WO 02/067118 A2

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

A 00O 0

(10) International Publication Number

29 August 2002 (29.08.2002) PCT WO 02/067118 A2
(51) International Patent Classification’: GO6F 9/46 MA 02140 (US). WOLLRATH, Ann, M.; 9 Northwoods
Road, Groton, MA 01450 (US).
(21) International Application Number: PCT/US02/00136
(74) Agents: GARRETT, Arthur, S.; Finnegan, Henderson,
X . Farabow, Garrett & Dunner, L.L.P., 1300 I Street, N.W.,
(22) International Filing Date: 3 January 2002 (03.01.2002) Washingon, DC 20005-3315 et al. (US).
(25) Filing Language: English (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(26) Publication Language: English CZ, DE, DK, DM, DZ, EC, EE, ES, H, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
I . LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(30) Priority Data: MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG
09/753,686 4 January 2001 (04.01.2001) US i K e >R R it tad et At
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
. YU, ZA, ZM, ZW.
(71) Applicant: SUN MICROSYSTEMS, INC. [US/US];
4150 Network Circle, Santa Clara, CA 95054 (US). (84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
(72) Inventors: COLLEY, Adrian, E.; 116 Massachusetts Av- Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

enue, Arlington, MA 02474 (US). JONES, Peter, C.; 85
Bacon Street, Winchester, MA 01890 (US). SCHIEFLER,
Robert, W.; 96 North Street, # 2, Somerville, MA 02144
(US). WARRES, Michael, P.; 17 Bellis Circle, Cambridge,

European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR PASSING OBJECTS IN A DISTRIBUTED SYSTEM USING SERIALIZATION CON-

104

SERVER
130
18| VEMORY \ SEGONDARY
N STORAGE
PROGRAM
138 JAVARUNTIME
SYSTEM
0
| VIRTUALMACHINE
‘42\ SERIALIZATION 132
CONTEXT
m
A1
VIDEO INPUT
DISPLAY DEVICE
136 134

(57) Abstract: A system consistent with the present invention reduces the number of redundant class descriptors that are sent during
remote method calls by using serialization contexts. "Serialization contexts" are dictionary objects that map a class descriptor to a
corresponding integer handle. When possible, the integer handle, rather than the full class descriptor, is passed, saving processing

TEXTS
100 10
CLIENT
110
108& MEMORY N SECONDARY
STORAGE
PROGRAM
8 JAVARUNTIME
SYSTEM
0
U] VIRTUALMACHIE .
RMi CPU i
12 SERIALIZATION 1i2
. CONTEXT
124
0]
VIDEQ INPUT
DISPLAY DEVICE
/ /
116 114
time in RMI calls.

w0 02/067118 A2 IO RO0 000 00 O R

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report

ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 02/067118 PCT/US02/00136

Method and System for Passing Objects in
a Distributed System using Serialization Contexts

Field of the Invention

The present invention relates generally to data processing systems

and, more particularly, to passing serialized versions of objects in a distributed

- system.

Background of the Invention

Distributed systems can be made up of various components, including
both hardware and software. A distributed system (1) allows its users to
share services and resources over a network of many devices; (2) provides
programmers with tools and programming patterns that allow development of
robust, secured distributed systems; and (3) simplifies the task of
administering the distributed system.

A distributed system can be implemented using an object-oriented
programming language, such as Java™. The Java™ programming language
is typically compiled into a platform-independent format, using a bytecode
instruction set, which can be executed on any platform supporting the Java™
virtual machine. The Java™ programming language is described in greater
detail in The Java™ Language Specification by James Gosling, Bill Joy, and

Guy Steele, Addison- Wesley, 1996, which is incorporated herein by
reference. Java™ and Java-based trademarks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Distributed systems require that programs running in different address
spaces be able to communicate with each other. In a system using an object-
oriented programming language, such as the Java™ programming language,
this communication can be achieved by passing an "object," which represents
an item or instance manipulated by the system, from one program to another.
In such a system, a "class" provides a template for the creation of objects
having characteristics of that class. The objects in each class share certain
characteristics or attributes determined by the class. A class thus defines the
type of an object. Objects are typically created dynamically during system

10

15

20

25

30

WO 02/067118 PCT/US02/00136

operation. Methods associated with a class are generally invoked on the
objects of the same class or subclass.

In a Java™ distributed system, an object is referred to as being remote
when its methods can be invoked from another address space, typically a
Java™ virtual machine on a different computer. A remote object is described
by one or more remote interfaces; which are Java™ interfaces that declare
the methods of the remote object. Remote Method Invocation (RMI) is used
to invoke a method of a remote interface on a remote object. RMI is
explained in, for example, the Remote Method Invocation Specification, Sun
Microsystems, Inc. (1997) available at
http://www.java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/rmiTOC.doc.ht
ml, which is incorporated herein by reference.

As part of RMI, Java™ objects are passed between a client and a
server. Before being passed, a Java™ object is converted into a serialized
representation of itself. The serialized representation of the object contains
enough information to enable the recipient to identify and verify the Java™
class from which the contents of the object were saved and to restore the
contents to a new instance. A serialized object contains two main parts: the
object data and a class descriptor. The class descriptor describes the content
and format of the object data.

When a serialized object is passed, the object data and the class
descriptor are transmitted across the network. Although the object data may
change over time, the class descriptor remains the same. Therefore, multiple
remote method calls can result in passing the same class descriptor multiple
times to a recipient who already has a copy of the class descriptor. This is
expensive in terms of processing time as well as wasted network bandwidth.
It is therefore desirable to reduce the number of times that a class descriptor
is sent to a recipient.

SUMMARY OF THE INVENTION

Systems and methods consistent with the present invention reduce the

number of redundant class descriptors that are sent during remote method

calls by using serialization contexts. "Serialization contexts" are dictionary

10

15

20

25

30

WO 02/067118 PCT/US02/00136

objects that map a class descriptor to a corresponding integer handle and, on
the receiving end, map the integer handle back to the class descriptor. When
possible, the integer handle, rather than the full class descriptor, is passed,
saving processing time in RMI calls.

A method consistent with the present invention passes a first object
and a second object, both instances of a class, in distinct remote method calls
in a distributed system. The first object is passed from a sender to a recipient
with a descriptor of the class and a handle corresponding to the descriptor.
The handle and the descriptor are stored by the recipient. The second object
is then passed from the sender to the recipient with the handle, and the
recipient uses the handle to determine the descriptor.

BRIEF DESCRIPTION OF THE DRAWINGS
This invention is pointed out with particularity in the appended claims.

The above and further advantages of this invention may be better understood
by referring to the following description taken in conjunction with the
accompanying drawings, in which:

Fig. 1 depicts a distributed system 100 suitable for practicing methods
and systems consistent with the present invention;

Fig. 2 is a block diagram showing two serialization contexts consistent
with the present invention;

Fig. 3 depicts a flow chart of a method for passing objects using
serialization contexts, consistent with the present invention;

Fig. 4 is a flow chart of the "handshake" between a sender and a
recipient to agree on a serialization context pair to use; and

Fig. 5 is a flow chart showing how the committed flag can be used to
provide two-way communication.
DETAILED DESCRIPTION

A system consistent with the present invention reduces the number of

redundant class descriptors that are sent during remote method calls by using
serialization contexts. "Serialization contexts" are dictionary objects that map

a class descriptor to a corresponding integer handle. When possible, the

10

15

20

25

30

WO 02/067118 PCT/US02/00136

integer handle, rather than the full class descriptor, is passed, saving
processing time in RMI calls.

Figure 1 depicts a distributed system 100 suitable for practicing
methods and systems consistent with the present invention. Distributed
system 100 includes client computer 102 and server computer 104,
communicating via network 106. Network 106 may be, for example, a local
area network, wide area network, or the Internet.

Client computer 102 includes a memory 108, a secondary storage
device 110, a central processing unit (CPU) 112, an input device 114, and a
video display 116. The memory 108 includes a Java™ runtime system 118.
The Java™ runtime system 118 includes a Java™ virtual machine 120, and a
Java™ remote method invocation (RMI) system 122. The RMI system 122
contains one or more serialization contexts 124. Memory 108 also includes a
program 126 running on client computer 102.

Server computer 104 includes a memory 128, a secondary storage
device 130, a central processing unit (CPU) 132, an input device 134, and a
video display 136. The memory 128 includes a Java™ runtime system 138.
The Java™ runtime system 138 includes a Java™ virtual machine 140, and
the Java™ remote method invocation (RMI) system 142. The RMI system
142 contains one or more serialization contexts 144. Memory 128 also
includes a program 146 running on server computer 104, and one or more
objects 148.

Using RMI, objects can be passed between client computer 102 and
server computer 104. For example, a program 146 running on client
computer 102 can invoke a method on an object 148 stored in the memory
130 of server computer 104. Client computer 102 would use RMI system 122
to convert the method call, including an identification of the remote method
and any parameters, into a byte stream that is sent to server computer 104
via network 106. Server computer 104, upon receiving the byte stream, would
use its RMI system to convert the byte stream into executable bytecode and
initiate the invocation of the method on the remote object. If the method

results in a return value, server computer 104 would convert the return value

10

15

20

25

30

WO 02/067118 PCT/US02/00136

to a byte stream using its RMI system, and transmit the byte stream to the
client computer 102.

The byte streams contain serialized versions of Java™ objects, e.g.
parameters or return values. A serialized object contains two main parts: the
object data and a class descriptor. The class descriptor describes the content
and format of the object data. Object serialization is explained in, for
example, the Java™ Object Serialization Specification, available at
http://java.sun.com/products/jdk/1.3/docs/guide/serialization/spec/serial TOC.d
oc.html, which is incorporated herein by reference.

Within a single remote method call, a class descriptor is sent with the
first object of that type that is serialized, subsequent objects of that type in the
same remote method call refer to the class descriptor with a "back reference”
(i.e., an integer handle).

Serialization Contexts

In a serialized object, the class descriptor provides the full name of the
class and its serialization ID, which uniquely identifies the class. The
serialization ID is a 64-bit hash of the class name, interface class names,
methods, and fields. Each class descriptor is an instance of the Java™ class
ObjectStreamClass, defined as follows:

public class ObjectStreamClass

{
public static ObjectStreamClass lookup(Class cl);

public String getName();
public Class forClass();
public ObjectStreamField[] getFields();
public long getSerialVersionUID();
public String toString();

}

Serialization contexts can be used to pass the class descriptors of
serialized objects. As explained above, serialization contexts are dictionary
objects that map a class descriptor to a corresponding integer handle. When
possible, the integer handle, rather than the full class descriptor, is passed,
saving processing time in RMi calls.

10

15

20

25

30

WO 02/067118 PCT/US02/00136

Figure 2 is a block diagram showing serialization contexts 124 and 144
in more detail, consistent with the present invention. Each serialization
context is maintained as a pair of tables: one for outgoing handles, e.g., 202
or 206, and one for incoming handles, e.g., 204 or 208. Outgoing handles are
used when a program running on the computer acts as a sender (e.g., makes
a remote call or sends return values). Incoming handles are used when a
program running on the computer acts as a recipient (e.g., receives a remote
call or receives return values). In this way, a program 126 running on the
client computer and a program 146 running on the server computer can each
act as a sender or recipient. Both the RMI system of the client computer and
the RMI system of the server computer maintain an outgoing handle table and
an incoming handle table.

RMI system 122 of client computer 102 contains serialization context
124, which consists of outgoing handle table 202 and incoming handle table
204, and RMI system 142 of server computer 104 contains serialization
context 144, which consists of outgoing handle table 206 and incoming handle
table 208. Each incoming handle table has one or more entries including a
handle and a class descriptor. Each outgoing handle table has one or more
entries, the entries including a flag, a handle, and a class descriptor. The flag
in each outgoing handle table entry is a boolean value indicating whether the
corresponding handle/class descriptor pair is "committed." If a handle/class
descriptor pair in an outgoing handle table is committed, it is known to be
saved in the corresponding incoming handle table of the serialization context
pair. For example, if the committed flag in an entry in outgoing handle table
202 is true, then the corresponding class descriptor/handle pair has been
stored in incoming handle table 208. If the committed flag is false, incoming
handle table 208 may or may not contain the corresponding class
descriptor/handle pair. The use of the committed flag will be described in
further detail below with reference to figure 5.

Figure 3 depicts a flow chart of a method for passing objects using
serialization contexts, consistent with the present invention. First, the sender

(e.g., program 126 running on client computer 102) and the recipient (e.g.,

10

15

20

25

30

WO 02/067118 PCT/US02/00136

program 146 running on server computer 104) agree on a serialization context
to use during the method call (step 302). As a result of this agreement, or
"handshake," the sender will use serialization context 124 and the recipient
will use serialization context 144, as shown in figure 2. The "handshake"
process is explained below, with reference to figure 4.

When the sender wishes to send a class descriptor to the recipient, the
sender checks to see if the descriptor is already defined in the outgoing
handle table 202 of serialization context 124 (step 304). If so, and if the
committed flag is true, as detailed with reference to one embodiment in Figure
5 below, the sender retrieves the handle corresponding to the class descriptor
from the outgoing handle table 202 of serialization context 124, and sends the
handle rather than the full class descriptor to the recipient (step 306). The
recipient then uses the handle to look up the class descriptor in the incoming
handle table 208 of serialization context 144. If the class descriptor that the
sender wishes to send is not in the outgoing handle table 202 of serialization
context 124, the sender sends both the class descriptor and a new handle
(step 310). For subsequent calls, the sender can send just the handle to the
recipient.

Handshake

Figure 4 is a flow chart of the "handshake" between a sender and a
recipient to agree on a serialization context pair to use. When a connection
between the sender and the recipient is established, e.g., when a new RMI
session begins, the sender and recipient "handshake" to agree on a
serialization context pair to use, as stated in step 302 of figure 3 above. Each
pair of serialization contexts, e.g., serialization contexts 124 and 144, is
identified by a globally unique context ID. This context ID is used to perform
the handshake. First, the sender determines whether one of the sender's
serialization contexts is associated with a serialization context of the recipient
(step 402). If so, the sender transmits the context ID for that serialization
context pair to the recipient (step 404). Otherwise, the sender transmits a null
ID to the recipient (step 406). If the recipient receives a non-null context ID

(step 408), it checks to see if it still has the corresponding serialization context

10

15

20

25

30

WO 02/067118 PCT/US02/00136

(step 410). If it does, the recipient echoes the context ID back to the sender
(step 412).

If the recipient does not have the serialization context corresponding to
the context ID received, or if the recipient receives a null ID, the recipient
creates a new serialization context (step 414) and sends the new context ID
to the sender (step 416). The sender then knows that, if it receives the same
context ID that it sent, it can use the proposed serialization context.
Otherwise, the sender should create a new serialization context with the new
context ID and use that instead.

Using committed flags to enhance two-way communications

Figure 5 is a flow chart showing how the committed flag can be used to
enhance two-way communication by ensuring that handles are sent without
class descriptor definitions only when the receiving end is known to have
previously received a definition (i.e., a class descriptor) corresponding to the
handle. As described in step 306 of figure 3 above, when the sender
determines that a class descriptor is already defined in outgoing handle table
202, the sender can send the corresponding handle, rather than the full class
descriptor, to the recipient. However, before sending the handle, the sender
can use the committed flag to ensure that the sender has an entry containing
the class descriptor/handle pair in incoming handle table 208.

To use the committed flag in this way, the sender first checks to see if
the class descriptor is in the outgoing handle table 202 of serialization context
124 (step 502). If so, then the sender checks the value of the corresponding
committed flag (step 504). If the committed flag is true, the sender can send
the handle, knowing that the class descriptor/handle pair is stored in the
recipient's incoming handle table 208 (step 506).

If the class descriptor is not in the outgoing handle table 202 of
serialization context 124, the sender creates a new entry, with a new handle
and a committed flag set to false, in outgoing handle table 202 (step 508) and
sends the new handle and class descriptor to the recipient (step 510). The
recipient stores the new class descriptor/handle pair in incoming handle table
208 (step 512). The sender would also send both the class descriptor and the

WO 02/067118 PCT/US02/00136

10

15

20

25

30

handle to the recipient if the class descriptor is in outgoing handle table 202,
but the committed flag is false (steps 510 & 512). The recipient would simply
discard any duplicate handle/class descriptor pairs received.

Handle acknowledgment - arguments

To rely on the committed flags as described above, there must be a
way to update the flags in both the sender's outgoing handle table and the
recipient'’s outgoing handle table. This updating can be done using the
arguments sent from the sender to the recipient and the return values
returned from the recipient to the sender.

When an argument, including data and a class descriptor/handle pair,
is sent from a sender (e.g., program 126 running on client computer 102) to a
recipient (e.g., program 146 running on server computer 104), the recipient,
uses the class descriptor or handle to recreate the argument data and carry
out the method call. As part of this process, the recipient enters any new
handle/class descriptor pairs into the incoming handle table 208. In one
embodiment, this updating occurs before the method call can return
successfully to the client. Therefore, when the remote method call is
successfully returned to the original sender, the handle/class descriptor pair is
implicitly acknowledged, and the sender can set the corresponding committed
flag in the outgoing handle table 202 to true.

Handle acknowledgment - return values

Class descriptors used by the recipient (e.g., program 126 running on
server ciomputer 104) to send return values to the sender (e.g., program 146
running on client computer 102) require an explicit acknowledgment. The
recipient has no way of knowing whether the sender successfully stored the
handle/class descriptor pair sent with the return value in the incoming handle
table 204. To acknowledge that the incoming handle table 204 has been
updated, the sender sends an explicit acknowledgment of its successful
receipt of the handle/class descriptor pair with its next call to the recipient.
The acknowledgment can be delayed in this way because the recipient only
needs the acknowledgment if there are future communications between the

sender and the recipient.

10

15

20

WO 02/067118 PCT/US02/00136

10

Garbage collection

Serialization contexts can get quite large. If a pair of tables is no
longer needed, memory space can be saved by deleting the tables.
Preferably, this "garbage collection" is made possible by using the globally
unique ID codes corresponding to each serialization context pair. A table that
maps serialization contexts to their unique ID codes can be maintained by, for
example, RMI system 124 or RMI system 144. Space in this table is "leased,"
meaning that after a set amount of time has passed, a serialization
context/unique ID code pairing is deleted from the table. Each time a
serialization context is accessed by an object, e.g., a program running on
client computer 102 or server computer 104, the lease time is reset.
Therefore, serialization contexts will automatically be available for a set
amount of time between uses. After the set amount of time expires and a
serialization context is deleted, a new table is created when a client wishes to
communicate with the server, as described in Figure 5.

Other embodiments of the invention will be apparent to those skilled in
the art from consideration of the specification and practice of the invention
disclosed herein. It is intended that the specification and examples be
considered as exemplary only, with a true scope and spirit of the invention

being indicated by the following claims.

10

15

20

25

WO 02/067118 PCT/US02/00136

11

CLAIMS
What is claimed is:

1. A method in a distributed system for passing a first object and a
second object, wherein the first object and the second object are instances of
a class, comprising the steps of:

passing the first object from a sender to a recipient with a descriptor of
the class and a handle corresponding to the descriptor;

storing the handle and the descriptor by the recipient;

passing the second object from the sender to the recipient with the
handle; and

using the handle by the recipient to access the descriptor.

2. The method of claim 1, further comprising the step of:

assigning, by the sender, the handle to the descriptor of the class.

3. The methdd of claim 1, further comprising the step of:

assigning, by the recipient, the handle to the descriptor of the class.

4, The method of claim 1, further comprising the steps of:
using the descriptor by the recipient to interpret the first object; and
using the descriptor by the recipient to interpret the second object.

5. A method in a distributed system for passing a first object and a
second object to a recipient, wherein the first object and the second object are
instances of a class, comprising the steps of:

passing the first object to the recipient with a descriptor of the class
and a handle corresponding to the descriptor; and

passing the second object to the recipient with the handle, whereupon
receipt by the recipient, the recipient uses the handle to access the déscriptor
of the class.

6. The method of claim 5, further comprising the step of:

assigning the handle to the descriptor of the class.

10

15

20

25

WO 02/067118 PCT/US02/00136

12

7. A method in a distributed system for interpreting a first object and a
second object, wherein the first object and the second object are instances of
a class, comprising the steps of:

receiving the first object with a descriptor of the class and a handle
corresponding to the descriptor;

storing the handle and the descriptor;

receiving the second object with the handle; and

using the handle to access the descriptor.

8. The method of claim 7, further comprising the step of:
assigning the handle to the descriptor of the class.

9. The method of claim 7, further comprising the steps of:
using the descriptor to interpret the first object; and

using the descriptor to interpret the second object.

10. A method in a distributed system for passing an object from a sender to
a recipient, comprising the steps of:
creating a serialization context containing a class descriptor and a -
handle corresponding to the class descriptor, the class descriptor referring to
a class of the object, wherein the creating step further comprises the substeps
of:
storing the serialization context at the sender; and
storing the serialization context at the recipient;
handshaking between the sender and the recipient, wherein the
handshaking step further comprises the substeps of:
transmitting from the sender to the recipient a request to use the
serialization context during a communication session;
determining whether the serialization context is stored at the
recipient;
when it has been determined that the serialization context is

stored at the recipient,

10

16

20

25

WO 02/067118 PCT/US02/00136

13

sending a response from the recipient to the sender
indicating that the serialization context will be used during the communication
session; and

passing the object from the sender to the recipient using
the serialization context; and

when it has been determined that the serialization context is not

stored at the recipient,

creating a new serialization context for use during the
communication session; and

passing the object from the sender to the recipient using
the new serialization context; and

using the handle by the sender to obtain the class of the object.

11. The method of claim 10, wherein the passing step comprises the
substeps of:

determining whether the serialization context has been confirmed by
the recipient;

sending the handle and data from the object from the sender to the
recipient, when it is determined that the recipient has confirmed the
serialization context; and

sending the handle, the class descriptor, and data from the object from
the sender to the recipient, when it is determined that the recipient has not

confirmed the serialization context.

12. A method in a distributed system for interpreting an object, comprising
the steps of:

creating a handle corresponding to a class descriptor, wherein the
class descriptor contains information that enables a recipient node in the
distributed system to interpret the object;

determining whether the class descriptor is accessible to the recipient

node;

10

15

20

25

30

WO 02/067118 PCT/US02/00136

14

sending the class descriptor and the handle to the recipient node, when
it is determined that the class descriptor is not accessible by the recipient
node; and

sending the handle to the node, when it has been determined that the
class descriptor is accessible by the recipient node, wherein the recipient

node uses the handle to obtain the class descriptor of the object.

13. The method of claim 12, further comprising the step of:

using the class descriptor by the recipient node to interpret the object.

14. The method of claim 13, wherein the using step further comprises the
step of:
storing, by the recipient node, the class descriptor so that it is

accessible to the recipient node.

15. A distributed system comprising:
a client computer, comprising:

a memory with a client program that sends an object of a class
to a remote location, and with an outgoing serialization context that stores a
descriptor of the class and a handle corresponding to the descriptor; and

a processor that runs the client program; and

a server computer, comprising:

a memory with an incoming serialization context that stores the
descriptor of the class and the handle, and with a server program that
receives the object from the client program and that uses the handle to
access the descriptor of the class in the incoming serialization context; and

a processor that runs the server program.

16. A computer-readable memory device encoded with a data structure,
the data structure having a plurality of entries, each entry comprising:

a class descriptor that provides interpretation information for a
corresponding object; and

a handle that is used by a program upon receipt of the corresponding

object from a remote location to access the class descriptor.

10

15

20

25

WO 02/067118 PCT/US02/00136

15

17. A computer-readable medium containing instructions for controlling a
data pfocessing system to perform a method, the method for sending a first
object and a second object from a source to a destination, wherein the first
object and the second object are instances of a class, the method comprising
the steps of:

sending the first object from the source to the destination with a
descriptor of the class and a handle corresponding to the descriptor;

storing the handle and the descriptor by the destination;

sending the second object from the source to the destination with the
handle; and

using the handle by the destination to access the descriptor.

18. A computer-readable medium containing instructions for controlling a
data processing system to perform a method, the method for interpreting an
object in a distributed system, the method comprising the steps of:

creating a handle corresponding to a class descriptor, wherein the
class descriptor contains information that enables a recipient node in the
distributed system to interpret the object;

determining whether the class descriptor is accessible to the recipient
node;

sending the class descriptor and the handle to the recipient node, when
it is determined that the class descriptor is not accessible by the recipient
node; and

sending the handle to the recipient node such that the recipient node
uses the handle to obtain the class descriptor of the object when it has been

determined that the class descriptor is accessible by the recipient node.

L Old

PCT/US02/00136

1/5

WO 02/067118

7El 9} il 94l
/ / /
30IA30 AY1dSId 30INIQ AY1dSIa
1ndN| 03IA 1ndN| O30IA
wh dh
1X3LNOD ~ 1Y3LNOD ~
70! NOILYZIT¥I¥3S 20l 2 NOLLYZ[TW1¥3S -
[
Wy
Nd0 I NdO IWg
90}
INHOVN TYLA [| INHOVH TYNLEA |
0w 02l
N3LSAS ~ NILSAS ™\
JWLLN YAV %l . FHLINA v o
WY¥904d WY¥90Yd
JOYNOLS N\ FOVH0LS M\
AIYANOO3S [- - ANOREN gz AJYANOD3S [RIONIN | g
el ift
RENNEN IN3D

w0, 0 00l

~=

PCT/US02/00136

WO 02/067118

2/5

H0LdI¥0S3d
\ SSY 1) J1ANVH

¢
\

|

|

|

]

|

|

|

|

|

]

[

|

¥01dI¥083a _

SSv) JTANYH Y14 |
| ¥0¢

902 7 _

802 _

|

\ |

|

]

|

|

|

|

< |

]

H0LdI¥0S3q 7
SSv J1ONVH ol

HOLdl40S3d
Sv1) 310NVH ov1d

WO 02/067118 PCT/US02/00136

3/5
(BEGIN)

SENDER AND RECIPIENT

302

\ AGREE ON SERIALIZATION
CONTEXT

304

" [SCLASS SENDER SENDS
DESCRIPTOR IN CLASS DESCRIPTOR
THE SERIALIZATION AND HANDLE
CONTEXT ?

\310

06
’ \ SENDER SENDS HANDLE

ONLY

308 RECIPIENT GETS CLASS
\ DESCRIPTOR FROM
SERIALIZATION CONTEXT

WO 02/067118

4/5

BEGIN

SENDER CHECKS:

PCT/US02/00136

402

IS A SERIALIZATION
CONTEXT ASSOCIATED
WITH THE
RECIPIENT NO
2
- 406
v /
404
SENDER SENDS SENDER SENDS NULL
| CONTEXTIDTO ID TO RECIPIENT
RECIPIENT
- |
A J
408

RECIPIENT CHECKS:

NON-NULL CONTEXT ID

NO RECEIVED?
414
I 410
RECIPIENT CREATES DOES RECIPIENT
NEW SERIALIZATION STILL HAVE SERIALIZAITON
CONTEXT CONTEXT?
416
\ v
RECIPIENT SENDS RECIPIENT ECHOES 412
NEW CONTEXT ID TO CONTEXT IDBACKTO}
SENDER SENDER
I :
END

FIG. 4

WO 02/067118

BEGIN

5/5

PCT/US02/00136

508
502
IS CLASS SENDER CREATES
%EESR(EARL‘IPZE\%‘Q’ NO__I[FLAG [HANDLE] CLASS DESCRIPTOR |
CONTEXT? IN OUTGOING HANDLE TABLE
510
SENDER SENDS
| HANDLE | CLASS DESCRIPTOR [DATA |
TO RECIPIENT
506 512
\ Y
SENDER SENDS TO RECIPIENT RECIPIENT STORES
HANDLE | DATA HANDLE | CLASS DESCRIPTOR
IN INCOMING HANDLE TABLE

END

FIG. 5

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

