobile home section on a mobile home carriage. The mobile home section can be finished in the second assembly area, or can be transported on its carriage to a third assembly area for paint, sheel rock, cabinets, or other desired finish work.
FIG. 2
FIG. 3
METHOD FOR CONSTRUCTING, TRANSPORTING, AND INSTALLING MOBILE HOME

[0001] This invention relates to the construction of buildings.

[0002] More particularly, the invention relates to the construction, transport, and installation of mobile homes without transporting the mobile homes over public thoroughfares.

[0003] Numerous mobile homes have been constructed. Each section of a mobile home has a maximum width of about sixteen feet and a length that typically can be eighty feet. The width limitation of sixteen feet is mandated by law or statute or regulation for safety reasons. Attempting to transport over public thoroughfares sections having a width greater than sixteen feet is not deemed safe or practical by various governmental authorities. There are also, for safety reasons, height limitations associated with each section.

[0004] Another characteristic associated with mobile homes is that the construction is usually less sturdy than that found in conventional “on-site” residential home construction. Less sturdy construction weighs less and facilitates the transport of completed mobile homes from the factory where the mobile homes are constructed. The lightweight construction associated with mobile homes often makes it impractical to attempt to stack one module on top of the other to produce a multi-story structure.

[0005] A further disadvantage associated with mobile homes is that permits have to be obtained to move mobile home sections over a public thoroughfare.

[0006] Still another disadvantage associated with mobile homes is that when a mobile home is moved, local regulations often require the use of vehicles in front of and behind the mobile home while the mobile home is traveling along a public thoroughfare. This increases the labor costs associated with moving the mobile home.

[0007] Still a further disadvantage associated with mobile homes is the well-known cookie-cutter “box-car” like appearance of many mobile homes.

[0008] Mobile homes, by definition, include a wheeled carriage on which the mobile home is constructed, and are installed on lots that include “stub-outs” for sewer, water, and electricity. When a mobile home is installed on a mobile home lot, the carriage remains on the lot as a permanent part of the mobile home. The wheels can, if desired, be removed from the carriage after support pylons or other structures are placed under the carriage.

[0009] Mobile homes are not modular homes. Modular homes do not include a carriage formed integrally with the lower floor of the modular home. Modular homes are not installed on lots with stub-outs for water, sewer, and electricity, which, in contrast, are found on mobile home lots.

[0010] Accordingly, it would be highly desirable to provide an improved mobile home construction method which would enable the construction of sections having a width larger than sixteen feet, which would facilitate the transport of sections from a construction site to a selected installation site, which would enable sturdier construction materials to be utilized so that multiple story buildings could be erected, which would improve the appearance of mobile homes, and which would reduce the overhead associated with the construction of mobile homes.

[0011] Therefore, it is a principal object of the invention to provide an improved method for constructing, transporting, and installing mobile homes.

[0012] Another object of the invention is to provide an improved mobile home construction method which significantly reduces the cost of constructing, transporting, and installing a mobile home.

[0013] A further object of the invention is to provide an improved mobile home construction method which eliminates having to obtain a permit to move a completed mobile home along a public thoroughfare to install the mobile home.

[0014] Still another object of the invention is to provide an improved mobile home building construction method which readily enables the assembly of mobile homes having different elevations.

[0015] Still a further object of the invention is to provide an improved mobile home building construction method which readily enables the assembly of mobile homes having different elevations.

[0016] These and other, further and more specific objects of the invention will be apparent from the following detailed description thereof, taken in conjunction with the drawings, in which:

[0017] FIG. 1 illustrates a mobile home assembly area constructed in accordance with the invention;

[0018] FIG. 2 illustrates a mobile home assembly area;

[0019] FIG. 3 illustrates a mobile home lot; and,

[0020] FIG. 4 illustrates elevations of mobile homes constructed in accordance with the invention.

[0021] Briefly, I have discovered an improved method for constructing a mobile home subdivision, comprising the step of preparing construction plans for a plurality of different structural units. Each structural unit has a length and width generally equivalent to the length and width of the other structural units; has a roof having a cant and an orientation; and, has a construction feature different from the construction feature in the other structural units and comprising at least one of a pair comprising the cant of the roof, and the orientation of a roof. The method also comprises the steps of constructing the different structural units; affixing at least a first one and a second one of said structural units to form a first mobile home having an elevation such that in the mobile home the roof of the first one of the structural units is offset from the roof of the second one of the structural units; and, affixing at least a third one and fourth one of the structural units to form a second mobile home having an elevation such that in said second mobile home said roof of said third one of said structural units is offset from said roof of said fourth one of said structural units and said elevation of said first mobile home differs from said elevation of said second mobile home.

[0022] In another embodiment of the invention, I provide an improved method for constructing a mobile home subdivision. The method comprises the steps of selecting an
area of land on which to install a plurality of mobile homes, the area of land including a plurality of mobile home lots each including water, electrical, and sewer stub outs; selecting at least one of the lots on the area of land on which to build mobile homes for installation on selected ones of the mobile home lots; erecting temporary structures on the selected lot to build floors, walls, and roofs for mobile homes; selecting on the selected lot an open-roofed area to assemble the floors, walls, and roofs to construct mobile homes; installing on the selected lot a crane to move floors, walls, and roofs constructed in said temporary structures to said open-roofed area; utilizing the crane to move walls, floors, and roofs to said open-roofed area, selected ones of the floors each being constructed on and integrally with a carriage having ground-engaging wheels; assembling in the open-roofed area the floors, walls, and roofs to produce at least first and second mobile home sections each including walls, a roof, and a floor integrally constructed with a carriage. The first mobile home section has an elevation different from the second mobile home section. The first and second mobile home sections are constructed to mate with each other to produce a mobile home. The method also comprises the steps of moving the first and second mobile home sections to a second selected one of the lots; mating said first and second mobile home sections at the second selected one of the lots to produce a mobile home structure; and, connecting the mobile home structure to the water, electrical, and sewer stub-outs on the selected lot.

In a further embodiment of the invention, I provide an improved method for constructing a mobile home subdivision. The improved method comprises the step of preparing construction plans for a plurality of different structural units. Each structural unit has a length and a width; a roof having a cant and an orientation; and, a construction feature different from the construction feature in the other structural units and comprising at least one of a pair comprising the cant of the roof, and orientation of a roof. The method also comprises the steps of constructing the different structural units; affixing at least a first one and a second one of the structural units to form a first mobile home having an elevation such that in the mobile home the roof of the first one of the structural units is offset from the roof of the second one of the structural units; affixing at least a third one and fourth one of the structural units to form a second mobile home having an elevation such that in the second mobile home the roof of the third one of the structural units is offset from the roof of the fourth one of the structural units and the elevation of the first mobile home differs from the elevation of the second mobile home.

As used herein, modular building construction comprises constructing modular building structures and transporting the modular building structures from a construction site to a building site at which the building structures are each permanently set on a foundation. Modular building structures are usually built above the ground, i.e., are built on jacks, piers or other structural supports so the building structures are elevated above the ground. Modular building as defined by the U.S. Department of Housing and Urban Development publications do not include mobile homes. Modular building structures can also include building structures which are not defined under said U.S. Government publications but which are still constructed above the ground and are transported from a construction site to a building site at which the modular building structures are permanently set on a foundation. Mobile homes typically are not as heavy or as structurally strong as a modular home.

Typically, although not necessarily, modular building construction utilizes two by four or two by six wood studs throughout, similar to site built home construction. Metal structural members or structural members constructed of any other desired material(s) can be utilized in place of or in combination with wood to frame walls and floors.

Modular building construction usually does not include mobile home construction. Mobile home construction typically includes 2 by 3s for walls, particularly interior walls. With the exception of the carriage, mobile home construction usually is not as strong as modular building construction. A mobile home includes a metal I-beam floor joist support structure or carriage. Axles are attached to the I-beam structure. When a mobile home is moved, wheels are attached to the axles. After the mobile home is moved to its intended destination, the wheels normally are removed. The I-beam structure carriage remains an integral part of the mobile home lower floor in anticipation of the mobile home being moved again at some future time. In contrast, modular building construction is intended to be moved once and then permanently affixed to a foundation. A mobile home ordinarily is not permanently affixed to a foundation and is set on jacks or supports that maintain the carriage spaced above the ground, although it is possible to set a carriage on a prepared foundation without permanently affixing the carriage to the foundation.

As used herein, permanently as used with respect to modular building construction indicates that a modular building structure, once affixed to a foundation, is not intended to be moved again. It is understood that all buildings can, with sufficient time and effort, be removed from a location and moved, either in one piece or in parts. A building structure constructed with modular building construction is not, however, intended to be moved again once the building structure is mounted on the foundation at its "final resting place".

A carrier is used to transport modular building construction. The carrier typically includes wheels or tracks (like a tank track) which move over the ground. Once a modular building construction unit reaches its appointed destination, the modular construction unit is removed from the carrier and set on a foundation.

As used herein, a mobile home section is a portion of a mobile home which is connected or attached to another mobile home section at a selected construction site in order to produce a mobile home. A mobile home section can vary in width but typically is no more than sixteen feet wide. The sixteen foot wide limitation is imposed because when the mobile home section is transported along a street or other public thoroughfare, the section must not be excessively wide. While a mobile home section normally can have a width of no more than sixteen feet, the length can be up to about eighty feet. There often are also height limitations for mobile home sections so that such sections will not strike a bridge or utility lines while being transported along a public thoroughfare by a truck. When the construction method of the invention is utilized, it is not necessary to adhere to the sixteen foot wide—eighty feet long limitation and the height limitations normally associated with mobile homes.

As used herein, livable space is the square footage floor area in a mobile home that is in rooms which a person
or entity living in or utilizing the residence inhabits or uses
to eat, sleep, relax, work, or play. The floor area in bath-
rooms, kitchens, dining rooms, family rooms, dens, living
rooms, offices, storage rooms, shopping areas, rooms for
manufacturing equipment, classrooms, day care rooms,
closet space, garages, etc. comprise livable space. Patios,
out-of-doors side walks, swimming pools, out-of-doors
lawns and gardens do not comprise livable space.

[0031] As used herein, a governmental authority is a
federal, state, municipal or county organization or agency
which enforces selected laws, regulations, rules and/or ordi-
nances and authorizes certain actions in accordance with
laws, policies, regulations, etc. For example, a city police
department is a governmental authority which enforces
laws or regulations concerning criminal or misdemeanor be-
havior. A city planning and zoning commission enforces rules or
ordinances or regulations concerning rezoning procedures
and concerning zoning violations.

[0032] As used herein, construction yard facilities are
authorized by a governmental authority if the authority
approves, inspects, issues a permit, or takes some other
action approving or authorizing the construction facility or
a mobile home structure constructed by the construction
facility.

[0033] As used herein, a public thoroughfare is a street
(including interstate highways, state highways, etc.) or path
along which transport of a mobile home section or other
building structure having a width of over eight feet up to and
no more than about sixteen feet and/or a height greater than
about fifteen feet is allowed only if a permit is obtained or
if some other authorization is obtained from a governmental
authority.

[0034] As used herein, a street in a new or existing mobile
home subdivision does not become a public thoroughfare
until a mobile home structure is erected on each lot in the
subdivision and any mobile home constructions area on or
adjacent the new subdivision is removed.

[0035] As used herein, a subdivision is a tract of land
surveyed and divided into one or more lots on which at least
one mobile home is constructed. The mobile home can
comprise a single family home or residence, apartment,
condominium, office building, motel, nursing home, store,
or other building structure. Construction in a subdivision can
take place continuously until a completed mobile home is in
place on each lot in the subdivision, or, can take place in
phases. During each phase, only a selected number of lots in
the subdivision are each provided with a mobile home. After
a phase is completed in a subdivision, a selected period of
time passes before the next phase begins in the subdivision.

[0036] As used herein, a mobile home is assembled in an
open roofed area when it is not constructed inside a fixed,
permanent building structure and is instead constructed at a
site that enables a crane to be used to lift a wall, floor, or roof
assembly from an adjacent location and lower the wall, floor
or roof assembly freely down into the open roofed area
because there is not a roof structure to interfere with vertical
movement of construction materials into and/or out of the
open roofed area.

[0037] As used herein, a temporary building structure is
intended to be easily taken down and removed at the
completion of construction and can, by way of example and
not limitation, include a tent, a building with a pipe frame-
work which fits together and can readily be taken apart, etc.
It is preferred that a temporary building structure occupy a
relatively small area of less than 10,000 square feet, pref-
erably less than 3,000 square feet, and most preferably less
than 1,000 square feet. Large factory installations, especially
those that tend to put all operations under a single roof, are
preferably avoided in the practice of invention, even if such
large factory installations are characterized as "temporary".
In the practice of the invention, a plurality of separate
smaller temporary structures are preferred because smaller
temporary structures ordinarily are more easily constructed
(and disassembled), and cost significantly less to construct
and maintain.

[0038] A crane can be utilized to suspend above the open
top area a deployed tarp or umbrella-like cover in the
event of rain. This would still permit, when the umbrella-like
cover is removed from the crane, the crane to be utilized to
move materials along vertical lines of travel downwardly
into and upwardly out of the open roofed area. Or, if two or
more cranes are utilized, the cranes can be positioned such
that the crane suspending the umbrella-like cover can move
the cover away from the open roofed area so that the second
crane can be utilized to move roofs, walls, floors, or other
construction materials along generally vertical lines of travel
downwardly into or upwardly out of the open roofed area.

[0039] As used herein, a mobile home section comprises
walls, a roof, and at least one floor, said floor comprising a
ground or lower floor integrally formed with a carriage. A
mobile home may have only one section or be comprised of
two or more mobile home sections.

[0040] Once a mobile home section is constructed, it is, in
accordance with the invention, transported to a selected lot
in a subdivision (or other selected location) and the carriage
is mounted on one or more support members and secured in
place.

[0041] The following example is provided for illustrative
purposes and not by way of limitation of the scope of the
invention.

EXAMPLE

[0042] An area of land is selected to construct mobile
homes. The mobile homes are each one to two stories high.
The area of land is rectangular. The land is subdivided into
one hundred lots. The width of each lot is in the range of
twenty feet to fifty feet. The length of each lot is in the range
of fifty feet to one hundred and ten feet. Each lot is provided
with electrical, water, and sewer stub outs. If desired, an
existing mobile home subdivision with empty lots can also
be selected.

[0043] The subdivided land is bounded on each side by an
existing municipal thoroughfare that is under municipal
jurisdiction. A crane to be used is positioned at a location
that enables a crane to lift a wall, floor, or roof assembly
from an adjacent location and lower the wall, floor, or roof
assembly freely down into the open roofed area because
there is not a roof structure to interfere with vertical
movement of construction materials into and/or out of the
open roofed area.

[0044] Municipal water, sewer, and electric lines also
bound the land. Connections are made to these municipal
lines to provide water, sewer, and electric lines underground leading to the associated stub outs 31, 32, 33 on each of the lots 30 (FIG. 3). Streets and curbs are installed on the land to access each lot. Since mobile homes have not been erected on the lots, maintenance and care of the streets is not yet turned over the appropriate municipal authority or authorities, i.e., the streets on the subdivided land are not public thoroughfares.

[0045] Plans for constructing mobile home sections are prepared, along with plans for the assembly of mobile home sections to produce mobile homes having different elevations. Each mobile home section has a width of sixteen feet and a length of twenty-four feet. The overhang of the roof on each section can vary as desired, but is at least twelve inches, preferably at least sixteen inches, and most preferably at least twenty-four inches. Some of the mobile home sections are one story. Some are two stories. The first floor of each mobile home section is designed to be integrated with a steel I-beam carriage.

[0046] Four lots on the southeast corner of the land are selected as a construction yard. A floor construction area 20 is designated, along with a building assembly area 21, a wall assembly area 23, a roof assembly area 24, a centralized area for a crane 22, a location 26 to which walls from area 23 are moved on a portable table or are otherwise moved to location 26, and a location 25 to which structure 11 over area 23 can be stored after cable 18 of crane 22 is attached to structure 11 and used to lift structure 11 upwardly and move structure 11 over to and set structure 11 down on area 25. The width of each area 20 to 24 is in the range of twenty-five to one hundred feet. The length of each area 20 to 24 is in the range of twenty-five to one hundred feet. Each area 20 to 24 typically is more rectangular than square, and is three thousand square feet or less, and more preferably is one thousand square feet or less.

[0047] Temporary structures 11, 12, 13, are erected. Mobile home walls or wall sections are built in structure 11. Mobile home floors or floor sections are built in structure 12. Mobile home roofs or roof sections are built in structure 13.

[0048] Some of the floor sections built in structure 12 (and area 20) are “ground” floors and are integrated with a steel I-beam carriage or other carriage structure that includes axles. The axles receive wheels such that the ground floor sections and carriage can, if desired, be rolled over the ground from structure 12 to the assembly area 21. Others of the floor sections built in structure 12 are for the second (or third, etc.) floor of a mobile home and, consequently, are not integrated in a carriage.

[0049] In FIG. 2, the location of areas 21 and 24 is reversed from that shown in FIG. 1 to illustrate that the location of areas 20 to 24 can vary as desired.

[0050] Roof, wall, and floor sections are assembled in open roofed area 21. Area 21 is not provided with a roof so that crane 22 can lift floor sections from area 20, wall sections 15 from area 23, and roof sections from area 24, and then vertically downwardly deposit said sections in area 21 for assembly into a mobile home.

[0051] In FIG. 1 a ground floor integrally formed with a carriage is identified by reference character 16. The carriage includes wheels 17.

[0052] The roof, wall, and floor sections built in areas 24, 23, 20 can be substantially complete, or can be constructed such that after a mobile home is assembled in area 21, flooring, dry wall, paint, cabinets, cupboards, plumbing fixtures, shingles, air conditioning units, windows, etc. are used to complete substantially the construction of a mobile home section.

[0053] Once a first mobile home section is complete, a truck is connected to the ground floor—carriage 16 and pulls the first mobile home section over the streets 41 on the subdivided land to either a secondary building assembly area or a selected lot 30. Since the truck and first mobile home section only travel on streets on the subdivided land, the truck avoids traveling on a public thoroughfare. In the secondary building assembly area, finishing work is completed such as cabinets, siding, insulation, paint, etc.

[0054] The truck positions the first mobile home section on the mobile home lot 30. The truck is utilized to bring a second mobile home section to the mobile home lot 30. The second mobile home section is positioned on lot 30 such that it can be connected to the first mobile home section in the desired orientation. After the first and second mobile home sections are connected, the complete mobile home is connected to the electric, water, and sewer stub outs.

[0055] The foregoing procedure is used to build and transport mobile home sections to each of the remaining lots not occupied by the areas 20 to 24 and crane 22. Mobile home sections for the mobile home lots comprising areas 20 to 24 are constructed and moved to temporary locations on street(s) 41. The structures 11 to 13 are taken down, crane 22 is removed, areas 20 to 24 are cleaned and prepared, and the mobile home sections on street(s) 41 are moved onto the appropriate ones of the lots that comprise areas 20 to 24. The sections are assembled to produce mobile homes on lots comprising areas 20 to 24.

[0056] As used herein, travel over a distance of one mile or less on a public thoroughfare does not constitute travel on a public thoroughfare simply because governmental authorization may not be required to travel such a short distance on a public thoroughfare. If however, the municipality or another governmental agency or organization with authority over a public thoroughfare uses, directly or indirectly, the method of the invention to construct mobile home sections and gives authorization (or an exemption from having to secure the permits or authorization normally required) to transport mobile home sections over a public thoroughfare without having to obtain permits or authorization in the manner required by others using the public thoroughfare, then for the purposes herein, such constitutes transporting a mobile home section over a street which is not a public thoroughfare. In other words, the action of the municipality in not requiring authorization makes the public thoroughfare function, in essence, as if it were not a public thoroughfare, which saves significant costs in transporting a mobile home section in accordance with the spirit and purpose of the invention.

[0057] Each mobile section is complete with roof, walls, and floors and only needs to be secured to its associated mobile home section(s).

[0058] There are several important advantages associated with the construction method of the invention.
One advantage of the method of the invention is that it does not require the manufacturer of mobile homes to purchase and retain a piece of land on which to build mobile homes for a plurality of subdivisions.

Another advantage of the method of the invention is that it does not require the manufacturer of mobile home structures to pay taxes on a permanent building or factory in which mobile homes are constructed.

A further advantage of the method of the invention is that it does not require the manufacturer of mobile homes to invest $1,000,000 (typically) or more to construct a permanent or temporary factory in which to assemble mobile homes or mobile home sections.

Still another advantage of the method of the invention is that it does not require a manufacturer to invest continually in the repair, painting, and other upkeep necessary to maintain or move a large permanent or temporary factory building.

Yet a further advantage of the method of the invention is that it does not require a manufacturer to transport a mobile home section over an extended distance to a subdivision in which the mobile home is to be placed, reducing the likelihood that the mobile home section will be damaged during transport and reducing the time expended in moving mobile home sections.

Another advantage of the method of the invention is that a manufacturer does not have to go to the time and expense of obtaining permits and hiring individuals to transport a mobile home sections over public thoroughfares.

A further advantage of the invention is that the mobile home sections are not subject to width or height restrictions, and the width of the mobile building section can be greater than sixteen feet and the height greater than fifteen feet.

Still another advantage of the method of the invention is that multiple story mobile home structures can be constructed and transported to and installed at a designated site.

Yet a further advantage of the method of the invention is that it provides greater architectural flexibility and makes the appearance of mobile homes much more desirable.

Yet still a further advantage of the method of the invention is that the land on which mobile homes are assembled in a subdivision is used only for a limited period of time and later—after the temporary construction facilities are removed and mobile homes are placed on the land—produces additional revenue.

Another advantage of the method of the invention is that the cost required to construct a plurality of residences in a subdivision is less than the cost incurred by building the residences one-by-one on each lot in conventional fashion.

Accordingly, the method of the invention is believed to offer significant advantages over long-used conventional construction and other currently used mobile home construction techniques.

One important feature of the invention is that it makes mobile homes esthetically more pleasing by facilitating the construction of mobile homes with different elevations. This feature of the invention combines completed mobile home sections in different orientations to produce different elevations. Preferably, although not necessarily, the construction of each section is facilitated because each section has a base floor that is the same size, for instance, sixteen feet by twenty-four feet. Further, a section having a particular height (one or two stories) and roof line is, in some instances, used with two or more different sections, or, is used in different orientations with one other different section.

Each section has at least one connecting “inner” wall that has a door or other opening formed through the wall. When two sections are mated or joined together, the sections are positioned so that the openings in the connecting wall are in a desired registration. The opening formed through a connecting wall can occupy substantially all of the wall or can occupy a smaller area of the wall, as desired. Connecting walls are fabricated to facilitate the joining of two or more sections to produce a mobile home. When two or more sections are joined to produce a mobile home the connecting walls are located substantially inside the mobile home, form an inner wall located inside the mobile home, and do not form an outer peripheral wall.

The particular wall or walls of a section that are selected to function as connecting walls can vary as desired. In one mobile home design a first side wall of a section can be constructed to be a connecting wall while the other walls are constructed to function as walls that form a portion of the outer peripheral wall of a mobile home. In another mobile home design, the same section can be constructed such that a second side wall of the section is constructed to function as a connecting wall while the first side wall and other remaining side walls each are constructed to form a portion of the outer peripheral wall of a mobile home.

The construction method and sections of the invention are further described with reference to FIGS. 4 to 8. FIGS. 4 to 9 each generally illustrate a mobile home constructed by assembling two (or more, if desired) mobile home sections built in accordance with the invention.

Mobile home sections 50, 51, 52, 53, 54, 55, and 56 are illustrated in FIGS. 4 to 8. While, as earlier noted, the shape and dimension of each mobile home section can vary as desired, in the embodiment of the invention illustrated in FIGS. 4 to 8, each section has a common length A and width B. The common length A and common width B can be any desired dimension, however, length A currently is sixteen feet and width B is twenty-four feet.

Section 50 is a single story section with a length A of sixteen feet and a width B of twenty-four feet. The upper roof line, or ridge line, 60, of section 50 is parallel to length A. Section 50 includes peripheral walls 61, 64, 63 and connection wall 62. Window(s) and/or door(s) are formed in, or omitted from, walls 61 to 64 as desired. Walls 61, 63 are parallel. Walls 62, 64 are parallel. In FIGS. 4 to 8, the four walls of each section comprise an orthogonal shape and each wall is (1) normal to adjoining walls, and (2) parallel to the opposing spaced apart wall. If desired, each wall need not be perpendicular to adjoining walls, but such is presently preferred to simplify and streamline construction of mobile home sections in accordance with the invention. One important feature of the invention is utilizing in a section 50 a...
ridge line 60 that is perpendicular to the longest dimension B of section 50 and is parallel to the shortest dimension A. This facilitate the utilization of combinations of a variety of two or more sections 50 and 51 with different elevations to produce a home that appears to be a conventional residential home construction and not a mobile home. The construction in accordance with the invention of a mobile home including a first section with a ridge line parallel to the longest dimension of a section 51 and including a second section with a ridge line perpendicular to the longest dimension of a section 50 also produces a home that appears to be a conventional residential home and not a mobile home, particularly when at least one of the sections is at least two stories high. In the practice of the invention, a section two stories high includes only a single carriage; the carriage that forms an integral part of the ground floor. The second floor does not include a carriage, but ordinarily is comprised of conventional wood stud frame construction, or of other conventional construction that is lighter and less costly than a mobile home carriage.

Section 51 is a two story section with a length A of sixteen feet and a width B of twenty-four feet. The upper roof line, or ridge line, 70 of section 51 is parallel to the width B. Section 51 includes peripheral walls 71, 72, 73 and connection wall 74. Window(s) and/or door(s) are formed in, or omitted from, walls 71 to 74 and the wall of the other mobile homes illustrated in FIGS. 4 to 8. Connecting walls 62 and 74 are in registration and joined together in FIG. 4 to form the mobile home illustrated in FIG. 4. The portion of wall 74 extending above the roof of section 50 comprises a solid wall portion. Ridge lines 60 and 70 are offset from each other and are perpendicular. The cant, or slope, of each side or portion of the roof of section 50 is the same as the slope or cant of each side of the roof of section 51, but this need not be the case. If any section 50 or 51 has only one ridge line 60 or 70, then that is the principal ridge line of the section. In the event a section 50, 51 has more than one ridge line, the principal ridge line comprises the longest ridge line of the section. If a section 50 or 51 has two or more ridge lines that are equal in length and are the longest ridge lines, then each of the ridge lines is a principal ridge. If a section has two or more principal ridge lines, then a limitation in the Claims concerning the offsetting of the principal ridge line of one section with respect to the principal ridge line of a second section is met if at least one of the two or more principal ridge lines of a section meets the limitation.

In FIG. 5, the construction of section 51 is equivalent to section 51 in FIG. 4, except that wall 71, and not wall 74, is constructed as the connecting wall. The construction of single story section 52 is similar to the construction of section 50 except that the upper roof line, or ridge, 75 is parallel to the width B of section 52. Roof lines 70 and 75 are offset from one another and are parallel.

In FIG. 6, the construction of section 50 is equivalent to the construction of section 50 in FIG. 4 in that wall 62 of section 50 is constructed as a connecting wall, and the remaining walls 61, 63, 64 are peripheral outer walls. Section 53 includes a connecting wall 83 that opposes and is joined with connecting wall 93 of section 54. Section 54 also includes connecting wall 92, includes a peripheral wall (not visible) spaced apart from and parallel to walls 93 and 83, and includes a peripheral wall (not visible) that is spaced apart from and parallel to wall 92. Section 53 also includes peripheral walls 80 and 81 and connecting wall 82. The portions of wall 82 extending above the roof of section 50 and extending laterally from wall 61 comprise solid wall portions. The roof lines 76, 77 of jointed mobile home sections 53 and 54 form a roof line, or ridge, that is parallel to the width B of section 53. Roof lines 60, 76, 77 are offset from one another and are parallel. As would be appreciated by those of skill in the art, wall 83 need not be located at the periphery of a section. Instead, wall 83 can, in part or in whole, be set back from the periphery and located in the interior of the section and spaced apart from the periphery of the section.

In FIG. 7, section 56 includes connecting wall 91 and peripheral outer walls 90, 92, 93. Roof line 78 is parallel to walls 90 and 93 and length A. In FIG. 7, the construction of section 51 is equivalent to section 51 in FIG. 4, except that wall 73 is also a connecting wall, and except that wall 74, which is still the connecting wall, is constructed differently than wall 74 in FIG. 4 because wall 91 is offset in comparison to wall 62 in FIG. 4.

In FIG. 8, the roof line 79 of two story section 55 is parallel to the roof line 60 of section 50. The construction of section 50 in FIG. 8 is equivalent to that of section 50 in FIG. 4, except that wall 64 is constructed to be a connecting wall and wall 62 is constructed to be an outer wall of the mobile home of FIG. 8. Two story section 55 includes outer walls 100, 102, 103 and connecting wall 101.

The orientation of the roof of a first mobile section is different from the orientation of the roof of a second mobile home section if (1) the roof line, or ridge, 60 of the first mobile home section is at a different height above the ground than the roof line 70 of the section mobile home section, or (2) if the length of one side of each of the mobile home sections is different from the length of another side of each of the mobile home sections, the roof line, or ridge, 60 of the first mobile home section is parallel to a side that has a different length than the side of the second mobile home section to which the roof line 70 of the second mobile home section is parallel.

The elevation of each mobile home in FIGS. 4 to 8 is different from the elevation of each of the other mobile homes in FIGS. 4 to 8.

Having described my invention in such terms as to enable those skilled in the art to understand and practice it, and having identified the presently preferred embodiments thereof, I claim:

1. A method for constructing a mobile home, comprising the steps of
 (a) preparing construction plans at least first and second structural units each having
 (i) a width and a length greater than said width,
 (ii) a roof having a portion with a cant, and a principal ridge line;
 (b) constructing said first and second structural units;
 (c) affixing on a mobile home lot at least a first one and a second one of said structural units to form a mobile home having an elevation such that in said mobile
home said principal ridge line of said first one of said structural units is offset from said principal ridge line of said second one of said structural units.

2. A method for constructing a mobile home, comprising the steps of

(a) selecting an area of land on which to install a plurality of mobile homes, said area of land including a plurality of lots each including water, electrical, and sewer stub outs;
(b) selecting at least one of said lots on the area of land on which to build mobile homes for installation on selected ones of said mobile home lots;
(c) erecting temporary structures on said lot selected in step (b) to build floors, walls, and roofs for mobile homes;
(d) selecting on said lot an open-roofed area to assemble said floors, walls, and roofs to construct mobile homes;
(e) installing on said lot a crane to move floors, walls, and roofs constructed in said temporary structures to said open-roofed area;
(f) utilizing said crane to move said walls, roofs, and floors to said open-roofed area, selected ones of said floors each being constructed on and integrally with a carriage having ground-engaging wheels;
(g) assembling in said open-roofed area said floors, walls, and roofs to produce at least first and second mobile home sections each including walls, a roof, and a floor integrally constructed with said floors and roofs, said mobile home sections being constructed to mate with each other to produce a mobile home;

(h) moving said first and second mobile home sections to a selected one of said lots;
(i) mating said first and second mobile home sections at said selected one of said lots to produce a mobile home structure; and,
(j) connecting said mobile home structure to said water, electrical, and sewer stub-outs on said selected lot.

3. The method of claim 1 in which said principal ridge line of at least said first structural unit is normal to said length of said first structural unit.

4. The method of claim 1

(a) in which said mobile home lot includes water, electrical, and sewer stub outs;
(b) includes the steps of

(i) selecting an adjacent lot on which to build a mobile home for installation on said mobile home lot;
(ii) erecting on said adjacent lot temporary structures to build floors, walls, and roofs for mobile homes;
(c) selecting on said adjacent lot an open-roofed area to assemble said floors, walls, and roofs to construct mobile homes;
(d) installing on said adjacent lot a crane to move floors, walls, and roofs constructed in said temporary structures to said open-roofed area;
(e) utilizing said crane to move said walls, roofs, and roofs to said open-roofed area, selected ones of said floors each being constructed on and integrally with a carriage having ground-engaging wheels;
(f) assembling in said open-roofed area said floors, walls, and roofs to produce at least first and second mobile home sections each including walls, a roof, and a floor integrally constructed with said carriage, said first and second mobile home sections being constructed to mate with each other to produce a mobile home;

5. The method of claim 1 in which at least one of said structural units is more than one story high.

6. The method of claim 1 in which each of said structural units has only a single principal ridge line.

7. The method of claim 1 wherein said length of said first one of said structural units comprising said mobile home is oriented at an angle with respect to said length of said second one of said structural units comprising said mobile home.

* * * * *