Title: CURABLE ADHESIVE COMPOSITIONS FOR FLEXIBLE SUBSTRATES

Abstract: Thermally or photo curable adhesive compositions containing a bisphenol F epoxy resin and a bisphenol A epoxy resin in a ratio that is comprised between 2 and 10 and further containing at least an epoxy acrylate component and at least a rubber modified bisphenol. The adhesive compositions are applicable by a melt or liquid coating technique and undergoes curing upon exposure to a heat or radiation, showing improved viscoelastic properties and suitable to provide a cured product having superior durability.
Title
Curable adhesive compositions for flexible substrates

The present invention relates to thermally or photo curable adhesive compositions that are applicable by a melt or liquid coating technique and undergoes curing upon exposure to a heat or radiation, and more particularly to adhesive compositions with improved viscoelastic properties and suitable to provide a cured product having superior durability.

State of the art
Adhesives have been widely used to bond various elements for their solvent-free nature and excellence in environmental resistance. For example, various types of curable adhesive compositions have been proposed to be applied by melt or liquid coating and subsequent curing by irradiation or heat in order to exhibit high bond strength. Many adhesive technologies can be formulated into composition suitable to be used as sealants, i.e. adopted to fill the gap between substrates and joints them.

Among such compositions, a large number of curable adhesives is based on a ring-opening reaction of an epoxy resin, i.e. these curable adhesive compositions obtain a high bond strength through a ring-opening polymerization of an epoxy group. Up to now, the selection of the specific epoxy compound and the inclusion of a phenol-containing compound has been attempted to achieve improvements in bond strength or heat resistance after cure. Adherends are bonded together by these curable hot-melt or liquid adhesives subsequently submitted to a curing treatment, based on exposure to heat or radiation.

Generally, in the case a photoreactive composition is selected (i.e. containing a cationic photoinitiator), it is not required that the cationically curable adhesive is irradiated continually until it is fully cured. In fact, once such an adhesive is irradiated, curing reaction in which radiation-generated cationic active species participate goes ahead even when this irradiation is stopped. If the mechanism of polymerization is well understood, a cationically photoreactive hot-melt or liquid adhesive may be used also when adherends are laminated by the adhesive and they prevent passage of a radiation, e.g., when they are opaque adherends. In order to extend the pot life of the adhesive composition, a component commonly called "cure retarder" is generally incorporated in the cationically photoreactive adhesive.

In the International patent application W09513315, an epoxy/polyester based hot-melt composition which contains polyester that assumes a solid form at ordinary temperature, an epoxy resin and a cationic photoinitiator is disclosed. Due to the incorporation of the
polyester that assumes a solid form at ordinary temperature, that adhesive revealed high
strength immediately after lamination, eliminating the need of a clamping or other provisional
fixing operation before curing completes. However, in the case where the composition
excludes the solid polyester and incorporates the solid epoxy resin, the photoinitiator and
optionally a low molecular weight hydroxyl-containing material, it is described to reveal low
strength immediately after lamination.

The Japanese patent application JPH10330717 discloses a photoreactive adhesive
composition comprising Bisphenol A type epoxy resin, polytetramethylene glycol and a
cationic polymerization initiator. "Bisphenols" indicates a group of chemical compounds with
two hydrophenyl functionalities and most of them are based on diphenylmethane. Bisphenol
A (systematic name 2,2-bis(4-hydroxyphenyl)propane) is the most popular representative of
this group. JPH10330717 further discloses Bisphenol F type epoxy resin as a suitable
alternative to Bisphenol A type epoxy resin, suggesting to a replacement between them as
excluding alternatives (i.e. using only Bisphenol A type or only Bisphenol F type as epoxy
component) or as equivalent alternatives (i.e. using a different ratio between Bisphenol A and
Bisphenol F to obtain a prefixed amount of the epoxy component without effect to the
properties of the adhesive composition or the consequent cured material). For example, a
photoreactive adhesive formulation where in combination of 2 parts by weight of a liquid
epoxy resin, 4 parts by weight of polytetramethylene ether glycol and 0.8 parts by weight of
cationic photoinitiator, 15 parts by weight of bisphenol A epoxy resin and 10 parts by weight
of bisphenol A epoxy resin have been replaced by 15 parts by weight of bisphenol F epoxy
resin and 10 parts by weight of bisphenol F epoxy resin (without any significant effect on dry
adhesion and chemical resistance.

The International patent application WO02055625 discloses a photoreactive hot-melt
adhesive composition which contains a bisphenol F epoxy resin, a cationic photoinitiator and
a compound preferably selected between a copolymer of tetramethylene oxide and ethylene
oxide or a copolymer of tetramethylene oxide and propylene oxide. WO02055625 moreover
describes the possibility that bisphenol F is mixed to Bisphenol A in the epoxy component of
the adhesive if their respective weight ratio is at least 12.5, teaching that the replacement of
bisphenol F with bisphenol A exhibits some drawbacks, as for example an insufficient
resistance against hydrophilic liquids. Moreover, a strong increasing in glass transition
temperature and viscosity characterize the compositions disclosed in WO02055625.

Unlike the above prior-art document, the European patent application EP2377903 discloses an
adhesive composition wherein bisphenol A is present as main epoxy resin in combination
with bisphenol F in order to balance some film adhesive properties, as its strength and the connection resistance. EP23 77903, anyway, is silent about how modify those compositions to improve many other adhesive properties, as for example its flexibility after the film formation obtained by solvent evaporation.

The U.S. patent number 5596024 and 5854325 disclose photo-polymerisable epoxy adhesive compositions wherein epoxy acrylate components are used in association to an epoxy resin in order to achieve an excellent preservative stability without giving rise to failure under hot and humid conditions, but it is silent on how said composition should be modified and provide high adhesive strength immediately after their application and have excellent flexibility and durability after curing. In particular US5854325 discloses compositions mainly based on the use of bisphenol A or, as alternative, bisphenol F epoxy resins.

Description of the invention

It is an object of the present invention to provide a curable adhesive composition which is readily applicable to an adherend, completes curing soon after irradiation or thermal exposure, reveals high adhesive strength immediately after lamination, without requiring a long period of aging, and moreover which exhibits excellent flexibility and durability after curing.

In accordance with a broad aspect of the present invention, a curable adhesive composition is provided containing a bisphenol F epoxy resin and a bisphenol A epoxy resin in a weight ratio that is comprised between 2 and 10 and further containing at least one epoxy acrylate component in association with at least one rubber modified bisphenol, such as a rubber modified epoxy resin. Rubber modified bisphenols are epoxy resins where rubber chains are covalently linked to the bisphenol unit. These components are generally obtained through the reaction of reactive group at the chain ends of rubber copolymer, copolymer that displays rubber-like elasticity, and epoxy groups. Typical adopted reactive group at the chain ends are carboxylic acid or amine groups and the adopted rubbers usually are copolymers of butadiene and acrylonitrile. In a preferred embodiment of the present invention, the curable adhesive composition is provided containing a bisphenol F epoxy resin and a bisphenol A epoxy resin in a weight ratio that is comprised between 4 and 8.

As effect of the inclusion of the bisphenol F epoxy resin as a reactive component, the curable adhesive composition in accordance with the present invention can provide a cured product with improved such physical properties as toughness, durable adhesion and flexibility but only if said bisphenol is used is in association with a corresponding amount of bisphenol A epoxy resin as above disclosed, with at least one rubber modified epoxy resin and with at least
one epoxy acrylate component. Rubber modified epoxy resins deriving from the family of copolymers of butadiene and acrylonitrile are particularly preferred for the formulation of compositions according to the present invention. Carboxyl-terminated butadiene-acrylonitrile resins can also be adopted.

In said first particular aspect of the invention, the curable adhesive composition contains the rubber modified epoxy resin component in the amount of 1 - 10 parts by weight, based on 100 parts by weight of all the curable adhesive composition. This rubber modified epoxy resin component may be selected from Epikote 03161 manufactured by Hexion, KR-208 and KR-309 manufactured by Kukdo Chemical (Kunshan) co. LTD., EPR 2000 manufactured by Adeka Corporation.

As effect of the inclusion of the rubber-modified epoxy resin as a reactive component, the curable adhesive composition in accordance with the present invention can provide a cured product with improved reactivity but only if said rubber-modified epoxy resin is used in association with a corresponding amount of bisphenol A and bisphenol F epoxy resins and with at least one epoxy acrylate component. In fact, even if the use of rubber-modified epoxy resin in association with bisphenol epoxy resin has been disclosed, for example, by the International patent application WO 2013142751 in order to allow the adduct to further react when the adhesive is cured, adhesion before curing as well as final flexibility and durability can be obtained only when adhesive composition fails into the present invention, i.e. it additionally comprises epoxy acrylate component and bisphenol A and bisphenol F are present in a corresponding ratio.

In particular, the curable adhesive composition contains the epoxy acrylate component in the amount of 1 - 5 parts by weight, based on 100 parts by weight of all the curable adhesive composition. This epoxy acrylate component is a reactive monomer where acrylic functionalities are combined to glycidyl functional groups or bisphenol unit: for example it may be selected from glycidyl acrylate, glycidyl methacrylate, bisphenol A diacrylate, bisphenol F diacrylate. Epoxy acrylates components are generally used in combination with multifunctional monomers like trimethylolpropane trimethacrylate, trimethylolpropane triacrylate to increase the curing rate. In a particular embodiment of formulations according to the present invention a blend of glycidyl acrylate and trimethylolpropane triacrylate can be adopted.

The type of the bisphenol F epoxy resin is not particularly binding. For example, bisphenol F epoxy resins having average molecular weights in the approximate range of 300 - 10,000 gr/mol can be suitably used. Specific examples thereof include those sold under the names of
EPICOAT 4004P and EPICOAT 4010P and manufactured by Yuka-Shell Epoxy Co., Ltd. Other type of suitable bisphenol F can be a liquid epoxy resin having number average molecular weights lower than 700 gr/mol as for example that sold under the name Epon Resin 862 and manufactured by Hexion. The bisphenol F epoxy resin undergoes ring-opening polymerization when the cationic photoinitiator is activated by irradiation and imparts excellent bond strength to the photoreactive hot-melt adhesive composition in accordance with the present invention. This is probably because the methylene bridge in bisphenol F epoxy resin allows an easier skeleton rotation making it more flexible and thus provides a cured product which shows improved stress relaxation, compared to the bisphenol A epoxy resin. Because of the missing methyl groups, the viscosity of bisphenol F resins is typically lower than that of bisphenol A. Also, the bisphenol F epoxy resin acts to increase the resistance of the cured product to water and other hydrophilic liquids, when reacted with the epoxy acrylate component. At the same time, the bisphenol A epoxy resin is particularly useful for its ability to impart improved resistance against hydrophilic liquids to a bonded laminate. The type of the bisphenol A epoxy resin is not particularly binding. For example, unmodified bisphenol A epoxy resins having average molecular weights lower than 1000 gr/mol can be suitably used. Specific examples thereof include those sold under the names of Epon 828 manufactured by Hexion, D.E.R. 332 manufactured by DOW Chemical, Araldite GY 6010 manufactured by Huntsman.

Although its molecular weight is not particularly binding, a thermoplastic filler can be advantageously added to the composition according to the present invention. It can be selected from poly(methyl methacrylate-co-ethylene glycol dimethacrylate), poly(methyl methacrylate-co-ethyl acrylate), poly(styrene-co-divinylbenzene), polymethylsilsesquioxane and it preferably has a weight average molecular weight of 1,000 gr/mol or higher for its ability to improve heat-resistant adhesion. Preferably, the particle size of the thermoplastic filler is smaller than 20um and the amount of the thermoplastic filler incorporated is within the range of 1-8 parts by weight, based on 100 parts by weight corresponding to the total weight of the composition according to the present invention. If compared to bisphenol F based composition in the state of the art, this concentration of thermoplastic filler can be lowered up to be significantly less than 10% by weight of the compositions and this can be useful to minimize its jeopardizing impact on the barrier properties.

In the present invention, in the case of a thermally adhesive composition, any curing agent can be suitably used as thermal initiator, so long as it is activated by exposure to heat to cause ring-opening polymerization of the epoxy resin. Preferred examples of amine curing agent are
ethylenediamine, trimethylhexamethylendiamine, diethylenetri amine, 2-hydroxyethylidylenetriamine, dipropylene triamine, triethylenetetramine, tetraethyl! enepentamine, dipropenediamine, diethylenetri amine, dimethylaminopropylamine, dimethylaminopropylamine, m-xylylenediamine, N-aminoethylpiperazine, methane diamine, isophoronediamine, cyclohexylpropylenediamine. Preferred examples of anhydride curing agent are methy! tetrahydrophptaic anhydride, methyl endomethylene tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride. Curing agents react with glycidyl resins slowly at room temperature, but higher temperatures induce a faster curing mechanism. Moreover, curing agents can be also adopted like latent hardener in formulating single-component thermally curable epoxy resins. Preferred examples of latent hardener are dicyandiamide and organic-acid hydrazide. In particular, dicyandiamide is normally used in the form of fine powder or modified particles dispersed in the resin ensuring a very long pot life.

In the case of thermally adhesive composition, the loading of the curing agent is optimal when the number of active hydrogen is equal to that of moles in epoxy groups. Generally for 25 parts of an epoxy resin with equivalent number of 200 g/eq, 25 - 50 parts by weight have to be adopted for a curing agent with 200-100 number of active hydrogen, based on 100 parts by weight of the overall composition weight, allowing a complete polymerization of the adhesive composition with thermal treatment at temperature in the range between 70-120 °C for a time between 60 and 20 minutes.

In the present invention, in the case of a photocurable adhesive composition, any cationic photoinitiator can be suitably used, so long as it is activated by exposure to radiation to cause ring-opening polymerization of the epoxy resin. Examples of cationic photoinitiators include sulfonium salts, iodonium salts, onium. Preferred among such cationic photoinitiators are antimonium salts and triarylsulfonium hexafluoroantimonate salts have been found to be particularly useful to the present invention. As alternative, cationic photoinitiator can be chosen among triphenylsulfonium salts, methylidiphenylsulfonium salts, dimethylphenylsulfonium salts, diphenylnaphthylsulfonium salts and di(methoxynaphthyl)methylsulfonium salts. Preferred among such aromatic sulfonium salts are aromatic sulfonium salts with hexafluorophosphate ions (PF6<->) as counter ions as, for example, triphenylsulfonium hexafluorophosphate, methylidiphenylsulfonium hexafluorophosphate, dimethylphenylsulfonium hexafluorophosphate, diphenylnaphthylsulfonium hexafluorophosphate and di(methoxynaphthyl)methylsulfonium hexafluorophosphate.
In the case of a photocurable adhesive applied on plastic substrates and a curing process promoted through a layer where UV blockers or light stabilizers are adopted, photoinitiator mixture with light absorption in the long wavelength UV region or in visible range can be suitably used. Examples of fluorone dyes are 2,4,5,7-Tetraiodo-3-hydroxy-6-fluorone, 5,7-diiodo-3-butoxy-6-fluorone, also adopted in combination with Iodonium salt or other cointiators.

The amount of the cationic photoinitiator may be varied depending upon the type and intensity of the radiation, the types and amounts of the epoxy resins, the type of the cationic photoinitiator used and the like. Preferably, the cationic photoinitiator is incorporated in the amount of 0.05 - 10 parts by weight, based on 100 parts by weight of the overall composition weight.

The type of the radiation used to cure the composition is not particularly specified if it can cause the cationic photoinitiator to generate cations, and can be suitably chosen depending on the type of the cationic photoinitiator used.

The applicable radiation may be in the ultraviolet range or in visible range. Particularly in the case where a triarylsulphonium hexafluoroantimonate salt is used as the cationic photoinitiator, the radiation preferably includes a wavelength of 350 - 400 nm. Particularly in the case where a fluorone dye is used as the cationic photoinitiator, the radiation preferably includes a wavelength of 400 - 550 nm. The energy exposure cannot be readily determined because it is varied depending on the type of the cationic photoinitiator used and the thickness and spread of the photoreactive hot-melt adhesive composition coated on an adherend, but may preferably be in the range of 0.001 J - 15 J. The exposure time cannot be specified in a wholesale manner because it is varied depending on the intensity of the radiation, the type of the epoxy resin used and the like, but is generally sufficient if within the range of 1 - 120 seconds. When the adhesive is coated in a relatively thick manner, the exposure time may preferably be extended beyond the above-specified range.

The adhesive composition in accordance with the present invention may further contain other components, if necessary, within the range that does not impede the purposes of the present invention. Examples of such components include adhesion improvers, sensitizers, dehydrating agents, antioxidants, stabilizers, plasticizers, waxes, fillers, spacers, flame retardants, blowing agents, antistatic agents, fungicides, viscosity control agents and the like. Applicable components are not limited to those listed above. Any combination of the above-listed components may be added.

The type of the adherend to which the adhesive composition in accordance with the present
invention is applied is not particularly limited. Plastic adherends can be suitably used, including those made from polyester resins such as polyethylene terephthalate, polycarbonate and polyallylate; acrylic resins; and the like. The photoreactive hot-melt adhesive composition in accordance with the present invention can also be applied to adherends made from a wide range of materials including plastics as polycarbonate, polyimide, polyetherimide other than polyethylene terephthalate and polyethylene naphthalate, rubbers such as ethylene propylene rubber; metals such as iron and aluminum and alloys; cellulosic materials such as wood and paper; leathers; and the like.

The present invention will be further explained by the following non-limiting examples.

EXAMPLE 1

77.5 parts by weight of a liquid bisphenol F epoxy resin, 8.7 parts by weight of a liquid bisphenol A epoxy resin, 8.7 parts by weight of poly (acrylonitrile-co-butadiene) modified bisphenol resin, 1 part by weight of a blend of glycidyl acrylate and trimethylolpropane triacrylate, 4.5 parts by weight of poly(methyl methacrylate-co-ethylene glycol dimethacrylate), 4.5 parts by weight of triphenylsulfonium salts are mixed together in a kneading machine to obtain a photoreactive adhesive composition.

The obtained liquid material has been cured by applying an irradiance of 100mW/cm2 for 120s with $\lambda = 365$nm

EXAMPLE 2

72.5 parts by weight of a liquid bisphenol F epoxy resin, 11.2 parts by weight of a liquid bisphenol A epoxy resin, 6.2 parts by weight of poly (acrylonitrile-co-butadiene) modified bisphenol resin, 5 parts by weight of a blend of glycidyl acrylate and trimethylolpropane triacrylate, 4.5 parts by weight of poly(methyl methacrylate-co-ethylene glycol dimethacrylate), 4.5 parts by weight of triphenylsulfonium salts are mixed together in a kneading machine to obtain a photoreactive adhesive composition.

The obtained liquid material has been cured by applying an irradiance of 100mW/cm2 for 120s with $\lambda = 365$nm

EXAMPLE 3

72.5 parts by weight of a liquid bisphenol F epoxy resin, 11.2 parts by weight of a liquid bisphenol A epoxy resin, 6.2 parts by weight of poly (acrylonitrile-co-butadiene) modified bisphenol resin, 5 parts by weight of a blend of glycidyl acrylate and trimethylolpropane triacrylate, 4.5 parts by weight of poly(methyl methacrylate-co-ethylene glycol dimethacrylate), 4.5 parts by weight of triphenylsulfonium salts are mixed together in a kneading machine to obtain a photoreactive adhesive composition.

The obtained liquid material has been cured by applying an irradiance of 100mW/cm2 for 120s with $\lambda = 365$nm
triacrylate, 4,5 parts by weight of poly(methyl methacrylate-co-ethylene glycol dimethacrylate), 21 parts by weight of dicyandiamide are mixed together in a kneading machine to obtain a thermally curable reactive adhesive composition.

The obtained liquid material has been cured by applying a heating process at 100°C for 30 min.

EXAMPLE 4

72.5 parts by weight of a liquid bisphenol F epoxy resin, 11.2 parts by weight of a liquid bisphenol A epoxy resin, 6.2 parts by weight of poly(acrylonitrile-co-butadiene) modified bisphenol resin, 5 parts by weight of a blend of glycidyl acrylate and trimethylolpropane triacrylate, 4.5 parts by weight of poly(methyl methacrylate-co-ethylene glycol dimethacrylate), 0.5 parts by weight of 2,4,5,7-Tetraiodo-3-hydroxy-6-fluorone, 2.5 parts by weight of lodonium salt are mixed together in a kneading machine to obtain a photoreactive adhesive composition.

The obtained liquid material has been cured by applying an irradiance of 100 mW/cm² for 120 s with $\lambda = 530$ nm.

EXAMPLE 5 (comparative: weight ratio out of range)

82.5 parts by weight of a liquid bisphenol F epoxy resin, 6.2 parts by weight of a liquid bisphenol A epoxy resin, 8.7 parts by weight of poly(acrylonitrile-co-butadiene) modified bisphenol resin, 1 part by weight of a blend of glycidyl acrylate and trimethylolpropane triacrylate, 4.5 parts by weight of poly(methyl methacrylate-co-ethylene glycol dimethacrylate), 4.5 parts by weight of triphenylsulfonium salts are mixed together in a kneading machine to obtain a photoreactive adhesive composition.

The obtained liquid material has been cured by applying an irradiance of 100 mW/cm² for 120 s with $\lambda = 365$ nm.

EXAMPLE 6 (comparative: lacking rubber modified epoxy resin)

72.5 parts by weight of a liquid bisphenol F epoxy resin, 11.2 parts by weight of a liquid bisphenol A epoxy resin, 5 parts by weight of a blend of glycidyl acrylate and trimethylolpropane triacrylate, 4.5 parts by weight of poly(methyl methacrylate-co-ethylene glycol dimethacrylate), 4.5 parts by weight of triphenylsulfonium salts are mixed together in a kneading machine to obtain a photoreactive adhesive composition.

The obtained liquid material has been cured by applying an irradiance of 100 mW/cm² for
120s with $\lambda = 365\text{nm}$

EXAMPLE 7 (comparative: epoxy acrylate replaced by aliphatic acrylate)

77.5 parts by weight of a liquid bisphenol F epoxy resin, 8.7 parts by weight of a liquid bisphenol A epoxy resin, 10 parts by weight of aliphatic monoglycidyl ether of C12/C14-fatty alcohol, 1 part by weight of a blend of glycidyl acrylate and trimethylolpropane triacrylate, 4.5 parts by weight of poly(methyl methacrylate-co-ethylene glycol dimethacrylate), 4.5 parts by weight of triphenylsulfonium salts are mixed together in a kneading machine to obtain a photoreactive adhesive composition.

The obtained liquid material has been cured by applying an irradiance of 100mW/cm^2 for 120s with $\lambda = 365\text{nm}$

EXAMPLE 8 (comparison between the compositions of examples 1 to 7)

In order to determine the transition from a mechanical solid phase to a viscoelastic phase, the prepared liquid samples have been submitted to calorimetric analysis. Differential Scanning Calorimetry has been performed by means of a DSC 204 F1 Phoenix equipment from Netzsch and connected to an Omnicure 2000 light source and to a compressor cooling device. 20mg of liquid samples have been cured in aluminum crucibles and then submitted to a heating scan at 10°C/min in the range -50°C — 200°C. The glass transition range has been determined by considering the onset and the endpoint of the inflection portion.

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Bis F/Bis A</th>
<th>Glass transition range (Tg)* [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>8.9</td>
<td>-5 - 13</td>
</tr>
<tr>
<td>Example 2</td>
<td>6.5</td>
<td>0 -- 20</td>
</tr>
<tr>
<td>Example 3</td>
<td>6.5</td>
<td>10 -25</td>
</tr>
<tr>
<td>Example 4</td>
<td>6.5</td>
<td>0 - 20</td>
</tr>
<tr>
<td>Example 5</td>
<td>13.3</td>
<td>90 - 100</td>
</tr>
<tr>
<td>Example 6</td>
<td>6.5</td>
<td>125 - 140</td>
</tr>
<tr>
<td>Example 7</td>
<td>8.9</td>
<td>60 - 80</td>
</tr>
</tbody>
</table>
CLAIMS

1. A curable adhesive composition containing a bisphenol F epoxy resin, a bisphenol A epoxy resin and at least one epoxy acrylate component, wherein the weight ratio of bisphenol F with respect to bisphenol A is comprised between 2 and 10 and in that said composition further contains a rubber modified epoxy resin.

2. Curable composition according to claim 1 wherein said weight ratio of bisphenol F with respect to bisphenol A is comprised between 4 and 8.

3. Curable composition according to claim 1 wherein said bisphenol F is a liquid epoxy resin having number average molecular weights lower than 700 gr/mol.

4. Curable composition according to claim 1 wherein the weight ratio of said at least one epoxy acrylate component with respect to said at least one rubber modified epoxy resin is comprised between 0.1 and 1.

5. Curable composition according to claim 1 wherein said rubber modified epoxy resin is present in amount of 1 to 10 parts by weight, based on 100 parts by weight of the whole curable adhesive composition.

6. Curable composition according to anyone of claims 1 to 5 wherein said rubber modified epoxy resin contains at least one between butadiene and acrylonitrile.

7. Curable composition according claim 1 wherein said epoxy acrylate component is present in amount of 1 to 5 parts by weight, based on 100 parts by weight of the whole curable adhesive composition.

8. Curable composition according to anyone of claims 1 to 7 wherein said at least one epoxy acrylate component is selected from glycidyl acrylate and glycidyl methacrylate.

9. Curable composition according claim 1 wherein said composition further contains at least one thermoplastic filler.

10. Curable composition according claims 9 wherein said at least one thermoplastic filler is selected from poly(methyl methacrylate-co-ethylene glycol dimethacrylate), poly(methyl methacrylate-co-ethyl acrylate), poly(styrene-co-divinylbenzene) and polymethylsilsesquioxane.

11. Curable composition according claim 1 wherein said composition further contains at least one thermal initiator.

12. Curable composition according claim 11 wherein said at least one thermal initiator is selected from ethylenediamine, trimethylhexamethylene diamine, diethylenetriamine, 2-hydroxyethyl diethylenetriamine, dipropylentriamine, triethylenetetramine, tetraethylenepentamine, dipropenediamine, diethylenimopropylamine,
dimethylaminopropylamine, m-xylylenediamine, N-aminoethylpiperazine, methane diamine, isophoronediamine, cyclohexylpropylenediamine. Preferred examples of anhydride curing agent are methyltetrahydrophthalic anhydride, methyl endomethylenetetrahydrophthalic anhydride, methylhexahydrophthalic anhydride and dodecenylsuccinic anhydride.

13. Curable composition according claim 1 wherein said composition further contains at least one UV photoinitiator.

14. Curable composition according claim 13 wherein said at least one UV photoinitiator is selected from triphenylsulfonium salts, methyldiphenylsulfonium salts, dimethylphenylsulfonium salts, diphenylnaphthylsulfonium salts and di(methoxynaphthyl)methylsulfonium salts, triphenylsulfonium hexafluorophosphate, methyldiphenylsulfonium hexafluorophosphate, dimethylphenylsulfonium hexafluorophosphate, diphenylnaphthylsulfonium hexafluorophosphate and di(methoxynaphthyl)methylsulfonium hexafluorophosphate.

15. Curable composition according claim 1 wherein said composition further contains at least one visible photoinitiator.

16. Curable composition according claim 15 wherein said at least one visible photoinitiator is selected from 2,4,5,7-tetraiodo-3-hydroxy-6-fluorone and 5,7-diiodo-3-butoxy-6-fluorone.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>C08G59/18</th>
<th>C08G59/22</th>
<th>C08G59/24</th>
<th>C09J163/00</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>C09J</th>
<th>C08G</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 596 024 A (HORI E KEN ICHI [JP] ET AL) 21 January 1997 (1997-01-21) claim 1; example 1</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>EP 2 377 903 A1 (SUMITOMO ELECTRIC INDUSTRIES [JP]) 19 October 2011 (2011-10-19) claim 1 example 1</td>
<td>1-16</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
- **A**: document defining the general state of the art which is not considered to be of particular relevance
- **E**: earlier application or patent but published on or after the international filing date
- **L**: document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **D**: document referring to an oral disclosure, use, exhibition or other means
- **P**: document published prior to the international filing date but later than the priority date claimed

T: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X: document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y: document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

S: document member of the same patent family

Date of the actual completion of the international search

1 February 2017

Date of mailing of the international search report

09/02/2017

Name and mailing address of the ISA/ \(\text{European Patent Office, P.B. 5818 Patentlaan 2} \)

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

0' Sullivan, Timothy
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2010/019539 A2 (DOW GLOBAL TECHNOLOGIES INC [US]; LUTZ ANDREAS [CH]; SCHNEIDER DANI EL) 18 February 2010 (2010-02-18) claim 1 page 18, line 15 - line 21</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>WO 2013/142751 A2 (DOW GLOBAL TECHNOLOGIES LLC [US]) 26 September 2013 (2013-09-26) example 1; table 1</td>
<td>1-16</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 5854325 A</td>
<td>29-12-1998</td>
<td>NONE</td>
</tr>
<tr>
<td>KR 100827057 B1</td>
<td>02-05-2008</td>
<td>NONE</td>
</tr>
<tr>
<td>US 5596024 A</td>
<td>21-01-1997</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2377903 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010150362 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20110106313 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201038703 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011256342 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010073885 A</td>
</tr>
<tr>
<td>WO 2010019539 A2</td>
<td>18-02-2010</td>
<td>CN 102119201 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2313470 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5395904 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011530648 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20110045046 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011126981 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014275423 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010019539 A2</td>
</tr>
<tr>
<td>WO 2013142751 A2</td>
<td>26-09-2013</td>
<td>CN 104136516 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015518065 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140138761 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015025176 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013142751 A2</td>
</tr>
</tbody>
</table>