发明名称

壳体及采用该壳体之移动终端

摘要

本发明提供一种壳体，包括金属件及与该金属件一体成型的塑料框体。该金属件包括板状的支撑部以及自该支撑部边缘延伸的第一折弯部和第二折弯部。该第一折弯部和第二折弯部与该支撑部垂直并分别由该支撑部向相反的方向延伸，该第一折弯部及该第二折弯部均埋设于该塑料框体内。同时本发明还提供一种采用该壳体的移动终端。
1. 一种壳体，包括金属件及与该金属件一体成型的塑料框体，其特征在于：该金属件包括板状的支撑部以及自该支撑部边缘延伸的第一折弯部和第二折弯部，该第一折弯部和该第二折弯部与该支撑部垂直并分别由该支撑部向相反的方向延伸，该第一折弯部及该第二折弯部均埋设于该塑料框体内。

2. 如权利要求1所述的壳体，其特征在于：该金属件还包括两个分别设置于该支撑部相对两侧的第一镂空部及两个分别设置于该支撑部另外相对两侧的第二镂空部，该第一镂空部与该第二镂空部邻近该支撑部的边缘，且该第二折弯部与该第一镂空部、该第二镂空部相邻。

3. 如权利要求2所述的壳体，其特征在于：该金属件还包括第三折弯部与第四折弯部，该第三折弯部与第四折弯部均设置于该支撑部上且分别与两个第一镂空部或与两个第二镂空部相邻，并且延伸方向均与该第一折弯部的延伸方向相同。

4. 如权利要求3所述的壳体，其特征在于：该第三折弯部与该第四折弯部至少之一埋设于该壳体的塑料框体内。

5. 如权利要求1所述的壳体，其特征在于：该塑料框体包括呈阶梯状排布的多个收纳部。

6. 一种移动终端，包括保护面板、与该保护面板相对设置的显示屏板、背光模组以及与该保护面板相配合的壳体，该壳体包括金属件及与该金属件一体成型的塑料框体，其特征在于：该金属件包括板状的支撑部以及自该支撑部边缘延伸的第一折弯部和第二折弯部，该第一折弯部和该第二折弯部与该支撑部垂直并分别由该支撑部向相反的方向延伸，该第一折弯部及该第二折弯部均埋设于该塑料框体内。

7. 如权利要求6所述的移动终端，其特征在于：该金属件还包括两个分别设置于该支撑部相对两侧的第一镂空部，以及两个分别设置于该支撑部另外相对两侧的第二镂空部，该第一镂空部与该第二镂空部邻近该支撑部的边缘，且该第二折弯部与该第一镂空部、该第二镂空部相邻。

8. 如权利要求6所述的移动终端，其特征在于：该金属件还包括第三折弯部与第四折弯部，该第三折弯部与第四折弯部均设置于该支撑部上且分别与两个第一镂空部或与两个第二镂空部相邻，并且延伸方向均与该第一折弯部的延伸方向相同。

9. 如权利要求8所述的移动终端，其特征在于：该背光模组包括固定有LED光源的LED基板，该第三折弯部与该第四折弯部之一露于该壳体之内以固定该LED基板。

10. 如权利要求8所述的移动终端，其特征在于：该壳体还包括用于收容该保护面板的第一收纳部、用于收容该显示面板的第二收纳部以及用于收容该背光模组的第三收纳部，该第一收纳部、该第二收纳部及该第三收纳部呈阶梯状排布，该第三收纳部为介于该第二收纳部与该支撑部之间的矩形容纳空间。
壳体及采用该壳体之移动终端

技术领域
[0001] 本发明涉及一种壳体结构及采用该壳体结构的电子装置，特别涉及一种壳体及采用该壳体的移动终端。

背景技术
[0002] 随着移动终端的迅速发展和普及，消费者对移动终端除电气性能以外的特殊性能提出了更高的要求。市场上移动终端的种类不断增多，性能不断增强的同时，具备较高机械强度且重量较轻的移动终端更好地满足了消费者的户外等特殊条件下的使用需求，倍受消费者的青睐。
[0003] 为提升移动终端的机械强度，传统的移动终端常采用金属材料作为中框，但使之与其它材质的壳体组合使用，但会使产品重量增加，降低产品携带的轻便性，并且制造成本较高。另外，这种移动终端的厚度也会相应较大。
[0004] 鉴于此，提供一种机械强度高、重量轻且成本较低的壳体及采用该壳体的移动终端实为必要。

发明内容
[0005] 为此，本发明提供一种机械强度高、重量轻且成本较低的壳体，同时提供一种采用该壳体的移动终端。
[0006] 一种壳体，包括金属件及与该金属件一体成型的塑料框体。该金属件包括直板状的支撑部以及自该支撑部边缘延伸的第一折弯部和第二折弯部。该第一折弯部和该第二折弯部与该支撑部垂直并分别由该支撑部向相反的方向延伸，该第一折弯部及该第二折弯部均形成于该塑料框体内。
[0007] 一种移动终端，包括保护面板及与该保护面板相对设置的显示面板和为该显示面板提供背光源的背光模组，以及与该保护面板相配合的壳体。该壳体包括金属件及与该金属件一体成型的塑料框体。该金属件包括板状的支撑部以及该支撑部边缘延伸的第一折弯部和第二折弯部。该第一折弯部和该第二折弯部与该支撑部垂直并分别由该支撑部向相反的方向延伸，该第一折弯部及该第二折弯部均形成于该塑料框体内。
[0008] 上述壳体及采用该壳体的移动终端中，金属件与塑料框体一体成型，使壳体重量轻，成本较低，并且金属件的第一折弯部及第二折弯部可共同形成壳体的四周的补强结构，可使得壳体的机械强度得到提高。

附图说明
[0009] 图1是本发明较佳实施列提供的移动终端的分解示意图。
[0010] 图2是图1中所示移动终端采用的壳体的俯视图。
[0011] 图3是图2中所示壳体的金属件的立体示意图。
[0012] 图4是图2中所示壳体沿Ⅳ～Ⅳ的剖视图。
说明书

[0013] 图 5 是图 2 所示壳体沿线 V～V 的剖视图。
[0014] 图 6 是图 1 所示移动终端组装后的俯视图。
[0015] 图 7 是图 6 所示移动终端沿线 VII～VII 的剖视图。
[0016] 主要元件符号说明

<table>
<thead>
<tr>
<th>移动终端</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>保护面板</td>
<td>10</td>
</tr>
<tr>
<td>显示面板</td>
<td>20</td>
</tr>
<tr>
<td>背光模组</td>
<td>30</td>
</tr>
<tr>
<td>壳体</td>
<td>40</td>
</tr>
<tr>
<td>光学片组</td>
<td>31</td>
</tr>
<tr>
<td>光学片</td>
<td>311</td>
</tr>
<tr>
<td>第一凸起部</td>
<td>3111</td>
</tr>
<tr>
<td>导光板</td>
<td>32</td>
</tr>
<tr>
<td>第二凸起部</td>
<td>321</td>
</tr>
<tr>
<td>反射片</td>
<td>33</td>
</tr>
<tr>
<td>LED 基板</td>
<td>34</td>
</tr>
<tr>
<td>金属件</td>
<td>41</td>
</tr>
<tr>
<td>支撑部</td>
<td>411</td>
</tr>
<tr>
<td>第一镂空部</td>
<td>412</td>
</tr>
<tr>
<td>第二镂空部</td>
<td>413</td>
</tr>
<tr>
<td>第一折弯部</td>
<td>414</td>
</tr>
<tr>
<td>第二折弯部</td>
<td>415</td>
</tr>
<tr>
<td>第三折弯部</td>
<td>416</td>
</tr>
<tr>
<td>第四折弯部</td>
<td>417</td>
</tr>
<tr>
<td>塑料框体</td>
<td>42</td>
</tr>
<tr>
<td>第一收纳部</td>
<td>421</td>
</tr>
<tr>
<td>第二收纳部</td>
<td>422</td>
</tr>
<tr>
<td>第三收纳部</td>
<td>423</td>
</tr>
<tr>
<td>卡持部</td>
<td>424</td>
</tr>
</tbody>
</table>

如下具体实施方式将结合上述附图进一步说明本发明。

具体实施方式

[0017] 下面将会结合附图和实施例对本发明的壳体及采用该壳体的移动终端作进一步的详细说明。
[0018] 本发明提供的壳体可用于平板电脑、MP3、便携式电话、照相机、手持游戏机等移动终端，于本实施方式中，以将该壳体用于手机为例进行说明。
[0019] 请参阅图 1 及图 2，本发明提供的移动终端 100 主要包括保护面板 10、与保护面板 10 相对设置的显示面板 20、背光模组 30 及其与保护面板 10 相配合的壳体 40，壳体 40 与保护面板 10 共同构成一收容空间以收容显示面板 20 和背光模组 30 等元件。
[0020] 本实施例中，保护面板 10 大致呈矩形板状，用于透明并保护设置于其下方的显示面板 20。显示面板 20 可为液晶显示面板，其形状大小可与保护面板 10 相匹配。
[0021] 背光模组 30 包括依序设置的光学片组 31、导光板 32、反射片 33，以及用于固定 LED 光源（图未示）的 LED 基板 34。光学片组 31 包括若干交叠设置的光学片 311。每个光学片 311 的两侧分别设置一个第一凸起部 3111。每个第一凸起部 3111 均大致呈矩形，分别沿与光学片 311 的表面相平行的方向向外延伸，并且各个光学片 311 上同侧的第一凸起部 3111 的位置相对应。导光板 32 设置于光学片组 31 与反射片 33 之间。导光板 32 呈矩形板
状，导光板 32 的两侧分别与第一凸起部 3111 对应设置有两个第二凸起部 321。第二凸起部 321 的形状及大小与第一凸起部 3111 相一致。本实施例中，第一凸起部 3111 和第二凸起部 321 为非对称设置，但不限于此，两者也可对称地设置于各光学片 311 和导光板 32 的两侧边。LED 基板 34 设置于光学片组 31、导光板 32、反射片 33 的侧边并以向显示面板 20 提供侧光源。

[0022] 壳体 40 包括金属件 41 以及与金属件 41 一体成型的塑料框体 42。金属件 41 先以冲压制作成形，然后被放进射出成形的模具（图未示）中，塑料框体 42 以埋入成形法（Insert Molding）与金属件 41 一体成型。

[0023] 可以理解的是，壳体 40 将金属件 41 与塑料框体 42 以埋入成形技术复合为一体，相较于传统的移动终端采用金属材料作为中框并与其材质的壳体直接以组装形式使用的壳体，其制造成本较低且平均密度较低，重量较轻，方便携带。

[0024] 请参阅图 3 至图 5，金属件 41 大致呈盒状，包括平板状的支撑部 411，设置于支撑部 411 边缘的两个第一空腔部 412 及两个第二空腔部 413，以及自支撑部 411 的边缘延伸的第一折弯部 414。

[0025] 支撑部 411 大致呈矩形，其部分埋设于塑料框体 42 内。

[0026] 第一空腔部 412、第二空腔部 413 均呈长条状，邻近支撑部 411 的边缘。其中两个第一空腔部 412 分别设置于支撑部 411 相对两侧，两个第二空腔部 413 分别设置于支撑部 411 另外相对的两侧。

[0027] 第一折弯部 414 呈封闭状，垂直于支撑部 411 并由支撑部 411 向第一方向延伸。第一折弯部 414 与支撑部 411 共同围成盒状结构。第一折弯部 414 埋设于塑料框体 42 内以使得塑料框体 42 沿第一方向的四周的强度均可得以增强。

[0028] 金属件 41 还包括于向第一方向相反的第二方向延伸的第二折弯部 415，以及向第一方向折弯的第三折弯部 416 与第四折弯部 417。

[0029] 第二折弯部 415 的数量为四个，均与支撑部 411 垂直且自支撑部 411 的边缘延伸。第二折弯部 415 与第一空腔部 412、第二空腔部 413 相邻，其中两个第二折弯部 415 均介于于第一空腔部 412 与相邻的第一折弯部 414 之间，另两个第二折弯部 415 均介于第二空腔部 413 与第一折弯部 414 之间。第二折弯部 415 均埋设于塑料框体 42 内以使得塑料框体 42 沿第二方向的四周的强度得到增强。

[0030] 可以理解的是，第一折弯部 414、第二折弯部 415 共同形成壳体 40 的四周的补强结构，可从多个方向提升壳体 40 的周边结构强度。

[0031] 第三折弯部 416 与第四折弯部 417 均垂直地设置于支撑部 411 上，并分别与一个第二空腔部 413 远离第二折弯部 415 的一侧相邻，但不限于此，在其它实施例中，也可分别与第一空腔部 412 远离第二折弯部 415 的一侧相邻。第三折弯部 416 与第四折弯部 417 用以提升壳体 40 的抗变形强度并增强塑料框体 42 的支撑强度而提高壳体 40 的中间部分的结构强度。

[0032] 本实施例中，第三折弯部 416 埋设于塑料框体 42 内，第四折弯部 417 以及靠近第四折弯部 417 的支撑部 411 均裸露于塑料框体 42 之外，第四折弯部 417 可用以固定 LED 基板 34（图 1 所示），并可经由裸露于塑料框体 42 之外的支撑部 411 的部分辅助 LED 基板 34 散热。但不限于此，在其它实施例中，也可将第三折弯部 416 以及与第三折弯部 416 相连的支撑部
411 露于塑料框体 42 之.外,第四折弯部 417 埋设于塑料框体 42 内,露于塑料框体 42 之外的
第三折弯部 416 用以固定 LED 基板 34.

[0033] 可以理解的是, LED 光源 (图未示) 散发的热量可经由导热性良好的支撑部 411 迅
速散发,能有效降低 LED 基板 34 的温度,提高 LED 光源发光效率。

[0034] 请同时参阅图 2 至图 4,塑料框体 42 的形状与金属件 41 的大小、形状相匹配,不
仅有利于壳体 40 的射出成型,并且使得金属件 41 能够兼顾塑料框体 42 多方位的补强需
求,使塑料框体 42 的结构补强较均匀且充分,有利于保证壳体 40 具有较高机械强度且重量
较轻。塑料框体 42 包括呈阶梯状排布的第一收纳部 421,第二收纳部 421 以及第三收纳部
423。

[0035] 第一收纳部 421 呈矩形框体结构,与第一折弯部 414 相连接且所在平面与第一折
弯部 414 的延伸方向相垂直。本实施例中,第一收纳部 421 的大小、形状与保护面板 10(图
1 所示) 相一致,以收容保护面板 10。

[0036] 第二收纳部 422 呈矩形,其面积略小于第一收纳部 421。第二收纳部 422 所在的平
面与第一收纳部 421 所在的平面相平行,用以收容显示面板 20 (图 1 所示)。

[0037] 第三收纳部 423 为介于第二收纳部 422 与支撑部 411 之间的矩形容纳空间。本实
施例中,第三收纳部 423 由塑料框体 42 埋设第一折弯部 414、第三折弯部 416 的部分以及
露于塑料框体 42 之外的第四折弯部 417 与支撑部 411 共同围成。第三收纳部 423 比第二
收纳部 422 稍小,用于容纳背光模块 30 (图 1 所示)。其中 LED 基板 34 固定于第四折弯部
417 并收容于第三收纳部 423 中。

[0038] 塑料框体 42 还包括两个矩形的卡持部 424,两个卡持部 424 相对设置于塑料框体
42 的内侧。本实施例中,两个卡持部 424 分别开设于第二收纳部 422 的相对的两侧。较佳
地,卡持部 424 与第一凸起部 3111 和第二凸起部 321 的位置相对应,以将各光学片 311 卡
持到塑料框体 42 中,增强结构的稳定性。

[0039] 可以理解的是,本实施例中塑料框体 42 上包括第一收纳部 421、第二收纳部 422 及
第三收纳部 423,但并不限于此,在其它实施例中,三者可替换成一个、两个或三个以上的收
纳部。

[0040] 请参阅图 1 至图 2 以及图 6 至图 7。组装时,首先将 LED 基板 34 设置于第四折弯
部 417 上,将反射片 33 设置于第三折弯部 416 与第四折弯部 417 之间的支撑部 411 上。

[0041] 然后,将导光板 32 及光学片组 31 依序并对应地设置于反射片 33 上,并将光学片组
31 的第一凸起部 3111 以及导光板 32 的第二凸起部 321 分别与卡持部 424 相卡持。

[0042] 最后,将显示面板 20 设置于第二收纳部 422 内,并将保护面板 10 设置于第一收纳
部 421 内。

[0043] 如此,保护面板 10、显示面板 20,以及光学片组 31、导光板 32、反射片 33、LED 基板
34 便与壳体 40 形成一个整体结构,即完成了移动终端 100 的组装。

[0044] 可以理解的是,卡持部 424 可用以防止光学片组 31 及导光板 32 在壳体 40 内的滑
动,但其数量及位置并不限于此,只要卡持部 424 可限制对应元件的滑动即可。

[0045] 可以理解的是,由于显示面板 20 可收容于第二收纳部 422 内,背光模组 30 的各元
件均可收容于第三收纳部 423 内,所以,相对传统的移动终端,移动终端 100 无需为背光模
组 30 另设置胶框以固定显示面板 20,也无需针对背光模组 30 设置金属背板,可降低移动终
端 100 的厚度及减少制造成本。

[0046] 本发明提供的壳体 40 以及采用壳体 40 的移动终端 100 中，金属件 41（图 3 所示）以埋入成型法与塑料框体 42 一体成型，可使得壳体 40 的平均密度较小，达到质量轻的效果，并且金属件 41 的第一折弯部 414、第二折弯部 415（图 3 所示）共同形成壳体 40 的四周的补强结构，可补强壳体 40 的结构强度，提升其机械性能。另外，移动终端 100 的显示面板 20 及光学片组 31、导光板 32 可全部直接固定于壳体 40 内，相较于传统的移动终端，无需背光模组的胶框及金属背板等元件的设置，有利于移动终端 100 实现薄型化及降低制造成本。

[0047] 另外，本领域技术人员还可以在本发明精神内作其他变化，当然，这些依据本发明精神所做的变化，都应包含在本发明所要求保护的范围内。
图 1