Title: NUCLEIC ACID VACCINES USING TUMOR ANTIGEN ENCODING NUCLEIC ACIDS WITH CYTOKINE ADJUVANT ENCODING NUCLEIC ACID

Abstract: Nucleic acid vaccines are provided that comprise at least one tumor antigen encoding nucleic acid and at least one cytokine adjuvant encoding nucleic acid for prophylaxis or treatment of tumors. The viral vaccines of the invention are optionally combined or additionally administered with a recombinant virus or DNA vaccine booster.
NUCLEIC ACID VACCINES USING TUMOR ANTIGEN ENCODING NUCLEIC ACIDS WITH CYTOKINE ADJUVANT ENCODING NUCLEIC ACID

FIELD OF THE INVENTION
The present invention relates to nucleic acid vaccines comprising sequences that encode a tumor antigen as an immunogen and a cytokine as an adjuvant. The vaccines are suitable for the vaccination of mammals, including humans, in order to provide unexpectedly enhanced cellular and/or humoral immune responses to one or more tumor related pathologies. Additionally, the invention relates to methods for making and using such nucleic acid vaccines.

BACKGROUND OF THE INVENTION
Cancer is a serious disease that afflicts one in four people. In the last fifty years, there have been significant improvements in the early detection of cancer, as well as the development of a number of therapies to treat cancer. Therapies include surgery to remove primary tumors, and sublethal radiation and chemotherapy to treat disseminated disease. While these treatments have resulted in apparent cures for many patients, the treatments can be quite debilitating and are still often ineffective at preventing death from this disease. There is clearly a need for therapies that are less destructive, as well as for novel therapies that harness the body's natural defenses to fight cancer.

Cancer can be divided into two classifications, depending upon the cell type the tumor is derived from. For example, carcinomas are derived from epithelial cells, while sarcomas are derived from mesodermal tissues. Some epithelial tumors express on their surface a protein called mucin 1 (MUC1).

MUC1 is a transmembrane protein that is normally expressed in non-disease states on ductal epithelial cells, such as those in the intestinal mucosa exposed to the lumen of the small intestine. The most notable feature of MUC1 is its large extracellular domain, which is comprised of 30-100 tandem repeats of a 20 amino acid sequence. The tandem repeats confer a rigid structure to this portion of the protein, and the repeats are a substrate for heavy glycosylation. In addition, in normal cells MUC1 is only expressed on the ductal side of the cell. It is thought that MUC1 may provide a lubrication function to the duct, and it may also be involved in signal transduction. Because the protein is normally expressed on the ductal side of cells, it is rarely exposed to the outside of the organism, and is considered a "sequestered antigen", because in its native form MUC1 is not exposed to immune system surveillance.
In contrast, MUC1 expression is different in epithelial tumors. The protein becomes overexpressed and is present all over the surface of the cell, and it is relatively deglycosylated as compared to the normal form expressed in ductal epithelial cells. Thus, the distribution and pattern of expression is very different in normal and neoplastic tissues, and the deglycosylated, aberrant protein exposes novel epitopes to the immune system. Because the pattern of expression is different from normal, it is possible that the immune system can now recognize the tumor-associated MUC1 as foreign and attempt to destroy the cells expressing this protein. Indeed, the immune system does appear to act in this way in some cancer patients. It has been shown that patients with ovarian, breast or pancreatic cancer possess weak antibody and cytotoxic T lymphocyte (CTL) responses to MUC1, indicating that their immune systems do indeed recognize a difference in the tumor-associated MUC1. However, the immune responses are clearly not strong enough to eliminate tumor cells.

These observations have led some investigators to develop therapeutic strategies designed to induce or strengthen the natural immune response. For example, several groups have attempted to use MUC1 peptides to prime a cellular response in patients. This relies on the concept that cells could process the peptide and present it in the context of Class I molecules to the immune system, to cause a Th1 response to cells expressing the MUC1 protein. There are several disadvantages to known approaches. First, peptides have short half-lives, requiring administration of large amounts of the peptide. Second, each person expresses several Class I molecules and a given peptide binds to only one molecule, which will be held by a minority of the patient population. Third, the immunity generated by such approaches may not be relevant to treating such cancers; it has been noted that anti-peptide immunity can be generated by peptide immunization, which does not always lead to anti-protein immunity.

The identification of tumor-specific antigens has supported the concept that immunologic strategies could be designed to specifically target tumor cells in cancer patients. Immunologic recognition of tumor antigens has been subsequently documented in patients with malignancy. However, these responses are muted and are ineffective in eradicating disease. The development of immune tolerance towards malignant cells is due, in part, to the inability of tumor cells to effectively present antigens to the immune system. Therefore, T cells with the capability of recognizing these antigens fail to become activated. A major focus of cancer immunotherapy has been the attempt to introduce tumor antigens into the cancer bearing host such that they may be recognized more effectively and that meaningful antitumor responses can be generated. In this way, native immunity directed against antigens selective for or over-expressed in malignant cells may be amplified and result in tumor rejection. Approaches to induce tumor-specific immunity have included vaccination with tumor cell extracts, irradiated cells, tumor-specific peptides with
and without adjuvant, and dendritic cells (DC) pulsed with tumor peptides/proteins, or manipulated to express tumor-specific genes.

DNA immunization has been used as a method to generate immune responses in vivo, and has been recognized as an effective way to generate cytotoxic T cells directed against an encoded antigen. Vaccination with tumor-specific naked DNA results in the expression of tumor antigens by the inoculated muscle cells. Professional antigen presenting cells, in particular DC, recruited to the site of injection, internalize and subsequently present the tumor-specific antigens at sites of T-cell traffic.

Breast cancer is a common malignancy second only to lung cancer among cancer deaths in women. In 2000, it was estimated that 182,800 new cases were diagnosed and 41,200 deaths resulted from breast cancer in the United States (US). Standard-dose combination chemotherapy can yield high response rates in previously untreated patients with metastatic disease, but complete responses are rare. Despite initial chemosensitivity, median disease response duration is less than 1 year due to the emergence of chemoresistant disease. The median survival for patients with metastatic disease has remained approximately 2 years for those treated with standard-dose chemotherapy. A majority of breast carcinomas express MUC1. As noted in the Investigator’s Brochure, responses to recombinant vaccine constructs expressing MUC1 have been shown to induce immune responses in mice and chimpanzees. As such, immunotherapeutic strategies targeting the MUC1 antigen are a potentially promising approach for patients with metastatic breast cancer who otherwise lack effective treatment options.

Prostate cancer is the second leading cause of cancer-related death in men. Approximately 180,000 men will be diagnosed with prostate cancer each year, and 40,000 succumb to the disease each year. Prostate tumor cells have a low proliferation rate and do not respond to standard chemotherapies, which are most toxic to the most rapidly dividing cells in the body. Instead, prostate cancer can be treated surgically, with radiation therapy or hormonal therapy. Surgery and radiation therapy can lead to undesirable side effects, such as incontinence and impotence. The disease can often be successfully managed with hormonal therapy, which starves the cells for its required growth factors. However, eventually all tumors treated in this way become androgen-independent and there is no effective treatment beyond that point. There is clearly an unmet medical need to treat this disease more effectively, and with novel therapies.

One such approach that has considerable promise is active immunotherapy. Active immunotherapy would stimulate the patient’s immune system to generate an anti-tumor response that could help hold the disease in check longer, or even rid the patient of metastatic disease. One
example of active immunotherapy include dendritic cell therapies, where the patient’s professional antigen presenting cells are removed and pulsed with tumor antigen, transfected with tumor RNA/cDNA, or fused with tumor cells. The ex vivo-treated dendritic cells are then reinjected into the patient, and are expected to drive a prostate-tumor specific immune response. One disadvantage of such approaches is that they amount to designer therapy that would be very costly and require very specialized skills to administer. Such therapies are unlikely in their current form to be widely used.

A second active immunotherapy approach is peptide vaccination. In this approach, tumor-specific peptides or proteins are administered to the patient, with the hope of directly loading antigen-presenting cells in vivo. This approach is more likely to be usable in the clinic than the ex vivo approach described above, but consistent success has not yet been achieved with this strategy. Some problems include that fact that peptides are short-lived in vivo, and therefore require very large doses. In some clinical trials, peptide vaccination engenders anti-peptide immune responses that do not translate into responses against tumors expressing the whole protein from which the peptides were derived.

A third active immunotherapy approach that has much more promise to be widely used would be a cancer vaccine. Specifically, we believe that a DNA vaccination approach could be very effective in treating prostate cancer patients. In this treatment, the vaccine would be comprised of plasmids (or other DNA-containing agents) that encode antigen(s) specific to prostate cancer. The plasmids would be injected into the patient, and the prostate-specific antigens would then be expressed and presented to the immune system. The antigen-presentation process would engender a specific cellular and/or humoral response that could help to control the growth of the tumor or its metastases. From preclinical models there is reason to believe that such an approach could be effective. For example, vaccination of rhesus monkeys with DNA vaccines encoding PSA +/- cytokine adjuvants drives PSA-specific humoral responses and cellular proliferation. In two male monkeys vaccinated in this way, there was evidence of infiltrating cells within the prostate post vaccination, but not in a nonvaccinated control. In work in our labs, we have shown that vaccination with DNA encoding a different tumor associated antigen, MUC1, can lead to immune responses protective against tumor challenge with MUC1-expressing tumors. Thus, it may be possible to use DNA vaccines to break tolerance to self-antigens that happen to be strongly expressed by tumors, and mount a therapeutic immune response.

While vaccination with PSA with or without cytokine adjuvants may very well be effective as an immunotherapy, it is possible that this would not be enough to control tumor growth. It is entirely
possible that an effective immune response against PSA would eliminate PSA+ tumor cells but leave PSA- prostate tumor cells intact and able to grow unfettered. Therefore, it may be desirable to vaccinate with more than one tumor antigen. We propose that a DNA vaccine comprised of the PSA antigen with other antigens expressed highly in prostate cancer, such as KLK2 and/or MUC1, and perhaps with other adjuvant/costimulatory genes, would be a more effective approach than vaccination with a single antigen.

PSA or KLK3 is a member of a multigene family known as the human kallikrein gene family. There are 15 closely related genes in the family, all of which map to a 300kb region of human chromosome 19q13.3-q13.4. Kallikreins are secreted serine proteases. All are synthesized as preproenzymes; proenzymes arise after removal of the signal peptide, and the mature active protease arises after removal of a propeptide. The activity of a given kallikrein will be either trypsin-like or chymotrypsin-like, depending upon the nature of the active site. PSA or KLK3 is a 30 Kd serine protease with chymotrypsin-like activity, which is responsible for cleaving seminogelin I, seminogelin II and fibronectin in seminal fluid. PSA is most highly expressed in the prostate, but it is also expressed at lower levels in breast, salivary gland, and thyroid. Besides prostate cancer, PSA is expressed in some breast malignancies. PSA has become well known as a serum marker for prostate cancer; it is a very important diagnostic for this disease and increasing serum levels of PSA typically correlate well with the severity of the disease. Expression of PSA is not increased in prostate cancer cells versus normal prostate cells; instead as the disease breaches the normal cellular barriers, PSA leaks into the serum. It is unclear if PSA has a role in the etiology of prostate cancer; various reports have indicated that PSA could either enhance or inhibit tumorigenicity. Several CTL epitopes for PSA have been described for the HLA A2 and A3 haplotypes; identification of these epitopes support the possibility of generating therapeutic in vivo CTL by vaccination.

KLK2 is the member of the kallikrein family that most closely resembles PSA, with about 80% identity at the amino acid level. Like PSA, KLK2 is expressed highly in the prostate and in prostate cancer, with lower levels of expression in other tissues, such as breast, thyroid, and salivary gland. KLK2 has trypsin-like activity, and one of its activities is to cleave the proenzyme form of PSA to yield the mature enzyme. There is increasing recognition that KLK2 may be a good serum prognostic indicator to monitor the progress of prostate cancer patients, although it is likely to be a supportive diagnostic along with PSA.
Accordingly, there is a long-felt and pressing need to discover vaccines and methods that elicit an immune response that is sufficient to treat or prevent various tumor related human pathologies.

SUMMARY OF THE INVENTION
The present invention is intended to overcome one or more deficiencies of the related arts. In particular, nucleic acid vaccines of the present invention advantageously provide a more robust immune response. The strength of the present invention lies in its power to recruit one or more of B cell, helper T cell, and cytotoxic T cell components of the immune response for effective humoral and cellular immunity.

To provide more effective tumor or cancer vaccines, the present invention provides nucleic acid vaccines comprising a cancer-specific or tumor-specific antigen nucleic acid and an adjuvant nucleic acid. Also provided are methods of making and using such nucleic acid vaccines. In their use as a vaccine, the co-expression of tumor nucleic acid and the adjuvant nucleic acid in a tissue to which the vaccine of the present invention has been introduced induces a cellular or humoral immune response, or any component thereof, to the tumor protein or fragment thereof.

This invention uses nucleic acids (or fragments thereof) encoding such tumor antigens as, but not limited to, prostrate specific antigen (PSA), KLK2, and/or mucin-1 (MUC1) as antigen components of a DNA vaccine for tumors, such as but not limited to, any PSA, KLK2 or MUC-1 associated tumor or cancer. The antigen genes will be of human origin, or mutated to enhance their immunogenicity. Examples of how the antigen genes could be rendered more immunogenic would include alteration or removal of signal sequences required for secretion, optimization of codons for improved translation, addition of ubiquitination signals for degradation, addition of subcellular compartment targeting sequences, addition of molecular chaperone sequences, and optimization of CTL epitopes. The antigen genes could be fused together to increase immunogenicity. The CTL/helper epitopes could be linked together, or inserted as part of another molecule, such as an immunoglobulin molecule.

Other genes may also be included in the vaccine, including cytokine adjuvant genes such as IL-18, IL-12 or GM-CSF, or genes for costimulatory molecules such as B7-1, which would help to drive the immune response.

The genes of the invention could be encoded by plasmids, viruses, bacteria or mammalian cells. The vaccination regimen could be comprised of any or all of these agents, such as a plasmid DNA
priming vaccination, followed by a viral vector boost. The latter approach appears to be effective in generating cellular responses important in controlling infectious diseases (28-32), and may be very useful in anti-cancer applications of this technology as well.

In the vaccines of the invention, the tumor encoding nucleic acid may be isolated from patients having a tumor related cancer, preferably from the cancerous tissue itself or from mRNA or cDNA encoding a cancer-related tumor protein or antigenic portion thereof.

The present inventors have discovered that nucleic acid vaccines of the present invention elicit unexpectedly enhanced immune responses by the expression and/or presentation of at least one tumor antigen encoding nucleic acid and at least one cytokine adjuvant encoding nucleic acid.

The present invention also provides at least one tumor/adjuvant nucleic acid encoding (or complementary to) at least one antigenic determinant encoding nucleic acid of at least one tumor protein and at least one adjuvant encoding nucleic acid of at least one portion of an IL-18 protein.

The present invention also provides a tumor/adjuvant vaccine composition comprising a tumor/adjuvant nucleic acid vaccine of the present invention, and a pharmaceutically acceptable carrier or diluent. The vaccine composition can further comprise an additional adjuvant and/or cytokine encoding sequence or further component of the composition which enhances a nucleic acid vaccine immune response to at least one cancer associated tumor protein in a mammal administered the vaccine composition. A nucleic acid vaccine of the present invention is capable of inducing an immune response inclusive of at least one of a humoral immune response (e.g., antibodies) and a cellular immune response (e.g., activation of B cells, helper T cells, and cytotoxic T cells (CTLs)), with a cellular immune response preferred.

The present invention also provides a method for eliciting an immune response to a cancer associated tumor protein in a mammal which is prophylactic for a cancer associated tumor protein, the method comprising administering to a mammal a vaccine composition comprising a nucleic acid vaccine of the present invention, which is protective for the mammal against a clinical MCU-1-related pathology.

The present invention also provides a method for eliciting an immune response to a cancer associated tumor protein in a mammal for therapy of a tumor-associated pathology, such as but
not limited to a tumor or cancer. The method comprises administering to a mammal a composition comprising a nucleic acid vaccine of the present invention, which composition elicits an enhanced immune response, relative to controls, in the mammal against a clinical tumor related pathology.

In a further embodiment, the prophylactic or therapeutic method of eliciting an immune response to tumor comprising administering an effective amount of another (e.g., second) nucleic acid vaccine comprising at least 1 to about 100 different tumor protein fragments or variants, in which the fragments or variants relate to different tumor nucleic acid or amino sequences, preferably related to a cancer-associated or pathology-associated tumor protein or antigen sequence.

The tumor-specific immune response generated with at least one nucleic acid vaccine of the invention can be further augmented by priming or boosting a humoral or cellular immune response, or both, by administering an effective amount of at least one tumor/adjuvant vaccine. Any of the vaccine strategies provided herein or known in the art can be provided in any order. For example, a subject may be primed with a nucleic acid vaccine, followed by boosting with a nucleic acid vaccine or a protein vaccine. Preferably, the tumor/adjuvant vaccine is administered intramuscularly. Preferably, the vaccine is in the form of a plasmid and is administered with a gene gun or injector pen, needled or needless. However, other forms and administration are also suitable and included in the present invention.

The present invention also provides methods, compositions, articles of manufacture and the like, for making and using a tumor/adjuvant nucleic acid vaccine of the present invention.

Other objects, features, advantages, utilities and embodiments of the present invention will be apparent to skilled practitioners from the following detailed description and examples relating to the present invention, in combination with what is known in the art.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1. Female C57Bl/6 mice were vaccinated three times (Day –28, -14, and –7) with buffer, empty vector, pMUC1 plasmid, pIL-18 plasmid, or combinations of the latter two plasmids. Animals were challenged with MUC1+ mouse tumor cells on Day 0, and were monitored for tumor incidence for 50 days.
Figure 2. Female C57Bl/6 mice were vaccinated three times (Day -28, -14 and -7) with buffer, empty vector, pMUC1 plasmid, pIL-18 plasmid, or combinations of the latter two plasmids. Animals were challenged with MUC1+ mouse tumor cells on Day 0, and were monitored for tumor growth for up to 50 days.

Figure 3. C57Bl/6 mice free of tumors in Figure 1 were rechallenged with MUC1+ tumor cells on Day 49 (denoted Day 0 in this figure). Mice were monitored an additional 49 days after the second tumor challenge.

Figure 4. MUC1 Tg mice were vaccinated three times (Day -28, -14, and -7) with the plasmids indicated in the legend. Mice were challenged with MUC1+ tumor cells on Day 0 and monitored for tumor incidence for 28 days.

Figure 5. Animals from Figure 4 were sacrificed, and their tumors were excised and weighed on Day 28 after tumor challenge. Horizontal bars are median values.

Figure 6. Phase II of the pMUC1/pIL-18 vaccination of MUC1 Tg mice. MUC1 Tg mice without tumors at the end of Phase I (Figure 4) were rechallenged with a second dose of MUC1+ tumor cells on Day 50 after the first challenge (denoted Day 0 in this figure). Mice were monitored for tumor incidence for 28 days after the second challenge.

Figure 7. Remaining tumor-free MUC1 Tg mice from Phase II (Figure 6) were challenged on Day 28 of Phase II with MUC1+ parental tumor cells (denoted as Day 0 in this figure). Animals were monitored for tumor incidence 39 days post challenge.

Figure 8A-C. A. DNA sequence of human IL-18 plasmid p1968 with the protein sequence of Figure 8B included. B, C. Protein sequence of the precursor human IL-18 produced by the engineered IL-18 constructs. The first 19 residues are derived from the 12B75 HC signal sequence; the remaining 161 residues are the mature human IL-18. In the version shown in C, the first residue of the mature human IL-18 sequence is altered to better conform to consensus human immunoglobulin signal sequences.

Figure 9A-D: Sequence of human MUC1 cDNA with intron 6 incorporated.

Figure 10. Tumor incidence in female MUC1 transgenic mice vaccinated with DNA as indicated in the legend, and subsequently challenged with MUC1+ tumor cells. Only the group vaccinated with pMUC1/pIL-18 shows significantly improved protection from tumor challenge (p=0.007).

Figure 11. Media tumor weights at study end, from animals shown in Figure 1. Media tumor weight for group 4 is significantly different from those in the other groups.
Figure 12. Rechallenge of protected mice from Figure 1 with MUC1+ tumor cells.

Figure 13. Tumor incidence in male mice vaccinated with pMUC1 or empty vector, followed by tumor challenge.

Figure 14. Tumor weights in male mice vaccinated with pMUC1.

Figure 15. Tumor incidence in male mice rechallenged on the opposite flank with MUC1+ tumor cells.

DETAILED DESCRIPTION OF THE DISCLOSURE

The present inventors have discovered that unexpectedly enhanced immune responses can be induced against tumor associated pathologies, by the use of nucleic acid vaccines that contain a combination of at least one tumor antigen or protein encoding nucleic acid and at least one cytokine encoding nucleic acid.

The terms "priming" or "primary" and "boost" or "boosting" are used herein to refer to the initial and subsequent immunizations, respectively, i.e., in accordance with the definitions these terms normally have in immunology.

The component encoding nucleic acids of a tumor/adjuvant encoding nucleic acid of the present invention can be provided using any known method or source. Alternatively, the different tumor nucleic acids can be obtained from any source and selected based on screening of the sequences for differences in coding sequence or by evaluating differences in elicited humoral and/or cellular immune responses to multiple tumor sequences, in vitro or in vivo, according to known methods.

As is readily appreciated by one of skill in the art, the inventors have further found that boosting with a tumor/adjuvant vaccine of the present invention further potentiates the immunization methods of the invention. The tumor protein(s) encoded by the nucleic acid vaccine can be similar or different to the tumor protein(s) in the boosters.

Similarly, as can be appreciated by the skilled artisan, the immunization methods of the present invention are enhanced by use of primer, booster or additional administrations of a DNA vaccine of the present invention. The tumor/adjuvant vaccine can be used as a boost, e.g., as described above with respect to the tumor proteins. Alternatively, the vaccine can be used to prime immunity, with the vaccine or vaccines used to boost the anti-tumor immune response. The vaccine may comprise one or more vectors for expression of one or more tumor proteins or portions thereof. In a preferred embodiment, vectors are prepared for expression as part of a
DNA vaccine.

The invention is a therapeutic vaccine that would be used in patients with cancer, where PSA and/or KLK2 and/or MUC1 are uniquely expressed, or overexpressed relative to normal tissue. The vaccine could potentially be preventative therapy for individuals at high risk of developing prostate or other cancers or tumors expressing these antigens. The vaccine could also be used in other cancers where PSA and/or KLK2 and/or MUC1 are either uniquely expressed or overexpressed relative to normal tissue. The vaccine would be comprised of DNA encoding any combination of these antigens, and could be contained within one or more plasmids, mammalian viruses, bacteria or mammalian cells. The antigen or adjuvant encoding nucleic acids as one or more components of the vaccine could include any alternatively spliced forms that naturally occur. The antigen genes may contain modified sequences that will include optimized codons for translation in human cells, or signals for ubiquitination that would lead to enhanced degradation. The vaccine could contain fragments of the antigen genes, including antigen-specific CTL epitopes linked to each other, or to other heterologous CTL epitopes and/or homologous/heterologous CD4 helper epitopes. Fragments of the antigen genes could be generated that lack signal sequences, which could enhance degradation and antigen presentation. Fragments of the antigen genes could be encoded as fusions with other proteins, or inserted within other protein sequences, such as immunoglobulin sequences. Natural variant sequences have been reported for PSA, KLK2 and MUC1, and are useful in the present invention, e.g., but not limited to those presented in SEQ ID NOS:1-47, and specified variants thereof.

The vaccination regimen could include a mixture of DNA-encoding agents, temporally administered in different orders, or administered in different places in the body at the same time. Plasmids could be formulated in lipid, buffer or other excipients or chemical adjuvants that could aid delivery of DNA, maintain its integrity in vivo, or enhance the immunogenicity of the vaccine. The vaccine could also be delivered by direct injection into muscle, skin, lymph node, or by application to mucosal surfaces. Other potential modes of delivery would include injection of DNA, followed by electroporation to enhance cellular uptake and expression of DNA.

One possible cytokine adjuvant that could be included in the vaccine is human IL-18. Variants of human IL-18 sequence have been reported, e.g., but not limited to those presented in SEQ ID NOS:60-77, and specified variants thereof. The macaque sequence for IL-18 is very similar to human IL-18, and can also be used according to the present invention.
The antigen genes, or costimulatory molecule genes, or cytokine adjuvant genes would be expressible in humans because of being linked to a promoter. The genes would also be expressible because of linkage to a polyadenylation signal, such as the SV40 late polyadenylation signal. An intron may be included for enhanced expression, such as the HCMV IE intronA, or natural introns from the antigen or adjuvant genes.

Advantages:

Active immunotherapy offers the possibility that cancer patients could develop long-lasting and vigorous immune responses against their tumors that would prolong life, slow disease progression, and possibly eradicate disease. When used as an adjunct therapy, active immunotherapy may increase quality of life by minimizing the toxicity of other conventional therapies. DNA vaccination in particular offers a simple approach toward generating protective immune responses.

We have demonstrated in our MUC1 vaccination model that DNA vaccination can lead to epitope spreading. There are no other reports of anti-tumor efficacy engendered by coadministration of plasmid DNA encoding MUC1 and any other costimulatory/adjuvant molecule, particularly IL-18. In addition, this is the only instance found so far of epitope spreading as a result of plasmid DNA vaccination in tumor models. As mentioned above, if this phenomenon could be induced in humans, it would induce immunity to MUC1 as well as to other unknown tumor-associated antigens that are present in the tumor. This multi-antigen attack on the tumor would minimize or inhibit the ability of the tumor to evade the immune response. This approach also is applicable to a vaccine using PSA as the antigen, or PSA in combination with other antigens and adjuvant molecules.

Another advantage of our approach is the ability to encode more than one gene on a plasmid or DNA vehicle to enable delivery of more than one protein product to a target tissue/cell (33, 34). This should ensure that a target tissue expresses all desired proteins with the expectation of a more efficient induction of immune response. For example, we have constructed a double cistron vector, and for example we have shown that it is capable of expressing mouse or human IL-12. IL-12 is a protein comprised of two subunits that must be co-expressed in the same cell in order for the mature molecule to be produced. The two protein subunits are encoded by different genes, and we have shown in tissue culture that a double cistron vector encoding both genes results in more effective production of the mature protein than using two plasmids which encode either gene alone (33, 34).
Nucleic acid vaccines and Vaccination

The present invention thus provides, in one aspect, nucleic acid vaccines using mixtures of at least 1, and up to 50 different tumor and cytokine encoding nucleic acids that optionally each can express a different protein variant, or an antigenic portion thereof. As can be readily appreciated to one of skill in the art, 1 to about 50 different tumor protein encoding nucleic acids can be employed. Also provided are methods of making and using such nucleic acid vaccines.

A nucleic acid vaccine of the present invention induces at least one of a humoral and a cellular immune response in a mammal who has been administered at least one nucleic acid vaccine, but the response to the vaccine is subclinical, or is effective in enhancing at least one immune response to at least one tumor antigen, such that the vaccine administration is suitable for vaccination purposes.

DNA vaccines. An alternative to a traditional vaccine comprising an antigen and an adjuvant involves the direct in vivo introduction of DNA encoding the antigen into tissues of a subject for expression of the antigen by the cells of the subject's tissue. Such vaccines are termed herein "DNA vaccines" or "nucleic acid-based vaccines." DNA vaccines are described in International Patent Publication WO 95/20660 and International Patent Publication WO 93/19183, the disclosures of which are hereby incorporated by reference in their entireties. The ability of directly injected DNA that encodes a viral protein to elicit a protective immune response has been demonstrated in numerous experimental systems (Conry et al., Cancer Res., 54:1164-1168 (1994); Cox et al., Virol, 67:5664-5667 (1993); Davis et al., Hum. Mole. Genet., 2:1847-1851 (1993); Sedegah et al., Proc. Natl. Acad. Sci., 91:9866-9870 (1994); Montgomery et al., DNA Cell Bio., 12:777-783 (1993); Ulmer et al., Science, 259:1745-1749 (1993); Wang et al., Proc. Natl. Acad. Sci., 90:4156-4160 (1993); Xiang et al., Virology, 199:132-140 (1994)). Studies to assess this strategy in neutralization of influenza virus have used both envelope and internal viral proteins to induce the production of antibodies, but in particular have focused on the viral hemagglutinin protein (HA) (Fynan et al., DNA Cell. Biol., 12:785-789 (1993A); Fynan et al., Proc. Natl. Acad. Sci., 90:11478-11482 (1993B); Robinson et al., Vaccine, 11:957, (1993); Webster et al., Vaccine, 12:1495-1498 (1994)).

As is well known in the art, a large number of factors can influence the efficiency of expression of antigen genes and/or the immunogenicity of DNA vaccines. Examples of such factors
include the reproducibility of inoculation, construction of the plasmid vector, choice of the promoter used to drive antigen gene expression and stability of the inserted gene in the plasmid. Depending on their origin, promoters differ in tissue specificity and efficiency in initiating mRNA synthesis (Xiang et al., Virology, 209:564-579 (1994); Chapman et al., Nucle. Acids. Res., 19:3979-3986 (1991)). To date, most DNA vaccines in mammalian systems have relied upon viral promoters derived from cytomegalovirus (CMV). These have had good efficiency in both muscle and skin inoculation in a number of mammalian species. Another factor known to affect the immune response elicited by DNA immunization is the method of DNA delivery; parenteral routes can yield low rates of gene transfer and produce considerable variability of gene expression (Montgomery, 1993, supra). High-velocity inoculation of plasmids, using a gene-gun, enhanced the immune responses of mice (Fynn, 1993B, supra; Eisenbraun et al., DNA Cell Biol., 12: 791-797 (1993)), presumably because of a greater efficiency of DNA transfection and more effective antigen presentation by dendritic cells. Vectors containing the nucleic acid-based vaccine of the invention may also be introduced into the desired host by other methods known in the art, e.g., transfection, electroporation, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, lipofection (lysosome fusion), or a DNA vector transporter (see, e.g., Wu et al., J. Biol. Chem. 267:963-967 (1992); Wu and Wu, J. Biol. Chem. 263:14621-14624 (1988); Hartmut et al., Canadian Patent Application No. 2,012,311, filed Mar. 15, 1990), or any other known method or device.

Viral Vector Vaccines. As can be readily appreciated by one of ordinary skill in the art, nucleic acid vaccines of the present invention can also be incorporated into any recombinant virus and can be used to introduce a vaccine of the invention. Examples of suitable viruses that can act as recombinant viral hosts for vaccines, in addition to vaccinia, includes canarypox, adenovirus, and adeno-associated virus, as known in the art. Various genetically engineered virus hosts ("recombinant viruses") can be used to prepare viral vaccines for administration of nucleic acid encoding tumor antigens. Viral vaccines can promote a suitable immune response that targets activation of B lymphocytes, helper T lymphocytes, and cytotoxic T lymphocytes. Numerous virus species can be used as the recombinant virus hosts for the vaccines of the invention. A preferred recombinant virus for a viral vaccine is vaccinia virus (International Patent Publication WO 87/06262, Oct. 22, 1987, by Moss et al.; Cooney et al., Proc. Natl. Acad. Sci. USA 90:1882-6 (1993); Graham et al., J. Infect. Dis. 166:244-52 (1992); McElrath et al., J. Infect. Dis. 169:41-7 (1994)). In another embodiment, recombinant canarypox can be used (Pialoux et al., AIDS Res. Hum. Retroviruses 11:373-81 (1995), erratum in AIDS Res. Hum. Retroviruses 11:875 (1995); Andersson et al., J. Infect. Dis. 174:977-85 (1996); Fries et al.,

Bi-functional plasmids for virus and DNA vaccines. Another aspect of the present invention concerns engineering of bi-functional plasmids that can serve as a DNA vaccine and a recombinant virus vector. Direct injection of the purified plasmid DNA, i.e., as a DNA vaccine, would elicit an immune response to the antigen expressed by the plasmid in test subjects. The plasmid would also be useful in live, recombinant viruses as immunization vehicles.

The bi-functional plasmid of the invention provides a heterologous gene, or an insertion site for a heterologous gene, under control of two different expression control sequences: an animal expression control sequence, and a viral expression control sequence. The term "under control" is used in its ordinary sense, i.e., operably or operatively associated with, in the sense that the expression control sequence, such as a promoter, provides for expression of a heterologous gene. In another embodiment, the animal expression control sequence is a mammalian promoter (avian promoters are also contemplated by the present invention); in a specific embodiment, the promoter is a late or early SV40 promoter, cytomegalovirus immediate early (CMV) promoter, a vaccinia virus early promoter, or a vaccinia virus late promoter, or any combination thereof. Subjects could be vaccinated with a multi-tiered regimen, with the bi-functional plasmid administered as DNA and, at a different time, but in any order, as a recombinant virus vaccine. The invention contemplates single or multiple administrations of the bi-functional plasmid as a DNA vaccine or as a recombinant virus vaccine, or both. This vaccination regimen may be complemented with administration of viral vaccines (infra), or may be used with additional vaccine vehicles.
As one of ordinary skill in the art can readily appreciate, the bi-functional plasmids of the invention can be used as nucleic acid vaccine vectors. Thus, by inserting at least 1 to about 50 different tumor genes into bi-functional plasmids, thus preparing a corresponding set of bi-functional plasmids useful as a nucleic acid vaccine can be prepared.

Active immunity elicited by vaccination with a tumor protein or proteins according to the present invention can prime or boost a cellular or humoral immune response. The tumor protein or proteins, or antigenic fragments thereof, can be prepared in an admixture with an adjuvant to prepare a vaccine.

The term "adjuvant" refers to a compound or mixture that enhances the immune response to an antigen. An adjuvant can serve as a tissue depot that slowly releases the antigen and also as a lymphoid system activator that non-specifically enhances the immune response (Hood et al., Immunology, Second Ed., 1984, Benjamin/Cummings: Menlo Park, Calif., p. 384). Often, a primary challenge with an antigen alone, in the absence of an adjuvant, will fail to elicit a humoral or cellular immune response. Adjuvants include, but are not limited to, complete Freund's adjuvant, incomplete Freund's adjuvant, saponin, mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil or hydrocarbon emulsions, keyhole limpet hemocyanins, dinitrophenol, and useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Selection of an adjuvant depends on the subject to be vaccinated. Preferably, a pharmaceutically acceptable adjuvant is used. For example, a vaccine for a human should avoid oil or hydrocarbon emulsion adjuvants, including complete and incomplete Freund's adjuvant. One example of an adjuvant suitable for use with humans is alum (alumina gel). In a specific embodiment, recombinant tumor protein is administered intramuscularly in alum. Alternatively, the recombinant tumor protein vaccine can be administered subcutaneously, intradermally, intraperitoneally, or via other acceptable vaccine administration routes.

Vaccine administration. According to the invention, immunization against tumors can be accomplished with a nucleic acid tumor/adjuvant vaccine of the invention alone, or in combination with a viral encoding tumor vaccine or a tumor protein vaccine, or both. In a specific embodiment, tumor nucleic acid or viral vaccine is provided intramuscularly (i.m.) to boost the immune response.

Each dose of vaccine may contain the same 1 to 50 nucleic acid sequences encoding the same
or different tumor proteins or portions thereof. Alternatively, the tumor sequences in subsequent vaccines may express different tumor genes or portions thereof. In yet another embodiment, the subsequent vaccines may have some tumor sequences in common, and others that are different, from the earlier vaccine. For example, the priming vaccine may contain nucleic acids expressing tumor proteins arbitrarily designated 1-2. A second (booster) vaccine may contain vaccines expressing tumor proteins 3-5 or 6-10, etc.

Tumor Vaccine Variants

As noted above, a tumor/adjuvant encoding nucleic acid for use in the vaccines of the invention can be obtained from different cancer or normal tumor patients or different geographically local isolates, or from geographically diverse isolates.

A tumor/adjuvant vaccine also includes nucleic acid encoding polypeptides having immunogenic activity elicited by an amino acid sequence of a tumor amino acid sequence as at least one epitope or antigenic determinant. Such amino acid sequences substantially correspond to at least one 10-200 amino acid fragment and/or consensus sequence of a known tumor antigen protein sequence, as described herein or as known in the art. Such a tumor antigen sequence can have overall homology or identity of at least 50% to a known tumor protein amino acid sequence, such as 50-99% homology, or any range or value therein, while eliciting an immunogenic response against at least one type of tumor protein, preferably including at least one pathologic form.

Percent homology can be determined, for example, by comparing sequence information using the GAP computer program, version 6.0. available from the University of Wisconsin Genetics Computer Group (UWGCG). The GAP program utilizes the alignment method of Needleman and Wunsch (J. Mol. Biol. 48:443 (1970)), as revised by Smith and Waterman (Adv. Appl. Math. 2:482 (1981)). Briefly, the GAP program defines similarity as the number of aligned symbols (i.e., nucleotides or amino acids) which are similar, divided by the total number of symbols in the shorter of the two sequences. The preferred default parameters for the GAP program include: (1) a unitary comparison matrix (containing a value of 1 for identities and 0 for non-identities) and the weighted comparison matrix of Gribskov and Burgess, Nucl. Acids Res. 14:6745 (1986), as described by Schwartz and Dayhoff, eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington, D.C. (1979), pp. 353-358; (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.
In another embodiment, a tumor/adjuvant vaccine of the present invention comprises a pathologic form of at least one tumor protein. Examples of such sequences are readily available from commercial and institutional tumor sequence databases, such as GENBANK, or other publically available databases. Substitutions or insertions of a tumor or cytokine to obtain an additional tumor or cytokine protein, encoded by a nucleic acid for use in a viral or nucleic acid vaccine of the present invention, can include substitutions or insertions of at least one amino acid residue (e.g., 1-25 amino acids). Alternatively, at least one amino acid (e.g., 1-25 amino acids) can be deleted from a tumor or cytokine sequence. Preferably, such substitutions, insertions or deletions are identified based on sequence determination of proteins obtained by nucleotide sequencing of at least one tumor or cytokine encoding nucleic acid from an individual.

Non-limiting examples of such substitutions, insertions or deletions preferably are made by the amplification of DNA or RNA sequences from tumor, which can be determined by routine experimentation to provide modified structural and functional properties of a protein or a tumor or cytokine. The tumor or cytokine protein sequences so obtained preferably have different antigenic or adjuvant properties from the original tumor or cytokine. Such antigenic differences can be determined by suitable assays, e.g., by testing with a panel of monoclonal antibodies specific for tumor or cytokine proteins in an ELISA assay.

Any substitution, insertion or deletion can be used as long as the resulting tumor and cytokine proteins or antigenic determinants thereof elicits antibodies which bind to tumor proteins, but which tumor proteins have a different pattern than antibodies elicited by a second tumor protein. Each of the above substitutions, insertions or deletions can also include modified or unusual amino acids, e.g., as provided in 37 C.F.R. section 1.822(p)(2), which is entirely incorporated herein by reference.

The following present non-limiting examples of alternative nucleic acid sequences (recited as DNA sequences, but also including the corresponding RNA sequence (where U is substituted for T in the corresponding RNA sequence)) of tumor antigen proteins of tumors, as well as cytokine adjuvant nucleic acid sequences, that can be encoded by a nucleic acid according to present invention. Such nucleic acid vaccines can comprise at least one tumor antigen protein encoding nucleic acid and at least one cytokine adjuvant protein encoding nucleic acid, and can include linear or circular DNA or RNA, optionally further comprising additional regulatory sequences, such as but not limited to promoters, enhancers, selection, restriction sites, and the
like, as well known in the art. For amino acid sequences any suitable codon can be used for expression, preferably human preferred codons as well known in the art (see, e.g., Ausubel, supra, Appendices) and such sequences can be further modified, e.g., where specific antigenic sequences can be used.

SEQUENCE LISTING

PSA/KLK3 sequences

1. PSA (SEQ ID NO:1)

Ile Val Gly Gly Trp Glu Cys Glu Lys His Ser Gln Pro Trp Gln Val
1 5 10 15

Leu Val Ala Ser Arg Gly Arg Ala Val Cys Gly Gly Val Leu Val His
20 25 30

Pro Gln Trp Val Leu Thr Ala Ala His Cys Ile Arg Asn Lys Ser Val
35 40 45

Ile Leu Leu Gly Arg His Ser Leu Phe His Pro Glu Asp Thr Gly Gln
50 55 60

Val Phe Gln Val Ser His Ser Phe Pro His Pro Leu Tyr Asp Met Ser
65 70 75 80

Leu Leu Lys Asn Arg Phe Leu Arg Pro Gly Asp Asp Ser Ser His Asp
85 90 95

Leu Met Leu Leu Arg Leu Ser Glu Pro Ala Glu Leu Thr Asp Val
100 105 110

Lys Val Met Asp Leu Pro Thr Gln Glu Pro Ala Leu Gly Thr Thr Cys
115 120 125

Tyr Ala Ser Gly Trp Gly Ser Ile Glu Pro Glu Glu Phe Leu Thr Pro
130 135 140

Lys Lys Leu Gln Cys Val Asp Leu His Val Ile Ser Asn Asp Val Cys
145 150 155 160

Ala Gln Val His Pro Gln Lys Val Thr Lys Phe Met Leu Cys Ala Gly
165 170 175

Arg Trp Thr Gly Gly Lys Ser Thr Cys Ser Gly Asp Ser Gly Gly Pro
180 185 190

Leu Val Cys Asn Gly Val Leu Gln Gly Ile Thr Ser Trp Gly Ser Glu
195 200 205
Pro Cys Ala Leu Pro Glu Arg Pro Ser Leu Tyr Thr Lys Val Val His
210 215 220
Tyr Arg Lys Trp Ile Lys Asp Thr Ile Val Ala Asn Pro
225 230 235
PSA 1: human PSA with introns (SEQ ID NO:2):
gttccgtgacg tggattggtg ctgcacccct cactctgtcct cggatttgg
gaggtctggga 60
gtggcagag ccttcccaac cctgccacagg gcttggtggc tctctggtgca gggcattgct 120
cgccggtgtt ctgggtgcac cccctggtggc cctcagacgt gccccctgatt tcgggaacaa 180
aagcgtgatac ttgcttggtc gcaccagccc ctgtttcctc gaagaacagc gcccaggttt 240
tcgagtcaag cacagcctcc cacacgcgtgg ccacagcaag aagtcctgtaa aagatcagcg 300
tcctcaggca caggtgatga cccagcaacgc ctctcagttg ctcctgctgt ccagagcctg 360
cagcgtcact gccctcagct ggccagcagc ctaacaacagc cagagcagcgc acagtgacgc 420
taatcttcatgtgtgagg gatgatgtgctg tggcctcggc gcagcacacc acagctcttg 480
caccctggct gacagccttg aatgatgtgtg atcctgatgctc tcttcctatct cagctctcctg 540
agcgccaatc gacatgattac gtcaccagctgg gcagcatttg ctcctgatcctt aatcctcctc
580
ggtcggctcct ggaacatcatg tctctgtggtg tggcggcggt gttcttacatg acatgcacatc
620
2. PSA 2: SEQ ID NO:1, comprising one or more or any combination of
Thr40, Met112, and/or deletion of one or more of Tyr225, Arg226,
Lys227, Trp228, Ile229, Lys230, Asp231, Thr232, Ile233, Val234,
Ala235, Asn236, Pro237.
3. PSA 3: cDNA sequence with introns (SEQ ID NO:3):
aagtttcccc tctccccgctc caagaccaca aatccacaca aagggccaaacc tccccacgact 61
caagatacttg tctggggtcgct gtgatgtctg tctcttctctg atccccctgtg tcaacctctgc 121
tccgacagca taagcctgtt ccacaccagc ccacacccaa cggcagaaaa cagggaagat 181
tgacagatttg cccagccccct cccagccccct cctccagctgc tggcagagct ccaaccgctt 241
tcttcctgcc ccctgtgtat cctacaacac cttcataata ccatacttgct tctgcacccct 301
cccagctctct ctcttcacccc cttcttttcag gatctagtac cccccctcagc ggtctgctcg 361
ctcttcctct cttgcacctc ggtggtgcgg ggtggtgctgg ggtggtcagc caccctctctt 421
aggtgatcctg agccctttgct gtgcggagcc aggctgctgctg tgtctttgcag ccctctctct 481
ggtctccac accgtacacc gcagcagcttc tggctgtgctg ctaacagcctg cggagatccttt 541
gccgttcacct cagtcctcagc ctaagcacac ccacagttacct gttctgcagtc ggcaggcacc 601
ttcggtgctc cagagcaggg cagagcaggg gacagccagc ccacagccct cccaccaccct 661
tctgacagcttc ctcgagggcc cagccagcagc ctcagcctgct cgcagctgtgc ggcgggagct 721
gcatgagaac cagagcagagt tggacccccc gcagaaatcc atcttggtgctg cccctctctc
781
ttcctacagaa ctgatggctgt gtcacccacc ctccagcagc ggctttctctc tcagtaaaa
841
gagctgctgctg atcagctgctg gtggctgtgctg tcccctcttct gcagcagcttc tcccctcttt 901
cttgacagcttg gacagggccc aaaaaaccac gtcggggtctg tggcggggct ccccctctct 961
gacatcttcct gtaacaccaag gttggtgctgc acgcagtggt gcagagcagagc cccagctgtg
1021
gcttcctccct gtaacaccaag gttggtgctgc acgcagtggt gcagagcagagc cccagctgtg 1081
3. rhesus macaque PSA (SEQ ID NO:4):

Ile Val Gly Gly Trp Glu Cys Glu Lys His Ser Gln Pro Trp Gln Val
1 5 10 15

Leu Val Ala Ser Arg Gly Arg Ala Val Cys Gly Gly Val Leu Val His
20 25 30

Pro Gln Trp Val Leu Thr Ala Ala His Cys Ile Arg Ser Asn Ser Val
35 40 45

Ile Leu Leu Gly Arg His Asn Pro Tyr Tyr Pro Glu Asp Thr Gly Gln
50 55 60

Val Phe Gln Val Ser His Ser Phe Pro His Pro Leu Tyr Asn Met Ser
65 70 75 80

Leu Leu Lys Asn Arg Tyr Leu Gly Pro Gly Asp Asp Ser Ser His Asp
85 90 95

Leu Met Leu Arg Leu Ser Glu Pro Ala Glu Ile Thr Asp Ala Val
100 105 110

Gln Val Leu Asp Leu Pro Thr Trp Glu Pro Leu Gly Thr Thr Cys
115 120 125

Tyr Ala Ser Gly Trp Gly Ser Ile Glu Pro Glu Glu His Leu Thr Pro
130 135 140

Lys Lys Leu Gln Cys Val Asp Leu His Ile Ile Ser Asn Asp Val Cys
145 150 155 160

Ala Gln Val His Ser Gln Lys Val Thr Lys Phe Met Leu Cys Ala Gly
165 170 175

Ser Trp Met Gly Gly Lys Ser Thr Cys Ser Gly Asp Ser Gly Gly Pro
180 185 190

Leu Val Cys Asp Gly Val Leu Gln Gly Ile Thr Ser Trp Gly Ser Gln
195 200 205

Pro Cys Ala Leu Pro Arg Arg Pro Ser Leu Tyr Thr Lys Val Val Arg
210 215 220 225
Tyr Arg Lys Trp Ile Gln Asp Thr Ile Met Ala Asn Pro
225
230
235

PSA 4: rhesus PSA : SEQ ID NO:4, comprising one or more or any
combination of Thr40, Met112, and/or deletion of one or more of
Tyr225, Arg226, Lys227, Trp228, Ile229, Gln230, Asp231, Thr232,
Ile233, Met234, Ala235, Asn236, Pro237.

4. CTL epitopes from PSA

PSA antigen SEQ ID NO:5:
Phe Leu Thr Pro Lys Lys Leu Gln Cys Val
1 5 10

PSA antigen SEQ ID NO:6:
Lys Leu Gln Cys Val Asp Leu His Val
1 5

PSA antigen SEQ ID NO:7:
Val Ile Ser Asn Asp Val Cys Ala Gln Val
1 5 10

PSA antigen SEQ ID NO:8:
Val Leu Val His Pro Gln Trp Val Leu
1 5

PSA antigen SEQ ID NO:9
Gln Val His Pro Gln Lys Val Thr Lys
1 5

5. PSA antigen SEQ ID NO:10:
Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly Ala Ala Pro Leu
1 5 10 15

Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu Lys His Ser Gln
20 25 30

Pro Trp Gln Val Leu Val Ala Ser Arg Gly Arg Ala Val Cys Gly Gly
35 40 45

Val Leu Val His Pro Gln Trp Val Leu Thr Ala Ala His Cys Ile Arg
50 55 60

Asn Lys Ser Val Ile Leu Leu Gly Arg His Ser Leu Phe His Pro Glu
65 70 75 80

Asp Thr Gly Gln Val Phe Gln Val Ser His Ser Phe Pro His Pro Leu
85 90 95

Tyr Asp Met Ser Leu Leu Lys Asn Arg Phe Leu Arg Pro Gly Asp Asp
100 Ser Ser His Asp Leu Met Leu Leu Arg Leu Ser Glu Pro Ala Glu Leu
115 120 125

Thr Asp Ala Val Lys Val Met Asp Leu Pro Thr Gln Glu Pro Ala Leu
130 135 140

Gly Thr Thr Cys Tyr Ala Ser Gly Trp Gly Ser Ile Glu Pro Glu Glu
145 150 155 160

Phe Leu Thr Pro Lys Leu Gln Cys Val Asp Leu His Val Ile Ser
165 170 175

Asn Asp Val Cys Ala Gln Val His Pro Gln Lys Val Thr Lys Phe Met
180 185 190

Leu Cys Ala Gly Arg Trp Thr Gly Gly Ser Thr Cys Ser Trp Val
195 200 205

Ile Leu Ile Thr Glu Leu Thr Met Pro Ala Leu Pro Met Val Leu His
210 215 220

Gly Ser Leu Val Pro Trp Arg Gly Gly Val
225 230

PSA cDNA (SEQ ID NO:11)

gttgtcttc ctcaccctctg ccggtacggt gattgtggga ggttgtcgtgc
tcctggtcgt gcagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 60
gattgtggga ggtgttcgg agtttcgccct tctttcatcct tcgtttcgtg
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 120
tctgtctgct gcacgttggtg ccacaagccag gacacgccag cagtcaccttc
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 180
cagtcaccttc acacgtggtg cagtcaccttc acacgtggtg cagtcaccttc
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 240
cagtcaccttc acacgtggtg cagtcaccttc acacgtggtg cagtcaccttc
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 300
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 360
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 420
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 480
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 540
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 600
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 660
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 720
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 780
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 840
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 900
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 960
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 1020
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 1080
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 1140
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 1200
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 1260
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 1320
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 1380
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 1440
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 1500
tcctgtctgtc acagcagcc gcacccttcc taccatcgcgtg gatctgtgtctg 1560
PSA ANTIGEN AA SEQ ID NO: 12

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val</td>
<td>Val</td>
<td>Phe</td>
<td>Leu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile</td>
<td>Leu</td>
<td>Ser</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>Trp</td>
<td>Gln</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val</td>
<td>Leu</td>
<td>Val</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asn</td>
<td>Lys</td>
<td>Ser</td>
<td>Val</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp</td>
<td>Thr</td>
<td>Gly</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>100</th>
<th>105</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr</td>
<td>Asp</td>
<td>Met</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>115</th>
<th>120</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>His</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>130</th>
<th>135</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thr</td>
<td>Asp</td>
<td>Ala</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>145</th>
<th>150</th>
<th>155</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>Thr</td>
<td>Cys</td>
<td>Tyr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>165</th>
<th>170</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cys</td>
<td>Thr</td>
<td>Pro</td>
</tr>
</tbody>
</table>

PSA ANTIGEN DNA SEQ ID NO: 13

ggtgtcttc ctcaaccttg ccgtgacttg gattggtgct gcacccctca
ttcggcttcg 60
gattggtggga ggctgggagtt gcgcgagtaa tttccaaaa cttgcaagtt
ttgggggctcg 120
tgcggcagg gcaggtctgct gcgggtctgct tggcactcttc gcgggtcttc
tcaccagctgc 180
cgccgccac acaggcaataa agcagctgctg tacagctgctc gacagctgctc
tcagatag 300
ccccctgtaa aatcggctgc tccggtccaggt ggtgcaagtt acctgctgctc
tgagccgaccc 360
cgagccgaccc cgagccgactg caagccgagc ggtgcaagtt ccgccagctg
tgagccgaccc 420
ggagccgaccc ctgagccgctg accgctgctg gcgtggtggct ggtgcaagtt
tgagccgaccc 480
ggtggggctg gcgggtggtct gcgggtggtct gcgggtggtct gcgggtggtct
ggagccagattt gtcagctggct gacagcagctt gcgggtggtct gcgggtggtct
ggagccgaccc 540
gggacaggac tccctgggtct gagggagag ggcccaaggaa cgaggtgggg
tccagccccac 600
aacagtttt tttgcctggc ccgtagttct gcaccccaag aaacctcagt gtgtggac
658

PSA ANTIGEN AA SEQ ID NO: 14

Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly Ala Ala Pro Leu
1 5 10 15
Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu Lys His Ser Gln
20 25 30
Pro Trp Gln Val Leu Val Ala Ser Arg Gly Ala Val Cys Gly Gly
35 40 45
Val Leu Val His Pro Gln Trp Val Leu Thr Ala Ala His Cys Ile Arg
50 55 60
Asn Lys Ser Val Ile Leu Leu Gly Arg His Ser Leu Phe His Pro Glu
65 70 75 80
Asp Thr Gly Gln Val Phe Gln Val Ser His Ser Phe Pro His Pro Leu
85 90 95
Tyr Asp Met Ser Leu Leu Lys Asn Arg Phe Leu Arg Pro Gly Asp Asp
100 105 110
Ser Ser His Asp Leu Met Leu Leu Arg Ser Glu Pro Ala Glu Leu
115 120 125
Thr Asp Ala Val Lys Val Met Asp Leu Pro Thr Gln Glu Pro Ala Leu
130 135 140
Gly Thr Thr Cys Tyr Ala Ser Gly Trp Gly Ser Ile Glu Pro Glu Glu
145 150 155 160
Cys Thr Pro Gly Pro Asp Gly Ala Ala Gly Ser Pro Asp Ala Trp Val
165 170 175

PSA ANTIGEN AA SEQ ID NO: 15

Ile Val Gly Gly Trp Glu Cys Glu Lys His Ser Gln Pro Trp Gln Val
1 5 10 15
Leu Val Ala Ser Arg Gly Arg Ala Val Cys Gly Gly Val Leu Val His
20 25 30
Pro Gln Trp Val Leu Thr Ala Ala His Cys Ile Arg Lys Pro Gly Asp
35 40 45
Asp Ser Ser His Asp Leu Met Leu Leu Arg Leu Ser Glu Pro Ala Glu
50 55 60
Leu Thr Asp Ala Val Lys Val Met Asp Leu Pro Thr Gln Glu Pro Ala
65 70 75 80
Leu Gly Thr Thr Cys Tyr Ala Ser Gly Trp Gly Ser Ile Glu Pro Glu
85 90 95
Glu Phe Leu Thr Pro Lys Lys Leu Gln Cys Val Asp Leu His Val Ile
100 105 110
Ser Asn Asp Val Cys Ala Gln Val His Pro Gln Lys Val Thr Lys Phe
115 120 125
Met Leu Cys Ala Gly Arg Trp Thr Gly Gly Lys Ser Thr Cys Ser Gly
130 135 140
Asp Ser Gly Gly Pro Leu Val Cys Asn Gly Val Leu Gln Gly Ile Thr
145 150 155 160
Ser Trp Gly Ser Glu Pro Cys Ala Leu Pro Glu Arg Pro Ser Leu Tyr
165 170 175
Thr Lys Val Val His Tyr Arg Lys Trp Ile Lys Asp Thr Ile Val Ala
180 185 190
Asn Pro

II. KLK2 sequences

KLK2 AA SEQ ID NO:16

| | Ile | Val | Gly | Gly | Trp | Glu | Cys | Glu | Lys | His | Ser | Gln | Pro | Trp | Gln | Val |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | | 5 | | | | | | | | | | | | | |
| Ala | Val | Tyr | Ser | His | Gly | Trp | Ala | His | Cys | Gly | Gly | Val | Leu | Val | His |
| 20 | | | | 25 | | | | | | | | | | | |
| Pro | Gln | Trp | Val | Leu | Thr | Ala | Ala | His | Cys | Leu | Lys | Asn | Ser | Gln |
| 35 | | | 40 | | | | | | | | | | | |
| Val | Trp | Leu | Gly | Arg | His | Asn | Leu | Phe | Glu | Pro | Glu | Asp | Thr | Gly | Gln |
| 50 | | | 55 | | 60 | | | | | | | | | | |
| Arg | Val | Pro | Val | Ser | His | Ser | Phe | Pro | His | Pro | Leu | Tyr | Asn | Met | Ser |
| 65 | | 70 | 75 | | 80 | | | | | | | | | | |
| Leu | Leu | Lys | His | Gln | Ser | Leu | Arg | Pro | Asp | Glu | Asp | Ser | Ser | His | Asp |
| 85 | | 90 | | | | | | | | | | | | | |
| Leu | Met | Leu | Arg | Leu | Ser | Glu | Pro | Ala | Lys | Ile | Thr | Asp | Val | | |
| 100| 105 | | | | | | | | | | | | | | |
| Lys | Val | Leu | Gly | Leu | Pro | Thr | Gln | Glu | Pro | Ala | Leu | Gly | Thr | Thr | Cys |
| 115| 120 | | | | | | | | | | | | | | |
| Tyr | Ala | Ser | Gly | Trp | Gly | Ser | Ile | Glu | Pro | Glu | Glu | Phe | Leu | Arg | Pro |
| 130| 135 | | | | | | | | | | | | | | |
| Arg | Ser | Leu | Gln | Cys | Val | Ser | Leu | His | Leu | Leu | Ser | Asn | Asp | Met | Cys |
| 145| 150 | | | | | | | | | | | | | | |
| Ala | Arg | Ala | Tyr | Ser | Glu | Lys | Val | Thr | Glu | Phe | Met | Leu | Cys | Ala | Gly | 26 |
165 170 175
Leu Trp Thr Gly Gly Lys Asp Thr Cys Gly Gly Asp Ser Gly Gly Pro
180 185 190
Leu Val Cys Asn Gly Val Leu Gln Gly Ile Thr Ser Trp Gly Pro Glu
195 200 205
Pro Cys Ala Leu Pro Glu Lys Pro Ala Val Tyr Thr Lys Val Val His
210 215 220
Tyr Arg Lys Trp Ile Lys Asp Thr Ile Ala Ala Asn Pro
225 230 235

KLK2 DNA SEQ ID NO:17

gctggatgtcg tggcgatcgct ctcttggtctct cagactctcct ggagctggag acaagagaat 60
cgttggagtc tggaggtgct acagctcagag sgcgtgggat cagctcgcagc cacttcagcc 120
tgggaaacag agttgagactg tttctcagcatt ttttctaaaa agaattcagg atcatcaccaga 180
ccctctttgt gggtctccatct gacgctgccttc tagctgcctctg tttctctcctct atctactcctctct 240
cattactcaat gtacctggtgct gccgttgagcc acctctgtgct gatgctggcagt ttctggttctct 300
tccatctgctct gtctgctgctt gtaacacccatg cagatgctgct gttctgctgct ctctgtgtcatt 360
agggcttgct ccacgcttcct ctgagctggct gtcagctgct ccagctggagt ctctgtgtcttctt 420
agggccaaag cggccttcttg gtaagctggag aacagatcag aagctgctggct gcggcccccc 480
agcccaaaac gccggtgcctg agctgctggag cactccctccat gacgctggcagt ctctgtgtcatt 540
tcttattggtg tttaacaaaccc tcctggggcc ctagctgtgct ccagctggagt ctctgtgtcatt 600
atcactctgcttg ctgctctgctct cgcgtgctggag aacagatcag aagctgctggct gcggcccccc 660
agcttgtgagct atcaacatttc gtagctccatg cgtctgctgctt gtaagctggag aacagatcag aagctgctggct gcggcccccc 720
agggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 780
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 840
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 900
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 960
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1020
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1080
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1140
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1200
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1260
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1320
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1380
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1440
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1500
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1560
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1620
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1680
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1740
aggggaaacac gtcgctgcttt ctctgctgctgct ctagctgtgct ccagctggagt ctctgtgtcatt 1800
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 1860
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 1920
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 1980
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 2040
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 2100
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 2160
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 2220
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 2280
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 2340
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 2400
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 2460
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 2520
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 2580
agggcggagag tggaggtgctg cgccttcctgct cgccttcctgct cgccttcctgct cgccttcctgct 2640
caggagtttg aaaccacgctt ggcccaaacat gcacaaaccgcc ctgtctctacta aaatatcaca 2700
gagttagccag gcgggtggtgc ggccggctgg ataccaattattctagggagc tcggagagc agctgctggcc actggactcct 2760
vaaggcttcag acggccgggag cagaggtggtg cagtgagccg gaggtaggtt actggctacct 2820
agcctgggttg acagagcaag acggccaggc agaacaacag aacaaacaaa caacacacaa caacacacaa 2880
aaaaagnatga aagggagggc aagagctcgg gagagagaga ggggacgtgg cccttgagctg 2940
ctggccggcgc cacccgccccg tcacagccgc ctctgctcagc gaggttcggc gctggtccccag 3060
cacctcatgc tctcttccct ctctctctctc ctctctctctc ctctctctctc ctctctctctc 3120
tcttctcttata ccttcctctc ctctctctctc ctctctctctc ctctctctctc ctctctctctc 3180
tcttcctttcc tcttcctttcc ctctctctctc ctctctctctc ctctctctctc ctctctctctc 3240
tctctacatc atctgcttct ctcctccttc ctcctccttc ctcctccttc ctcctccttc 3300
tctactttttc cttctttttt cttctttttt cttctttttt cttctttttt cttctttttt 3360
tctttttctct ctcttctctct cttctttctct cttctttctct cttctttctct cttctttctct 3420
tttctctactc cttttttctct cttttttctct cttttttctct cttttttctct cttttttctct 3480
ttttttttttt ctttttttttt ctttttttttt ctttttttttt ctttttttttt ctttttttttt 3540
tttctctactc cttttttctct cttttttctct cttttttctct cttttttctct cttttttctct 3600
ttttttttttt ctttttttttt ctttttttttt ctttttttttt ctttttttttt ctttttttttt 3660
agacacccag cacatgttctt ctttggtgccag aagagctcgg gggggctcctc gaggtgtatgg 3720
actgctggttc atctgcttct ctcctcctctc ctctctctctc ctctctctctc ctctctctctc 3780
tgtcgacttc ccctctgcttc ccctctgcttc ccctctgcttc ccctctgcttc ccctctgcttc 3840
ggctgtgctg gcacagggc gtctgtgttc ccctctgcttc ccctctgcttc ccctctgcttc 3900
tctctctctct ctcctctctct ctcctctctct ctcctctctct ctcctctctct ctcctctctct 3960
tgtgtggttgc ctcctctctct ctcctctctct ctcctctctct ctcctctctct ctcctctctct 4020
agtctgctgg gaggagagac ggtgtaagac cacaaccacc ggtgtaagac cacaaccacc 4080
ctctctctct ctcctctctct ctcctctctct ctcctctctct ctcctctctct ctcctctctct 4140
cacaacccag cacaacccag cacaacccag cacaacccag cacaacccag cacaacccag 4200
ctctctctct ctcctctctct ctcctctctct ctcctctctct ctcctctctct ctcctctctct 4260
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 4320
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 4380
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 4440
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 4500
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 4560
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 4620
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 4680
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 4740
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 4800
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 4860
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 4920
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 4980
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5040
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5100
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5160
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5220
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5280
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5340
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5400
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5460
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5520
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5580
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5640
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5700
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5760
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5820
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5880
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 5940
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 6000
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 6060
tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct tttctctctct 6120

28
human KLK2 AA SEQ ID NO:18

Ile Val Gly Gly Trp Glu Cys Glu Lys His Ser Gln Pro Trp Gln Val
1 5 10 15

Ala Val Tyr Ser His Gly Trp Ala His Cys Gly Gly Val Leu Val His
20 25 30

Pro Gln Trp Val Leu Thr Ala Ala His Cys Leu Lys Lys Asn Ser Gln
35 40 45

Val Trp Leu Gly Arg His Asn Leu Phe Glu Pro Glu Asp Thr Gly Gln
50 55 60

Arg Val Pro Val Ser His Ser Phe Pro His Pro Leu Tyr Asn Met Ser
65 70 75 80

Leu Leu Lys His Gln Ser Leu Arg Pro Asp Glu Asp Ser Ser His Asp
85 90 95

Leu Met Leu Leu Arg Leu Ser Glu Pro Ala Lys Ile Thr Asp Val Val
100 105 110

Lys Val Leu Gly Leu Pro Thr Gln Glu Pro Ala Leu Gly Thr Thr Cys
115 120 125

Tyr Ala Ser Gly Trp Gly Ser Ile Glu Pro Glu Glu
130 135 140

human KLK2 AA SEQ ID NO:19

Ile Val Gly Gly Trp Glu Cys Glu Lys His Ser Gln Pro Trp Gln Val
1 5 10 15

Ala Val Tyr Ser His Gly Trp Ala His Cys Gly Gly Val Leu Val His
20 25 30

Pro Gln Trp Val Leu Thr Ala Ala His Cys Leu Lys Lys Asn Ser Gln
35 40 45

Val Trp Leu Gly Arg His Asn Leu Phe Glu Pro Glu Asp Thr Gly Gln
50 55 60

Arg Val Pro Val Ser His Ser Phe Pro His Pro Leu Tyr Asn Met Ser
65 70 75 80

Leu Leu Lys His Gln Ser Leu Arg Pro Asp Glu Asp Ser Ser His Asp
85 90 95

Leu Met Leu Leu Arg Leu Ser Glu Pro Ala Lys Ile Thr Asp Val Val
100 105 110

Lys Val Leu Gly Leu Pro Thr Gln Glu Pro Ala Leu Gly Thr Thr Cys
115 120 125

Tyr Ala Ser Gly Trp Gly Ser Ile Glu Pro Glu Glu
Arg Ser Leu Gln Cys Val Ser Leu His Leu Leu Ser Asn Asp Met Cys
145 150 155 160

Ala Arg Ala Tyr Ser Glu Lys Val Thr Glu Phe Met Leu Cys Ala Gly
165 170 175

Leu Trp Thr Gly Gly Lys Asp Thr Cys Gly Val Ser His Pro Tyr Ser
180 185 190

Gln His Leu Glu Gly Lys Gly
195

III. MUC1 Sequences

human MUC1 AA: (SEQ ID NO:20)

Met Thr Pro Gly Thr Glu Ser Pro Phe Phe Leu Leu Leu Leu Thr
1 5 10 15

Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly
20 25 30

Gly Glu Lys Glu Thr Ser Ala Thr Glu Arg Ser Ser Val Pro Ser Ser
35 40 45

Thr Glu Lys Asn Ala Val Ser Met Thr Ser Ser Val Leu Ser Ser His
50 55 60

Ser Pro Gly Ser Gly Ser Ser Thr Thr Gln Gly Gln Asp Val Thr Leu
65 70 75 80

Ala Pro Ala Thr Glu Pro Ala Ser Gly Ser Ala Ala Thr Trp Gly Glu
85 90 95

Asp Val Thr Ser Val Pro Val Thr Arg Pro Ala Leu Gly Ser Thr Thr
100 105 110

Pro Pro Ala His Asp Val Thr Ser Ala Pro Asp Asn Lys Pro Ala Pro
115 120 125

Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Thr
130 135 140

Arg Pro Pro Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser
145 150 155 160

Ala Pro Asp Thr Arg Pro Pro Pro Gly Ser Thr Ala Pro Ala Ala His
165 170 175

Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala Pro Gly Ser Thr Ala
180 185 190

Pro Pro Ala His Gly Val Thr Ser Ala Pro Asp Asn Arg Pro Ala Leu
195 200 205

Ala Ser Thr Ala Pro Pro Val His Asn Val Thr Ser Ala Ser Gly Ser
210 215 220

Ala Ser Gly Ser Ala Ser Thr Leu Val His Asn Gly Thr Ser Ala Arg
225 230 235 240
Ala Thr Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser Ser Ile Pro Ser 245
His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His Ser Thr Lys Thr 260
Asp Ala Ser Thr His Ser Thr Val Pro Pro Leu Thr Thr Ser Ser 275
Asn His Ser Thr Ser Pro Gln Leu Ser Thr Gly Val Ser Phe Phe Phe 290
Leu Ser Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu Asp 305
Pro Ser Thr Asp Tyr Tyr Gln Glu Leu Gln Arg Asp Ile Ser Glu Met 325
Phe Leu Gln Ile Tyr Lys Gln Gly Phe Leu Gly Leu Ser Asn Ile 340
Lys Phe Arg Pro Gly Ser Val Val Val Gln Leu Thr Leu Ala Phe Arg 355
Glu Gly Thr Ile Asn Val His Asp Val Glu Thr Gln Phe Asn Gln Tyr 370
Lys Thr Glu Ala Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser 385
Val Ser Asp Val Pro Phe Pro Phe Ser Ala Gln Ser Gly Ala Gly Val 405
Pro Gly Trp Gly Ile Ala Leu Leu Val Leu Val Cys Val Leu Val Ala 420
Leu Ala Ile Val Tyr Leu Ile Ala Leu Ala Val Cys Gln Cys Arg Arg 435
Lys Asn Tyr Gly Gln Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His 450
Pro Met Ser Glu Tyr Pro Thr Tyr His Thr His Gly Arg Tyr Val Pro 465
Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Val Ser Ala Gly Asn 485
Gly Gly Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser 500
Ala Asn Leu 515

MUC1 DNA sequence: (SEQ ID NO:21)
gaattccctg gctgcttgaa tctgctctg cccctccccca cccatctcac caccaccatg 60
acaccgggca cccaggttcc ttctttctcg tgctgtgctc tcacagtgtc tacaggttgttt 120
acaggtctcg gtcagtcgaag ctctacccca ggtggagaaa agggagactc ggcattccccag 180
agaagttcag tgccccagctc tactgagaag aatgctgtga gtagaccag cagcggtactc 240
1. Complete coding sequence of MUC1 (genomic and protein translation, but does not include complete set of tandem repeats, probably in interest of space):

SEQ ID NO:22

<table>
<thead>
<tr>
<th></th>
<th>Met</th>
<th>Thr</th>
<th>Pro</th>
<th>Gly</th>
<th>Thr</th>
<th>Gln</th>
<th>Ser</th>
<th>Pro</th>
<th>Phe</th>
<th>Phe</th>
<th>Leu</th>
<th>Leu</th>
<th>Leu</th>
<th>Leu</th>
<th>Thr</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Val</td>
<td>Leu</td>
<td>Thr</td>
<td>Val</td>
<td>Val</td>
<td>Thr</td>
<td>Gln</td>
<td>Ser</td>
<td>Gly</td>
<td>His</td>
<td>Ala</td>
<td>Ser</td>
<td>Ser</td>
<td>Thr</td>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gly</td>
<td>Glu</td>
<td>Lys</td>
<td>Thr</td>
<td>Ser</td>
<td>Ala</td>
<td>Thr</td>
<td>Gln</td>
<td>Arg</td>
<td>Ser</td>
<td>Val</td>
<td>Pro</td>
<td>Ser</td>
<td>Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td>40</td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thr</td>
<td>Glu</td>
<td>Lys</td>
<td>Asn</td>
<td>Ala</td>
<td>Val</td>
<td>Ser</td>
<td>Met</td>
<td>Thr</td>
<td>Ser</td>
<td>Ser</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
<td>His</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>55</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>Pro</td>
<td>Gly</td>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
<td>Thr</td>
<td>Gln</td>
<td>Gly</td>
<td>Gly</td>
<td>Asp</td>
<td>Val</td>
<td>Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>65</td>
<td></td>
<td>70</td>
<td>75</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ala</td>
<td>Pro</td>
<td>Ala</td>
<td>Thr</td>
<td>Gln</td>
<td>Gly</td>
<td>Ser</td>
<td>Ala</td>
<td>Ala</td>
<td>Thr</td>
<td>Trp</td>
<td>Gly</td>
<td>Gln</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Asp</td>
<td>Val</td>
<td>Thr</td>
<td>Ser</td>
<td>Val</td>
<td>Thr</td>
<td>Arg</td>
<td>Pro</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Ser</td>
<td>Thr</td>
<td>Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>105</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Pro</td>
<td>Pro</td>
<td>Ala</td>
<td>His</td>
<td>Asp</td>
<td>Val</td>
<td>Thr</td>
<td>Ser</td>
<td>Ala</td>
<td>Pro</td>
<td>Asp</td>
<td>Asn</td>
<td>Lys</td>
<td>Pro</td>
<td>Ala</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>120</td>
<td></td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gly</td>
<td>Ser</td>
<td>Thr</td>
<td>Pro</td>
<td>Ala</td>
<td>Pro</td>
<td>Ala</td>
<td>His</td>
<td>Gly</td>
<td>Val</td>
<td>Thr</td>
<td>Ser</td>
<td>Ala</td>
<td>Pro</td>
<td>Asp</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>135</td>
<td></td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

32
| Arg Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala His Gly Val Thr Ser |
|---------------|------------|------------|------------|------------|
| 145 | 150 | 155 | 160 |
| Ala Pro Asp Asn Arg Pro Ala Leu Gly Ser Thr Ala Pro Pro Val His |
| 165 | 170 | 175 |
| Asn Val Thr Ser Ala Ser Gly Ser Ala Ser Gly Ser Ala Ser Thr Leu |
| 180 | 185 | 190 |
| Val His Asn Gly Thr Ser Ala Arg Ala Thr Thr Thr Pro Ala Ser Lys |
| 195 | 200 | 205 |
| Ser Thr Pro Phe Ser Ile Pro Ser His Ser Asp Thr Pro Thr Thr |
| 210 | 215 | 220 |
| Leu Ala Ser His Ser Thr Lys Thr Asp Ala Ser Ser Thr His Ser |
| 225 | 230 | 235 | 240 |
| Thr Val Pro Leu Thr Ser Ser Asn His Ser Thr Ser Pro Gln Leu |
| 245 | 250 | 255 |
| Ser Thr Gly Val Ser Phe Phe Phe Leu Ser Phe His Ile Ser Asn Leu |
| 260 | 265 | 270 |
| Gln Phe Asn Ser Ser Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln Glu |
| 275 | 280 | 285 |
| Leu Gln Arg Asp Ile Ser Glu Met Phe Leu Gln Ile Tyr Lys Gln Gly |
| 290 | 295 | 300 |
| Gly Phe Leu Gly Leu Ser Asn Ile Phe Arg Pro Gly Ser Val Val |
| 305 | 310 | 315 | 320 |
| Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His Asp |
| 325 | 330 | 335 |
| Val Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ser Arg Tyr |
| 340 | 345 | 350 |
| Asn Leu Thr Ile Ser Asp Val Ser Val Ser Asp Val Pro Phe Pro Phe |
| 355 | 360 | 365 |
| Ser Ala Gln Ser Gly Ala Gly Val Pro Gly. Trp Gly Ile Ala Leu Leu |
| 370 | 375 | 380 |
| Val Leu Val Cys Val Leu Val Ala Lea Ile Val Tyr Leu Ile Ala |
| 385 | 390 | 395 | 400 |
| Leu Ala Val Cys Gln Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp Ile |
| 405 | 410 | 415 |
| Phe Pro Ala Arg Thr Tyr His Pro Met Ser Glu Tyr Pro Thr Tyr |
| 420 | 425 | 430 |
| His Thr His Gly Arg Tyr Val Pro Pro Ser Thr Asp Arg Ser Pro |
| 435 | 440 | 445 |
| Tyr Glu Lys Val Ser Ala Gly Asn Gly Gly Ser Ser Leu Ser Tyr Thr |
| 450 | 455 | 460 |
Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu

MUC-1 DNA SEQ ID NO:23

gaaattcagaa tttttagacct gttggtccttg tggagacacct gaggtctaag 60
cctacgccttc ttcagccacac agagaccttt ctctggtctcc caaagagatt tcagtcacccag 120
agggcgccatt cccacccactac agggatgagat agtttcttaag ggtggtactact caggcactaa 180
ccccgcggaga cttggagaccc catttcgctttca aattttggtct ttttttggta gccgtacgta 240
tctgttatttt cttggtttttcc gggggttaggt gttggggaagtt ggaaaggaacct gcggagatag 300
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 360
ggcgggtgggg gaggtgctggt atggaggttaa gttaagagatg ggtgtctgtaa gggaaggtatgc 420
cccagaggct cctagaacacct cttactccatg gtggagagcg ggcaacaccc gccatctcataa 480
gatgcgcggcc gatggagaggc cagggagcgcgg ggggctccccc ggagggtgagc ggagggcgcc 540
ggccgcggcg ggcggacaggc aacagggagt gtaaggggtt tattggccag cgggaaagaca 600
ccgtagtggtc cctctgtgagc gtcgttttgc ggtggtgacg gccgtacgta cagagacttg 660
ccacgcagcg acggcaccagc cttccttcccag tcgggagggc tatgggtgaa atggaggtgct 720
gggcagagac cccacccgagc gagggtgctggt atggaggttaa tcgctagagc ggggaagggcgc 780
tccgagaaag cctcttgtctc cccacccgagc cgggaggggc ggtggttgtgc tggggtcgttg 840
tctcgccggtt ctctcctgatg cgggtggtgac ggtggtgacg gccgtacgta cagagacttg 900
ttgtctggtca tctggtggtgt gggagagggc ggctccctgt caagagacttg gctctgtgtaa 960
cggcgcgggg atggagagttt cctctgctgag gcggagaggg gccggcagggc gtgggtgacg 1020
gatgcgcgggg cggcgcgggg cacctggtggt ccgggagggg cgtggtgacg gccgtacgta 1080
gcgagggcggc ccggagggcg cgcgtgtggtt cacccagtgc cacacccagc gccgtacgta 1140
tccgctctctt cctctctctct cgggaggggc cgtggtgacg gccgtacgta cagagacttg 1200
ccgccggttt tctagagacgg gcgggagggc ggggaggggc ggtggtgacg gccgtacgta 1260
gggcagagac cccacccgagc gagggtgctggt atggaggttaa tcgctagagc ggggaagggcgc 1320
tccgagaaag cctcttgtctc cccacccgagc cgggaggggc ggtggttgtgc tggggtcgttg 1380
tctcgccggtt ctctcctgatg cgggtggtgac ggtggtgacg gccgtacgta cagagacttg 1440
atccacccac atccacccac atccacccac atccacccac gggagagggc ggctccctgt caagagacttg 1500
ttgtctggtca tctggtggtgt gggagagggc ggctccctgt caagagacttg gctctgtgtaa 1560
cggcgcgggg atggagagttt cctctgctgag gcggagaggg gccggcagggc gtgggtgacg 1620
ctccaggggtt ccagcggttt actcctgttg tggagagggg pccagacccag gccgtacgta 1680
ccgccggttt tctagagacgg gcgggagggc ggggaggggc ggtggtgacg gccgtacgta 1740
ccgccggttt tctagagacgg gcgggagggc ggggaggggc ggtggtgacg gccgtacgta 1800
atccacccac atccacccac atccacccac atccacccac gggagagggc ggctccctgt caagagacttg 1860
tccgagaaag cctcttgtctc cccacccgagc cgggaggggc ggtggttgtgc tggggtcgttg 1920
tctcgccggtt ctctcctgatg cgggtggtgac ggtggtgacg gccgtacgta cagagacttg 1980
tctcgccggtt ctctcctgatg cgggtggtgac ggtggtgacg gccgtacgta cagagacttg 2040
tccgagaaag cctcttgtctc cccacccgagc cgggaggggc ggtggttgtgc tggggtcgttg 2100
tctcgccggtt ctctcctgatg cgggtggtgac ggtggtgacg gccgtacgta cagagacttg 2160
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2220
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2280
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2340
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2400
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2460
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2520
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2580
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2640
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2700
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2760
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2820
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2880
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 2940
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 3000
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 3060
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 3120
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 3180
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 3240
agagcgaaggc tggagaggttt gtaaggattct atctagggatt atttttggtgct atttgggat 3300
<p>| agagagaagg | aggetgcgtcg | aggagaagag | gcttccaccg | caggggttac | tgaggctgcc | 3360 |
| cactcccccaag | tccctcggtgt | attatcttctt | tgggggccag | aggttatattt | ttctctcggcc | 3420 |
| ttctatattttt | ttcctcataaa | gacccaaccct | tagactattta | actctctcacta | gcctaccacag | 3480 |
| ccccttaccac | cggcaacagct | tgcctcagttg | gtgggtctgc | aagctttgccca | cctgaagggccc | 3540 |
| aagaagagac | ttctggtcacc | cagagatttt | cagtgccagc | ctctcagcagtac | aagagaagtc | 3600 |
| taggttagac | ctagcagcgtt | ctagcagcgtt | acacgccccg | cgcctggtgcc | ttggaccacct | 3660 |
| agggacaggag | tgtctcctcag | gcggccggcc | cggacacagc | ttctggtcagttagctt | gcctaccact | 3720 |
| gggcagcaggag | tggccacccgg | cccccggggc | cagccccggg | cccccgccccg | ggggccccg | 3780 |
| cggcagcagct | ttctggtcacc | gcttccacca | acacgccccg | cccggccacc | cggccccggg | 3840 |
| cagggccagcag | tggccacccgg | cggcggggcc | cccggccacc | cggccccggg | cccggccacc | 3900 |
| cagccctggag | cgtctccctcag | cggccggcag | cggccggcc | ccacgccccg | gcctaccacct | 3960 |
| cagctcccaaaa | tgcctccctct | ggtcctggtgct | cttccctgtc | cgcctcctct | cgcctcctct | 4020 |
| ccacctctcccc | catcctccctact | tgcctcctct | cgcctcctct | cgcctcctct | cgcctcctct | 4080 |
| catcctccctact | cgagcttccctc | ttccttctttt | ttccttctttt | ccaacttttca | aacccctcact | 4140 |
| ttaacctctttt | ccagtctggccag | ctccttttctt | cgtggggttcg | ctccttttctt | cttccttttctt | 4200 |
| tggcacttcag | gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | 4260 |
| gctttctcttct | actactctctct | ctcctttctttt | cctctctctct | tccagtttccc | actctctctct | 4320 |
| tggcacttcag | gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | 4380 |
| tggcacttcag | gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | 4440 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 4500 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 4560 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 4620 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 4680 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 4740 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 4800 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 4860 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 4920 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 4980 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5040 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5100 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5160 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5220 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5280 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5340 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5400 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5460 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5520 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5580 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5640 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5700 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5760 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5820 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5880 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 5940 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6000 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6060 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6120 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6180 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6240 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6300 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6360 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6420 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6480 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6540 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6600 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6660 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6720 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6780 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6840 |
| gctttctcttct | cttcctttttt | tccagtttccc | actctctctct | actctctctct | actctctctct | 6900 |</p>
<table>
<thead>
<tr>
<th>2. 3' end of MUC1 gene (contains exon 7, polyA signal and flanking region)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQ ID NO: 24</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggtaccttttt gctccctacc ctggatctctt tttccttccaa ccaccaggttc tgcagtaat</td>
</tr>
<tr>
<td>ggtggcagca gctctcttta cacaacacca gcagttgcca cactctctgc caactcttgtga</td>
</tr>
<tr>
<td>ggccacagtgg ccgcctgtgc agtggctgca gcaccgcttc ctactctcttt ctactctcttt</td>
</tr>
<tr>
<td>tccgagcagcc agccctgctgc ccctggcttg ggctgttagct ggctgccttg ccctggcttg</td>
</tr>
<tr>
<td>ccagctgtc gcggttgcca acgtgcctcg ggctgctgctg ccctggcttg ccctggctgctg</td>
</tr>
<tr>
<td>tggctggcggag cagctgggctgg ccctggcttg ccctggcttg ccctggcttg ccctggcttg</td>
</tr>
<tr>
<td>gagagtactgag cgtgctggcc tgcgctgcc gcaccgcttc ccctggcttg ccctggcttg</td>
</tr>
<tr>
<td>gggcttgctgc ggctgctgctg ccctggcttg ccctggcttg ccctggcttg ccctggcttg</td>
</tr>
<tr>
<td>ggtacccagtgtgc tggctgctgctg ccctggcttg ccctggcttg ccctggcttg ccctggcttg</td>
</tr>
<tr>
<td>ggtgaggtgta gcacctgctgc gcaccgcttc ccctggcttg ccctggcttg ccctggcttg</td>
</tr>
<tr>
<td>gggctggcttg ccctggcttg ccctggcttg ccctggcttg ccctggcttg ccctggcttg</td>
</tr>
</tbody>
</table>

36
3. 5' end of MUC1 gene (contains promoter and first ATG)

SEQ ID NO: 25

First ATG is shown as last three residues below:

gaattcagaa ttttagaccc ttggtgccctt gggtccatcc tggagacct gaggctcaag 60
cctacgccccc ctaacgaaacc caagacccct ctcttgctcc caaagaggtg tcagttccac 120
agggtgctca ccaacccccc ctccccccct aggctgaaaa aggatattact ctggcactaa 180
cccacgcaggg cgtttgatta cattgctcct ggtttcctct tggattaatt ggcagtcctc 240
tgtatttt ctgattgatt ccgggattg gttgggaggt gtagagacg cagcttttggt 300
agagagatcc cccaggtttg caggtggatt cattagggc aaggtagtag attgggtctt 360
gccgggctgc gctgggctgc atggaggtta agtggtgagg ggctagaag gggagagagg 420
cagagatccct ctcagccaccc ttcctagcag gtcgacccgc gcaatctcaca gttcatcaca 480
gatccgctcg cagagagacg cagagagcgg ggctgcccct tcagtgatcg gggagcgcgg 540
gggcggcgag gcggagcgcc aggagctcct gattgggagc gggaaacact captcggcct 600
gggtcgggct cggccggggc ggtggctgtt ggtggctgtt tgggggggct 660
ccggccgaga ccggccggg ctggaggggt ggttaccctt tgaggccag agagacagtgg 720
ggggagagg ccagagagag cagagagcgg ggctgcccct gtttgccgag ggctgcccct 780
tccagagagc gcgtgggctgc ggctgcccct tcgctgccct tcctctctttt aagtagctgg 840
cctggccggg gactgctgcct gcatgctgcc gcgacccctca gtaaggctcag gtaaggctcag 900

tgggtctgtca atggcgcggag ggctagggag gggcggccct ccctgctcat ggtgtctcccc 960
cggccggcgcc ctcggcctgg ctcggcctgg ctcggcctgg ctcggcctgg ctcggcctgg 1020

gatgtcccca cccggggccc ccgggggggg cggcgcgtgg ctagggtggc tgcgtgctcc 1080
gggtcgggcgc gcctggcgtg gggagttggc cgggtcgggg cgagacagct ggtttctcct 1140
tccgtggctct ccgggagatt ctgggctctct tgggtctgct ggttggctgct tgggtctgct 1200

gactgttctt gtacaattgg cgggagaggg gttgggcttc cgggctctct tgggtctgct 1260

cggccgagaca gtcggtccgt tgggagggg cgggagaggg gttgggcttc cgggctctct 1320
tgctggccac attcttggctg ttgggcttgc gactgggctg tgggtctgct ggtttctcct 1380

tctgggcggct ctcgggctgc ctcgggctgc ctcgggctgc ctcgggctgc ctcgggctgc 1440

4. Differentially spliced forms of MUC1

37
a. cDNA sequence of "MUC1 seq": (SEQ ID NO:26)

<table>
<thead>
<tr>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>115</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>145</td>
</tr>
<tr>
<td>165</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>195</td>
</tr>
<tr>
<td>210</td>
</tr>
<tr>
<td>225</td>
</tr>
<tr>
<td>245</td>
</tr>
<tr>
<td>260</td>
</tr>
<tr>
<td>275</td>
</tr>
<tr>
<td>290</td>
</tr>
</tbody>
</table>

Met Leu Pro
gagctctctgg ccaagtggtgg agaagggaaca ggaaggaccc tagggttcatt cggagcccag 60
gtttaactcc taagggtggaa atttcttcctt cccactccctt cttgggctttt cttccaaagag 120
ggaccccgag gctgctccgg gattgggagc gggccgggac cggtaggggtc aagtggataa 180
tgcgtgtgga acgggacagag ggacggttac aaggtggggt cttacccggg aagtgtgtgt 240
ggaggaggagcg aggccaaaaac taccaccccg tagccaccca cttcattcgtt cttaaccccc 300
ggcgctctctt gccgtctgtag accgggggag gggccgggag tgcgtgagga caccatctgg 360
tgggctctctct caccctctcttt ctacacagcg acatctccac cccactccac 420
ggtactgcttg gcctgctgcccc gcagtggtgg gggccggggc cagaccaggg cctggacactg 480
tccctctctct tggcggcagga gggaggggtt ggattggaag cagggccagc tggagaagaa 540
cagggtagctg agggggtcag gcctgatcgc cctgtgagac cttcggcagc aagtgtgattg 600
gagagagagcg tggctgagct gcagccagac cggcggcagc cggcggcagc tggctgagct 660
ggcggcgggg ggaggagtttg gggccgggt ggcgggttata gaaaggccga ccggagtcttt 720
cctctctaacc gcctcctctct ggcgggtata tgctcctcgc ctctcctcgt cttcctcctc 780
caccatagca cgcggcgggg ggtctctctct ggtcggctgtg tgcgctccttc cagttctaca 840
tagttgctgg cggagttgct ggagggtgcc ggcgtgctttt tgtgtctttct tggctgctttc 900
cctgggttcgg tgcctgctgcc gcggggcagag agaagttaag ttaagagatt ggcggagagg 960
aaccctctgaga tgtgtgtcaca ggcggcagga agaatgtctct agagaagattg aagggggaga 1020
gagggagagag caggagagagc ttccagagag gagaaggtgag acggcctagc ccggatcatac 1080
tggcagaga gagaagggct gctggcagag gggccgggac aaccctcagg gtagctgaggc 1140
tggcgactcc caagcgtctcct ggtgcttttt ggtcgtcttct cccagtccag ttttctctct 1200
tgctgttcttt ctgctcacac aaaaaccccc cccactaccc ttaacccatt cccacacctc 1260
cagacccctgg gcggccaccc gctgcaggttc cgggaagacc cgcgggtttt tggcttctttc 1320
gagagagagag ggcggtctgt ggcggctgatc cccgagcctg gggaggggtt cggcagctgg 1380
gagaaagacag gactgctgctt accggctgag ggcaggtcgc caggtcttct cgggaagctg 1440
tgcggtagat gaacccagcc gcctcctcac ggcggcggcag cggggtcgcc gcgtgccagc 1500
tctcaggga gacagctgct ggtcgtgctgg cggcgggtcag cgcgggttct cgctcgtcctc 1560
cctggggcaca ggtgtgtcaca cccctctctcc gcacagcagc gttcgtgctgg gcggggtcag 1620
cggcagagcg cagtcggttc ccacacacac cccacacacc ccacccaccc cccacaccac 1680
ccccacacac gcgggttcgg cggcggctcc gcacagcagc gcccagccag cggcggggtt 1740
ccccacacac gttgtgtctcc tggcggcagga agaacacccgg cggcggggtt cggcggggtt 1800
cggccagagcg cagtcggttc ccacacacac cccacacacc ccacccaccc cccacaccac 1860
tggcagcagcg actgctgctcc actgctgctcc cttcctctctt ttttctctct cttcctctct 1920
agtttaacttc ggtccccagga ataaccacca cccctcgcttc cggcggggtt tggcgtgctgg 1980
tggctgtcata ggtggctgctt caggtcagac gggctgcttc ctgcggggcc cggcggggtt 2040
tctctcaca cccctctctc ctacagcagc atcctctctt ggtcgtgctgg ggcgcgggtt 2100
cttttaacac cgcgtggtgc ggtcgtgctgg gccgggttctt cttcctctctt ttttctctct 2160
tgggcaagac ctttggtgttg ggagggggtg tgggtgtgctc gtagagcttg ggaggagtctg 2220
ttcactttaa ggggtgggtg ggggggtggtg ggtggggtgg ggtggggtggt ggtggagtcg 2280
catctcggcag cggcgcgggg gcgcgtggctt gcgcgtggctt ggcggggcag cggcggggtg 2340
atcggcgagcc gcctcctcgcc gccgtgagcg ggcggtgtgt ggcgcgttttg ggcggcgggc 2400
ttcgagcgat ttctcctctct cgggtgcttc gcgcgtggctt ggcgcgttttg ggcggcgggc 2460
tgcgcagcct gcgcgtggctt gcgcgtggctt ggcgcgttttg ggcggcgggc gtcgtggcggc 2520
gt ggagagagag cggggtgtgg ggtggtgctg tggaggtgctg ggagggagtct gggggagtctg 2580
ttcctgataa acctcagcat gcggagtccg cggggtgtgg cggggtgtgg ggtggtgctg 2640
agtcgcagtc gcgcgtggctt gcgcgtggctt ggcgcgttttg ggcggcgggc gtcgtggcggc 2700
atcggcgagcc gcctcctcgcc gcgtgtgggg ggggggtggtg ggtggggtgg ggtggagtcg 2760
atcggcgagcc gcctcctcgcc gcgtgtgggg ggggggtggtg ggtggggtgg ggtggagtcg 2820
atcggcgagcc gcctcctcgcc gcgtgtgggg ggggggtggtg ggtggggtgg ggtggagtcg 2880
atcggcgagcc gcctcctcgcc gcgtgtgggg ggggggtggtg ggtggggtgg ggtggagtcg 2940
atcggcgagcc gcctcctcgcc gcgtgtgggg ggggggtggtg ggtggggtgg ggtggagtcg 3000
atcggcgagcc gcctcctcgcc gcgtgtgggg ggggggtggtg ggtggggtgg ggtggagtcg 3060
atcggcgagcc gcctcctcgcc gcgtgtgggg ggggggtggtg ggtggggtgg ggtggagtcg 3120
atcggcgagcc gcctcctcgcc gcgtgtgggg ggggggtggtg ggtggggtgg ggtggagtcg 3180
atcggcgagcc gcctcctcgcc gcgtgtgggg ggggggtggtg ggtggggtgg ggtggagtcg 3240
atcggcgagcc gcctcctcgcc gcgtgtgggg ggggggtggtg ggtggggtgg ggtggagtcg 3300
b. DNA sequence of MUC1Y: (SEQ ID NO:28)

```
tagacacccg gcacccagtc tcttttcttc ctgctgcgtgc tcctcacagt gctctacgtt cagtggctgc aagcttctac ccagtggtgg aagagaga ccctgccccc ccagtggtgg aagagaga
```

```text
agaaaggggc cccctcaaaag ggaagtccccc actgccagaa ttc
```
c. MUC-1 AA: (SEQ ID NO:30)

<table>
<thead>
<tr>
<th>Met</th>
<th>Thr</th>
<th>Pro</th>
<th>Gly</th>
<th>Thr</th>
<th>Gln</th>
<th>Ser</th>
<th>Pro</th>
<th>Phe</th>
<th>Phe</th>
<th>Leu</th>
<th>Leu</th>
<th>Leu</th>
<th>Leu</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Val</th>
<th>Leu</th>
<th>Thr</th>
<th>Val</th>
<th>Val</th>
<th>Thr</th>
<th>Gly</th>
<th>Ser</th>
<th>Gly</th>
<th>His</th>
<th>Ala</th>
<th>Ser</th>
<th>Ser</th>
<th>Thr</th>
<th>Pro</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gly</th>
<th>Glu</th>
<th>Lys</th>
<th>Glu</th>
<th>Thr</th>
<th>Ser</th>
<th>Ala</th>
<th>Thr</th>
<th>Gln</th>
<th>Arg</th>
<th>Ser</th>
<th>Ser</th>
<th>Val</th>
<th>Pro</th>
<th>Ser</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thr</th>
<th>Glu</th>
<th>Lys</th>
<th>Asn</th>
<th>Ala</th>
<th>Leu</th>
<th>Ser</th>
<th>Thr</th>
<th>Gly</th>
<th>Val</th>
<th>Ser</th>
<th>Phe</th>
<th>Phe</th>
<th>Phe</th>
<th>Leu</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phe</th>
<th>His</th>
<th>Ile</th>
<th>Ser</th>
<th>Asn</th>
<th>Leu</th>
<th>Gln</th>
<th>Phe</th>
<th>Asn</th>
<th>Ser</th>
<th>Ser</th>
<th>Leu</th>
<th>Glu</th>
<th>Asp</th>
<th>Pro</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thr</th>
<th>Asp</th>
<th>Tyr</th>
<th>Tyr</th>
<th>Glu</th>
<th>Leu</th>
<th>Gln</th>
<th>Arg</th>
<th>Asp</th>
<th>Ile</th>
<th>Ser</th>
<th>Glu</th>
<th>Met</th>
<th>Ala</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cys</th>
<th>Gln</th>
<th>Cys</th>
<th>Arg</th>
<th>Arg</th>
<th>Lys</th>
<th>Asn</th>
<th>Tyr</th>
<th>Gln</th>
<th>Leu</th>
<th>Asp</th>
<th>Ile</th>
<th>Phe</th>
<th>Pro</th>
<th>Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arg</th>
<th>Asp</th>
<th>Thr</th>
<th>Tyr</th>
<th>His</th>
<th>Pro</th>
<th>Met</th>
<th>Ser</th>
<th>Glu</th>
<th>Tyr</th>
<th>Pro</th>
<th>Thr</th>
<th>Tyr</th>
<th>His</th>
<th>Thr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gly</th>
<th>Arg</th>
<th>Tyr</th>
<th>Val</th>
<th>Pro</th>
<th>Pro</th>
<th>Ser</th>
<th>Ser</th>
<th>Thr</th>
<th>Asp</th>
<th>Arg</th>
<th>Ser</th>
<th>Pro</th>
<th>Tyr</th>
<th>Glu</th>
<th>Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Val</th>
<th>Ser</th>
<th>Ala</th>
<th>Gly</th>
<th>Asn</th>
<th>Gly</th>
<th>Ser</th>
<th>Leu</th>
<th>Ser</th>
<th>Tyr</th>
<th>Thr</th>
<th>Asn</th>
<th>Pro</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Val</th>
<th>Ala</th>
<th>Ala</th>
<th>Thr</th>
<th>Ser</th>
<th>Ala</th>
<th>Asn</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165</td>
</tr>
</tbody>
</table>

: (SEQ ID NO:31)

ttccccctcc gccctctctgc aataaatggc ctcggcgcttc tggagtgtc 30
ctgccgacc accactgcatcc ccccaagacc gcgcgcattg ctgccgcttg 60
ttgacgtg agctctgtcag tcgccgattc gtctgtgaat cagctgtgatt 120
gggagaattt gacgtgtaggc aagcgaaggc ccccaagagt ctgccgcttg 180
ttcgccagc ttcggctgtc gcctgtttcc ccacagtgact ccccaagagg 240
caggcttcag ttcggctgtag gcggctgattc gacgtgagaat gacgtgactc 300
ggccttcacctc tcgctgttcg tcgctgttcg tgcgttgtgc tcgctggctc 360
ttcgctgttcg tcgctgttcg tgcgttgtgc tgcgttgtgc tgcgttgtgc 420
ttcgctgttcg tcgctgttcg tgcgttgtgc tgcgttgtgc tgcgttgtgc 480
ttcgctgttcg tcgctgttcg tgcgttgtgc tgcgttgtgc tgcgttgtgc 540
d. cDNA of a variant of "MUC1Y": (SEQ ID NO:32)

Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Leu Thr
1 5 10 15

Val Leu Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys
20 25 30

Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys
35 40 45

Asn Ala Phe Asn Ser Ser Leu Glu Asp Pro Ser Thr Asp Tyr Tyr Gln
50 55 60

Glu Leu Gln Arg Asp Ile Ser Glu Met Phe Leu Gln Ile Tyr Lys Gln
65 70 75 80

Gly Gly Phe Leu Gly Leu Ser Asn Ile Lys Phe Arg Pro Gly Ser Val
85 90

Val Val Gln Leu Thr Leu Ala Phe Arg Glu Gly Thr Ile Asn Val His
100 105 110

Asp Met Glu Thr Gln Phe Asn Gln Tyr Lys Thr Glu Ala Ala Ala Ser Arg
115 120 125

Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser Asp Val Pro Phe Pro
130 135 140

Phe Ser Ala Gln Ser Gly Ala Gly Val Pro Gly Trp Gly Ile Ala Leu
145 150 155 160

Leu Val Leu Val Cys Val Leu Val Ala Ala Ile Ala Ile Val Leu
165 170 175

Ala Leu Ala Val Cys Gln Cys Arg Arg Lys Asn Tyr Gly Gln Leu Asp
180 185 190

Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser Glu Tyr Pro Thr
195 200 205

Tyr His Thr His Gly Arg Tyr Val Pro Pro Ser Ser Thr Asp Arg Ser
210 215 220

Pro Tyr Glu Lys Val Ser Ala Gly Gly Gly Ser Leu Ser Tyr
225 230 235 240

Thr Asn Pro Ala Val Ala Ala Thr Ser Ala Asn Leu
245 250

: (SEQ ID NO:33)

atgacaccgg gcaccaccgcctcccccttc ctgctgcttgc tcctccacagt gcttacaggt 60
tctgtgcatg caaagctctac cccaggtgga gaaaaagaga ctcggctctg ccagagaagt 120
tcagagccca gctctcactga gaagaatgct tttatattct cttgagaga tccacgacc 180
gactactacc agagctgcca gagacagatt tctgaaatgt ttttgcagat ttataaacatg 240
gggtgggttct cggcctcctttaaatgtgtattcagttcctgaccttatttc 300
taggagcagct cttcaggaagg tattcagctt gcgaagaata ccgagacaca ttggaacac 360
tataaagccgg aaggctgcct gcagagatctt gctagacatc cctgagatgt ggttattgcat 420
gtcacatcct tctctctctgt cagagctgct gcgtggtgttg ccggggtgctt gagctgctg 480
tgtgtggtgg tctctctctt gttggtcgct gcctattgct atcttcatgtgc ctggggtgtcc 540
Reference: no published reference, only the database information

e. MUCLX or MUCLZ partial cDNA sequence: (SEQ ID NO:34)

Met Thr Pro Gly Thr Gln Ser Pro Phe Leu Leu Leu Leu Thr 1 5 10 15
Val Leu Thr Val Val Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly 20 25 30
Gly Glu Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro Ser Ser 35 40 45
Thr Glu Lys Asn Ala Leu Ser Thr Gly Val Ser Phe Phe Phe Leu Ser 50 55 60
Phe His Ile Ser Asn Leu Gln Phe Asn Ser Ser Leu Glu 65 70 75

f. S81781, cDNA: (SEQ ID NO:35)

Met Thr Pro Gly Thr Gln Ser Pro Phe Leu Leu Leu Leu Thr 1 5 10 15
Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly 20 25 30
Ser Gly His Ala Ser Ser Thr Pro Gly Gly Lys Glu Thr Ser Ala 35 40 45
Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser 50 55 60
Met Thr Ser Ser Val Leu Ser Ser His Pro Gly Ser Gly Ser Ser 65 70 75 80
Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala 85 90 95
Ser Gly Ser Ala Ala Thr Trp Gly Gln Asp Val Thr Ser 100 105

: (SEQ ID NO:36)

acaccacca tgtacaccggg cacccagtct cctttcttcc tgttgttgtct cctcacagtg 60
cctcacgta ccacagccccc taaacccgca acagttgtta cagttcttg gcttgtcaagc 120
tctaccccgag tgtgagaaaa gggaccttc gctaccagca gaagttcagt gcccagctct 180
actgagaaga atgtgttgag tattacccag acgctactct ccagccacag cccgcttca 240
gctctctca cacacccgag acagatgct actctggccc cggccacgga acagctctca 300
gttcagcgc ccaactgsgg acagatgct acctcg 336

g. M32738, partial cDNA of MUC1 splice variant A: (SEQ ID NO:37)

```
Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
1      5           10          15
Val Leu Thr Ala Thr Thr Ala Pro Lys Pro Ala Thr Val Val Thr Gly
20     25          30
Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys Thr Ser Ala
35     40          45
Thr Gln Arg Ser Ser Val Pro Ser Ser Thr Glu Lys Asn Ala Val Ser
50     55          60
Met Thr Ser Ser Val Leu Ser Ser His Ser Pro Gly Ser Gly Ser Ser
65     70          75          80
Thr Thr Gln Gly Gln Asp Val Thr Leu Ala Pro Ala Thr Glu Pro Ala
85     90          95
Ser Gly Ser Ala Thr Trp Gly Gln Asp Val Thr Ser Val Pro Val
100    105         110
Thr Arg Pro Ala Leu Gly Ser Thr Thr Pro Pro Ala His Asp Val Thr
115    120         125
Ser Ala Pro Asp Asn Lys Pro Ala Pro Gly Ser Thr Ala Pro Pro Ala
130    135         140
His Gly Val Thr Ser Ala Pro Asp Thr Arg Pro Ala
145    150         155
```

;

h. Z17324, partial cDNA of MUC1 splice variant C: (SEQ ID NO:39)

```
Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
1      5           10          15
Val Leu Thr Gly Ser Gly His Ala Ser Ser Thr Pro Gly Gly Glu Lys
20     25          30
Glu Thr Ser Ala Thr Gln Arg Ser Ser Val Pro
35     40
```
: (SEQ ID NO:40)
cggctcccc ctcacaagcg ccagcgctcg ccagatctg ttctgcccc ccccccacc

Reference: no literature reference, a direct submission to the database

i. Z17325, partial cDNA of MUC1 splice variant D

: (SEQ ID NO:41)
Met Thr Pro Gly Thr Gln Ser Pro Phe Phe Leu Leu Leu Leu Thr
1 5 10 15

Val Leu Thr Gly Gly Lys Glu Thr Ser Ala Thr Gln Arg Ser Ser
20 25 30

Val Pro

: (SEQ ID NO:42)
cggctcccc ctcacaagcg ccagcgctcg ccagatctg ttctgcccc ccccccacc

5. CTL epitopes of MUC1: : (SEQ ID NO:43)
Ser Thr Ala Pro Pro Val His Asn Val
1 5

Reference: Blood 93:4309-4317, 1999

: (SEQ ID NO:44)
Leu Leu Leu Leu Thr Val Leu Thr Val
1 5

Reference: Blood 93:4309-4317, 1999

: (SEQ ID NO:45)
Ser Thr Ala Pro Pro Ala His Gly Val
1 5

: (SEQ ID NO:46)
Ala Pro Asp Thr Arg Pro Ala
1 5

Reference J Immunology 159:5211-5218, 1997

6. CD4 T helper epitopes of MUC1

45
IV. Sequences for DNA vaccine vectors:

1. HCMV promoter/enhancer; K01484 Mark Stinski U Iowa

490 bp of promoter sequence, to transcriptional start

Ref: [SEQ ID NO:48]

ggcgacccgcc cagcgcaccc cgccggttga gctaatagt gcgtatgtt ctccataqtaa 60
cgcgaattgg gaccttcctt tggaccgatc aattcaccat ttcacggtta 120
tggcgcatacc caatcgcacc accttcggtc atagcagtt gaatcagagt 180
aatgacccgc ctcggccttgg tggcgcaccc ccatcgtgcag cagcctttct 240
acgtgggttg acctagcgcg ctggccggtt tgggcaagct gcgtcagttt 300
gggtgggttg ttcggtggtgg gggcgcggttg gggcgcgttt cccttccttg 360
cgccggtggtgcc cgttcttcgg catggtttgtg gggcgcggttg gcgtggttgg 420
catcgttgtg ttggcgtgtgc gcgcgtggtgg gcgtggttgg cccttccttg 480

cacaaggtgg cggagcgcgtg gcgtggttgg gcgtggttgg gcgtggttgg 540
cgccggtggtgcc cgcggcggttgg gcgtggtttgg gcgtggttgg gcgtggttgg 600

cagaaggtgg cggagcgcgtg gcgtggttgg gcgtggttgg gcgtggttgg 660

cagaaggtgg cggagcgcgtg gcgtggttgg gcgtggttgg gcgtggttgg 720

cagaaggtgg cggagcgcgtg gcgtggttgg gcgtggttgg gcgtggttgg 780

cagaaggtgg cggagcgcgtg gcgtggttgg gcgtggttgg gcgtggttgg 840

cagaaggtgg cggagcgcgtg gcgtggttgg gcgtggttgg gcgtggttgg 900

cagaaggtgg cggagcgcgtg gcgtggttgg gcgtggttgg gcgtggttgg 960

2. HCMV promoter/enhancer; K03104

737bp of promoter sequence, to +19bp; includes exon 1 and part of intron A

Ref: [SEQ ID NO:49]

aatcataatt gcgcattagc catattatcc atgcgttata tagcataaat caatattggc 60
tatggcccat gcgtacagtt gttcattatc gctaatagt tggcctttac 120
ccacattac gcgcattggt gcacattgaa atgtattt acaatattg tatagcctttg 180
gggtcattag ttccagctcc tatttgtata tatttgtata atacattc 240
cgcctcggct cgcgtcctcc cgccgcttt cggcgtcct cccttccttg 300
ccacattac gcgcattggt gcacattgaa atgtattt acaatattg tatagcctttg 360
atagcatttt gcgcattggt gcacattgaa atgtattt acaatattg tatagcctttg 420
ccacattac gcgcattggt gcacattgaa atgtattt acaatattg tatagcctttg 480
ccacattac gcgcattggt gcacattgaa atgtattt acaatattg tatagcctttg 540
ccacattac gcgcattggt gcacattgaa atgtattt acaatattg tatagcctttg 600
ccacattac gcgcattggt gcacattgaa atgtattt acaatattg tatagcctttg 660
ccacattac gcgcattggt gcacattgaa atgtattt acaatattg tatagcctttg 720
ccacattac gcgcattggt gcacattgaa atgtattt acaatattg tatagcctttg 780
ccacattac gcgcattggt gcacattgaa atgtattt acaatattg tatagcctttg 840
ccacattac gcgcattggt gcacattgaa atgtattt acaatattg tatagcctttg 900
ccacattac gcgcattggt gcacattgaa atgtattt acaatattg tatagcctttg 960

Reference: Cell 41:521-530, 1985

3. HCMV promoter, exon 1, intron A and part of exon 2; M60321

Ref: [SEQ ID NO:50]

tagcaggtttt gttggtggtgc ggagcctatt ttttaggttag tttccttccttc 60
gacaatttc atgtttttag gttggtggtgc ggagcctatt ttttaggttag tttccttccttc 120
aatcattggt gcacattgaa atgtattt acaatattg tatagcctttg 180

4. HCMV promoter/enhancer with upstream NFL binding sites; includes

1140bp of upstream promoter with 748bp of exon 1 and intron A;

X03922

: (SEQ ID NO:51)

tgatatcgcT attttccaa aaggtatatc tggccatacg cgtatctggt cgtacccag ct 240
tatatcgttt acgggggatg gcgtatacgc accttggcgc cttgaggct cttgtctgct 300
gcaaatacgt caggtggtat gagctgatac gcagctgat aagctgctgct cctggtgatg 360
gcaaatacg ctgagcgcct atgctgatac atcgacccac atacccagct cctatggcaca 420
attagccgta tatgtcattg atgtatcata atattaatcc attaaatata agtcgctct tggccggtg 480
tagttgttat tatattatagt tatattatagc tcattgcttatatagctg cttactgctg 540
tagccctcata attagctctg ctgctgctac cattattctg atacccagct cctatggcaca 600
cccaacggcc ccgccacgtt gcctagctgt atcgtatgct tccctctctc atgctgatac 660
ccggacttc acgggcttgct cttgctgctg ctgctgctgct cttgctgctg ctgctgctgct 720
tatgtactg atctgcatctg cttgctgctg ctgctgctgct cttgctgctg ctgctgctgct 780
ctacagctgt cacctgctgcct gcgtatctggt cttgctgctg ctgctgctgct cttgctgctg 840
gcggcttgat atcgtgctgcct gcgtatctggt cttgctgctg ctgctgctgct cttgctgctg 900

5. Various strains of BMVC IR promoter/enhancer; these are different from each other at a few residues compared to the two sequences listed above in 1 and 2; M64940-M64944

M64940

```plaintext
(t)catatattgc atgggtgatgc gtttttgccg gttgtcatat ggggtggatc 960
agcgggttga ctccaggggga ttgccaatct cccacccctc tgcacgctat ggggtgttgg 1020
(t)ttggcaccct cacacatcgg atggctccaa aatgctgaat cccatcggc cctgtggaat 1080
aaatgggccg taggctgctt cggggcaggt ctcattatgct cagacgctag ttaatgctaa 1140
gtctacgcgc gttggacgcct ctgccaagct cttgggttcaa ccctactata ctgctggttc 1200
gatcgcgctg ccggcccgcc gacacgcttc ttttgggaga gatttccgcgg cttttccgct 1260
actgtatgac gcgtctatac ctgctatacc gcttttcctc tgggattat tggggtgtgtc 1320
ttcuggttgc ataattcctct actgctcttt cgaattaccc taccaattcg ttatttttccc 1380
attgatctca atcatcagctct cttttgttgg cagctcttta cttggggaga tttttcggca 1440
attgaatgtc ctgcgttttt aattctatcg ttttgattgc cagtttttat gtttttcggc 1500
ttagccacagt tccatgtggct ctttgactct cttgactctct cttgacgacc ctcggtgtgc 1560
attttatatc atcatcagctct cttttttagcg cagcttcagc cttttttagc ctttttttagc 1620
atattttata tcaattcagctct ctttttttagc cagcttcagc cttttttagc ctttttttagc 1680
ctcctttgctt aacacggcct ggcacagagc tttttttttt aatcacgtag 1800
ctgcctgccac aacagacggt ggcacagagc tttttttttt aatcacgtag 1848
```

M64941

```plaintext
(t)catatattgc atgggtgatgc gtttttgccg gttgtcatat ggggtggatc 960
agcgggttga ctccaggggga ttgccaatct cccacccctc tgcacgctat ggggtgttgg 1020
(t)ttggcaccct cacacatcgg atggctccaa aatgctgaat cccatcggc cctgtggaat 1080
aaatgggccg taggctgctt cggggcaggt ctcattatgct cagacgctag ttaatgctaa 1140
gtctacgcgc gttggacgcct ctgccaagct cttgggttcaa ccctactata ctgctggttc 1200
gatcgcgctg ccggcccgcc gacacgcttc ttttgggaga gatttccgcgg cttttccgct 1260
actgtatgac gcgtctatac ctgctatacc gcttttcctc tgggattat tggggtgtgtc 1320
ttcuggttgc ataattcctct actgctcttt cgaattaccc taccaattcg ttatttttccc 1380
attgatctca atcatcagctct cttttgttgg cagctcttta cttggggaga tttttcggca 1440
attgaatgtc ctgcgttttt aattctatcg ttttgattgc cagtttttat gtttttcggc 1500
ttagccacagt tccatgtggct ctttgactct cttgactctct cttgacgacc ctcggtgtgc 1560
attttatatc atcatcagctct cttttttagcg cagcttcagc cttttttagc ctttttttagc 1620
atattttata tcaattcagctct ctttttttagc cagcttcagc cttttttagc ctttttttagc 1680
ctcctttgctt aacacggcct ggcacagagc tttttttttt aatcacgtag 1800
ctgcctgccac aacagacggt ggcacagagc tttttttttt aatcacgtag 1848
```

48
M64942
: (SEQ ID NO:54)
ggcacatggc caatgcatat cgatatatac attgaatcag tattgggcata tagcagatat six
agtcatattgt tatatacgac aatacaatag tggcatatag ccattgcata catattgcacgct 120
atacatatatt atgtacttct atgtccaattat cagccgcctt cgtgacattg 180
attattgact agttattataa aatgataaat tccaggggct taggttttcat gcccattatat 240
ggagtctcgg cgctataacaatt tcaagtcttaa tgggtcgcgtg gctgctgcct cc300
ccgcgcclat gacgtctataat tgcgcggct ttcctcctag aacgcaatg ggcaccttt 360
attgacgtcga atgggtggag tatttacggt aacagccatata tttgcgtatg tctacagaaa 420
atcatacatgac aagtccgcct cctataggcct ctaaagcgcg gatcgtcgcct 480
atgacatgctc caatgacgctt cttactctat cttactctat cttactctat cttactctat 540
ttacctgcttg gacgttcgctg ggtgctctgcg ggtgctctgcg ggtgctctgcg 600
acgtactctct cctctattcaag ggcacctttt gccgcgcgcgcgtcttgcctgcgcg 660
aatcctgacctt aacatccgct cttccacgctt gcattgtatag cagactgctgcgcg 720
attcggttagc ggtggttttt cctcctctccg cagccgctgctgctgcgtcttgcctgcgcg 780
attctgtcagc cctctgcttt gctgctgcgcg gcctgcgtcct gcgtgcgtcctgcgcg 840
ccgcgcgcgcg ggtggttttt cctcctctccg cagccgctgctgctgcgtcttgcctgcgcg 874

M64943
: (SEQ ID NO:55)
ggcacatggc caatgcatat cgatatatac attgaatcag tattgggcata tagcagatat six
agtcatattgt tatatacgac aatacaatag tggcatatag ccattgcata catattgcacgct 120
atacatatatt atgtacttct atgtccaattat cagccgcctt cgtgacattg 180
attattgact agttattataa aatgataaat tccaggggct taggttttcat gcccattatat 240
ggagtctcgg cgctataacaatt tcaagtcttaa tgggtcgcgtg gctgctgcct cc300
ccgcgcclat gacgtctataat tgcgcggct ttcctcctag aacgcaatg ggcaccttt 360
attgacgtcga atgggtggag tatttacggt aacagccatata tttgcgtatg tctacagaaa 420
atcatacatgac aagtccgcct cctataggcct ctaaagcgcg gatcgtcgcct 480
atgacatgctc caatgacgctt cttactctat cttactctat cttactctat cttactctat 540
attacctgcttg gacgttcgctg ggtgctctgcg ggtgctctgcg ggtgctctgcg 600
acgtactctct cctctattcaag ggcacctttt gccgcgcgcgcgtcttgcctgcgcg 660
aatcctgacctt aacatccgct cttccacgctt gcattgtatag cagactgctgcgcg 720
attcggttagc ggtggttttt cctcctctccg cagccgctgctgctgcgtcttgcctgcgcg 780
attctgtcagc cctctgcttt gctgctgcgcg gcctgcgtcct gcgtgcgtcctgcgcg 840
ccgcgcgcgcg ggtggttttt cctcctctccg cagccgctgctgctgcgtcttgcctgcgcg 874

M64944
: (SEQ ID NO:56)
ggcacatggc caatgcatat cgatatatac attgaatcag tattgggcata tagcagatat six
agtcatattgt tatatacgac aatacaatag tggcatatag ccattgcata catattgcacgct 120
atacatatatt atgtacttct atgtccaattat cagccgcctt cgtgacattg 180
attattgact agttattataa aatgataaat tccaggggct taggttttcat gcccattatat 240
ggagtctcgg cgctataacaatt tcaagtcttaa tgggtcgcgtg gctgctgcct cc300
ccgcgcclat gacgtctataat tgcgcggct ttcctcctag aacgcaatg ggcaccttt 360
attgacgtcga atgggtggag tatttacggt aacagccatata tttgcgtatg tctacagaaa 420
atcatacatgac aagtccgcct cctataggcct ctaaagcgcg gatcgtcgcct 480
atgacatgctc caatgacgctt cttactctat cttactctat cttactctat cttactctat 540
attacctgcttg gacgttcgctg ggtgctctgcg ggtgctctgcg ggtgctctgcg 600
acgtactctct cctctattcaag ggcacctttt gccgcgcgcgcgtcttgcctgcgcg 660
aatcctgacctt aacatccgct cttccacgctt gcattgtatag cagactgctgcgcg 720
attcggttagc ggtggttttt cctcctctccg cagccgctgctgctgcgtcttgcctgcgcg 780
attctgtcagc cctctgcttt gctgctgcgcg gcctgcgtcct gcgtgcgtcctgcgcg 840
ccgcgcgcgcg ggtggttttt cctcctctccg cagccgctgctgctgcgtcttgcctgcgcg 874

6. SV40 polyadenylation signal (late and early); J02400

: (SEQ ID NO:57)
ggggatccag acatgataag atacctgtat gagtgtgagc aacaaccaca tagaatgcag 60
tgaaaaaatt gcctattttg tgaattttgt gattgatagt ctttaattgt aaccattata 120
agctgcaata aacaagttaa cacaacat atggctcatt ttctttgatc cgggtcaggg 180
gagggctggg aaggtttttta aagcagataa aaccccttcaca aatgggttgt ggcctgattt 240
gatcatgaac

7. Rabbit βglobin intron 2; J00600

: (SEQ ID NO:58)
ggatccctgag aacctcaggg tgtgattggg gaccccttgat tggattttcxct ttttgcctat 60
tgtaaattttc atctttatac gaggggcca aagctctcagg tgtctttgta gaagtggag 120
atgtccccctg atccttcag tgcctccctg ataattttgt tgtttctccct ttctttctctg 180
ttgacaaccag ttcatctcctt ttattttttc ttttattttg gatattattt cgttttaaact 240
tagctctgtat tttgaaacgg ttttttaattt cattctctttc tgtttttcag atttgaag 300
caccttcttaa cccttttttt ctcagggcaac ccaggtttgag tattattttc attatatattg 360
gtttagagaca atactattata taataattcata ataatagtga atttttctgc ataataatg 420
tgccccctgcgt gcataattctct tattttgtag gaaacatact aacctgcgttc tctactctgc 480
ttttcccttaa tggtaaaacagt gataacact cgtttaagag cagatgataa aatctcggct 540
caaaccgggc cccctctgctt aacacgccat tgcctttcttc tttttttctac agctcttcgg 600
cacacgtgctg

References: Cell 10, 549-558 (1977); Cell 18, 1285-1297 (1979)

8. Minimal synthetic rabbit β-globin polyadenylation signal

: (SEQ ID NO:59)
aataaaagat ccaagagctct agagatcgtg tgttgtgtttt tttgtgtg 48

V. IL-18 sequences to claim

1. Mature consensus human IL-18 linked to an HC signal sequence, with intron included and underlined. Bold areas are from the HC signal sequence, and the unbolded are the linked mature human IL-18 sequence

: (SEQ ID NO:60)
ATGGGGTCAACCCGCGCCATCTCGGCCCTCTCTGCTGCTTCACACCTCAGTGCTCGGCCAGCTTGGAGG
TCACAGAGGAGAACGGGTGAAAGAGCCCGCTATCCAAATTTTTGTCCTCCCCCACAGGACTTGTGCC
ctactt ggcaagctt gaaatctaaat tatacatctg aagacatgtt aatgccaccag
ctctctctatc tggaaagagtt atcgggcttc tattttgagata gatgtcgtag aattactgtgg
agtatggctct atcaatctctcct tggatagtatg cagaaatcct aaccttctctct tggagaaacac
aatatatcat ctttaagggca atatcacttc tggaaatctag caggaacagct tctacttgtact
ctatactctg tggagagagt cttggttggaa aagagagatct ctactctatcctg tttccagacgaga
aaaagaggtgtat ctttctcctgta tattttgctcct gccctcagct

: (SEQ ID NO:61)
atgggtctca cggccgactct cggccctgctt cttgctctttc tccaaggtgc gtcctggcgg 60
gtcttctttc ttcacagggg cagcggctgg ggagagcggct cttcattttcct tttttttgtc 120
ccccccaggc aggctctgcc tctacttcccagac gctctgacct taattataatc tgcataaggag 180
attttgaat ccaagttttctc ttcattgtcc aagagacatcg gcctctttct gtattatatcag 240
ctgattctga ctgtagagat aatgcacccc ggacagatt tattataaag atgtataaaag 30
atagccagcc tagaggttag gctgttaacta tctctgtgaa gttgtgagaa atttcaacct 360
tctctgtgaa gaaacaattt atttccttaa aggaatagca tctctcctgaa atacatcagag 420
atatcagacg ttagatcatg ccccttactata cgtggcctc tctctctggat gagaagatc 480
atctctgatc cattttctacttatgtgagagct gctttgagag gatctctctgat agaagcttct 540
ttttatactatat ggaagcttctgatgagagct gctttgagag gatctctctgat agaagcttct 600
aaaagagagactag
Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile
Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys
Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys
Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu
35 40 45

Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Glu Asp Glu Leu

Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp
130 135

2. Mature consensus human IL-18 linked to a human LC signal sequence, with no intron. Bold areas are from the LC signal sequence, and the unbolded are the linked mature human IL-18 sequence.

: (SEQ ID NO:66)
ATGGCCCTGGAGCCCTCTCTCCTCGGCCCTCTCTCCTCTCTCCTGACCTCC tacctt
gcagaagcc gaaatctaat tatcagctac aagaaatgtg aatgaccaag ttcctctcat
tgaccaagga aatcgggcttc ttattggaaga tattgacct tagtacgttat
tatcctgttg gataagg/gcc cagcctgag cagccctgat gatcctcctc
tgagaagctt gcgggaggg cgttggagca aaagagagga ttggaggtgc

: (SEQ ID NO:67)
ATGGCCCTGGAGCCCTCTCTCCTCGGCCCTCTCTCCTCTCCTGACCTCC
atggcctgga ccgcttcctct ccctggtcctc ttcctctact gcacaggtcct ttcctcctcc 60

: (SEQ ID NO:68)
tacctt gcgaagcgct gaaatctaat tatcagctac aagaaatggtg aatgaccaag
ttcctctcat tgaccaagga aatcgggcttc ttattggaaga tattgacct tagtacgttat
tgagaagctt gcgggaggg cgttggagca aaagagagga ttggaggtgc
agaaaatttc aacctcttccc ttgtgagaaca aattatatc cttaagggaa
atgaacctctc ctgataaact caaggataca aaaaagtagca tcatatatct
tcagagaagt gtcgccaggac atgataataa gatgcaattt gaatctttcat
catacagag atatacctta gctttgaaa aagagagaag cctttttttaa
tctattttga aaaaaagagga tgaattgggg gatagatcta taatgtttcac
tgttcaaacc gaagactag
taccttggca agcttggaatc taaatatca gttcataagaa atttgatgta ccaagttctc 60
ttccctgacc aaggaatcgt gcctcttttt gaagatagta cttgattctga ctgtagatag 120
aatgcaaccc ggaccataatt tattataagt atgtataaag atagccagcc tagagtatag 180
gctgtataact tttccttgtaa gtttggaaaa atttcaactc ttcctctgta gaacaaatatt 240
atttcctctta aggaatgaa tctcctcgtat aataatacag atacaaaaag tgacatcata 300
tttcctcaga gaagtgtcccc aggacatgat aataagatgcg aatttgaatc ttccatctac 360
gaagagact ttttagtcttg tgaaaaaaag agagacctttt ttaaactcat ttgtgaaaaa 420
gagagataat tgggggagatag atctataatg ttcaactgttc aaaaacgaaga ctag 474

: (SEQ ID NO:69)
MAWTVLLLGLSSHCTGSVTSYPKLESKLSVRINLDQVLFIDQ RNRLPFEDMTDSDCRDNAPRTFIIS
MYKDSQPRGMVTISVKEKSTLSCENKIIISPKKEMNNPDNIKDTKSDIIFFQRSSVPQHDKNMQFESSSY
EGYFLACEKERDLFKLIIKEDLGDSMFTVQNED

Met Ala Trp Thr Val Leu Leu Leu Gly Leu Leu Ser His Cys Thr Gly	1	5	10	15
Ser Val Thr Ser Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile	20	25	30	
Arg Asn Leu Asn Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro	35	40	45	
Leu Phe Glu Asp Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg	50	55	60	
Thr Ile Phe Ile Ile Ser Met Tyr Lys Asp Ser Glu Pro Arg Gly Met	65	70	75	80
Ala Val Thr Ile Ser Val Lys Cys Glu Lys Ile Ser Thr Leu Ser Cys	85	90		
Glu Asn Lys Ile Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile	100	105	110	
Lys Asp Thr Lys Ser Asp Ile Ile Phe Phe Glu Arg Ser Val Pro Gly	115	120	125	
His Asp Asn Lys Met Gln Phe Glu Ser Ser Ser Tyr Gly Tyr Phe	130	135	140	
Leu Ala Cys Gly Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys	145	150	155	160
Glu Asp Glu Leu Gly Arg Ser Ile Met Phe Thr Val Gln Asn Glu	165	170	175	

Asp

: (SEQ ID NO:70)
MAWTVLLLGLSSHCTGSVTS

53
Several changes could be made in IL-18, e.g., as presented herein. Changes in non-surface exposed residues that could be made that would result in the high probability of retention of IL-18 activity with no changes in immunogenicity are:

Thr¹⁰ for Ser¹⁰
Val¹² for Ile¹²
Ser⁴⁵ for Thr⁴⁵
Tyr⁴⁷ for Phe⁴⁷
Phe⁵² for Tyr⁵²
Val⁶⁴ for Ile⁶⁴
Tyr¹⁰¹ for Phe¹⁰¹
These compounds would be useful as IL-18 agonists, for raising anti-IL-18 antibodies, for assays for IL-18 or IL-18 binding proteins and for preparation of affinity columns for the purification of IL-18 binding proteins.

Changes in amino acids with a low percentage of surface exposure that could be made that would result in the high probability of retention of IL-18 activity with possible changes in immunogenicity are:

Val2 for Leu5
Val20 for Leu20
Ile20 for Leu20
Tyr21 for Phe21
Val22 for Ile22
Ile66 for Val66
Thr72 for Ser72
Phe148 for Ser148

These compounds would be useful as IL-18 agonists, for raising anti-IL-18 antibodies, for assays for I-18 or IL-18 binding proteins and for preparation of affinity columns for the purification of IL-18 binding proteins.

Changes that could be made in amino acids involved in receptor contact that would result in alteration of IL-18 activity by either increasing or decreasing binding of the IL-18 analog to the IL-18 receptor are:

Glu4 for Lys4
Ile6 for Glu6
Asp8 for Lys8
Ile13 for Arg13
Arg15 for Leu15
Lys17 for Asp17
Lys27 for Arg27
Ala30 for Phe30
Lys35 for Asp35
Phe37 for Asp37
Glu38 for Cys38
Ala39 for Arg39
Trp40 for Asp40
Glu51 for Met51
Gly53 for Lys53
Ile56 for Gln56
Ala58 for Arg58
Lys62 for Val62
Lys94 for Asp94
Phe95 for Thr95
Leu104 for Arg104
Ile108 for Gly108
Lys¹¹¹ for Asn¹¹¹
Phe¹²⁹ for Lys¹²⁹
Asp¹³¹ for Arg¹³¹
Leu¹³² for Asp¹³²
Glu¹³³ for Leu¹³³
Ala¹³⁴ for Phe¹³⁴
Thr¹⁵⁰ for Met¹⁵⁰
Ser¹⁵¹ for Phe¹⁵¹

Depending on the alteration of receptor binding or receptor activity, these compounds would be useful as IL-18 agonists or antagonists, for preparation of antibodies against IL-18, in assays for IL-18 or IL-18 binding proteins and the preparation of affinity columns for the purification of IL-18 binding proteins.

3. Other claimed changes in mature human IL-18 protein sequence:

a. Human sequence reference AF380360-1, linked to either signal sequence listed above, with the following sequence of mature human IL-18; this appears to be a natural variant of human IL-18, with changes in blue.

<table>
<thead>
<tr>
<th>Tyr</th>
<th>Phe</th>
<th>Gly</th>
<th>Lys</th>
<th>Leu</th>
<th>Glu</th>
<th>Ser</th>
<th>Val</th>
<th>Ile</th>
<th>Arg</th>
<th>Asn</th>
<th>Leu</th>
<th>Asn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Asn</td>
<td>Gln</td>
<td>Val</td>
<td>Leu</td>
<td>Phe</td>
<td>Ile</td>
<td>Asp</td>
<td>Gln</td>
<td>Gly</td>
<td>Asn</td>
<td>Arg</td>
<td>Pro</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Thr</td>
<td>Asp</td>
<td>Ser</td>
<td>Asp</td>
<td>Cys</td>
<td>Arg</td>
<td>Asp</td>
<td>Asn</td>
<td>Ala</td>
<td>Pro</td>
<td>Arg</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Ser</td>
<td>Met</td>
<td>Tyr</td>
<td>Lys</td>
<td>Asp</td>
<td>Ser</td>
<td>Gln</td>
<td>Pro</td>
<td>Arg</td>
<td>Gly</td>
<td>Met</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Lys</td>
<td>Cys</td>
<td>Glu</td>
<td>Lys</td>
<td>Ile</td>
<td>Ser</td>
<td>Thr</td>
<td>Lys</td>
<td>Ser</td>
<td>Cys</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Ser</td>
<td>Phe</td>
<td>Lys</td>
<td>Glu</td>
<td>Val</td>
<td>Asn</td>
<td>Pro</td>
<td>Pro</td>
<td>Asp</td>
<td>Asn</td>
<td>Ile</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Asp</td>
<td>Ile</td>
<td>Phe</td>
<td>Phe</td>
<td>Gln</td>
<td>Arg</td>
<td>Ser</td>
<td>Val</td>
<td>Pro</td>
<td>Gly</td>
<td>His</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Gln</td>
<td>Phe</td>
<td>Glu</td>
<td>Ser</td>
<td>Ser</td>
<td>Tyr</td>
<td>Glu</td>
<td>Gly</td>
<td>Tyr</td>
<td>Phe</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Glu</td>
<td>Arg</td>
<td>Asp</td>
<td>Leu</td>
<td>Phe</td>
<td>Lys</td>
<td>Leu</td>
<td>Ile</td>
<td>Lys</td>
<td>Lys</td>
<td>Glu</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Asp</td>
<td>Met</td>
<td>Phe</td>
<td>Thr</td>
<td>Val</td>
<td>Phe</td>
<td>Gln</td>
<td>Asn</td>
<td>Glu</td>
<td>Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>145</td>
<td></td>
</tr>
</tbody>
</table>

56
(SEQ ID NO:73)
taccttgga agcttggtca taatatggg gctgacaag aaatgggata ccaagtttccc 60
ttcatttggcc aaggaacattg ctgctctata gaagatattg ctagttctgc ctgtagatg 120
aatgcagcccc ggacactatt tattataagt atgttataaag atagccagcc tagaggttag 180
gcttgctattc gcatggagaa atttcactc tcttocgttga gaacaaaaat 240
attcctttta agagaggaag ttcacccgtg aacataaaag atacaaaaag tgcatacata 300
ttccttcaga gaagtggccc aggacagtat aataaagatc aatgtgaatc ttcactcata 360
gagaaaaatc tttaactctg tgaaaaagag agagaacctt ttaacctcat tttgaaaaaa 420
gagaaaaatc tttaactctg tgaaaaagag agagaacctt ttaacctcat tttgaaaaaa 420

b. Human sequence reference AAC27787; this appears to be a natural variant of human IL-18. Only mature human IL-18 protein is shown, DNA sequence is not available from database:
yfkgklesklsvirnlndqvlfdqgnrpIledmtsdcrdnaprtifirmykdsqprgmavtisvkcekistellscenkisfkmnppdnnktdtdiiiffqrvspghdnkqmpfesssyegyflacekerdlfkliilkkedgdrslmftvqsed
(SEQ ID NO:74)
Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn 1 5 10 15
Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Leu Glu Asp 20 25 30
Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile 35 40 45
Ile Arg Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile 50 55 60
Ser Val Lys Cys Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile 65 70 75 80
Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys 85 90 95
Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys 100 105 110
Met Gln Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu 115 120 125
Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Glu Asp Leu 130 135 140
Gly Asp Arg Ser Ile Met Phe Thr Val Gln Ser Glu Asp 145 150 155

c. Macaque sequence reference AF303732; mature macaque protein and DNA sequences are shown, and would be linked to either signal sequence shown above. Blue residues are altered from human consensus sequence:
(SEQ ID NO:75)
YFGKLESKLIIIRNLNDQVLFDIGKRNPLFEDMTSDCRRNAPRTPIFIIMMYKDSQPRGMAVAISV
KEKISTLSCNRIISFKEMMPNPDNIKTDKSDIPFQRSSVPGHDKMNFESSSYEGYFLACEKERDLKYL
ILKKKDELGRSIMPFTQNE

Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Ile Ile Arg Asn Leu Asn
1 5 10 15
Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp
20 25 30
Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile
35 40 45
Ile Asn Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Ala Ile
50 55 60
Ser Val Lys Cys Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Arg Ile
65 70 75 80
Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys
85 90 95
Ser Asp Ile Ile Phe Phe Glu Arg Ser Val Pro Gly His Asp Asn Lys
100 105 110
Met Gln Phe Glu Ser Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu
115 120 125
Lys Glu Arg Asp Leu Tyr Lys Leu Ile Leu Lys Lys Asp Glu Leu
130 135 140
Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp
145 150 155

(SEQ ID NO:76)
tactttggca agcttgtaac taaattatca atcataaagaa atttgatag ccaagtttcct 60
tctaggtacc aaggaaatcg gcccccattt gaagatatga ctgatttctga ctgtagagat 120
aatgcacccc ggccatatt tattataaat atgataaag atagccagc tagaggtag 180
gcttggagca ttctctgtga atgtgagaa attccaactc ttctctgtga gaacacgat 240
attctcttta aggaatgtaa ttcctctgtat acacatcaag atacgaagag tggacatcata 300
tctctcagaa gaagtctccc aggacatgat aataagatgc aatgtgaaat ttcatctcatac 360
gaggtactct ttcagccttg taaaagagag agagaccttt ataaactcat tttgaaaaggg 420
aaggtgatgt tggggagataatctataatgt ttctcgttcttctacaagagacta gtag 474

d. Mutant human IL-18 with increased IL-18 activity and reduced ability to be inhibited by IL-18 binding protein; mature human IL-18 sequence with two altered residues indicated in blue:

(SEQ ID NO:77)
YFGKLSKLSVRNLNDQVLFDIGKRNPLFEDMTSDCRRNAPRTPIFIIMMYKDSQPRGMAVTISVKCEK
ISTLSCNRIISFKEMMPNPDNIKTDKSDIPFQRSSVPGHDKMNFESSSYEGYFLACEKERDLFKYL
ILKKKDELGRSIMPFTQNE
Accordingly, based on the above non-limiting examples of specific substitutions, alternative substitutions can be made by routine experimentation, to provide alternative tumor/adjuvant vaccines of the present invention, e.g., by making one or more substitutions, insertions or deletions in proteins or tumor proteins which give rise to effective immune responses.

Amino acid sequence variations in a tumor protein or cytokine of the present invention can be prepared e.g., by mutations in the DNA. Such tumor or cytokine variants include, for example, deletions, insertions or substitutions of nucleotides coding for different amino acid residues within the amino acid sequence. Obviously, mutations that will be made in nucleic acid encoding a tumor protein or cytokine must not place the sequence out of reading frame and preferably will not create complementary domains that could produce secondary mRNA structures (see, e.g., Ausubel (1995
Tumor protein or cytokine-encoding nucleic acid of the present invention can also be prepared by amplification or site-directed mutagenesis of nucleotides in DNA or RNA encoding a tumor or cytokine protein or portion thereof, and thereafter synthesizing or reverse transcribing the encoding DNA to produce DNA or RNA encoding a tumor protein or cytokine variant (see, e.g., Ausubel (1995 rev.), infra; Sambrook (1989), infra), based on the teaching and guidance presented herein.

Thus, one of ordinary skill in the art, given the teachings and guidance presented herein, will know how to substitute other amino acid residues in other positions of an DNA or RNA to obtain alternative tumor/adjuvant vaccines, including substitutional, deletional or insertional variants.

EXAMPLES

Screening Assays for Tumor Activity
For screening anti-tumor activity of sera or cells from an individual immunized with a vaccine of the invention, any known and/or suitable screening assay can be used, as is known in the art.

Specific Embodiment: Recombinant Vaccinia Virus Encoding tumor/adjuvant's, Nucleic acid vaccines and Methods of Making and Using Thereof

Overview. A suitable recombinant viral vector is used according to the present invention for expressing tumor proteins (e.g., MUC-1, PSA, KLK3 or any portion, variant or combination thereof) to provide at least a portion of a vaccine useful for the production, testing or use of a tumor vaccine of the present invention that induces at least one of a humoral or cellular immune response against the tumor, a portion thereof or a cell thereof, as well as for analyses of B-cell and CTL determinants.

A tumor vaccine of the present invention expresses at least one tumor nucleic acid or protein (tumor/adjuvant) and at least one adjuvant nucleic acid or protein. The tumor vaccine functionally encodes at least one tumor/adjuvant or adjuvant. Multiple, distinct fragments or plasmids encoding tumor/adjuvant and/or adjuvant (e.g., IL-18) can be prepared by substituting one tumor/adjuvant encoding sequence with another, e.g., using a restriction fragment or mutagenesis, according to known methods (see, e.g., Ausubel or Sambrook, supra).

Preparation of Tumor Vaccine. Methods for the preparation of individual plasmids (each expressing at least one unique tumor or adjuvant protein sequence) can utilize DNA or RNA amplification for the substitution of isolated protein variant sequences into a vector, which vector encodes a known tumor and/or adjuvant protein sequence, as known in the art.

Methods of amplification of RNA or DNA are well known in the art and can be used according to the present invention without undue experimentation, based on the teaching and guidance presented herein. Known methods of DNA or RNA amplification include, but are not limited to polymerase chain reaction (PCR) and related amplification processes (see, e.g., U.S. Pat. Nos. 4,683,195, 4,683,202,
4,800,159, 4,965,188, to Mullis et al.; U.S. Pat. Nos. 4,795,699 and 4,921,794 to Tabor et al.; U.S. Pat. No. 5,142,033 to Innis; U.S. Pat. No. 5,122,464 to Wilson et al.; U.S. Pat. No. 5,091,310 to Innis; U.S. Pat. No. 5,066,584 to Gyllensten et al.; U.S. Pat. No. 4,889,818 to Gelfand et al.; U.S. Pat. No. 4,994,370 to Silver et al.; U.S. Pat. No. 4,766,067 to Biswas; U.S. Pat. No. 4,656,134 to Ringold) and RNA mediated amplification which uses anti-sense RNA to the target sequence as a template for double stranded DNA synthesis (U.S. Pat. No. 5,130,238 to Malek et al, with the trade name NASBA), the entire contents of which patents are herein entirely incorporated by reference.

For example, recombinant tumor vaccine constructs prepared by this route can be used for immunizations and elicitation of tumor-specific T and/or B-cell responses. Primers utilize conserved tumor sequences and thus successfully amplify genes from many diverse tumor patient or cell samples or from tumor nucleic acid libraries, as non-limiting examples. The basic techniques described here can similarly be used with PCR or other types of amplification primers, in order to substitute smaller or larger pieces of the sequence from field isolates for that found in vectors encoding a tumor protein. See, e.g., Ausubel; supra, Sambrook, supra.

Tumor/Adjuvant Encoding Nucleic Acids. The technique can use, as a non-limiting example, the isolation of DNA from tumor infected cells and the amplification of sequences by PCR. PCR or other amplification products provide the simplest means for the isolation of tumor sequences, but any other suitable and known methods can be used such as cloning and isolation of tumor/adjuvant encoding nucleic acid or proteins (see Ausubel, infra; Sambrook, infra). Enzyme restriction sites are preferably incorporated into PCR or other amplification primer sequences to facilitate gene cloning.

Isolated DNA for PCR can be prepared from multiple tumor or adjuvant sources, inclusive of fresh or frozen whole blood or tumor tissue or cells from tumor+ patients and cells that have been infected in vitro with tumor virus isolates.
In order to produce new tumor/adjuvant constructs, the polymerase chain reaction (PCR) is preferably used to amplify 100-2700 base pairs (bp) of a tumor protein encoding nucleic acid from each different tumor patient, tissue or cell sample. The PCR primers can represent well-conserved tumor sequences which are suitable for amplifying genes from known samples of genes, isolated tumors or diverse tumor patient samples. The amplified DNA preferably comprises a portion encoding 10-900 (such as 100-400, 400-600 or 600-900, or any range or value therein) amino acids of a PSA, MUC-1 or KLK-3 protein. Preferably, most or all of the entire gene is amplified. Optionally, the MUC-1 encoding sequence amplified is missing part or all of sequences encoding the 20 amino acid repeat or any combination or number of copies thereof, such but not limited, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 copies or any fraction thereof, such .1, .2, .3, .4, .5, .6, .7, .8, .9 of the encoding nucleic acid repeat, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 amino acids or any combination thereof. Non-limiting examples include 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, and the like, including any fractional amount thereof, such as .1, .2, and the like.

The PCR primers can be designed so that restriction enzyme sites flank the tumor protein or cytokine adjuvant gene sequence in a suitable expression plasmid or vector, such that they are incorporated into the amplified DNA products. Suitable host cells can then be transformed with the tumor/adjuvant plasmid(s) via any of a number of methods well-known in the art, including, e.g., electroporation, and recombinant colonies are picked and examined by sequencing.

For use in the present invention a nucleic acid vaccine or a viral vector vaccine can be either used alone, in combination or sequentially.

As a non-limiting example of a suitable viral vector for a tumor vaccine of the present invention, vaccinia virus has a number of useful characteristics, including capacity that permits cloning large fragments of foreign DNA (greater than 20 Kb), retention of infectivity after insertion of foreign DNA, a wide host range, a relatively high level of protein synthesis, and suitable transport, secretion, processing and post-translational modifications as dictated by the primary structure of the expressed protein and the host cell type use. For example, N-O-glycosylation, phosphorylation, myristylation, and cleavage, as well as assembly of expressed proteins, occur in a faithful manner.

Several variations of the vaccinia vector have been developed and are suitable for use in the present invention (e.g., see Ausubel et al., infra, sec. 16.15-16.19). Most commonly, after obtaining the virus stock (Ausubel, infra at sec. 16.16), a nucleic acid sequence encoding a tumor/adjuvant is placed under control of a vaccinia virus promoter and integrated into the genome of vaccinia so as to retain infectivity (Ausubel et al., infra at sec. 16.17). Alternatively, expression can be achieved by transfecting a plasmid containing the vaccinia promoter-controlled gene encoding a tumor/adjuvant into a cell that has been infected with wild-type vaccinia.

Preferably, the host cell and vector are suitable and approved for use in vaccination of mammals and humans. These recombinant vectors are then characterized using various known methods (Ausubel et al., infra at sec. 16.18). In still another variation, the bacteria phage T7 RNA polymerase chain can be integrated into the genome of the vector so that the tumor/adjuvant encoding sequences will be expressed under the control of a T7 promoter, either in transfected plasma, plasmid or a recombinant vaccinia virus, will be expressed.

The use of pox virus promoters is preferred for vaccinia expression because cellular and other viral promoters are not usually recognized by the vaccinia transcriptional apparatus. A compound early/late promoter is preferably used in recombinant vaccinia for nucleic acid vaccines, as it is desirable to express the tumor/adjuvant as an antigen
that is presented in recombinant vaccinia virus infected host cell in association with major histocompatibility class (MHC) I or II. Such MHC associated tumor protein will then form cytotoxic T cell targets, and prime vaccinated mammals for a cytotoxic T cell response and/or a humoral response against the expressed tumor tumor/adjuvants. This is because the ability of vaccinia viral vectors to induce MHC presentation in host cells for this type of antigen appears to diminish late in the infection stage. Transcripts originating early will terminate after the sequence TTTTNT and lead to inadequate MHC presentation.

Alternatively, any such termination motifs within the coding sequence of the gene can be altered by mutagenesis if an early pox virus promoter is used, in order to enhance MHC presentation of protein antigens in host cells (Earl et al., infra, 1990). To mimic vaccinia virus mRNAs, untranslated leader and 3'-terminal sequences are usually kept short, if they are used in the vaccinia plasmids incorporating tumor/adjuvant encoding sequences.

Preferably, the plasmid used for making vaccinia constructs according to the present invention has been designed with restriction endonuclease sites for insertion of the gene downstream of the vaccinia promoter (Ausubel et al., infra, sec. 16.17). More preferably, the plasmid already contains an protein encoding sequence, wherein the restriction sites occur uniquely near each of the beginning and ends of the protein coding sequence. The same restriction fragment of the tumor/adjuvant encoding sequence can then replace the corresponding sequence in the plasmid. In such cases, the major portion of the tumor/adjuvant encoding sequence can be inserted after removing most or all of the protein encoding sequence from the plasmid.

Preferably, the resulting vaccinia construct (containing the tumor/adjuvant encoding sequence and the vaccinia promoter) is flanked by vaccinia DNA to permit homologous recombination when the plasmid is transfected into cells that have been previously infected with wild-type vaccinia virus. The flanking vaccinia virus DNA is chosen so that the recombination will not interrupt an essential viral gene.

Without selection, the ratio of recombinant to parental vaccinia virus is usually about
Although this frequency is high enough to permit the use of plaque hybridization (see Ausubel et al., infra at sec. 6.3 and 6.4) or immunoscreening (Ausubel et al., infra at sec. 6.7) to pick recombinant viruses, a variety of methods to facilitate recombinant-virus identification have been employed. Nonlimiting examples of such selection or screening techniques are known in the art (see Ausubel et al., infra at sec. 16.17). Usually, the expression cassette is flanked by segments of the vaccinia thymidine kinase (TK) genes so that recombination results in inactivation of TK. Virus with a TK.sup.- phenotype can then be distinguished from those with a TK.sup.+ phenotype by infecting a TK.sup.- cell line in the presence of 5-bromo-deoxyuridine (5-BrdU), which must be phosphorylated by TK to be lethally incorporated into the virus genome. Alternatively or additionally, recombinant viruses can be selected by the co-expression of a bacterial antibiotic resistant gene such as ampicillin (amp) or guanine phosphoribosyl transferase (gpt). As a further example, co-expression of the Escherichia coli lac Z gene allows co-screening of recombinant virus plaques with Xgal (Ausubel, infra, sec. 16.17).

The recombinant vaccinia viruses expressing a tumor/adjuvant of the present invention can be optionally attenuated or inactivated according to known methods, such as by heat, paraformaldehyde treatment, ultraviolet irradiation, propranolactene treatment, hybrid or chimera formation or by other known methods (see, e.g., Zagury et al., Nature 332:728-731 (1988); Ito et al., Cancer Res. 50:6915-6918 (1990); Wellis et al., J. Immunol. 99:1134-9 (1967); D'Honcht, Vaccine 10 (Suppl.):548-52 (1992); Selenka et al., Arch. Hyg. Bakteriol. 153:244-253 (1969); Grundwald-Bearch et al., J. Cancer Res. Clin. Oncol. 117:561-567 (1991); the contents of which are entirely incorporated here by reference). For example, heat inactivation at 60 degree C. will reduce virus titer considerably. Such attenuation techniques are safety tested, as incomplete inactivation might result in patient death (Dorozynski and Anderson, Science 252:501-502 (1991)).

Such attenuated or inactivated recombinant vaccinia is to be used where the patient may have a compromised immune system as complications or death can occur when live vaccinia is administered.
Pharmaceutical Compositions

Pharmaceutical preparations of the present invention, suitable for inoculation or for parenteral or oral administration, include a polyrecombinant virus vaccine comprising of at least 4, and up to about 10,000, preferably 4 to about 1000, and more preferably about 10 to about 100 different recombinant viruses, in the form of a cell lysate, membrane-bound fraction, partially purified, or purified form. Preferably, the nucleic acid vaccine comprises recombinant virus containing cell lysate (or membrane-bound fractions thereof) that further comprise tumor/adjuvant proteins already expressed by the recombinant viruses. The inclusion of the expressed tumor/adjuvants is now discovered to enhance the primary antibody response.

The nucleic acid vaccine composition can be in the form of sterile aqueous or non-aqueous solutions, suspensions, or emulsions, and can also contain auxiliary agents or excipients which are known in the art. Each of the at least about 4-20 different viruses encode and express a different tumor/adjuvant, as presented herein. tumor/adjuvants encoding DNA can be selected to represent tumor/adjuvants suitable for treatment. For example, a vaccine could represent sequences from any or any combination of suitable tumors and adjuvant proteins.

As would be understood by one of ordinary skill in the art, when a nucleic acid vaccine of the present invention is provided to an individual, it can be in a composition which
can further comprise at least one of salts, buffers, adjuvants, or other substances which are desirable for improving the efficacy of the composition. Adjuvants are substances that can be used to specifically augment at least one immune response. Normally, the adjuvant and the composition are mixed prior to presentation to the immune system, or presented separately, but into the same site of the being immunized. Adjuvants can be loosely divided into several groups based upon their composition. These groups include oil adjuvants, mineral salts (for example, AlK(SO.sub.4).sub.2, AlNa(SO.sub.4).sub.2, AlNH.sub.4 (SO.sub.4), silica, kaolin, and carbon), polynucleotides (for example, poly IC and poly AU nucleic acids), and certain natural substances (for example, wax D from Mycobacterium tuberculosis, substances found in Corynebacterium parvum, or Bordetella pertussis, and members of the genus Brucella). Among those substances particularly useful as adjuvants are the saponins (e.g., Quil A., Superfos A/S, Denmark). Examples of materials suitable for use in vaccine compositions are disclosed, e.g., in Osol, A., ed., Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa. (1980), pp. 1324-1341, which reference is entirely incorporated herein by reference.

A pharmaceutical vaccine composition of the present invention can further or additionally comprise at least one antiviral chemotherapeutic compound. Non-limiting examples can be selected from at least one of the group consisting of gamma globulin, amantadine, guanidine, hydroxy benzimidazole, interferon-.alpha., interferon-.beta., interferon-.gamma., interleukin-16 (IL-16; Kurth, Nature, Dec. 8, 1995); thiosemicarbazones, methisazone, rifampin, ribvirin, a pyrimidine analog (e.g., AZT and/or 3TC), a purine analog, foscarinet, phosphonoacetic acid, acyclovir, dideoxynucleosides, a protease inhibitor (e.g., saquinavir (Hoffmann-La Roche); indinavir (Merck); ritonavir (Abbott Labs); AG 1343 (Agouron Pharmaceuticals); VX-2/78 (Glaxo Wellcome)); chemokines, such as RANTES, MIP1.alpha. or MIP1.beta. (Science 270:1560-1561 (1995)) or ganciclovir. See, e.g., Richman: AIDS Res. Hum. Retroviruses 8: 1065-1071 (1992); Annu Rev Pharmacol Toxico 33: 149-164 (1993); Antimicrob Agents Chemother 37: 1207-1213 (1993); AIDS Res. Hum. Retroviruses 10: 901 (1994): Katzung (1992), infra, and the references cited therein on pages 798-800 and 680-681, respectively, which references are herein entirely incorporated by reference.
Pharmaceutical Uses

The administration of a vaccine (or the antisera which it elicits) can be for either a "prophylactic" or "therapeutic" purpose, and preferably for prophylactic purposes. When provided prophylactically, the nucleic acid vaccine composition is provided in advance of any detection or symptom of tumor associated pathology. The prophylactic administration of the compound(s) serves to prevent or attenuate any subsequent tumor associated pathology.

When provided therapeutically, the nucleic acid or viral vaccine is provided upon the detection of a symptom of actual infection. The administration of a vaccine after detection of tumor-associated pathology is provided only where the patient's immune system is determined to be capable of responding to administration of a vaccine of the present invention. Alternatively, where the patient's immune response is compromised, therapeutic administration preferentially involves the use of an attenuated or inactivated viral vaccine composition where the viral vaccines are attenuated or inactivated, as presented above. See, e.g., Berkow (1987), infra, Goodman (1990), infra, Avery (1987), infra and Katzung (1992), infra, Dorozynski and Anderson, Science 252:501-502 (1991) which are entirely incorporated herein by reference, including all references cited therein.

A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically or prophylactically effective amount" if the amount administered is physiologically significant. A vaccine or composition of the present invention is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient, preferably by enhancing a humoral or cellular immune response to a tumor.

The "protection" provided need not be absolute, i.e., the tumor need not be totally prevented or eradicated, provided that there is a statistically significant improvement
relative to a control population. Protection can be limited to mitigating the severity or rapidity of onset of symptoms of the disease.

Pharmaceutical Administration

A vaccine of the present invention can confer resistance to one or more types of a tumor. The present invention thus concerns and provides a means for preventing or attenuating infection by at least one tumor. As used herein, a vaccine is said to prevent or attenuate a disease if its administration to an individual results either in the total or partial attenuation (i.e. suppression) of a symptom or condition of the disease, or in the total or partial immunity of the individual to the disease.

At least one nucleic acid vaccine of the present invention can be administered by any means that achieve the intended purpose, using a pharmaceutical composition as described herein.

For example, administration of such a composition can be by various parenteral routes such as subcutaneous, intravenous, intradermal, intramuscular, intraperitoneal, intranasal, transdermal, or buccal routes. Subcutaneous administration is preferred. Parenteral administration can be by bolus injection or by gradual perfusion over time. See, e.g., Berkow (1987), infra, Goodman (1990), infra, Avery (1987), infra, and Katzung (1992), infra, which are entirely incorporated herein by reference, including all references cited therein.

A typical regimen for preventing, suppressing, or treating a disease or condition which can be alleviated by a cellular immune response by active specific cellular immunotherapy, comprises administration of an effective amount of a vaccine composition as described is above, administered as a single treatment, or repeated as enhancing or booster dosages, over a period up to and including one week to about 24 months.

According to the present invention, an "effective amount" of a vaccine composition is one which is sufficient to achieve a desired biological effect, in this case at least one of
cellular or humoral immune response to at least one tumor. It is understood that the effective dosage will be dependent upon the age, sex, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired. The ranges of effective doses provided below are not intended to limit the invention and represent preferred dose ranges. However, the most preferred dosage will be tailored to the individual subject, as is understood and determinable by one of skill in the art, without undue experimentation. See, e.g., Berkow (1987), infra, Goodman (1990), infra, Avery (1987), infra, Ebadi, Pharmacology, Little, Brown and Co., Boston, Mass. (1985), and Katsung (1992), infra, which references and references cited therein, are entirely incorporated herein by reference. Whatever dosage is used, it should be a safe and effective amount as determined by known methods, as also described herein.

Subjects

The recipients of the vaccines of the present invention can be any mammal which can acquire specific immunity via a cellular or humoral immune response to tumor, where the cellular response is mediated by an MHC class I or class II protein. Among mammals, the preferred recipients are mammals of the Orders Primata (including humans, chimpanzees, apes and monkeys). The most preferred recipients are humans.

Having now generally described the invention, the same will be more readily understood through reference to the following examples, which are provided by way of illustration, and are not intended to be limiting of the present invention.

Examples

We believe it is preferable that cytotoxic immunity to MUC1 be generated through the expression of MUC1 by antigen presenting cells with the subsequent presentation of digested MUC1 peptides in the context of Class I molecules. Transgene has taken an approach along these lines, using a vaccinia virus encoding MUC1 and IL-2 (29-31). This strategy would allow expression of MUC1 with natural processing of peptide for presentation to the immune system, with the function of IL-2 being to support
the growth of CTLs. In three of nine patients, cellular responses were detected, and the two patients with documented CTL activity survived the longest, although the results are not significant (31). One important limitation to this strategy is that repeated administration of a viral vector results in a strong immune response to the vector itself. This limits the number of times the drug can be administered, because the host immune response acts to clear the drug very quickly. Another approach that may make its way to the clinic, and appears effective in mice, is the fusion of MUC1+ tumor cells with dendritic cells, followed by vaccination of the mice with the fusion cells (32, 33). This leads to specific MUC1 cellular immunity that is protective for tumor challenge and tumor treatment in mice. Because every patient is immunologically unique, this would require unique reagents for each patient. This approach may thus turn out to be very difficult to translate into mass usage because of its expense and requirement for sophisticated medical expertise.

Our strategy is to use DNA vaccination to drive a cellular immune response against tumor cells expressing MUC1. We believe that this approach offers significant advantages over the other strategies listed above. First, DNA vaccines are known to generate strong humoral and cellular immune responses in numerous animal studies (34, 35), and cellular responses in at least one human trial (36). Second, we believe that a cellular immune response, with the generation of CTLs will be the best way to eliminate MUC1+ tumor cells. CTLs directed against a particular antigen recognize specific peptides presented in the context of Class I molecules on a cell surface. Recognition by CTL then results in destruction of the cell expressing that antigen. DNA vaccines can induce the generation of CTLs directed against the antigen encoded by the vaccine (34, 35). If the antigen is a tumor antigen, tumor cells would be lysed by the CTLs. In contrast, anti-tumor antibodies are typically of low avidity and are not very effective in causing ADCC of tumor cells. Third, by injecting a plasmid that will encode the whole MUC1 protein, the patient’s immune system can choose the best peptides for presentation according to his/her unique array of Class I molecules, rather than limiting the drug to one or several putative Class I peptides. Fourth, we have shown in preclinical studies that a combination of plasmids encoding MUC1 and the cytokine IL-18 protect mice from developing tumors, whereas plasmids encoding MUC1 or IL-18 alone offer little to no protection. IL-18 is a cytokine known to skew a nascent immune response toward a cellular response, rather than a humoral response (37). Fifth, DNA vaccination is a
flexible therapeutic strategy, in that one can design a DNA vaccine that encodes not just MUC1 but other molecules that could help to drive the immune response. Sixth, DNA vaccines are simple in concept and delivery to the patient, and should provide a cost-effective approach toward cancer treatment. Seventh, DNA vaccines can be administered indefinitely to the patient, because DNA is nontoxic, and because only the protein product of the DNA, not the DNA itself, is immunogenic.

The invention is a plasmid that encodes human MUC1 and a plasmid that encodes human IL-18, or a multicistron plasmid that encodes both genes. The mode of delivery could also be MUC1 DNA and IL-18 DNA encoded by a viral vector, or RNA encoding each gene. The invention includes an IL-18 gene construct comprised of mature IL-18 linked to a heterologous signal sequence, specifically an immunoglobulin signal sequence. This permits mature IL-18 to be expressed without the requirement for caspase cleavage of the IL-18 precursor protein.

Coinjection of both MUC1 and IL-18 plasmids intramuscularly at the same site is presumed to cause the local expression of both proteins in muscle cells, as well as the uptake and expression of both plasmids by professional antigen presenting cells (APCs) that are migrating through the tissue. This leads to a memory immune response that is protective for animals subsequently challenged with MUC1+ tumor cells. It appears that the vaccination can break self-tolerance to MUC1.

The vaccination also leads to protection from subsequent challenge by MUC1– tumor cells that are otherwise identical to the MUC1+ tumor cells. This phenomenon is known as epitope spreading, and may be a critical, unique feature of the vaccine that enables the immune system to develop a response to MUC1 and to other undefined antigens expressed by the tumor. Tumors are adept at evading the immune system, notably by changing their array of antigens on the cell surface (escape variants). Thus, a vaccine that induces immunity to more than one tumor antigen should make it more difficult for tumors to evade the immune system, and this could result in more effective cancer therapy.

Our studies show that MUC1 and IL-18 plasmids synergize to induce the formation of a protective anti-tumor immune response. The first study was performed in C57Bl/6 mice (43). Nine groups of animals were vaccinated with either vehicle control, empty vector, pMUC1, or pIL-18, singly or in combination. Three vaccinations were performed over a three-week period, and the mice were challenged with syngeneic
MUC1\(^+\) tumor cells (38, 39) by subcutaneous injection in the fourth week. Animals were then monitored for tumor incidence and tumor volume for up to seven weeks thereafter. Results are shown in Figure 1. None of the mice in the groups receiving vehicle, empty plasmid or pIL-18 were protected from developing tumors. Two groups received suboptimal doses of pMUC1, and only 2-3 mice were protected. Of the groups vaccinated with the various combinations of pMUC1 and pIL-18 plasmids, those groups receiving the higher dose of pMUC1 in combination with either dose of pIL-18 showed good protection (6/9 or 7/9 mice). These results are significantly different from the control results (p=0.011 or p=0.003).

Tumor volume was also evaluated. The best result was seen in the group receiving 5ug pMUC1/5ug pIL-18, where tumor growth appeared to be delayed to day 35. At that time the slope of tumor growth parallels that of the other groups (Figure 2).

Sera from the animals was collected pre-study, and at days 13, 26 and 34 during and after vaccination. Sera were tested for the presence of anti-MUC1 antibodies, but only low titers were seen. This result indicates that a strong anti-MUC1 antibody response was not responsible for the protection seen in the animals.

The surviving mice from the first phase of this study were then entered into a second phase, which was designed to learn if the mice had developed a protective anti-tumor immune response that could be recalled. The mice were subjected to a second challenge with MUC1\(^+\) tumor cells, with the results shown in Figure 3. Again, the group that originally received 5ug of each test plasmid fared well, with 4 of the original 9 mice protected for another 49 days, while in the group receiving 5ug pMUC1 and 50ug pIL-18, 3 of the original 9 mice were still protected. This result indicates that some of the rechallenged mice had developed a protective cellular immune response, because they were able to fend off a second challenge of tumor cells.

The above study showed that while neither plasmid alone offered much protection from tumor challenge, and thus did not prime the immune response particularly well, vaccination with both plasmids at certain doses could indeed lead to protection from tumor challenge, or at least a delay in tumor development. We then sought to reproduce these results in a model system more reflective of the human patient, and we used a strain of C57Bl/6 mice transgenic for human MUC1 (40-42; referred to as MUC1 Tg mice). This model would allow us to test if the combination of plasmids was effective, and if we could break tolerance to a self-antigen. We repeated the study shown above using the
transgenic mice and using increased doses of pMUC1, but testing the same doses of pIL-18.

The results in the second study are consistent with the first (44; see Figure 4). Animals receiving empty plasmid showed no protection from tumor challenge. Only one animal receiving the higher dose of pMUC1 was protected, while none of those receiving pIL-18 alone were protected. In contrast, the groups receiving the combinations of pMUC1/pIL-18 showed notable protection, particularly the group receiving the highest dose of each plasmid (8/9 without tumors; p=0.002).

On day 28 the tumors were excised and weighed, as shown in Figure 5. Neither the pMUC1 nor pIL-18 groups had mean weights that were significantly different from the empty vector control group. However, all four pMUC1/pIL-18 combination groups had mean tumor weights that were significantly smaller than those of the empty vector control group (p=0.004-0.038). The results show that not only did the combination of pMUC1/pIL-18 have a positive effect on tumor incidence, it had a positive effect on tumor weights as well. Neither of these effects was observed with either plasmid alone.

Mice from the combination groups were then rechallenged with MUC1 tumor cells to learn if they had developed protective immunity that could be recalled (Figure 6). Of the 5 mice that had originally been vaccinated with 100ug pMUC1/50ug pIL-18, 4/5 remained free of tumor growths in phase II after the second tumor challenge. Both of the mice from the group that was vaccinated with 100ug pMUC1/5ug pIL-18 also remained free of growths throughout the second challenge, while 1 of 2 mice each from the two remaining groups developed growths. The results support the hypothesis that the mice developed a memory response that was recalled in response to the second tumor challenge.

We then determined if the mice had developed a broader immune response to antigens besides MUC1. The same animals in phase II were challenged again but with MUC1 MC38 tumor cells. The MC38 cells are the parent line to the MUC1 tumor cells, and are otherwise expected to be identical (38). Results of the third challenge are shown in Figure 7. Interestingly, the mice that were originally vaccinated with the 100ug dose of pMUC1 in combination with either dose of pIL-18 continue to be protected, while the three naïve control MUC1 Tg mice succumbed to tumors. This result suggests that the vaccinated mice have developed immunity to determinants shared between the two cell lines, in addition to immunity to MUC1. This phenomenon is known as epitope
spreading, and is well documented in autoimmune disease models in animals (46, 47). In these models, animals are first immunized with a self-protein or peptide against which they develop immunity, and the immune response causes the destruction of normal tissue expressing the native protein. After tissue destruction, the immune response broadens to include antigens that the animals were not immunized against but which are expressed by the target tissue. If such a process could be duplicated in humans, DNA vaccination could be very effective at inducing immunity to MUC1 as well as other unique determinants present on tumor cells, and broadening the immune response should only be helpful to patient therapy. In addition, tumor cells are continuously changing in response to environmental pressures, and therapy against one antigen could lead to remission until escape variants arise that no longer express that antigen. With epitope spreading, the immune response broadens to include other antigens and theoretically should improve the chances that the tumor cells will be unable to escape the vigilance of the immune system.

A second advantage of this approach includes the use of a human IL-18 construct that encodes the mature form of IL-18 linked to an immunoglobulin signal sequence. IL-18 is ordinarily expressed as a precursor protein that is not functional until it is cleaved into its mature form by caspase (48, 49). Most cells do not express caspase, therefore one strategy to ensure IL-18 expression in any cell type is to engineer the protein so that it does not require caspase cleavage for maturation. We have used a genomic fragment that encodes the anti-IL-12 12B75 heavy chain signal sequence (50) linked to a human IL-18 cDNA sequence to ensure production of human IL-18 in any cell type. This strategy was effective for both the human and mouse IL-18 genes.

A third advantage of our approach is to use a MUC1 cDNA that includes one of its own introns to improve expression from the plasmid (Figure 9).

A fourth advantage of our approach is the ability to encode more than one gene on a plasmid to enable delivery of more than one protein product to a target tissue/cell (51, 52). This should ensure that a target tissue expresses all desired proteins with the expectation of a more efficient induction of immune response. A double cistron vector has been constructed, and we have shown that it is capable of expressing mouse or human IL-12. IL-12 is a protein comprised of two subunits that must be co-expressed in the same cell in order for the mature molecule to be produced. The two protein subunits are encoded by different genes, and we have shown in tissue culture that a double cistron
vector encoding both genes results in more effective production of the mature protein than using two plasmids which encode either gene alone (51, 52).

We wished to explore the epitope spreading phenomenon further, specifically to learn if DNA vaccination followed by just a single tumor challenge with MUC1+ cells
would give rise to epitope spreading. Animals were vaccinated according to the groups shown in Figure 10. Vaccination with pMUC1/pIL-18 is the only regimen that results in significant protection (8/18 mice) compared to the empty vector group (p=0.007). Tumor weights are likewise significantly smaller in this group versus the other three groups (Figure 11). These results confirm the previous data demonstrating that the combination of pMUC1 and pIL-18 offer better protection against tumor challenge, and also cause a significant reduction in tumor weight in those animals that still develop tumors. Further, the data indicate that the combination of the two plasmids allows one to break tolerance to the MUC1 self antigen in the MUC1 transgenic mice.

The 8 protected mice from the pMUC1/pIL-18 group, and the 3 protected mice from the pMUC1-only group were challenged with MUC1⁺ tumor cells (Figure 12). Only 1/15 control naïve animals survived tumor challenge, whereas 4/8 and 2/3 vaccinated animals remained tumor free. This result indicates that epitope spreading occurs with the immune response generated by the DNA vaccination and the first tumor challenge. Further, the fact that epitope spreading occurs in the pMUC1-only group suggests that IL-18 may not be required for this phenomenon to occur.

![Graph](image)

Figure 10. Tumor incidence in female MUC1 transgenic mice vaccinated with DNA as indicated in the legend, and subsequently challenged with MUC1⁺ tumor cells. Only
the group vaccinated with pMUC1/pIL-18 shows significantly improved protection from tumor challenge (p=0.007).

Figure 11. Median tumor weights at study end, from animals shown in Figure 1. Median tumor weight for group 4 is significantly different from those in the other groups.
Figure 12. Rechallenge of protected mice from Figure 1 with MUC1\(^{-}\) tumor cells.

Experimental conditions for above: Female MUC1 transgenic mice were vaccinated in Figure 12 with the indicated quantities of plasmids, on day 0, 14, and 21. Mice were challenged with \(1.5 \times 10^5\) MISA cells on day 28. They were monitored for tumor incidence, and tumor weights were measured at study end (Figure 11). The surviving mice from Figure 11 were challenged with \(3 \times 10^5\) MC38 cells 45-47 days after the initial tumor challenge (Figure 12).

Tumor protection studies in male MUC1 transgenic mice

We have tested whether vaccination of male MUC1 transgenic mice with pMUC1 plasmid can induce a protective immune response upon challenge with MISA cells. Male mice were vaccinated on day 0, 14 and 21 with various doses of DNA, then challenged on Day 28 with \(1.5 \times 10^5\) MISA tumor cells (Figure 13). In the control group, nearly all mice (9/10) succumbed to tumors. Male mice vaccinated with 150ug of pMUC1 showed good protection (6/10; \(p=0.019\)), and mice vaccinated with 100ug pMUC1 showed protection in 3/9 mice (not significant). Lower doses of pMUC1 did not result in any tumor protection. It appears that the pMUC1 plasmid alone can offer significant benefit in reducing tumor incidence, at high dose.
Tumor weights are shown in Figure 14. Again, the tumor weights in the highest dose group show a significant difference from the control group (p=0.015). This result suggests that the vaccination also helps to control growth of the tumor cells in the mice that still develop tumors.

To learn if the anti-tumor response was long-lived, the male mice that did not develop tumors (Figure 13) were rechallenged with 1.5x10⁵ MISA cells on day 39 after the first tumor challenge. As shown in Figure 15, 3/6 and 1/3 of the pMUC1 vaccinated mice remained protected after the rechallenge, suggesting that some animals did develop a long-lived recall response to the tumors.

![Graph](image)

Figure 13. Tumor incidence in male mice vaccinated with pMUC1 or empty vector, followed by tumor challenge.
Figure 14. Tumor weights in male mice vaccinated with pMUC1.

Figure 15. Tumor incidence in male mice rechallenged on the opposite flank with MUC1+ tumor cells.

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and the accompanying figures. Such modifications are intended to fall within the scope of the appended claims.
It is further to be understood that all base sizes or amino acid sizes, and all molecular weight or molecular mass values, given for nucleic acids or polypeptides are approximate, and are provided for description.

Various publications are cited herein, the disclosures of which are incorporated by reference in their entireties.

REFERENCE LIST

Bimboim, H. C. and Doly, J., Nucleic Acids Res. 7:1513-1523 (1979)

D'Honcht, Vaccine 10 Suppl.:548-52 (1992)

Eichberg, Int. Conf. AIDS 7:88 (1991)

Hay, R., et al., eds., American Type Culture Collection Catalogue of Cell Lines and
Hybridomas, 7th Ed., American Type Culture Collection, Rockville, Md. (1992)
Ito et al., J. Virol. 65:5491-5498 (1991)
Ito et al., Cancer Res. 50:6915-6918 (1990)
Kieny et al., Int. Conf. AIDS 5:541 (1989)
Luytjes et al., Cell 59:1107-1113 (1989)
Rhim, J. S. et al., Int. J. Cancer 15:23-29 (1975)
Richman, AIDS Res. Hum. Retroviruses 8: 1065-1071 (1992);
Richman, Annu Rev Pharmacol Toxic 33: 149-164 (1993);
Richman, Antimicrob Agents Chemother 37: 1207-1213 (1993);
Schulz, G. E. et al., Principles of Protein Structure, Springer-Verlag, New York, N.Y. 88
Starcich et al., Cell 45:637 (1986)
WHAT IS CLAIMED IS:

1. A nucleic acid vaccine, comprising

 (a) at least one polynucleotide encoding at least one antigenic portion of at least one amino acid sequence comprising or encoded by at least one of SEQ ID NOS:1-47 or variants thereof, or a nucleic sequence complementary thereto; and

 (b) at least one polynucleotide encoding at least one adjuvant encoding portion of at least one amino acid sequence comprising or encoded by at least one of SEQ ID NOS:60-77 or variants thereof, or a sequence complementary thereto.

2. A nucleic acid vaccine according to claim 1, wherein said antigen is selected from at least one of MUC-1, PSA, or KLK2.

3. A nucleic acid vaccine according to claim 2, wherein said MUC-1 amino acid sequence is selected from at least one antigenic portion of at least one of SEQ ID NOS:20, 22, 26, 28, 30, 32, 34, 35, 37, 39, 41, 43, and 47.

4. A nucleic acid vaccine according to claim 2, wherein said PSA amino acid sequence is selected from at least one antigenic portion of at least one of SEQ ID NOS:1, 4-10, 12 and 14-15.

5. A nucleic acid vaccine according to claim 2, wherein said IL-18 amino acid sequence is selected from at least one antigenic portion of at least one of SEQ ID NOS:64, 65, 69, 70-71, 74-75 and 77.

6. A nucleic acid vaccine according to claim 1, wherein the vaccine further comprises at least one promoter sequence controlling the expression of said antigen encoding polynucleotide.

7. A nucleic acid vaccine according to claim 2, wherein the promoter is at least one cytomegalovirus immediate early (CMV) promoter.
8. A nucleic acid vaccine according to claim 2, wherein the promoter is at least one dihydrofolate reductase (dhfr) promoter.

9. A nucleic acid vaccine according to claim 2, where the promoter is at least one early or late SV40 promoter.

10. A nucleic acid vaccine according to claim 1, comprised of a nucleic acid vector.

11. A nucleic acid vaccine according to claim 1, comprised of a host cell

12. A nucleic acid vaccine according to claim 1, comprised of viral vector.

13. A composition comprising a nucleic acid vaccine according to claim 1.

14. A tumor/adjuvant vaccine composition comprising a nucleic acid vaccine according to claim 1 and a pharmaceutically acceptable carrier or diluent.

15. A nucleic acid vaccine composition of claim 11, further comprising an additional adjuvant and/or cytokine encoding sequence or component of the composition which enhances a nucleic acid vaccine immune response to at least one cancer associated tumor protein in a mammal administered the vaccine composition.

16. A method for eliciting an immune response to a cancer associated tumor protein in a mammal that is prophylactic for a cancer associated tumor protein, comprising administering to a mammal a nucleic acid vaccine according to claim 1.

17. A method for eliciting an immune response to a cancer associated tumor protein in a mammal for therapy of a tumor-associated pathology, comprising administering to a mammal a nucleic acid vaccine according to claim 1.

18. A method according to claim 13, further comprising priming or boosting a humoral or cellular immune response, or both, by administering an effective amount of at least one of said nucleic acid vaccine.

19. A method according to claim 14, further comprising priming or boosting a humoral or cellular immune response, or both, by administering an effective amount of at least one of said nucleic acid vaccine.