Title: SELF-OPTIMIZING POWER TRANSFER

Abstract: A method is disclosed for charging a power source of a device. The method is performed by one or more processors. The one or more processors detect that a charging interface of the device and a charging interface of a charging dock are misaligned when the device is placed into contact or operational proximity with the charging dock. The device is automatically caused to move relative to the charging dock to achieve alignment.

Declarations under Rule 4.17:

- as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(H))

Published:

- as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(iii))

- with international search report (Art. 21(3))
SELF-OPTIMIZING POWER TRANSFER

BACKGROUND OF THE INVENTION

[0001] Self-propelled devices typically operate off of internal batteries. Such devices typically have a need to recharge batteries. Many devices use charging stations or docks to recharge batteries.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The disclosure herein is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements, and in which:

[0003] FIG. 1 illustrates an example system for a self-optimizing power transfer device, under an embodiment;

[0004] FIG. 2 illustrates an example method for operating a self-optimizing power transfer device, according to an embodiment;

[0005] FIG. 3 illustrates an example scenario of a device detecting misalignment, under an embodiment;

[0006] FIGS. 4A-4B illustrate an example scenario of a self-optimizing power transfer device and a charging station, under an embodiment; and

[0007] FIG. 5 illustrates an example hardware diagram of a self-optimizing power transfer device, under an embodiment.

DETAILED DESCRIPTION

[0008] Embodiments described herein provide for a self-propelled device that is able to automatically move or adjust its position relative to a charging station or dock when it detects that its charging interface is misaligned with a charging interface of the charging station.

[0009] In some embodiments, the self-propelled device can include a drive system (e.g., a drive mechanism) that enables the device to move in one or more directions, and in various speeds. When the device detects that its charging interface is misaligned with the charging interface of the charging station or dock, the device can automatically control its drive system to move, thereby achieving alignment. In some cases, the self-propelled device can be referred to by different
terms and phrases, including robot, robotic device, controlled device, smart device, computing device, autonomous device, remote device, and remote-controlled device. In some embodiments, a self-propelled device can be configured to autonomously move around without user input.

[0010] In one embodiment, the charging station can include an inductive charging interface that enables power to be transferred inductively to an inductive charging interface of the device. The device can receive power from the charging station when the device is positioned so that its inductive charging interface is aligned or substantially aligned with the inductive charging interface of the charging station. For example, the self-propelled device can be docked to the charging station (e.g., at least a portion of the housing of the device can be in contact with a portion of the housing or surface of the charging station) or be placed in operational proximity with the charging station. Operational proximity is defined to be sufficient proximity between the device and the charging station in order to enable one device to transfer power inductively to the other. In this manner, a power source of the device, such as one or more rechargeable batteries, can be recharged via the power transfer between the inductive charging interfaces.

[0011] According to one or more embodiments, the device can detect that its charging interface and the charging interface of the charging station is misaligned by monitoring the power transmission from the charging station to the device. By monitoring the power transmission, the device can determine whether the amount of power being received from the charging station is less than a threshold amount (e.g., receiving power less than a certain power level or receiving power less than a certain percent). If the amount of power received is less than the threshold amount (e.g., during an interval of time), the device can determine that there is misalignment.

[0012] In another embodiment, the device can detect that its charging interface and the charging interface of the charging station are misaligned by using inputs detected by one or more sensors of the device. The device can include, for example, one or more accelerometers, one or more gyroscopes, or one or more magnetometers that provide sensor inputs to the device. Using inputs detected by the one or more sensors, the device can determine its state and/or position and/or orientation with respect to the charging station. Based on these inputs, the device can determine whether its charging interface is aligned with the charging interface
of the charging station. In addition, the device can use the inputs and other information to search for the location of maximum power transfer (e.g., a location on the charging station).

[0013] Embodiments also provide for a charging station for a self-propelled device that includes a contoured receptacle to receive the self-propelled device. The self-propelled device can have a spherical shape to fit in the receptacle of the charging station. The self-propelled device can automatically change its position and/or orientation within the receptacle when it detects that its charging interface is misaligned from the charging interface of the charging station.

[0014] One or more embodiments described herein provide that methods, techniques, and actions performed by a device are performed programmatically, or as a computer-implemented method. Programmatically, as used herein, means through the use of code or computer-executable instructions. These instructions can be stored in one or more memory resources of the device. A programmatically performed step may or may not be automatic.

[0015] One or more embodiments described herein can be implemented using programmatic modules or components. A programmatic module or component can include a program, a sub-routine, a portion of a program, or a software component or a hardware component capable of performing one or more stated tasks or functions. As used herein, a module or component can exist on a hardware component independently of other modules or components. Alternatively, a module or component can be a shared element or process of other modules, programs, or machines.

[0016] Some embodiments described herein can generally require the use of processing and memory resources. Memory, processing, and network resources may all be used in connection with the establishment, use, or performance of any embodiment described herein (including with the performance of any method or with the implementation of any system).

[0017] Furthermore, one or more embodiments described herein may be implemented through the use of instructions that are executable by one or more processors. These instructions may be carried on a computer-readable medium. Machines shown or described with figures below provide examples of processing resources and computer-readable mediums on which instructions for implementing
embodiments of the invention can be carried and/or executed. In particular, the numerous machines shown with embodiments of the invention include processor(s) and various forms of memory for holding data and instructions. Examples of computer-readable mediums include permanent memory storage devices, such as hard drives on personal computers or servers. Other examples of computer storage mediums include portable storage units, such as CD or DVD units, flash memory (such as carried on smart phones, multifunctional devices or tablets), and magnetic memory. Computers, terminals, network enabled devices (e.g., mobile devices, such as cell phones) are all examples of machines and devices that utilize processors, memory, and instructions stored on computer-readable mediums. Additionally, embodiments may be implemented in the form of computer-programs, or a computer usable carrier medium capable of carrying such a program.

[0018] SYSTEM DESCRIPTION

[0019] FIG. 1 illustrates an example system for a self-optimizing power transfer device, under an embodiment. A system such as described with respect to FIG. 1 can be implemented, for example, a self-propelled or robotic device, or in another example, can be implemented, in part, on the self-propelled device, and also in part, on a computing device that is remote from the self-propelled device. In one embodiment, system 100 can detect whether a charging interface of the self-propelled device and a charging interface of a charging station is misaligned when the self-propelled device is being charged by the charging station. If misalignment is detected, system 100 can automatically cause the self-propelled device to move or adjust its position on the charging station in order to achieve alignment.

[0020] According to an embodiment, system 100 includes components such as alignment detection 110, inertial measurement unit 120, and power management 130. These components of system 100 can be implemented through separate hardware and/or software (e.g., through a combination of memory and processing resources of the self-propelled device). In one embodiment, the alignment detection 110 and the inertial measurement unit 120 are implemented as separate software components that are executed on, for example, a processor of the self-propelled device. The components of system 100 combine to (i) detect that the self-propelled device is being charged by a charging station or dock, (ii) determine that a charging interface of the self-propelled device and a charging interface of the
charging station is misaligned, and (iii) automatically cause the self-propelled
device to move on the charging station to achieve alignment when misalignment is
present.

[0021] In one embodiment, system 100 also communicates with a drive system
140 and a charging interface 150. The self-propelled device can correspond to a
remote-controlled or robotic device that is capable of moving in one or more
directions. For example, the self-propelled device can be a radio-controlled vehicle
(e.g., a toy car), aircraft, helicopter, hovercraft, balloon, boat, submarine, spherical
ball, vacuum cleaner, etc., that is capable of moving either autonomously or via
user control from a remote computing device (e.g., a remote control or a smart
phone). The drive system 140 can enable the self-propelled device to move.

[0022] According to different implementations, the drive system 140 can include
one or more motors, one or more actuators, one or more propellers, one or more
wheels, one or more axles, one or more gear drives, etc., that enable the self-
propelled device to move in one or more directions and in various distances and
speeds (e.g., in the air, in the water, on the ground) in response to commands or
control signals from a controller component (not illustrated in FIG. 1). In some
embodiments, one or more components of system 100 can be implemented, at
least in part, by the controller component (e.g., the alignment detection 110 can be
part of a controller component).

[0023] The self-propelled device can also be powered by a power source (e.g.,
one or more batteries) that can be rechargeable or replaced. The power source can
be coupled to a charging interface 150 so that the power source can be recharged
without having the user remove and replace the power source. In one
embodiment, the charging interface 150 can include electrical contacts that are
exposed on the housing (or can be exposed by a user removing a cover) of the
self-propelled device to enable a user to connect a power cable (e.g., from an AC
adapter, a micro-USB cable) to the charging interface 150 or to enable the user to
place the self-propelled device on a charging station with electrical contacts that
can mate with the contacts of the charging interface 150. The charging interface
150 can receive power from an external power source in order to recharge the
power source of the self-propelled device.
[0024] In some embodiments, the housing of the self-propelled device can be shaped or configured so that no electrical contacts are exposed on the housing. For example, in some cases, having a charging mechanism that does not require a user to plug in a cord can be easy to use. According to embodiments, the charging interface 150 can be an inductive charging interface so that it can inductively receive power from another inductive charging interface of a charging station or dock (not illustrated in FIG. 1). The inductive charging interface allows for power to be received without using a wired electrical connection from the charging station. The charging interface 150 can then receive magnetic energy (e.g., via one or more coils) and convert it to electrical energy in order to recharge the power source of the self-propelled device.

[0025] The power management 130 can detect power 131 being received from the charging station via the charging interface 150. In some embodiments, the power management 130 can measure the amount of power being received by communicating with the charging interface 150 and/or by measuring the power source itself (e.g., determining that the amount of energy of one or more batteries is being increased). The power management 130 can, for example, detect power 131 being received by the charging interface 150 and measure the amount of power being received per second or per minute (or other duration of time). In other embodiments, the power management 130 can also determine the fluctuation of the amount of power being received from the charging station within a time period (e.g., detect that power is being received for a short period of time, then power not being received, then power being received again, etc.). The power management 130 can then provide the power information 133 of the received power to the alignment detection 110.

[0026] The alignment detection 110 can use the power information 133 to detect whether the power source of the self-propelled device is being charged. In one embodiment, when the alignment detection 110 detects that charging is taking place, the alignment detection 110 can send a signal to a controller component of the self-propelled device to place the device in a charging mode or operation. In other embodiments, the device can also use information provided by other components or mechanisms to determine whether charging is taking place (e.g., the user indicates charging via a user input mechanism, or a sensor of the charging station or the device detects placement of the device).
According to embodiments, the alignment detection 110 can also use the power information 133 in order to determine the power transmission efficiency between the self-propelled device and the charging station when power is being received via the charging interface 150. For example, the alignment detection 110 can use information about the charging settings, capabilities, and/or specifications of the self-propelled device to determine a threshold amount of power (or rate of power) the charging interface 150 should be receiving under optimal or efficient conditions (e.g., the threshold can correspond to an efficient power transmission). The alignment detection 110 can compare the current receiving power conditions via the power information 133 (e.g., in terms of absolute values or percentages) with the optimal/efficient power threshold levels in order to determine whether power is being transferred efficiently. If the received power amount is less is than the threshold, the alignment detection 110 can determine that the charging interface 150 of the self-propelled device is not substantially or efficiently aligned (e.g., is deemed to be misaligned) with the charging interface of the charging station. As used herein, the term "substantial" or its variants (e.g., "substantially") is intended to mean at least 90% of the stated quantity, measurement or expression.

For example, the charging interfaces of the device and the charging station can be inductive charging interfaces. When the device and the charging station are placed in operational proximity with each other (e.g., sufficient proximity to enable the charging station to transfer power inductively to the device), the power information 133 can indicate that the device is receiving power and the power management 130 can use the information to determine how much power is being received.

In some embodiments, the charging interface 150 of the device can include a pair of electrical contacts that is to be coupled or mated with a pair of contacts on a surface of the charging station. When the charging interfaces of the device and charging station are properly (e.g., substantially) aligned, power can be efficiently transferred from the charging station to the charging interface 150 of the device. However, if the device is placed into contact with the surface of the charging station so that the charging interfaces of the device and the charging station are misaligned (e.g., the pair of contacts are not substantially aligned), for example, there can be a fluctuation of power being transferred within a time period
so that power is received for a short period of time, then not received, then being received again, etc. When such condition is present, the alignment detection 110 can determine that a misalignment of the charging interfaces exists.

[0030] In some embodiments, the alignment detection 110 can also determine whether there is a misalignment of the charging interfaces by using position and/or orientation and/or movement information 121 received from the inertial measurement unit (IMU) 12. According to various embodiments, the alignment detection 110 can detect an amount of misalignment by using just the power information 133 or just the position/movement information 121, or by using both.

[0031] According to an embodiment, the self-propelled device can include one or more sensors, such as one or more accelerometers 122, one or more gyroscopes 124, one or more magnetometers 126, or one or more other sensing mechanisms 128. These sensors can provide sensor input about the current state of the self-propelled device with respect to the surrounding environment to the IMU 120. For example, the sensors 122, 124, 126, individually or in combination with one or more other sensors 128, can provide input to the IMU 120 so that system 100 can be aware of or maintain information of the device’s position and/or orientation and/or movement relative to a reference point (e.g., the ground or in the direction of gravity).

[0032] In some embodiments, the alignment detection 110 can communicate with or be part of a controller component of system 100, which can also receive the position/movement information 121 from the IMU 120. Using the position/movement information 121, the controller component can measure or estimate the current/present state (e.g., stationary or moving) and/or position of the self-propelled device, including various rotational angles about three axes (relative to the center of the device), such as pitch, roll, and yaw angles. The controller component of system 100 can also use this information to provide drive control signals 111 to the drive system 140 for controlling the movement of the self-propelled device.

[0033] According to an embodiment, when the self-propelled device is being charged (e.g., placed into contact with a surface of the charging station and receiving at least some amount of power from the charging station), the alignment detection 110 can use the current position/movement information 121 of the device
(at the time the device begins to recharge) to determine whether the device is properly positioned or oriented on the surface of the charging station. For example, the alignment detection 110 can use information corresponding to the optimal position/orientation of the self-propelling device and compare it with the current position/movement information 121 of the self-propelling device. If the current position/movement information 121 is within a certain percentage or threshold corresponding to the optimal position/orientation of the self-propelling device (e.g., plus or minus 5 degrees with respect to each of the pitch, roll, or yaw angles), the alignment detection 110 can determine that the charging interface 150 is in a proper charging position and that the charging interface 150 is substantially aligned with the charging interface of the charging station. In other embodiments, based on the current position/movement information 121, the alignment detection 110 can also determine the amount of misalignment (e.g., that the pitch rotational angle is misaligned by a certain degree, while the roll rotational angle is misaligned by a different amount).

[0034] Based on at least one of the power information 133 or the position/movement information 121, the alignment detection 110 can detect whether or not the charging interface 150 of the self-propelled device is substantially aligned with the charging interface of the charging station. If the alignment detection 110 detects that the charging interfaces are misaligned (e.g., not substantially aligned), the alignment detection 110 can automatically cause the device to move, rotate, and/or reposition itself with respect to the surface of the charging station in order to achieve alignment. For example, the alignment detection 110 can cause the device to continue to move (e.g., rock back and forth, and left to right) until the power management 130 provides power information 133 indicating that power transmission has been optimized (e.g., that power is being received at a particular threshold, such as at least 90%). The alignment detection 110 can provide driving controls 111 to the drive system 140 of the self-propelled device in order to cause the device to move in the appropriate direction(s) to align the charging interface 150 with the charging interface of the charging station.

[0035] For example, if the self-propelled device is a remote-controlled toy car, the alignment detection 110 can use the driving controls 111 to cause one or more wheels of the device to swivel (e.g., make the car turn left or right) and rotate (e.g., move the car forward or backward) a particular amount in order to
substantially align the charging interface 150 with the charging interface of the charging station. In another example, if the self-propelled device is a spherical device that is capable of using a drive system 140 capable of causing the device to roll, the driving controls 111 can cause the device to roll in a particular direction so that each of the pitch, roll, or yaw angles are within the appropriate threshold corresponding to the optimal position/orientation of the self-propelling device. In this manner, system 100 enables the device to self-optimize the power transmission during its charging process.

[0036] In one embodiment, the alignment detection 110 can also search for the location of maximum power transfer. For example, the alignment detection 110 can continually or periodically receive updated power information 133 or position/movement information 121 as it causes the device to move, rotate, and/or reposition itself with respect to the surface of the charging station in order to achieve alignment (and maximum power transfer). The alignment detection 110 can intelligently search for the region or area on the surface of the charging station by using the updated power information 133 and/or position/movement information 121 to determine whether the device is being moved closer to achieving alignment (or maximum power transfer) or being moved further away. In this manner, the alignment detection 110 can dynamically control the drive system 140 to search and find the location for receiving a maximum amount of power.

[0037] METHODOLOGY

[0038] A method such as described by an embodiment of FIG. 2 can be implemented using, for example, components described with an embodiment of FIG. 1. Accordingly, references made to elements of FIG. 1 are for purposes of illustrating a suitable element or component for performing a step or sub-step being described. FIG. 2 illustrates an example method for operating a self-optimizing power transfer device, according to an embodiment.

[0039] In FIG. 2, the self-propelled device detects power being received from a charging station in order to charge a power source (e.g., a rechargeable battery) of the device (step 200). The self-propelled device can include a charging interface 150 that receives power from the charging station and can recharge the battery of the device. In some embodiments, the charging interface can be an inductive charging interface that receives magnetic energy (e.g., via one or more coils) and
converts it to electrical energy. When the power management 130 detects that an amount of power is being received from the charging station via the charging interface 150, the alignment detection 110 can determine that the self-propelled device is being charged (e.g., is placed on a surface of the charging station).

[0040] The device also detects whether there is misalignment between the charging interface 150 of the device and the charging interface of the charging station (step 210). According to embodiments, the alignment detection 110 can detect the charging interfaces are misaligned by monitoring the power transmission from the charging station (sub-step 212) and/or by detecting current device state/position/orientation using sensor inputs (sub-step 214). When the alignment detection 110 monitors the power transmission, it can compare the received power information 133 with a threshold amount of power (or rate of power) the charging interface 150 should be receiving under optimal or efficient conditions. If the alignment detection 110 determines that the amount of power being received is less than a predetermined threshold, the alignment detection 110 can determine that the charging interfaces are misaligned.

[0041] In another embodiment, the alignment detection 110 can detect whether there is misalignment by receiving position/movement information 121 based on sensor inputs from one or more sensors and comparing the current device position/orientation with the optimal position/orientation that the self-propelling device should be positioned in. If the alignment detection 110 determines that the position/orientation of the device is different more than a threshold amount (e.g., the pitch, roll, and/or yaw is different by five or more degrees), the alignment detection 110 can determine that the charging interfaces are misaligned.

[0042] In response to detecting that the charging interfaces of the device and the charging station are misaligned (based on the monitored power or based on sensor inputs), the alignment detection 110 can automatically cause the device to be moved based on the detected misalignment (step 220). For example, the device can be a self-propelling device that can automatically move its position or orientation relative to the charging station in response to the sensor inputs (and/or in response to power signal inputs). The alignment detection 110 can cause the device to be moved by controlling the drive system of the device. The device will be moved in one or more directions (or rotate or change orientations) in order to
achieve substantial alignment between the charging interface 150 of the device and the charging interface of the charging station.

[0043] In some embodiments, because the alignment detection 110 can measure the amount of misalignment (e.g., the difference between the degrees of the pitch, roll, and/or yaw of the current device position/orientation with the degrees of the respective optimal position/orientation that the device should be in for efficient recharging), the device can be caused to move to correct the measured amount of misalignment (e.g., if the pitch is off by 15 degrees, rotate by 15 degrees in the opposite direction).

[0044] In one embodiment, the self-propelled device can detect whether there is misalignment between the charging interfaces even without first detecting that power is being received from the charging station. For example, the self-propelled device can be placed into a charging state (e.g., via a user input) or be aware that the user is attempting to charge the device using one or more sensors of the self-propelled device and/or one or more sensors of the charging station. In some embodiments, the self-propelled device can automatically determine that there is misalignment between the charging interfaces when the device is placed in charging state and (i) no power is being received from by the charging interface of the device (e.g., the power management 130 transmits power information 133 to the alignment detection that indicates that no power is being received), and/or (ii) the rotational angles of the device (e.g., the pitch, roll, yaw) are significantly different from the angles corresponding to the optimal position/orientation the self-propelling device should be in for efficient charging.

[0045] As an addition or alternative, in response to detecting that the charging interfaces of the device and the charging station are misaligned (based on the monitored power and/or based on sensor inputs), the alignment detection 110 can also search for the location of maximum power transfer. In one embodiment, the alignment detection 110 can intelligently search for a location on the surface of the charging station by using the monitored power and/or sensor inputs to determine if the device is being moved closer to achieving alignment (or maximum power transfer) or being moved further away. The alignment detection 110 can dynamically control the drive system 140 to search and find the location for receiving a maximum amount of power. In other embodiments, the alignment detection 110 can use received and/or stored information (e.g., stored in a memory
resource) about the charging station (e.g., which can provide information about
where the charging interfaces are positioned on the charging surface) to search for
the location of maximum power.

[0046] According to one or more embodiments, the steps described in FIG. 2
can be performed by components implemented by resources on multiple devices.
For example, the self-propelled device can include a wireless communication
component for implementing wireless communications with another device (e.g., a
controller remote from the self-propelled device, such as a remote-control or a
smart phone). The wireless communication component can implement a WI-FI
protocol, a BLUETOOTH protocol, or other protocols in alternative implementations.
Using the wireless communication component, the self-propelled device can
transmit, to the remote device, information that some amount of power is being
received from a charging station (e.g., that it is being charged) (step 200).

[0047] The remote device can also receive information about the power
transmission and/or information about the current state/position/orientation of the
self-propelled from the self-propelled device so that it can use its memory and
processing resources to detect whether there is misalignment between the self-
propelled device and the charging station (step 210). The remote device can
transmit control signals for controlling the movement of the self-propelled device to
achieve alignment on the charging station (step 220). During this time, the remote
device can continue to receive power information of the power transmission and/or
current position/orientation information of the self-propelled device (e.g., real-time
feedback) to better control the drive system of the self-propelled device.

[0048] EXAMPLE SCENARIOS

[0049] FIG. 3 illustrates an example scenario of a device detecting
misalignment, under an embodiment. The operation of the self-propelled device in
FIG. 3 can be performed by using the system described in FIG. 1 and method
described in FIG. 2. In particular, FIG. 3 illustrates a top view (e.g., looking down
from a user’s viewpoint) of a self-propelled device being positioned on a surface of
a charging station. In FIG. 3, a user has placed the self-propelled device 310 on a
surface of the charging station 320 in order to recharge the power source of the
self-propelled device 310. In one embodiment, the charging interface of the self-
propelled device 310 and the charging interface of the charging station 320 can be
inductive charging interfaces. The self-propelled device 310 can include one or more coils 312 as part of its charging interface and the charging station 320 can include one or more coils 322 as part of its charging interface.

[0050] In the example provided, the user has assumed that the charging interfaces of the device and charging station will be aligned in a particular region of the surface of the charging station 320 (e.g., near the center of the charging station 320), and has initially placed the self-propelled device 310 in that region. However, as illustrated in FIG. 3, the coil 312 of the charging interface of the self-propelled device 310 and the coil 322 of the charging interface of the charging station 320 are misaligned 330 (e.g., they are not substantially aligned with each other). Because misalignment 330 is present, the power transmission has not been optimized (e.g., it is not efficient).

[0051] When the self-propelled device 310 is placed into contact with the charging station 320 so that at least some amount of power can be transmitted via the charging interfaces, the self-propelled device 310 can determine that charging has been initiated. The self-propelled device 310 can detect whether misalignment 330 exists between the charging interfaces and can also determine the amount of misalignment based on power transmission information and/or current device state/position/orientation information. Based on this information, the self-propelled device 310 can automatically be caused to move or reposition itself with respect to the charging station 320 in order to achieve alignment (e.g., correct or reduce the misalignment 330). For example, the self-propelled device 310 can control its drive system to substantially align the one or more coils 312 of its charging interface with the one or more coils 322 of the charging interface of the charging station 320.

[0052] FIGS. 4A-4B illustrate an example scenario of a self-optimizing power transfer device and a charging station, under an embodiment. In particular, FIGS. 4A-4B illustrate a cross-sectional view of the self-optimizing power transfer device being docked with or placed in contact with the charging station, according to an embodiment. The operation of the self-propelled device in FIGS. 4A-4B can be performed by using the system described in FIG. 1 and method described in FIG. 2.

[0053] The example scenario of FIGS. 4A-4B illustrate a potential challenge a user may encounter in trying to manually align the charging interfaces of a self-
propelled device and a charging station. For example, because the device 410 in FIGS. 4A-4B is in the shape of a sphere, there is no top or bottom of the device (e.g., compared to a remote-controlled toy car, for example). As such, it may be difficult for the user to know exactly where the charging interface 412 of the device 410 is located (especially if the charging interface 412 is an inductive charging interface without exposed electrical contacts).

[0054] According to an embodiment, the self-propelled device 410 can have a housing in a shape of a sphere. The charging station 420 can have a housing with a base and an upper surface (e.g., a receptacle) that is contoured to receive the self-propelled device 410 when the self-propelled device 410 is placed into contact with the upper surface (e.g., when the device 410 is to be charged). The charging interface 422 of the charging station 420 can be provided within the housing of the charging station 420 in or near the center of the receiving surface. In one embodiment, the charging interface 422 can be shaped so that at least a portion of the charging interface 422 is shaped to mirror the shape of the housing of the charging station 420. For example, the charging interface 422 can include one or more coils (e.g., wires that are wound in a circle) that can be wound so that it curves with the curvature of the housing of the charging station 420. Similarly, the charging interface 412 can include one or more coils that are wound to match the spherical shape of the housing of the device 410.

[0055] When the user wants to charge the self-propelled device 410 using the charging station 420, the user can try to estimate the location of charging interface 412 within the device 410 and try to align the charging interface 412 with the charging interface 422 of the charging station 420. In one embodiment, the housing of the device 410 can include one or more features that the user can use to try to align the charging interface 412 with the charging interface 422 (e.g., a marking on the surface of the housing of the device 410 that indicates where the charging interface 412 is located, or a marking on a surface of the housing of the device 410 that indicates to the user that the charging interface 412 is on the opposing surface). In another embodiment, the device 410 can be weighted toward the charging interface 412.

[0056] In FIG. 4A, the user has placed the self-propelled device 410 in the charging station 420 in order to charge the power source of the device 410. However, the charging interface 412 of the self-propelled device 410 and the
charging interface 422 of the charging station 420 are misaligned from each other (e.g., is not substantially aligned) so that power is not being optimally or efficiently transmitted and/or received by the charging interface 412. The self-propelled device 410 detects that charging has occurred and detects that there is a misalignment between the charging interface 412 and the charging interface 422 (as described in FIGS. 1 and 2).

[0057] In response to detecting the misalignment, the device 410 can be automatically caused to move on the surface of the charging station 420 until the charging interface 412 and the charging interface 422 reach substantial alignment. In one embodiment, the drive system of the device 410 can include multiple motors and wheels within the spherical housing of the device 410 to cause the device 410 to move in one or more directions, in one or more speeds. The device 410 can control the drive system to cause the device to, for example, rotate or rock back and forth within the receiving surface of the charging station 420 in order for the charging interfaces 412, 422 to achieve alignment. Once the device 410 determines that substantial alignment has been achieved, as illustrated in FIG. 4B, the device 410 can remain stationary with respect to the charging station 420.

[0058] HARDWARE DIAGRAM

[0059] FIG. 5 illustrates an example hardware diagram of a self-optimizing power transfer device, under an embodiment. For example, in the context of FIG. 1, system 100 may be implemented by memory and processor resources as described in FIG. 5.

[0060] In one embodiment, the self-propelled device 500 includes one or more processors 510, memory resources 520, one or more output devices 530, one or more communication sub-systems 540 (including wireless communication sub-systems), and one or more sensors 560. According to different implementations, the communication sub-systems 540 enables the device 500 to exchange wireless communications with another device using different mediums and protocols (e.g., WI-FI, BLUETOOTH, Infrared). The device 500 can also include a charging interface 570, a power source 580 (e.g., one or more batteries), and a drive system 590. In some embodiments, the device 500 can also include one or more input mechanisms 550 (e.g., a button, a switch, a touch-sensitive input device).
The processor 510 is configured with software and/or other logic to perform one or more processes, steps and other functions described with embodiments, such as described by FIGS. 1-4B, and elsewhere in the application. Processor 510 is configured, with instructions and data stored in the memory resources 520, to implement the system 100 (as described with FIG. 1). For example, instructions for implementing the alignment detection, the IMU, and the power management can be stored in the memory resources 520 of the device 500. The processor 510 can execute instructions for detecting whether the charging interface 570 of the device 500 is substantially aligned (or misaligned) with the charging interface of a charging station, and if misalignment is detected, automatically control the drive system 590 to cause the device 500 to move or reposition itself on the surface of the charging station to achieve alignment.

In one embodiment, the processor 510 can control the output devices 530, such as a speaker or one or more light sources, in order to provide an indication to a user of one or more operations of the device 500. For example, in some embodiments, the processor 510 can cause a speaker to output a noise (e.g., a beep sound or buzz sound) if misalignment is detected, or cause a light source to be turned on (e.g., a green color compared to a red color) if alignment is achieved. Although FIG. 5 illustrates the power source 580 only being coupled to the charging interface 570, the other components of device 500 can also be coupled to the power source 580 in order to be powered.

ALTERNATIVE EMBODIMENTS

In an alternative embodiment, the system and method as described in FIGS. 1-2, for example, can be implemented by memory and processing resources of a vehicle, such as a car. A charging interface, such as an inductive charging interface, may be provided on an underside region of the vehicle so that it can receive power from another charging interface that is provided on a charging station (e.g., one that is low to the ground). The vehicle can be parked over a charging station by a user, for example, in a garage or parking space so that the charging interface can receive power from the charging interface of the charging station when the interfaces are substantially aligned. If the vehicle is parked and the system detects misalignment, the vehicle or the charging interface can be automatically caused to move in one or more directions until alignment is achieved (e.g., without the user having to manually move the vehicle).
In other embodiments, the self-propelled device can also be an automatic vacuum cleaner that automatically returns to its charging station after a cleaning period.

In another embodiment, one or more components of the system 100 can be implemented by the charging station when the self-propelled device is placed into contact with a surface of the charging station (e.g., when the device is initially being charged). The charging station can be the remote device that can wirelessly communicate with the self-propelled device, as discussed with respect to FIGS. 1-2. The charging station or dock can include one or more mechanical features that can cause the self-propelled device to be moved relative to the charging interface of the charging station. For example, when misalignment is detected, at least a portion of the surface (just above the charging interface) of the charging station can move so that the self-propelled device can be rotated or moved relative to the charging interface of the charging station until alignment is achieved.

It is contemplated for embodiments described herein to extend to individual elements and concepts described herein, independently of other concepts, ideas or system, as well as for embodiments to include combinations of elements recited anywhere in this application. Although embodiments are described in detail herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments. As such, many modifications and variations will be apparent to practitioners skilled in this art. Accordingly, it is intended that the scope of the invention be defined by the following claims and their equivalents. Furthermore, it is contemplated that a particular feature described either individually or as part of an embodiment can be combined with other individually described features, or parts of other embodiments, even if the other features and embodiments make no mention of the particular feature. Thus, the absence of describing combinations should not preclude the inventor from claiming rights to such combinations.
What is claimed is:

1. A method for charging a power source of a device, the method being performed by one or more processors and comprising:
 - detecting that a charging interface of the device and a charging interface of a charging dock are misaligned when the device is placed into contact or operational proximity with the charging dock; and
 - automatically causing the device to move relative to the charging dock to achieve alignment.

2. The method of Claim 1, wherein detecting that the charging interface of the device and the charging interface of the charging dock are misaligned includes monitoring an amount of power being received by the device from the charging dock.

3. The method of Claim 2, wherein detecting that the charging interface of the device and the charging interface of the charging dock are misaligned includes determining that the amount of power being received by the device is less than a threshold.

4. The method of Claim 3, wherein automatically causing the device to move relative to the charging dock to achieve alignment is performed in response to determining that the amount of power being received by the device is less than the threshold.

5. The method of Claim 1, wherein detecting that the charging interface of the device and the charging interface of the charging dock are misaligned includes receiving an input from one or more sensors that indicate one or more angles of rotations of the device relative to the charging dock.

6. The method of Claim 5, wherein detecting that the charging interface of the device and the charging interface of the charging dock are misaligned includes determining that the one or more angles of rotations of the device is different than one or more threshold angles of rotations by a threshold amount.
7. The method of Claim 6, wherein automatically causing the device to move relative to the charging dock to achieve alignment is performed in response to determining that the one or more angles of rotations of the device is different than one or more threshold angles of rotations by the threshold amount.

8. The method of Claim 5, wherein the input from the one or more sensors is based on a direction of gravity.

9. The method of Claim 1, wherein automatically causing the device to move relative to the charging dock to achieve alignment includes controlling a drive system of the device to move in one or more directions or to change orientations.

10. A self-propelled device comprising:
 a power source;
 a charging interface coupled to the power source;
 a drive assembly; and
 a control mechanism that is coupled to the charging interface and to the drive assembly, the control mechanism being configured to detect that the charging interface and a charging interface of a charging station are misaligned when the self-propelled device is docked to the charging station, the control mechanism causing the drive assembly to move the self-propelled device into alignment relative to the charging station.

11. The self-propelled device of Claim 10, further comprising one or more sensors, and wherein the control mechanism uses the one or more sensors in order to detect that the charging interfaces are misaligned.

12. The self-propelled device of Claim 11, wherein the control mechanism detects that the charging interfaces are misaligned by receiving input from the one or more sensors that indicate one or more angles of rotations of the self-propelled device relative to the charging station.
13. The self-propelled device of Claim 12, wherein the control mechanism detects that the charging interfaces are misaligned by determining that the one or more angles of rotations of the self-propelled device is different than one or more threshold angles of rotations by a threshold amount.

14. The self-propelled device of Claim 10, wherein the control mechanism detects that the charging interfaces are misaligned by analyzing a power signal from the charging station, and determining that an amount of power being received by the self-propelled device is less than a threshold.

15. The self-propelled device of Claim 10, wherein the self-propelled device is spherical in shape and the self-propelled device propels itself using the drive assembly to rotate or shift on the charging station.

16. The self-propelled device of Claim 10, wherein the charging interface and the charging interface of the charging station are inductive charging interfaces.

17. The self-propelled device of Claim 10, wherein the charging interface and the charging interface of the charging station are electrically conductive charging interfaces.

18. The self-propelled device of Claim 10, wherein the control mechanism includes one or more processors.

19. A charging station for a self-propelled device, the charging station comprising:
 - a receptacle to receive the self-propelled device; and
 - an inductive charging interface to charge the self-propelled device when the self-propelled device is placed in the receptacle;
 - wherein the receptacle includes a contoured surface to enable the self-propelled device to adjust itself when the self-propelled device detects that its inductive charging interface and the inductive charging interface of the charging station are misaligned when the self-propelled device is placed in the receptacle.
20. The charging station of Claim 19, wherein when the charging station provides power to the self-propelled device via the inductive charging interface, the self-propelled device can detect that the inductive charging interfaces are misaligned by determining that an amount of power being received from the charging station is less than a threshold.

21. A system comprising:
 a charging station comprising a charging interface; and
 a self-propelled device comprising:
 a power source;
 a charging interface coupled to the power source;
 a drive assembly; and
 a control mechanism that is coupled to the charging interface and to the drive assembly, the control mechanism being configured to detect that the charging interface and the charging interface of the charging station are misaligned when the self-propelled device is docked to the charging station, the control mechanism causing the drive assembly to move the self-propelled device into alignment relative to the charging station.

22. The system of Claim 21, wherein the charging interface and the charging interface of the charging station are inductive charging interfaces.

23. The system of Claim 21, wherein the self-propelled device further comprises one or more sensors, and wherein the control mechanism of the self-propelled device uses the one or more sensors in order to detect that the charging interfaces are misaligned.

24. The system of Claim 23, wherein the control mechanism of the self-propelled device detects that the charging interfaces are misaligned by (i) receiving input from the one or more sensors that indicate one or more angles of rotations of the self-propelled device relative to the charging station, and (ii) determining that the one or more angles of rotations of the self-propelled device is different than one or more threshold angles of rotations by a threshold amount.
25. The system of Claim 21, wherein the control mechanism of the self-propelled device detects that the charging interfaces are misaligned by (i) analyzing a power signal from the charging station, and (ii) determining that an amount of power being received by the self-propelled device is less than a threshold.
200 Detect Power Being Received From Charging Station

210 Detect Misalignment Between Charging Interface of the Device and Charging Interface of Charging Station

212 Monitor Power Transmission

214 Receive Input from Sensor(s)

220 Cause Device to be Repositioned Based on the Detected Misalignment

FIG. 2
FIG. 5
A. CLASSIFICATION OF SUBJECT MATTER
H02J 7/00(2006.01)i, H02J 17/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H02J 7/00; A47L 9/00; G05D 1/02; B25J 5/00; H02J 7/02; B25J 19/00; A47L 9/28; B25J 9/16; H02J 17/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: power, charge, align, self, sensor

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>See abstract, paragraphs [0033][0042], [0057], [0064], [0069]-[0072], claim 7 and figures 1A-1C, 3, 6-8.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 2010-0090661 Al (YI-GUANG CHEN et al.) 15 April 2010</td>
<td>16, 19-20, 22</td>
</tr>
<tr>
<td></td>
<td>See abstract, paragraphs [0046]-[0044], claim 1 and figures 1-3.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2008-0073626 A (SUNGKYUNKWAN UNIVERSITY FOUNDATION FOR CORPORATE COLLABORATION) 11 August 2008</td>
<td>1-25</td>
</tr>
<tr>
<td></td>
<td>See paragraphs [0041]-[0051] and figures 1-2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See abstract, paragraphs [0030]-[0084] and figures 1-10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See abstract, paragraphs [0027]-[0051] and figures 1-5.</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
15 October 2013 (15. 10.2013)

Date of mailing of the international search report
15 October 2013 (15.10.2013)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
189 Cheongsang-ro, Seo-gu, Daejeon Metropolitan City, 305-701, R. Repub of Korea
Facsimile No. +82-42-472-7140

US Patent and Trademark Office
PARK Hye Lyun
Authorized officer
Telephone No. +82-42-481-3463

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2010-0090661 Al</td>
<td>15/04/2010</td>
<td>TW 201015393 A</td>
<td>16/04/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1361370 B</td>
<td>01/04/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7737656 B2</td>
<td>15/06/2010</td>
</tr>
<tr>
<td>KR 10-2008-0073626 A</td>
<td>11/08/2008</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>JP 2008-040725 A</td>
<td>21/02/2008</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>KR 10-2008-0092595 A</td>
<td>16/10/2008</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>